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Abstract 

Because different talkers produce their speech sounds differently, listeners benefit from 

maintaining distinct generative models (sets of beliefs) about the correspondence between acoustic 

information and phonetic categories for different talkers. A robust literature on phonetic 

recalibration indicates that when listeners encounter a talker who produces their speech sounds 

idiosyncratically (e.g., a talker who produces their /s/ sound atypically), they can update their 

generative model for that talker. Such recalibration has been shown to occur in a relatively talker-

specific way. Because listeners in ecological situations often meet several new talkers at once, the 

present study considered how the process of simultaneously updating two distinct generative 

models compares to updating one model at a time. Listeners were exposed to two talkers, one who 

produced /s/ atypically and one who produced /∫/ atypically. Critically, these talkers only produced 

these sounds in contexts where lexical information disambiguated the phoneme’s identity 

(e.g., epi_ode, flouri_ing). When initial exposure to the two talkers was blocked by voice 

(Experiment 1), listeners recalibrated to these talkers after relatively little exposure to each talker 

(32 instances per talker, of which 16 contained ambiguous fricatives). However, when the talkers 

were intermixed during learning (Experiment 2), listeners required more exposure trials before 

they were able to adapt to the idiosyncratic productions of these talkers (64 instances per talker, of 

which 32 contained ambiguous fricatives). Results suggest that there is a perceptual cost to 

simultaneously updating multiple distinct generative models, potentially because listeners must 

first select which generative model to update. 

 

  

  



 3 

Introduction 

         Listeners must contend with a tremendous amount of acoustic-phonetic variability as they 

attempt to interpret the speech signal. Much of this variability is attributable to individual 

differences between talkers (Peterson & Barney, 1952), whose productions may differ from each 

other due to physiological, dialectal and/or social reasons (Johnson, 2008). To accommodate this 

variability, listeners can condition their interpretation of the signal on contextual information (e.g., 

lexical knowledge; Ganong, 1980) as well as on their beliefs about how a particular talker speaks 

(Kleinschmidt, 2019). Critically, any acoustic variability that is unexplained by the context can 

serve as a learning signal to the listener, allowing individuals to update their generative model of 

the talker – that is, their set of beliefs about how that particular talker produces their speech sounds 

(Davis & Sohoglu, 2020; Kleinschmidt & Jaeger, 2015). For example, if a listener encounters an 

ambiguous speech sound (?) in the context of the word diver_ity, they can leverage lexical 

knowledge to infer that the intended phoneme was /s/. As a result, the listener can update their 

generative model of how that particular talker produces the /s/ sound, and consequently, they will 

be more likely to map a similar ambiguous sound from that talker to the /s/ category (Norris, 

McQueen, & Cutler, 2003). The particular case where listeners leverage lexical knowledge to 

guide perceptual learning for speech is often referred to as lexically guided perceptual learning. 

Recent work in this domain suggests that listeners continually update their generative models, with 

perceptual learning reflecting aggregated experience with a talker’s voice (Saltzman & Myers, in 

press; Tzeng, Nygaard, & Theodore, in press). 

Because perceptual learning for speech constitutes a potential mechanism for listeners to 

accommodate phonetic variability between talkers, it is important to consider the extent to which 

such learning is talker-specific. A lexically guided perceptual learning study by Eisner and 
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McQueen (2005) is informative in this regard. In that study, participants were initially exposed to 

a /s/-/f/ blend, with some subjects hearing this ambiguous sound in /s/-biased lexical frames and 

others hearing the ambiguous sound in /f/-biased frames. Subsequently, listeners categorized 

sounds on a continuum from [εs] to [εf]; note that in this test phase, lexical context no longer 

served as a cue to the identity of the fricative, as both [εs] and [εf] are nonwords. Critically, the 

fricatives encountered at test were either produced by the same talker who had produced the 

ambiguous sound during exposure or by a different talker. When the talker was consistent between 

exposure and test, listeners showed evidence of perceptual learning, categorizing the ambiguous 

test fricatives in line with their previous exposure. However, if the talker producing the fricative 

segment was different from the talker heard during exposure, then listeners did not show evidence 

of learning. Because learning did not generalize to a second talker, these data are consistent with 

the notion that perceptual learning constitutes a way for listeners to learn how a particular talker 

produces their speech sounds. 

         Nevertheless, perceptual learning for speech has been shown to generalize across talkers 

in some situations, as found, for instance, by Kraljic and Samuel (2005). In their study, listeners 

were first exposed to /s/-/∫/ blends in lexically-biased contexts. During a subsequent phonetic 

categorization phase, listeners categorized stimuli from two [asi]-[a∫i] continua, one from a male 

talker and one from a female talker. Critically, one of the talkers was the same talker that listeners 

had heard during exposure, and one was different. Across several experiments, the authors found 

that listeners generalized if they were exposed to the female talker and later tested on the male 

talker, but they did not generalize from the male talker to the female talker. Further analyses 

indicated that this asymmetry in generalization was likely driven by an asymmetry in acoustic 

properties of the stimuli. In particular, the spectral mean of the fricatives produced by the female 
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talker during exposure was similar to the spectral mean of the fricatives produced by the male 

talker during test; however, the spectral mean of the male talker’s speech heard during exposure 

was different from the mean of the female talker’s speech heard during test. In other words, 

listeners generalized from one talker’s voice to another when the two talkers were similar 

acoustically, but not when the spectral means of the two talkers were distinct. These data suggest 

that listeners can learn about the characteristic way a talker produces their speech sounds, but in 

certain environments (e.g., acoustic similarity between the key tokens), listeners may nonetheless 

generalize what they have learned to other similar talkers. Thus, generative models may not be 

specific to a particular talker but rather may be applicable to an entire group of similar talkers. If 

true, this would make it difficult for listeners to learn the specific idiolects of talkers who had 

otherwise similar voices.  

