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Abstract— Lightning geolocation is useful in a variety of
applications, ranging from weather nowcasting to a better
understanding of thunderstorm evolution processes and remote
sensing of the ionosphere. Lightning-generated radio signals
can be used in range estimation of lightning return strokes,
for which the most commonly employed technique is the time
difference of arrival in lightning detection networks. Though
these instrument networks provide the most reliability and best
accuracy, users without access to them can instead benefit from
lightning geolocation using a standalone instrument. In this
article, we present the framework for training fast models
capable of estimating negative cloud-to-ground lightning location
from single-instrument observations of very low frequency/low
frequency (VLF/LF, 3–300 kHz) radio pulses or “sferics,” without
knowledge of the ionosphere’s D-region state. The models are
generated using an analytical method, based on the delay between
ground and skywave, and a machine learning method. The
training framework is applied to three different data sets to
assess model accuracy. Validation of the machine-learned models
for these data sets, which include both simulated and observed
sferics, confirms this technique as a promising solution for
lightning distance estimation using a single receiver. Distance
estimates using a machine-learned model for observed sferics in
Kansas yield an RMSE of 53 km with 68% of them being within
9.8 km. Estimates using the analytical method are found to have
an RMSE of 54 km with 68% of them being within 32 km.
Limitations of our methodology and potential improvements to
be investigated are also discussed.

Index Terms— Distance measurement, inverse problems,
ionosphere, lightning, low-frequency, multilayer perceptrons
(MLPs), neural networks, radio remote sensing, single station.

I. INTRODUCTION

L IGHTNING return stroke geolocation has brought advan-
tages to many industrial fields and commercial groups

such as electric power utilities, aviation, forestry, and weather
forecasting/nowcasting [1], through the use of time difference
of arrival (TDOA) real-time detection networks such as the
National Lightning Detection Network (NLDN) [2], the World
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Wide Lightning Location Network (WWLLN) [3], the Global
Lightning Dataset (GLD360) [4], the British Meteorological
Office’s lightning geolocation network [5], and the University
of Frankfurt’s global lightning triangulation using extremely
low frequency (ELF) (0.3–3 kHz) waves [6]. Real-time light-
ning detection and geolocation provides critical information
on mitigating hazards posed by lightning [7] and the severe
weather associated with it [8], i.e., heavy precipitation, hail,
strong convection, and high wind shear. Lightning geoloca-
tion information has been instrumental to recent develop-
ments in lightning physics, including observations of terrestrial
gamma-ray flashes [9], [10]. Also, lightning geolocation has
a significant influence in the study of prevailing scientific
questions surrounding the climatology of thunderstorms, and
lightning’s relationship to higher altitude geophysical systems,
such as the variation of electron density in the D-region of the
ionosphere [11].

A network data connection is an essential requirement
for the aforementioned real-time detection services, greatly
reducing their suitability for users at more remote locations
with expensive or nonexistent data channels. Commercial and
general aviation, remote scientific operations, the maritime
sector, and even local community events planning can benefit
from a standalone device capable of detecting and locating
lightning events either for lightning and severe weather avoid-
ance or for decision-making on mission operations involving
lightning research.

The self-contained lightning location device suggested in
this article operates on similar lightning radio observations,
“sferics,” as that of the current global lightning networks;
these sferics can be acquired by compact, low-cost magnetic
loop antennas. Alongside the antenna and data processing
unit, the portable instrument requires a model for deducing
lightning location from the observations. Determining light-
ning direction can be accomplished through magnetic direction
finding (MDF) [12]–[14], where azimuthal data are derived
from sferics acquired by two orthogonal antennas. On the other
hand, solutions for range measurements of lightning are more
diverse, each with a different set of limitations, and, though
currently accurate enough for lightning early detection, these
systems will become better suited for navigation, meteorology,
and space research if their fidelity can match more closely that
of multiple-site networks.

Among the single-site methods for estimating lightning
distance, the most prominent approach is to treat the
Earth–Ionosphere waveguide as the duct between two circular
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shells and assume perfect ionosphere reflections, in order
to infer the return stroke distance from the delay between
the main sferic and its ionospheric reflections. The biggest
limitation of this approach is the required knowledge of
the D-region ionosphere. This method was described by
Smith et al. [15] for a class of in-cloud lightning known as
narrow bipolar events, and employed by Zhang et al. [16]
and Cummer et al. [17]. Similarly, the approach is also com-
monly used to estimate the reflection height of the D-region
ionosphere when the return stroke distance is known [18], [19].

A similar and arguably more developed approach for
long-distance lightning, beyond 2000 km, involves using the
delay between the start of the very low frequency (VLF)
“sferic” and ELF “slow-tail” [20], where knowledge of
the ionosphere is still assumed and an ELF/VLF antenna
is required. The best implementation of this approach is
described in [21] and [22], with a model fractional error
mean of 0.76% and a standard deviation of 9.22% for daytime
ionospheres and fractional error mean of 2.79% and standard
deviation of 8.52% for nighttime.

Yet another approach, known as the “Kharkov” method, uses
the phase spectrum of the transverse electric (TE) first-order
waveguide mode to estimate lightning distance [23], [24],
which requires two crossed magnetic antennas and one elec-
tric antenna sensitive to 1.8–3.2 kHz. The Kharkov method
was originally claimed to have a model uncertainty of 5%
for distance estimation depending on the ionospheric model
used. This approach was validated by Brundell et al. [25],
who showed that for a data set of summer nighttime sferics
within 2000 km from the receiver, a model error standard devi-
ation of 72–73 km was found depending on the ionospheric
model used. This method requires many computations of the
first-order phase spectrum for a least-squares fit to the data,
which can be computationally expensive, especially for a
real-time estimate, even when using the simplest parallel-plate
ionospheric model.

Commercial standalone avionics also exist, such as the
Strike Finder [26] and Stormscope [27] instruments. Their
performance characteristics are not readily available, but they
detect lightning within a range of about 200 km, with decreas-
ing precision as return stroke distance increases.

This article aims to provide a proof of concept and prelimi-
nary model error performance estimates for a machine-learned
model capable of estimating range from lightning sferics,
which could be used in a standard, low-cost, VLF/low-
frequency (VLF/LF, 3–300 kHz) receiver. Additionally,
a detailed analysis of the best case implementation of an
analytical range-finding method, based on the delay between
the main sferic and its ionospheric reflections, is presented
in Section II and later compared to the machine-learned
models. Both methods are examined in the context of existing
networks and their performance, such as NLDN’s 300-m
accuracy [28] and GLD360’s ∼2 km accuracy [4], as well as
to the single-site accuracy values referenced above. The use of
higher frequency sferics allows for simpler and more compact
design of the antennas, which requires fewer turns and smaller
cross-section area for the desired sensitivity and bandwidth
[29], while the major drawback of higher attenuation in these

frequencies does not affect our chosen region of interest,
100–700 km.

A. Background

The large currents produced in the return strokes of
lightning generate broadband electromagnetic pulses. In the
VLF/LF range, these pulses are known as sferics (short for
“radio atmospherics”), and they contain information about the
generating lightning return strokes (e.g., 30). These sferics
can be observed at hundreds to thousands of kilometers from
the source as the VLF components propagate without major
attenuation in the Earth–Ionosphere waveguide [31], whereas
the LF components decay after ∼1000 km; as such the
LF signals are most suitable for lightning location within
approximately 1000 km from the observer.

Lightning sferics can be obtained with a magnetic flux
sensor, such as a wire loop antenna, where two orthogonal
antennas can be used for direction finding. Polarization errors
in this approach are described by Yamashita and Sao [32], [33],
and improvements over the basic approach are to only use
the initial part of the sferic for direction finding [12], [13].
Note that if the signal polarity is not known, such as when
differentiating between positive and negative return strokes,
there is a 180◦ ambiguity in the calculated direction. A vertical
electric field antenna can be added to the receiver to resolve the
180◦ ambiguity and decrease errors due to polarization through
the computation of the Poynting vector [23]. A ferromagnetic
core can be used to increase the magnetic permeability of the
loop antennas, then referred to as search coils, at the expense
of a nonlinear frequency response but allowing for a smaller
antenna with the same gain. The transfer function nonlinearity
of this antenna type can be corrected or addressed and still
provide a size advantage over the air-core antenna at the cost
of more complex manufacturing [29].