         An ecologically-valid model of talker-specific phonetic learning would require the listener 

to simultaneously maintain and update different generative models for different talkers (or sets of 

talkers). The observation that perceptual learning for speech does not necessarily generalize across 

talkers is consistent with the proposal that listeners can simultaneously maintain talker-specific 

generative models, but it is not diagnostic of it—a lack of generalization across talkers would also 

be observed if listeners were quickly updating a single set of beliefs about how all individuals 

produce their speech sounds. Under this latter view, listeners might instead maintain a single 

generative model of how talkers produce their speech sounds, and they would update this model 

any time talkers switch. To adjudicate between these possibilities, Kraljic and Samuel (2007) 

examined whether individuals were able to simultaneously maintain differing sets of beliefs about 

two different talkers. During an initial exposure phase, listeners were exposed to a male talker and 

a female talker; for one talker, lexical information biased interpretation of an ambiguous fricative 
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toward /s/, and for the other talker, lexical information biased interpretation of the ambiguous 

sound toward /∫/. To maximize the possibility of learning both talkers, the authors blocked the 

exposure phase by voice, such that listeners heard all the exposure stimuli from one talker before 

hearing the exposure stimuli from the second talker. After being exposed to both talkers, 

participants completed a phonetic categorization task. Results indicated that listeners were able to 

maintain separate generative models for how the two talkers produced these fricative consonants. 

Overall, these results suggest that listeners can learn to map the same phonetic information (e.g., 

the phonetic features corresponding to the ambiguous fricative) onto different perceptual 

categories (/s/ or /∫/) depending on who the talker is, at least for some types of speech sounds. 

         The studies discussed thus far show that listeners who are exposed to one talker at a time 

in an unbroken block can maintain separate phonetic mappings for two different talkers. Yet in 

natural conversation, talkers will alternate in rapid succession. How might listeners learn the 

differing phonetic characteristics of, for example, Julie Andrews’ RP British accent in “Mary 

Poppins” compared to her castmate Dick Van Dyke’s faux Cockney accent, when these voices 

alternate in dialogue? Should we expect similar degrees of perceptual learning when listeners are 

tasked with learning two talkers encountered in a blocked fashion (i.e., sequentially) versus when 

the two talkers are encountered in an interleaved manner (i.e., simultaneously)? In other words, 
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how does updating one generative model at a time compare to the challenge of updating multiple 

generative models in rapid alternation?1 

Domain-general theories of learning offer potential clues as to how perceptual learning 

might differ across these two situations. For instance, research on motor skill learning suggests 

when there is trial-to-trial variability during learning, individuals face a high degree of contextual 

interference, and this interference leads to poorer performance during the practice phase (Magill 

& Hall, 1990; Shea & Morgan, 1979). When applied to perceptual learning for speech, such a 

result might imply that interleaved exposure to multiple talkers will create a high degree of 

contextual interference, such that updating one generative model may interfere with the process of 

updating another. As such, listeners tasked with maintaining distinct generative models for two 

talkers may therefore require additional support if the two talkers are initially encountered in an 

interleaved manner as compared to a blocked one. 

In the current set of experiments, we investigated how simultaneously updating two distinct 

generative models compares to the process of updating one set of beliefs at a time. In Experiment 

1, listeners completed exposure and test blocks for one voice before completing exposure and test 

blocks for the other voice. Because all testing with the first talker is completed before listeners 

encounter the second talker, this design does not require listeners to simultaneously maintain 

multiple generative models; as such, any learning observed in this experiment represents a 

                                                        

1 Here, we emphasize that the question of interest relates to variability in the structure of exposure 
(i.e., whether exposure to multiple talkers is blocked by talker or interleaved). This is distinct from 
investigations of how perceptual learning is affected by variability in the stimuli presented during 
exposure (e.g., whether stimuli are produced by a single talker or by multiple talkers; c.f., Bradlow 
& Bent, 2008, who compared how perceptual adaptation to foreign-accented speech differs when 
listeners are exposed to multiple accented talkers compared to a single accented talker). In the 
current study, we considered how the structure of the exposure phase (i.e., whether trials are 
blocked by talker) influences perceptual learning, while controlling for the degree of stimulus 
variability (i.e., listeners always heard two talkers over the course of the experiment). 
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theoretical upper limit on the amount of perceptual learning we should expect to see when listeners 

track two talkers simultaneously.  

In Experiment 2, our goal was to describe the sufficient conditions for maintenance of two 

distinct talker models during interleaved learning. Critically, interleaved exposure to two talkers 

requires listeners to continually adjust which generative model they are updating every time there 

is a talker switch. Because this switch may pose additional cognitive demands, perceptual learning 

may not be observed as readily when talkers are interleaved as compared to when they are blocked. 

Motivated by findings from the category learning literature, we also manipulated two key factors 

that could theoretically boost simultaneous learning of two talkers.  First, we manipulated overall 

amount of exposure to the talkers’ voices—with the prediction that interleaved learning may be 

successful but require increased exposure.  Second, we manipulated the presence or absence of 

explicit feedback during the training task, with the prediction that feedback might increase 

motivation and/or direct attention to relevant aspects of the signal for learning (in this case, the 

identity of the talker).  