A simulated cloud-to-ground (CG) return stroke sferic, from
the data set described in Section I-C1, is shown in Fig. 1, with
a diagram illustrating the geometry of the system. Some major
features observed in this sferic, which are directly related to
properties of the originating return stroke, include the peak
B-field; the ground wave, direct from the source to the
receiver; and one or more sky waves, either reflected by
the ionosphere directly or reflected by the ground and
the ionosphere (for in-cloud lightning). While there is a
closed-form solution for extracting lightning range information
for some of these observation features, it is only valid with
ELF/VLF signals [ELF “Slow Tail” 20]. Currently, single-site
lightning location in the time-domain relies on some of these
waveform physical features to approximate an inverse model
capable of recovering the range to the causative lightning
return stroke, e.g., the time delay between the ground wave
and the sky wave(s), the ELF “Slow Tail,” or even the peak
B-field [e.g., 14, 35].

B. Sferic Forward Model and Distance Estimation

The lightning-generated sferics and their attenuation
through the Earth–Ionosphere waveguide define the overall
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Fig. 1. (a) Simulated sferic for a 100-km distant CG strike. (b) Illustration of the lightning electrogmagnetic pulse (EMP) propagation path toward the
receiver, adapted from [34].

physical system and can be represented in the standard obser-
vation equation

y = H(x) (1)

where the properties of the generating lightning return stroke,
which affect the observations, are captured by x , and the
forward model H maps these states into the observed sferic, y.
The properties of the generating return stroke, x , are diverse
and include the distance to the observer, d; the discharge type,
e.g., CG or in-cloud; the peak current and current waveform;
and the state of the D-region ionosphere, which is often para-
meterized by a reflection height h0 and a sharpness parameter
β [36]. The observation, y, is a time series, usually spanning
less than a few milliseconds, and contains the propagated
waveform signature from the lightning return stroke at the
observer’s location, i.e., the sferic. Note that there are many
other processes that also affect the sferics and ranging esti-
mates but are neglected in this study due to their second-order
nature and a small contribution to the current model errors.
These processes include the difference in eastward versus
westward propagation of sferics due to the anisotropy of the
Earth–Ionosphere waveguide, and distance-dependent polar-
ization given the dispersive nature of the Earth–Ionosphere
waveguide [31].

The forward model H has been successfully employed
before using finite-difference time-domain (FDTD) models
of the lightning–ionosphere interaction [37]. In this scenario,
the forward model can be described through a collection
of physical models including Maxwell’s equations combined
with the Langevin equation describing the motion of the
cold, collisional magnetized plasma of the lower ionosphere
(e.g., [37]). As such, the direct inversion of this forward model
is extremely difficult.

In order to extract the distance d between the receiver
and causative discharge, we need to determine the inverse
model, Gd

d = Gd (y). (2)

However, given that the observation model is not invertible,
we must approximate Gd through other means, such as
using the physical waveform features to inform an inverse
model, with a possible methodology described in Section II.
Alternatively, in this article, we describe an inverse model
that uses the complete time-series of the sferic in a

machine-learned neural network model. The method has
the advantage that it does not require the identification of
sferic features, such as a skywave; it provides a distance
estimate and an uncertainty for each sferic; it requires little
processing power once the model is trained; it is trained to
be independent of the ionospheric D-region state; and it is
readily applicable in a real-time system.

C. Data

Three distinct data sets are used to assess the viability of
the two methods presented in this article for lightning distance
estimation. These data sets have different noise characteristics,
and without some instrument model to generalize them, any
empirical model for one data set cannot be used with a
different data set, without significant estimate errors. In order
to circumvent this limitation, an operational approach should
include a calibration routine that will fit or train a model for
each single-site instrument, eliminating the need for a general
model for every instrument installation.

The magnitude of the lightning radio signal observed by two
orthogonal antennas is normalized through standardization,
i.e., mapped to have zero mean and unit variance. Only
negative return strokes are used in this research due to the
lack of enough positive strokes for proper model training,
as discussed in Section III-C. The signal-to-noise ratio (SNR)
for the observed data sets below is computed from the peak
of each waveform divided by the root-mean-squared value of
the first one hundred points, where the ground wave peak is
centered around the 207th point, before standardization and
truncation of the data. The data sets include both daytime and
nighttime observations, except for the Udall data set.

1) Simulated Sferics: A simulated sferic data set is gen-
erated specifically for assessing the error performance of a
lightning distance estimation model in the absence of any
random and systematic error that might be present in empirical
data sets. Using an FDTD model [37], 800 simulations of
100-kA CG return strokes are analyzed between 100 and
700 km from the source at 1-km intervals. The discretization
time step is 0.1 µs, and the source current is low-pass
filtered to 500 kHz. The source is in Huntsville, Alabama
(Lat 44.6464◦, Lon −67.2811◦), and decay is given by the
modified transmission line model with linear current decay
with height (MTLL) [38]. Each simulation uses a randomly
sampled realization of seven input variables from uniform
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TABLE I

SEVEN RANDOM INPUTS TO THE SIMULATIONS AND THE DISTRIBUTIONS

FROM WHICH THEIR VALUES ARE SAMPLED

Fig. 2. Plots of sferics at three different distances from the observer for
all 800 simulations, and their corresponding mean. (a) Simulated sferics at
100 ± 3 km. (b) Simulated sferics at 300 ± 3 km. (c) Simulated sferics at
500 ± 3 km.

distributions that are representative of all probable states of
the local environment (Table I), where the variables are:
pulse rise time, τr ; fall time, τ f ; channel length for MTLL,
lch; ionospheric parameters, h0 and β; and the return stroke
propagation speed, Vrs. Although these uniform distributions
are not realistic, e.g., climate system properties and seasonal
variations skew some of these nonuniformly [39], [40], they
cover the span of all possible states uniformly, which is
critical for the generalization of a machine-learned model
(see Section III-A). Of the 800 simulations, half of them
use daytime ionosphere parameters, h0 = 72–76 km and
β = 0.3–0.5, while the other half use nighttime parameters,
h0 = 83–88 km and β = 0.5–0.9.

The simulated data set is characterized in Fig. 2, where a
subset of sferic data is plotted for three particular distances
from the source. Note that the distance distribution for this
set is uniform, and that while all return strokes have the same

peak current, adding more simulations with different return
stroke currents is not expected to change the standardized
sferics in any significant way, since the distant field is linearly
proportional to the peak current. The predominant groundwave
and skywave features are present in the sferics. There is signifi-
cant variation in the sferics depending on the sampled random
inputs, but the mean is representative of a canonical sferic
at different distances for the given random input distributions.
The average decrease in peak B-field with distance is seen even
after standardization, given some correlation between the two
peak heights and the variance, however, the true peak B-field
value for each sferic, constant for all simulations at each 1-km
distance, is lost in the standardization and would not, by itself,
reliably inform a model for lightning distance estimation.

2) Udall Data: The next data set is composed of sfer-
ics extracted from radio observations in Udall, Kansas,
using a version of the AWESOME receiver described by
Cohen et al. [41], modified for LF frequencies (3–300 kHz),
during four nonconsecutive days of significant lightning activ-
ity in early August 2013, between 22:00 and 05:00 local
time. Sferics are extracted from the raw data with the use
of a matched filter, and as with any other single-site method
available, overlapping sferics cannot be processed individually
and become a single sferic event. Lightning event data from the
NLDN is matched to the sferic observations providing infor-
mation on the observed sferics’ originating lightning return
stroke, such as the true distance, necessary for training and
validation, and other useful parameters such as return stroke
peak current. Lightning return strokes with NLDN-observed
peak current smaller than −10 kA and distances between
90 and 710 km from the receiver are included in this data
set, which consists of 128 461 sferic observations, and of these
55% are from intracloud (IC) lightning and 45% are from CG
lightning, as reported in the NLDN data.

The Udall data set is characterized in Fig. 3, where a
subset of sferic data is plotted for three particular distances
from the source. Similar observations can be made compared
to the simulated sferics, i.e., ground and sky wave peaks
can be identified with a clear relationship between the time
delay and the originating return stroke’s distance, but also
present is the receiver and environment noise, which can
include other lightning-generated signals not associated with
each other. Fig. 4 shows distributions of the distance, peak
current, and SNR, plotted individually and in color maps of
event distribution, as well as the SNR distribution with respect
to peak current and distance. Most relevant to the model error
performance below, the distance distribution is nonuniform,
with a large peak at around 600 km, a valley at around 300 km,
and a more uniform region between 100 and 300 km. Fig. 5
displays the location density of return strokes associated with
this data set. The range-azimuth distribution is not uniform
and there are many gaps in location coverage, which is
expected to affect the model training. The mostly uniform
topology of the region around the receiver relaxes the coverage
requirement to some extent. As expected, the majority of
events (Fig. 4) are of low peak current and low SNR. Naturally,
peak current and SNR seem to correlate well, but also note
that for distance-peak current combinations with a lower
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Fig. 3. Plots of around 1000 sample sferics from the Udall data set at
different distances from the observer and their corresponding mean. (a) Udall
sferics at 100 ± 3 km. (b) Udall sferics at 300 ± 3 km. (c) Udall sferics at
500 ± 3 km.

density of events, the average SNR is higher than would be
otherwise.