  

General Method 

Stimuli 

Stimuli were constructed and recorded for a previous study (Luthra, Magnuson, & Myers, 

in press) and were repurposed for the current study. Thirty-two total words, 16 with a “medial” /s/ 

and 16 with a “medial” /∫/, with the same parameters as Kraljic and Samuel (2005), were created 

for the exposure phase of the experiment. The sets of medial /s/ and /∫/ words were equated on 

frequency (Kučera & Francis, 1967, t(28) = 1.2, p = 0.24), number of syllables prior to the medial 

fricative (t(30) = -1.23, p = 0.23) and total syllable number (t(30) = 0.46, p = 0.65). 
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Table 1. Words presented during the exposure phase    

/s/-biased words /∫/-biased words 

 absent  accent  adoption  brochure 

 answer  Arkansas  definition  efficient 

 colosseum  currency  friendship  graduation 

 dinosaur  diversity  handshake  impatient 

 episode  eraser  invitation  ocean 

 insane  parasite  parachute  pediatrician 

 peninsula  pregnancy  permission  pressure 

 receipt  rehearsal  professional  vacation 

 

A female speaker of North American English produced the lexical (e.g., colosseum) and 

non-lexical counterpart (e.g., colosheum) for each token (see Table 1 for full list). Recording 

occurred in a sound-isolated booth with a RØDE NT-1 condenser microphone and a Focusrite 

Scarlet 6i6 digital audio interface. Each token was produced twice, and the first author chose the 

best production of the pair. All recordings were passed though the native noise reduction filter in 

Audacity (http://audacityteam.org/). For further details about stimuli creation, please see Luthra et 

al. (in press). 

These tokens were normalized to an amplitude of 70dB SPL. Then, an 11-step continuum 

between the recorded lexical and non-lexical tokens was generated (e.g., colosseum – colosheum) 

using STRAIGHT (Kawahara et al., 2008). The STRAIGHT software supports auditory morphing 

between two chosen endpoints; each endpoint is aligned temporally and spectrally before 
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interpolation. The medial fricative at step 7 was judged to be sufficiently ambiguous between /s/ 

and /∫/. From the original 11-step continuum, step 4 was chosen as the clear /s/ token (e.g., 

colosseum) while step 10 served as the clear /∫/ token (e.g., colosheum). Thus, all presented tokens 

were taken from the morphed recordings.  

Finally, to generate a set of male-spoken tokens, the finalized female tokens were passed 

through the “Change Gender” tool in Praat (Boersma & Weenik, 2017). Transformation 

parameters included setting the formant shift ratio to 0.8 and the new pitch median to 100 Hz. All 

other parameters were held at default values. In this way, we were able to match the acoustic details 

of the male tokens as closely as possible to the female tokens.  The subjective judgement of the 

authors and an informal survey of people familiar with the original talker indicated that this 

manipulation yielded a convincing shift in both gender (male from female voice) and talker (the 

original female talker was unidentifiable after the Change Gender tool was applied).  

For the phonetic categorization task stimuli, a 7-step continuum was constructed following 

the same procedure as for the exposure stimuli. The same female speaker recorded clear 

productions of sign and shine, which were then subject to interpolation with STRAIGHT. We took 

steps 4 through 10 for the 7-step continuum, with step 4 as the clear production of sign, step 7 as 

ambiguous between sign and shine, and step 10 as an unambiguous shine. These morphed female-

spoken tokens were also transformed into a male-spoken continuum using the same parameters 

described above using the “Change Gender” tool in Praat (Boersma & Weenik, 2017). 

 

Procedure 

Experiments were designed and hosted using the Gorilla Software Builder 

(www.gorilla.sc).  Participants were recruited using Prolific (www.prolific.co). Participation 
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screening parameters (as implemented through Prolific) were as follows: between 18 and 90 years 

of age, normal or corrected-to-normal vision and hearing, current country of residence was the 

United States, English-speaking monolingual, no language-related disorders, approval rating in 

Prolific above 90 (max 100), and use of a desktop computer. Participation in one experiment also 

disqualified them from entrance into all subsequent experiments. All participants indicated their 

consent via digital information sheet per the guidelines of the University of Connecticut’s 

Institutional Review Board. Payment was set at $3.33, as completion of the study took 

approximately 20 minutes (rate of $10 per hour).  

After providing informed consent, participants completed a screener task to ensure they 

were wearing headphones (Woods, Siegel, Traer, & McDermott, 2017). Performance typically 

differs on this task when participants wear headphones compared to when listening over 

loudspeakers due to the nature of the stimuli. Participants who failed the screener were given a 

second chance to pass. Following the screening task, participants completed a short demographics 

questionnaire that asked about regional accent, sex, ethnicity, and race. 

The experiment proper had two distinct phases—an exposure phase and a phonetic 

categorization phase (see Figure 1A for schematic). All experiments (1 and 2A-D) utilized this 

two-part design—differing only in the structure of the first exposure phrase. During the exposure 

phase (see Figure 1B), participants listened to the male and female talkers produce 32 tokens each 

(16 ambiguous and 16 unambiguous) while looking at a fixation cross in the center of the screen. 

Lexical context biased the interpretation of the ambiguous stimuli, with each talker having a 

distinct bias—the specific bias direction of each talker was counterbalanced across participants. 