3) Boulder Data: The third data set consists of sferics from
radio observations in Boulder, CO, using a similar receiver as
the one at Udall, during 25 days in June and July 2017. The
data are of lower quality than the Udall data set due to a
combination of hardware issues and environment noise. This
lower-quality data set is intentionally used here to explore the
use of the neural network model training for noisier sferics,
i.e., higher noise floor and a larger number of spurious signals.
Again, the data are matched with NLDN truth data, and 63%
of sferics are IC and 37% are CG. Due to the sensitivity
of the instrument and the lower SNR data, far fewer sferics
could be extracted at any one time; the total data set consists
of 21 881 sferics paired with their corresponding NLDN data,
of which 6250 are between 8:00 and 18:00 local time, and
15 631 are between 20:00 and 06:00 local time.

The Boulder data set is characterized in Fig. 6, where a
subset of sferic data is plotted for three distance ranges. Fig. 7
shows distributions of the distance, peak current, and SNR
plotted individually and in color maps of event distribution,
and the SNR distribution with respect to peak current and
distance. Most importantly, the SNR values are far lower than
in the Udall data set. As with the Udall data, the distance
distribution is nonuniform, with few events less than 300 km
and few events at around 550 km. On the location map of
the sferics, Fig. 8, while it can be seen that locations are
significantly not balanced, at least there is better coverage
of the region than in the Udall data set. Also note that the
topology around the Boulder receiver is less uniform than

around the Udall receiver, with the Rocky Mountains to the
west.

II. SKYWAVE DELAY METHOD AND PERFORMANCE

An approximate surrogate model of Gd for estimating
lightning distance can be analytically obtained from the delay
between the direct groundwave and the reflected skywave,
a major physical feature of sferics, as discussed in the intro-
duction. This geometric approach is illustrated in Fig. 1(b);
most importantly, the method requires some knowledge of
the D-region ionosphere, providing the altitude and refraction
angle of sferics. In this section, the skywave delay approach
for lightning distance estimation is presented along with
its performance error when applied to different data sets.
Regardless of the refraction model used, the dependence on
the state of the ionosphere will be significant, and while the
approach can be made more complex to minimize errors due
to the influence of the D-region ionosphere, this dependence
is intrinsic and a limiting systematic error. Identification of
skywaves in the sferics is another limiting factor, as sferics
without a discernible skywave must be discarded, lowering
the overall detection efficiency.

The simulated lightning data set of CG sferics with varying
ionospheric states, described in Section I-C1, is used in
assessing the best possible error performance for the skywave
delay model, for noiseless data with discernible skywaves and
a range of realistic ionospheric states. The Udall data set
(Section I-C2) is also used in assessing the error performance
of the skywave delay method, to validate the most important
results of the study with the simulated data set, such as the
characterization of the method’s limitations.

The ground and skywave are identified as the two tallest
peaks in each sferic’s observation window, separated by at least
50 µs, and the time difference between them is recorded as the
skywave delay. These peaks are shown for a few sample sferics
in Fig. 9(a) and (b), for the nighttime simulated and Udall data
sets, respectively. The computed delays form skywave-distance
curves for each of the ionospheric states represented in the data
set, seen in Fig. 9(c) and (d). The nighttime simulated data set
presents complete curves of 400 realizations of ionospheric
states, since for every realization there are observations at all
distances from the source. The Udall data set includes much
fewer distance observations for certain ionospheric states,
and so only partial curves for the theoretical relationship is
visible. The Udall data set also contains a large number of
incorrect estimations of the skywave delay, mainly caused by
the skywave peak being lower than the noise floor or the
presence of any spurious signals with a taller peak than the
skywave, including secondary reflections of the signal.