For example, some participants heard the male talker produce ambiguous tokens in an /∫/-biased 

context (e.g., ambi_?_ion) and unambiguous /s/ tokens (e.g., Arkansas), while the female talker 
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produced the ambiguous tokens in an /s/-biased context (e.g., colo_?_eum) and unambiguous /∫/ 

tokens (e.g., friendship). As a cover task to keep participants’ attention on the auditory stimuli, we 

instructed participants to indicate the talker’s sex via keyboard press after each production. The 

“s” key corresponded to the left label (e.g., MALE) while the “k” key corresponded to the right 

label (e.g., FEMALE). Labels remained on the screen for 4000 ms, after which (in the absence of 

a response), the next stimuli played. We counterbalanced the position of the male and female labels 

(right or left) across participants. The structure of the exposure phase was altered in each 

experiment, but the content (i.e., stimuli, talker decision) did not change across experiments. As 

discussed further below, this means that in Experiment 1 (where trials were blocked by talker), 

listeners simply pressed the same button throughout the entire exposure phase.  

After the exposure phase, participants completed a phonetic categorization task with tokens 

spoken by the same talkers as the previous exposure phase (see Figure 1C). Participants heard the 

seven randomized steps of each sign-shine continuum ten times each, resulting in a total of 70 

trials for a given talker. The phonetic categorization phase was grouped by talker, such that 

participants heard all 70 tokens from one talker, and then, in a separate block after a short break, 

heard the 70 tokens from the other talker. The order of talker blocks (MALE/FEMALE, 

FEMALE/MALE) was counterbalanced across participants. After each production, participants 

indicated whether each production sounded more like sign, by pressing the key corresponding to 

an image of a street sign, or more like shine, with a key press corresponding to an image of a sun. 

The position of the sign and shine images on the screen were counterbalanced across participants. 

The order of stimuli within a block was also randomized. The structure and content of the phonetic 
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categorization task was held constant across all experiments, with only a small adjustment in 

Experiment 1 (detailed below). After completing the experiment, participants were debriefed and 

compensated through Prolific. 

We excluded data from participants if they: failed the headphone screener twice, did not 

respond to more than 10% of trials during the exposure or phonetic categorization phase, and/or 

were less than 70% accurate in classifying the unambiguous endpoints during the phonetic 

categorization task (following Kleinschmidt & Jaeger, 2015; Luthra et al., in press). Additionally, 

the number of participants was not always equated across counterbalancing conditions; while 

Gorilla attempts to distribute participants evenly across conditions, the fact that not every person 

completed the experiment occasionally led to imbalanced counterbalancing. In those cases, we 

randomly excluded some participants prior to data analysis, allowing us to have an equal number 

of participants in each counterbalancing condition.  

 

Data Analysis 

We analyzed the phonetic categorization data for all experiments using mixed effects 

models implemented through R (R Core Team, 2019) with the mixed function in the “afex” 

package (Singmann, Bolker, Westfall, & Aust, 2018). This function is a wrapper to the glmer 

function in the “lme4” package (Bates, Maechler, Bolker, & Walker, 2015) and reports results in 

an ANOVA-like format, with chi-square tests determining significance. Fixed factors included 

Step (seven steps: sign-shine, centered using the scale function) and Bias (deviation coded [-1, 1], 

/∫/-bias, /s/-bias). Following the recommendation of Matuschek, Kliegl, Vasishth, Baayen, and 

Bates (2017), we employed a backward-stepping procedure to identify the simplest random effect 

structure without sacrificing model fit. Specifically, we started with the maximal random effects 
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structure (random by-subject slopes and intercepts for Step and Bias and their interaction) and 

iteratively compared to a simplified model (first eliminating the random by-subject interaction of 

Step and Bias, then random by-subject slopes for Step) using the anova function. If the more 

complex model was a significantly better fit than the simpler model, we selected the more complex 

model. If there was no difference in fit between either model, we continued the stepping procedure. 

The final model syntax for each experiment is reported in Tables 2 and 3. 

 

Experiment 1: Blocked Talker Exposure 

 In Experiment 1, we examined listeners’ ability to adapt to two talkers who differed in how 

they produced the fricatives /s/ and /∫/ when exposed and tested in sequential fashion.  Critically, 

listeners were exposed to and tested on one talker’s voice before hearing the second talker; that is, 

they were only tasked with updating one generative model at a time. To maximize the likelihood 

that listeners would adopt different generative models for the two talkers they heard in the current 

study, we required listeners to make explicit decisions about talker identity during the initial 

exposure phase—note that because exposure in this experiment was blocked by talker, listeners 

simply had to press the same button repeatedly for each exposure phase. However, previous work 

has suggested that listeners may be more likely to show talker-specific effects when they actively 

attend to talker identity during encoding of the talkers’ voices (Goldinger, 1996; Luthra, Fox, & 

Blumstein, 2018; Theodore, Blumstein, & Luthra, 2015). Notably, lexically guided perceptual 

learning has been shown to occur robustly following a variety of exposure tasks (Clarke-Davidson, 

Luce, & Sawusch, 2008; Drouin & Theodore, 2018; Eisner & McQueen, 2006; Leach & Samuel, 

2007; Luthra et al., in press; Maye, Aslin, & Tanenhaus, 2008; McQueen, Norris, & Cutler, 2006; 
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White & Aslin, 2011), though to our knowledge, no previous studies have used a talker 

identification task specifically. 

 

METHOD 

Procedure 

Participants completed the exposure and test block for a given talker (e.g., MALE 

exposure, MALE phonetic categorization) before completing both blocks for the other talker (e.g., 

FEMALE exposure, FEMALE phonetic categorization). The talker order (MALE-FEMALE / 

FEMALE-MALE) was counterbalanced across participants.  