Although the simple computation method described above
can likely be improved to better handle the incorrect esti-
mations of the skywave delay, none of these possible
improvements would decrease the uncertainty band of the
skywave-distance curves since they are caused by the depen-
dence on the ionospheric D-region state. In order to focus
on the main limitation of the skywave delay method, which
is uncertainty in the ionospheric state, sferics from the Udall
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Fig. 4. Plots of the distance, peak current, and SNR individual distributions, and color maps of event distribution and SNR distribution with respect to peak
current and distance, for the Udall data.

Fig. 5. Location map for lightning associated with the sferics in the Udall
data set. The receiver location, and range circles of 100, 300, 500, and 700 km
from the receiver are shown for reference.

data set are filtered to include only the correctly identified
skywave delays as given by the empirical spread of the
skywave-distance curves, bypassing any error caused by the
process of identifying the skywave delay on real data. The final
error performance discussed is thus a projection of the best
possible implementation of the skywave delay method, where
the identification of skywave peaks is near perfect, and might
actually not be possible to implement. The data filtering is
accomplished using an envelope defined by top and bottom
skywave-distance curve boundaries, which are spread out from
a center skywave-distance curve. The envelope center and
spread are determined by the distribution of skywave delays
at 6-km binned distances, where 1) the delay distribution
peak for each distance determines the envelope center and
2) two averages of the peak’s full-width at half-maximum,
for distances before and after 470 km, define the spread of
the envelope. Given the significant spread in these curves,
a large error is expected when estimating lightning distance
using the skywave delay alone and without knowledge of

Fig. 6. Plots of around a hundred sample sferics from the Boulder data set
at different distances from the observer and their mean. (a) Boulder sferics
at 100 ± 3 km. (b) Boulder sferics at 300 ± 3 km. (c) Boulder sferics at
500 ± 3 km.

the D-region ionosphere. Although there is general agreement
between the skywave delay curves for simulated and real data
sets, the spread is smaller for the real data set, likely due to
a more limited set of ionospheric states captured in the four
nights of sferic data for this data set.

A fifth-order polynomial is fit to the skywave delay for dif-
ferent lightning distances and its error performance histogram
(true distance minus estimated) is shown in Fig. 9(e) and (f).
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Fig. 7. Plots of the distance, peak current, and SNR individual distributions, and color maps of event distribution and SNR distribution with respect to peak
current and distance, for the Boulder data.

Fig. 8. Location map for lightning associated with the sferics in the Boulder
data set. The receiver location, and range circles of 100, 300, 500, and 700 km
from the receiver are shown for reference.

Table II further tabulates the performance for later comparison
with the models trained using machine learning. The error
distribution, which closely resembles a normal distribution
for the simulated data sets, has a root-mean-square error
of 58.2 km for daytime simulated data, 38.4 km for nighttime
simulated data, 79 km for the whole simulated data set,
and 54.2 km for the Udall data set (nighttime). The error
distribution projected for the Udall data set does not resemble
a Gaussian distribution as much as the other distributions,
being narrower at the top and wider at the base, and so
the percentile edges of 32.12 km (68th percentile), 120 km
(95th percentile), and 198 km (99.7th percentile) represent
the error performance better. As expected, the ionosphere-
driven spread in skywave plots as a function of source distance,
shown in Fig. 9(c) and (d), inherently limits the precision of
a skywave delay distance estimation method, even if perfect
identification of ground and skywave peaks can be achieved.
The error on the whole simulated data set is much larger than

on day or night alone since the spread in skywave-distance
curves is even larger. Also note that the model performance
built and validated using the Udall data set has better error
performance than the nighttime simulated data set, as predicted
from the smaller curve spread for the Udall data set in Fig. 9(d)
discussed previously.

In Sections III and IV, a machine learning approach to the
lightning distance estimation problem is presented to address
the ionospheric knowledge limitation with an improved error
performance, while also eliminating the need for identification
of skywave peaks.

III. MACHINE LEARNING METHODOLOGY

A novel approach for estimating an inverse model involves
training a surrogate machine-learned model using artificial
neural networks (ANNs), which have become increasingly
powerful in the last few years [42], [43]. Machine learning
grants many advantages in finding an inverse model, including
their capacity for generalization, discussed in the next section,
and their fast run time once trained, since they use simple
arithmetic operations, as opposed to intense computations
and/or matrix inversions required by more complex inverse
methods. The model learning process in ANNs, through min-
imization of a cost function, can exploit instructive informa-
tion that may not be clearly accessible, if accessible at all,
through the extraction of known physically relevant features
in observations, such as the time delay between the ground
and sky waves in the waveform of sferics. Thus, a machine
learning approach to inverse modeling can expand the practical
observability of a problem. The inverse modeling requires the
use of truth data, known as supervised learning, to accurately
approximate the desired function.