 

Participants 

We recruited 52 participants for Experiment 1. Based on the exclusion criteria established 

above, we excluded 13 participants for data quality issues and 7 for failing the headphone screener, 

leaving 32 participants (22 female, 10 male) for analyses. Age of participants in this final sample 

ranged from 19 to 68 (mean: 34). 

 

RESULTS 

The phonetic categorization results of Experiment 1 are shown in Figure 2A. Phonetic 

categorization for the /s/-biased talker is shown in purple while phonetic categorization for the /∫/-

biased talker is in red. Evidence for talker-specific phonetic recalibration is indicated by separation 

between the red and purple lines for the middle (more ambiguous) steps. For Experiment 1, there 

is a clear difference between the percent shine responses (0-100%, along y-axis) for the /s/ versus 

the /∫/-biased talkers for those middle steps.  
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Results of statistical analyses are shown in Table 2. There were significant main effects of 

Step (p < 0.001) and of Bias (p < 0.01), and no interaction of Step and Bias (p = 0.76). A main 

effect of Step was anticipated—participants rated tokens as being more “shine-like” as the 

continuum went from “sign” to “shine.” The effect of Bias indicates that participants were more 

likely to judge ambiguous tokens along the sign-shine as being more “shine-like” following 

exposure to the /∫/-biased talker, compared to the /s/-biased talker; thus, the effect of Bias provides 

evidence of perceptual learning. While the separation between the /∫/-biased and /s/-biased 

categorization functions is particularly clear in the middle of the continuum (especially compared 

to the continuum endpoints), we did not observe a statistically significant interaction between Step 

and Bias—it is possible that our analysis was underpowered in its ability to detect an interaction, 

so we encourage caution in overinterpreting the lack of an interaction. Note also that the effect of 

greatest theoretical interest is the main effect of Bias, not the interaction between Bias and Step.  

 

Table 2    Phonetic categorization results from Experiment 1 (blocked talker exposure) 

SH_resp ~ step*bias + (step * bias | Subject) + (step | Subject) + (bias | Subject) 

 Fixed Effects df chi square p value significance 

Step 1 61.53 < 0.001 *** 

Bias 1 9.35 0.002 ** 

Step x Bias 1 0.09 0.76  

Model syntax on line 2. Significance is indicated by asterisk number adhering to classic 

convention (p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p > 0.05 (+). 
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Experiment 1 Discussion 

Results of Experiment 1 indicated that participants were able to adapt to the idiosyncratic 

fricative productions of two talkers who were encountered sequentially. These data are consistent 

with previous lexically guided perceptual learning studies and most directly relate to the work of 

Kraljic and Samuel (2007), who also tested listeners’ ability to update distinct generative models 

for two different talkers. In both studies, an ambiguous fricative /?/ corresponded to /s/ for one 

talker and to /∫/ for the other. However, the present experiment differs from the previous work of 

Kraljic and Samuel in at least two key ways. 

 First, Experiment 1 used a talker identification task during exposure, and participants only 

heard real words (no nonwords) during exposure blocks; this is in contrast to seminal lexically 

guided perceptual learning studies (e.g., Kraljic & Samuel, 2007; Norris et al., 2003), which have 

traditionally used a lexical decision task instead. The effectiveness of a talker identification task is 

striking particularly because in the current experiment, talker identity was blocked at exposure, 

such that participants were simply required to press the same button throughout each exposure 

block (i.e., to press the “male” button for the entirety of one exposure block and the “female” 

button for the entirety of the other). As such, the present results build on previous work showing 

that lexically guided perceptual learning can be elicited by relatively shallow exposure tasks that 

do not require participants to make explicit lexical judgments (Drouin & Theodore, 2018; Eisner 

& McQueen, 2006; Maye et al., 2008; White & Aslin, 2011). 

 Second, participants in the study by Kraljic and Samuel (2007) were exposed to both talkers 

before completing the first phonetic categorization block. While previous work suggests that 

participants are able to maintain talker-specific generative models (Eisner & McQueen, 2005), 

some degree of generalization from one talker to another has been observed, even with fricative 
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sounds (Kraljic & Samuel, 2005). It is conceivable that in the study by Kraljic and Samuel (2007), 

being exposed to both talkers prior to any testing may have introduced some degree of interference, 

potentially attenuating the amount of learning that would be observed for the two talkers. In 

contrast, Experiment 1 of the current study was designed such that listeners completed both 

exposure and test phases with one voice before hearing the second voice; under this design, there 

should be minimal interference from one generative model to the other. The degree of learning 

observed in Experiment 1 therefore constitutes a theoretical upper limit on the amount of learning 

that should be expected in Experiment 2, where there was a potential for interference between the 

two generative models. 

 

Experiment 2: Mixed Talker Exposure 

In Experiment 2, we examined how the challenge of simultaneously updating two 

generative models compares to the process of updating two generative models sequentially. To do 

so, we modified the design of Experiment 1 such that listeners were exposed to the two talkers in 

an interleaved fashion, with talker identity varying randomly from trial to trial. In a 2x2 between-

subjects design, we also parametrically manipulated the amount of exposure during training and 

whether or not participants received feedback to titrate out the necessary conditions for multi-

talker learning. These manipulations are described below. 

Learning studies across multiple domains have suggested that when individuals encounter 

trial-by-trial variability during training, performance during training is hindered relative to when 

there is low variability (Dunlosky, Rawson, Marsh, Nathan, & Willingham, 2013; Fuhrmeister & 

Myers, 2020; Magill & Hall, 1990; Shea & Morgan, 1979). We therefore hypothesized that in 

order to overcome the contextual interference introduced by interleaved exposure to two talkers, 
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individuals might need an increased number of trials relative to when exposure to the two talkers 

was blocked. As such, we manipulated whether participants in Experiment 2 received the same 

number of exposure trials as in Experiment 1 or twice as much exposure.  

In addition to manipulating the degree of exposure to the two talkers, we also manipulated 

whether participants received feedback during the exposure task, as previous research has 

suggested that feedback may modulate the extent of speech category learning  (e.g., tone category 

learning; Chandrasekaran, Koslov, & Maddox, 2014; Chandrasekaran, Yi, & Maddox, 2014). In 

particular, speech category learning is thought to be mediated by dual learning systems: an explicit, 

reflective system whereby individuals test whether members of two auditory categories can be 

distinguished by a verbalizable rule, and an implicit, reflexive system whereby categorization is 

achieved by integrating across stimulus dimensions and therefore members of two categories 

cannot be distinguished by an easily articulable rule (Chandrasekaran, Yi, et al., 2014). Individuals 

tend to rely more on the reflective system during the early stages of learning but eventually grow 

to rely on the reflexive system as they gain experience; this transition from reflective to reflexive 

processing is thought to be critical for speech category learning, since speech sound categories are 

not distinguished by unidimensional, easily articulable rules. These previous speech category 

learning studies have demonstrated that providing immediate feedback about response correctness 

encourages participants to rely more on the reflexive system, thus promoting speech category 

learning. Here, we hypothesized that providing listeners with immediate feedback about their 

correctness on the talker identification task used in the exposure phase might encourage them to 

employ optimal learning strategies, potentially promoting better learning of the specific ways that 

the two talkers produced their /s/ and /∫/ sounds. Thus, we had four groups for Experiment 2, 

orthogonally manipulating both the amount of exposure subjects received to each talker (32 trials 
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/ 64 trials) as well as whether subjects received feedback about their performance on the talker 

identification task during exposure. 

 

METHOD 

In Experiment 2, we intermixed the two talkers during the exposure phase (see Figure 1A, lower 

panel, for schematic). During exposure, participants heard each word once (with half of the words 

spoken by the male talker and the other half spoken by the female talker) before hearing any of 

those words spoken again (with each word spoken by the opposite talker from whom had said it 

previously).  Following exposure, participants completed two phonetic categorization test blocks 

(blocked by talker, with the talker order counterbalanced across participants), as in Experiment 1. 

In Experiment 2, after completion of the exposure phase there were two blocks of phonetic 

categorization (grouped by talker), the order of which were counterbalanced across participants 

(e.g., MALE-FEMALE, FEMALE-MALE). 

 

Exposure manipulation (Low Exposure: 2A, 2B; High Exposure: 2C, 2D) 

 During the exposure phase, we systematically manipulated the number of talker trials 

participants listened to. In the low exposure experiments (2A and 2B), participants heard 64 trials 

during the exposure phase (32 each, male and female). In the high exposure experiments (2C and 

2D), we doubled the exposure trials to 128 by duplicating the low-exposure condition.   

 

Feedback manipulation (No feedback: 2A, 2C; Feedback, 2B, 2D) 

We also manipulated whether listeners received feedback on the talker identification task. 

Studies of non-native phonetic learning suggest that adding feedback during the task increases the 
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likelihood of learning phonetic detail (Chandrasekaran, Yi, & Maddox, 2014). Notably, in these 

cases, feedback is provided on the to-be-learned phonetic information (i.e., whether the talker 

produced one speech sound or another speech sound). In the current study, however, we provided 

feedback on the talker decision, based on previous work that talker-specific phonetic effects are 

more pronounced when listeners attend to talker information (e.g., Goldinger, 1996). A green 

check mark (“correct) or a red “X” (“incorrect”) appeared on the screen after each talker decision. 

Feedback appeared immediately after a response, and remained on the screen for 1000 ms. 

Experiments that included feedback were Experiments 2B and 2D, and there was no feedback 

included for Experiments 2A and 2C. 

 

Experiment 2A: Mixed Talker, 1X Exposure, No Feedback 

This experiment consisted of low exposure (64 trials) and no talker-decision feedback. We 

recruited 51 participants from Prolific with the same exclusionary criteria described in experiment 

1. Eight failed the headphone screener, five had poor data quality, and five were rejected to 

equalize counterbalancing conditions, and one was removed due to a technical error. After 

exclusions, a total of 32 participants (18 female, 14 male) were left for all analyses. Participants 

ranged in age from 20 to 66 (mean: 32). 

 

RESULTS 

Plotted results for the phonetic categorization task are in Figure 2B. Model output and syntax of 

the linear mixed effects regression can be seen in Table 3A. There was a main effect of Step (p < 

0.001), no effect of Bias (p = 0.20), and no interaction of Step and Bias (p = 0.98). The lack of any 

main effect or interaction involving Bias indicates a lack of phonetic recalibration. 
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Experiment 2B: Mixed Talker, 1X Exposure, With Feedback 

Participants heard 64 trials during exposure (low-exposure condition) and received feedback after 

the talker decision. Thirty-nine participants were recruited from Prolific. After applying the same 

data exclusion criteria as before (five failed the headphone screener, one had poor data quality, 

and one was removed to equate counterbalancing conditions), there were 32 participants (20 

female, 12 male) remaining for analyses. Participants in the final sample ranged in age from 18 to 

68 (mean: 32). 

 

RESULTS 

Figure 2B plots the results for Experiment 2B, and the results of the model are listed in Table 3B. 