A. Generalization

An important advantage of machine learning is its intrinsic
approach to model generalization for the desired domain,
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Fig. 9. The top plots, (a) and (b), illustrate the peaks used in finding the delay between ground and skywave, for a few sample sferics at different distances
from the observer. Note that the Udall data do not contain lower frequencies present in the simulated data due to the receiver’s frequency response. The
middle plots, (c) and (d), show the relationship between skywave delay and distance, which can be described as a specific curve for a given ionospheric state.
The bottom plots, (e) and (f), display the estimated error distribution accompanied by coverage shadings to indicate the percentage of events that lies in each
shaded band. Plots on the left correspond to the nighttime simulated sferics data set, while plots on right to the Udall data set of nighttime sferics. Note that
plot (f) corresponds to a projection of the best case implementation of the skywave delay method, with a near-perfect measurement of the skywave delay.

including a domain with noise that could have been intractable
through other simpler estimation methods, but where the
desired output is still observable to the learning process.
Similarly, the model can also be trained to be independent
of otherwise critical inputs in the data, as long as they
are themselves observable separately from the desired input.
For example, in lightning distance estimation using sferics,
a neural network model can be trained to be independent
of ionospheric parameters, h0 and β, as long as there are
observations more strongly correlated with the ionospheric
parameters than to lightning distance or vice versa. However,
some care must be taken in properly preparing the input data
for the model pre- and posttraining, while understanding the
domain of the trained model in terms of its generalization is
critical in its application.

Naturally, there will be cases where generalization of the
model for the desired domain cannot be achieved by machine
learning, e.g., when there are not enough observations or
they are not representative of the desired domain. This is

increasingly common for higher complexity models as the
density of the training samples is inversely proportional to
model complexity. Here, it is best to divide the desired domain
wherever possible and train a model for each separate domain,
which introduces a new requirement of choosing one of the
trained models for use with any given data. This approach
is especially useful when working with wildly different envi-
ronments, such as day/night, land/sea, or positive/negative
return stroke, where specifically trained models can be used
depending on some selection criteria in real time instead
of tasking the learning algorithm with a wide generalization
domain.

Another approach that could improve the training of
an all-purpose model, i.e., wide domain, without requiring
real-time choice of the trained model, would be the use of
bootstrap aggregation (bagging) [44]. Bagging takes an ensem-
ble of models trained through bootstrapping (see Section III-D)
and uses the ensemble’s majority vote on the estimation of
a target. This technique can greatly decrease variance in the
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TABLE II

SUMMARY OF THE ESTIMATED ERROR PERFORMANCE, IN km, FOR THE MODELS CORRESPONDING TO VARIOUS DATA SETS. THE PERCENTILES GIVEN

ARE CENTERED ON EACH MEAN. THE FIRST FOUR RESULTS ARE FOR THE SKYWAVE DELAY METHOD DEVELOPED IN SECTION II

model error estimates, increase generalization, and decrease
the number of gross misclassifications when compared to the
single model approach.

Additionally, machine learning algorithms can be guided by
prior assumptions on the kind of function they are to learn so
as to better generalize the learned model, e.g., the assumption
that the sferic data are centered. A common and implicit
assumption for the learning process is that the function to
be learned is smooth, i.e., it changes little within a small
region [43, Ch. 5.11.2] [42]. With this assumption, it is
clear that similar to any interpolator, the machine learning
algorithm requires a large number of training data that is also
representative of the desired generalized domain; otherwise,
the smoothness assumption will be broken in regions of the
domain for which there is not enough training data. Not only
is there a need for proper data coverage of the domain space,
but a balanced distribution of data is also required for optimal
results in model training [45]. Many resampling techniques
have been documented to tackle the class imbalance problem
satisfactorily, such as under- or oversampling the training data
set to make it more uniform. Simply adding more training data
will increase the trained model error performance regardless
of class imbalance, however, the learning algorithm suffers
the “curse of dimensionality” [42], and as such resampling
the data set to minimize class imbalance might be the most
practical approach to ensuring representative data coverage
over the desired generalization domain.