We found a significant main effect of Step (p < 0.001), no effect of either Bias (p = 0.91) or an 

interaction (p = 0.15). These results indicate no effect of phonetic recalibration when feedback was 

introduced for the talker decision.  

 

Experiment 2C: Mixed Talker, 2X Exposure, No Feedback 

We presented a total of 128 trials (64 from each talker; high-exposure condition) and did not 

include feedback. Fifty participants were recruited from Prolific. Seven participants failed the 

headphone screener, three had poor data quality, and two more were excluded to equate 

counterbalancing conditions—leaving 32 (14 female, 18 male) for further analyses. These 

participants ranged in age from 18 to 61 (mean: 29). 
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RESULTS 

Results are shown in in Figure 2B. There was an expected significant effect of Step (p < 0.001), a 

marginal effect of Bias (p < 0.06) and no interaction of Step and Bias (p = 0.80), as shown in Table 

3C. The marginally significant effect of Bias suggests that, by doubling talker exposure, 

participants categorized the ambiguous stimuli between “sign” and “shine” differently depending 

on the bias of the talker during the exposure phase. 

 

Experiment 2D: Mixed Talker, 2X Exposure, With Feedback 

The marginally significant effect of Bias found in Experiment 2C suggests that doubling exposure 

may help listeners engage in phonetic recalibration processes. To extend this result, we added  

talker-decision feedback to the high-exposure condition. We recruited 44 participants from 

Prolific. Once participants were rejected for failing the headphone (seven participants) or the data 

quality checks (three for poor data quality and two to equalize counterbalancing conditions), we 

were left with 32 participants (16 female, 16 male) for all subsequent analyses. Participants ranged 

in age from 19 to 70 (mean: 32).  

 

RESULTS 

Plotted in Figure 2B are the results for Experiment 2D. Results of the linear mixed effects 

regression are given in Table 3D; in contrast to previous analyses, the optimal random effects 

structure did not include a random by-subject interaction for Step and Bias. There were significant 

effects of Step (p < 0.001), Bias (p < 0.01), and an interaction of Step and Bias (p < 0.01). These 

results indicate the presence of a phonetic recalibration effect that was specific to each talker. 

Additionally, the significant interaction of Step and Bias suggests that the effect of Bias was 
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inconsistent along the dimension of Step, likely reflecting a numerically greater effect of bias on 

ambiguous stimuli near the category boundary. 

 

Experiment 2 Discussion 

When participants received the same amount of exposure as in Experiment 1, but with 

intermixed training (Exp 2) rather than blocked training (Exp 1), we did not observe talker-specific 

learning, evidenced by the same pattern of phonetic categorization regardless of talker and a lack 

of Bias effect. However, participants who received twice as much exposure (64 trials per talker, of 

which 32 contained the ambiguous fricative) showed talker-specific perceptual learning. Taken 

together, these results suggest that when listeners are tasked with simultaneously updating two 

distinct generative models, additional exposure is required relative to when listeners need only 

update one model at a time.2 

  

                                                        

2 We also ran an omnibus analysis for all mixed-exposure experiments (2A-2D) with Feedback 
(no/yes) and Exposure Number (1x/2x) as fixed factors. While we saw main effects of both Step 

(c2(1) = 283.65,  p < 0.001) and Bias (c2(1) = 7.77, p < 0.01), there were no interactions between 

Bias and Feedback or between Bias and Exposure Number (Bias x Exposure Number: c2(1) = 
2.48, p = 0.12). We did not include this analysis in the results, as the goal of the current study was 
to assess the necessary conditions for multi-talker learning and not the size of the learning effect 
as a function of our manipulations. 
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Table 3     Phonetic categorization results from Experiment 2 (mixed talker exposure). 

A. Experiment 2a: Mixed Exposure (1x), no Feedback 

SH_resp ~ step*bias + (step * bias | Subject) + (step | Subject) + (bias | Subject) 

 Fixed Effects df chi square p value significance 

Step 1 76.63 < 0.001 *** 

Bias 1 1.65 0.20  

Step x Bias 1 0.00 0.98  

B. Experiment 2b: Mixed Exposure (1x), with Feedback 

SH_resp ~ step*bias + (step * bias | Subject) + (step | Subject) + (bias | Subject) 

 Fixed Effects df chi square p value significance 

Step 1 70.08 < 0.001 *** 

Bias 1 0.01 0.91  

Step x Bias 1 2.12 0.15  

C. Experiment 2c: Mixed Exposure (2x), no Feedback 

SH_resp ~ step*bias + (step * bias | Subject) + (step | Subject) + (bias | Subject) 

 Fixed Effects df chi square p value significance 

Step 1 62.52 < 0.001 *** 

Bias 1 3.41 0.06 + 

Step x Bias 1 0.06 0.80  
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D. Experiment 2d: Mixed Exposure (2x), with Feedback 

SH_resp ~ step*bias + (step | Subject) + (bias | Subject) 

 Fixed Effects df chi square p value significance 

Step 1 93.64 < 0.001 *** 

Bias 1 7.38 0.007 ** 

Step x Bias 1 8.10 0.004 ** 

Model syntax on line below each experiment label. (A) Experiment 2a results, mixed talker presentation once 
through, no feedback for talker decision. (B) Experiment 2b results, mixed talker presentation once through, with 
feedback for talker decision. (C) Experiment 2c results, mixed talker presentation twice through, no feedback for 
talker decision. (D) Experiment 2d results, mixed talker presentation twice through, with feedback for talker 
decision. Significance is indicated by asterisk number adhering to classic convention (p < 0.001 (***), p < 0.01 
(**), p < 0.05 (*), p > 0.05 (+). 

 

General Discussion 

 Because of the considerable acoustic-phonetic variation between talkers, listeners must 

maintain different generative models (i.e., different sets of beliefs) for how different talkers (or 

different groups of talkers) produce their speech sounds (Kleinschmidt & Jaeger, 2015). A robust 

literature on lexically guided perceptual learning suggests that as listeners gain additional 

experience with a talker’s voice, they continually update these generative models, doing so in a 

relatively talker-specific fashion (Eisner & McQueen, 2005; Kraljic & Samuel, 2005, 2007; Tzeng 

et al., in press). For instance, when a listener is exposed to a talker who produces the /s/ sound with 

a relatively low spectral center (so that it sounds closer to an /∫/), they will update their beliefs 

about how this talker (and other similar talkers) produce their /s/ sound. In ecological conditions, 

however, listeners rarely encounter one talker at a time—rather, listeners typically alternate 

between different talkers and therefore must simultaneously update multiple generative models, 

effectively assigning the correct acoustic distribution to the correct talker.  
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 In the current lexically guided perceptual learning study, listeners were exposed to two 

talkers, one of whom produced their /s/ sound atypically and one of whom produced their /∫/ sound 

atypically. Thus, listeners were required to maintain separate generative models for these two 

talkers.3 In Experiment 1, listeners were exposed to one talker’s voice and tested on that talker 

prior to hearing the second one; that is, they only had to update one generative model at a time. 

Listeners were able to learn the idiosyncratic speaking styles of these two talkers with relatively 

little exposure (32 exposure trials per talker). In Experiment 2, listeners were exposed to the two 

talkers in an interleaved fashion, such that they were exposed to both talkers’ voices before 

learning was assessed. We found that when exposure was interleaved, listeners required additional 

exposure to the talkers’ voices (64 exposure trials per talker) before talker-specific learning was 

observed. In general, these results suggest that there is a cognitive cost associated with updating 

multiple generative models simultaneously, as opposed to sequentially. 

 Our results are consistent with domain-general theories of learning, which hold that trial-

to-trial variability during learning induces contextual interference, making learning relatively 

challenging (Magill & Hall, 1990). In Experiment 1, listeners faced relatively little contextual 

interference, as they were exposed to and tested on one talker before being exposed to the second 

talker. By contrast, Experiment 2 required listeners to contend with a relatively high degree of 

                                                        

3 The current data suggest that learning the phonetic contingencies of two interleaved talkers 
(Experiment 2) is more difficult than learning the idiolects of two blocked talkers (Experiment 1). 
However, the challenge of adapting to two interleaved talkers may have been exacerbated since 
the current study also required listeners to learn to interpret the same phonetic information (an 
ambiguous sound between /s/ and /∫/) differently depending on the talker. In principle, perceptual 
learning of interleaved talkers might be relatively easier if listeners were learning different 
contrasts (e.g., /s/-/∫/ for one talker and /b/-/v/ for the other), as there would be less conflict between 
talkers in how acoustics map onto phonetic categories. Future work will be necessary to clarify 
how the exposure schedule (blocked versus interleaved) may interact with between-talker 
“phonetic conflict” to affect perceptual learning. 
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contextual interference, as there was trial-to-trial variability in which generative model listeners 

needed to update. As such, additional experience was required before learning was observed.  

Studies of learning suggest that while interleaved exposure may make learning more 

challenging, it may also lead to more robust learning, as a high degree of contextual interference 

may encourage learners to engage in deeper, more elaborate processing (Magill & Hall, 1990; 

Rohrer & Taylor, 2007). For instance, an interleaved exposure schedule may be advantageous for 

learning non-native speech sound categories by promoting the use of a reflexive learning system 

(Chandrasekaran, Koslov, et al., 2014). However, the benefits of interleaved training over blocked 

exposure may be mitigated when the contrast to be learned is particularly difficult (Fuhrmeister & 

Myers, 2020). The current study provides evidence that listeners need additional exposure to 

update talker-specific generative models for native-language phonetic categories when exposure 

to the two talkers is intermixed compared to when it is blocked—however, future studies would 

be needed to specifically investigate whether interleaved exposure leads to more robust learning 

of how different talkers produce their speech sounds. 

 Results of Experiment 2 indicated that feedback did not influence whether talker-specific 

learning was observed. We had hypothesized that drawing attention to the two talkers might make 

it easier for listeners to learn each talker’s phonetic idiosyncrasies, as previous work has suggested 

that attention to talker identity at encoding may modulate the strength of talker-specific effects 

(Goldinger, 1996; Luthra et al., 2018; Theodore et al., 2015). However, the talker identification 

task used in this study was orthogonal to the phonetic manipulation (i.e., the information that 

allowed listeners to disentangle whether the ambiguous sound was /s/ or /∫/ came from the lexical 

signal, not from talker identity), which may explain why no effects of feedback were observed.  
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 In summary, the present study demonstrates that listeners can track the distinct, 

idiosyncratic ways that different talkers produce their speech sounds, providing further evidence 

that perceptual learning may constitute a mechanism by which listeners learn to accommodate 

phonetic variability across talkers. Critically, our results indicate that listeners are able to update 

multiple generative models at a time (as when they encounter two distinct talkers in an interleaved 

fashion). However, listeners may require additional exposure when they are required to update two 

generative models simultaneously, as compared to the situation where they only need to update 

one model at a time.    
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Open Practices Statement 

 

All stimuli, data, and analysis scripts are publicly available at https://osf.io/bs7ja/. The experiments 

reported in this manuscript were not pre-registered. 
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