B. Multilayer Perceptron

While there are many types of neural networks available
for inverse modeling, the multilayer perceptron (MLP) class
of feed-forward neural networks has been an increasingly
common choice among researchers [42], [46]. The MLP has
been established as a universal estimator, capable of training

Fig. 10. MLP feedforward neural network example structure. Each node has
weights for all of its inputs, which will be found during the training process,
as well as independent bias values.

a model to approximate virtually any smooth and measurable
function [47].

The network, illustrated in Fig. 10, consists of hidden
layers, each containing a number of nodes or artificial neurons,
that map all of the previous inputs to output values through
weights (wn) and biases (bn) for each input. The output layer
maps the outputs from the last hidden layer either into a
continuous-valued estimate using one node for regression net-
works or into several categorical probability density estimates
for classification networks, using multiple nodes for each
category. Although the distance estimation problem requires a
continuous output, suggesting the use of a regression approach,
the main difference between the two approaches at the output
layer does not impact the training of the hidden layers, in terms
of both speed and accuracy. This feature was verified in this
study, and comparable error performance of the trained model
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was achieved by using either the classification or regression
network. The advantage of the classification network is that a
probability density function (PDF) estimated at the output can
be used to augment the simple parameter estimate with an error
uncertainty based on that output PDF; i.e., for every sferic,
we obtain an estimate of its source distance from the receiver,
as well as an estimate of the uncertainty in that distance.

The process of training the classification neural network
involves computing values for the weights and biases of
each neuron in the network. This is accomplished with a
backpropagation algorithm, commonly used in neural network
implementations, which involves minimizing a cost function
iteratively, where the errors calculated at the output are back-
propagated and distributed to the neurons in each hidden
layer [48]. The performance function, also sometimes referred
to as the loss function or cost function, dictates the cost
associated with the errors, directly affecting the rate at which
weights and biases are adjusted.

It is recommended to preprocess the data for the learning
process to improve the efficiency of the learning algorithm. For
example, standardization, i.e., mapping the data to have zero
mean and unit variance, allows for faster training convergence
and better generalization of the trained model [49].

C. Neural Network Configuration

For the lightning distance estimation problem, the learning
algorithm must map the input to output (sferic, y and distance,
d) with given example pairs, referred to as supervised learning.
Thus, true distances, d , for each sferic are needed for the
training, as well as for the model validation, where the
trained model’s distance estimate is compared to the truth.
The model outputs an estimated PDF of distance bins, from
which an sferic is likely to have originated, and an expected
value over the PDF gives a continuous estimate of the sferic
range information, essentially recovering the information given
by a regression neural network. The final inverse model is
described by

d = Gd (y) = E(GNN(y)). (3)

where GNN(y) is the neural network model and E is the
expected value operator. The observation data, y, comes into
the model as a 1-D time-series of B-field values within a
∼1 ms “sferic window,” sampled at 1 MHz. Although it would
also be possible to use this data in the frequency domain or in
some other orthogonal basis, this study did not explore such
options.

The model training uses scaled conjugate gradient back-
propagation, a robust option for memory-intensive train-
ing [50], with a cross-entropy performance function [51],
implemented using MATLAB’s neural network toolbox [52].

Each sferic is shifted in the time dimension so as to center
the main ground peak to the same relative time for all data,
so that the hidden nodes of the model can train with the
assumption that the data are centered. Each sferic is also
normalized through standardization, i.e., mapped to have zero
mean and unit variance. For the classification scheme, the data
are discretized in 10-km distance bins, which was found

through a search between 1, 2, 4, 5, 10, 15, and 20-km bin
sizes to be the optimal size for the Udall data set, described
in Section I-C2. Note that the distance estimate can be more
accurate than the 10-km bin size, thanks to the PDF of the
distance estimate. The corresponding truth data must also be
preprocessed for training, as the algorithm expects the training
set truth to be in the same format as the model output, i.e., a
PDF of distance estimate bins. For this processing, we employ
a one-hot encoding of the truth, where all bins are set to zero
except for the one bin corresponding to the correct distance,
which is set to one.

Throughout the training process, several improvements were
explored and included in the final training framework. These
procedures are described below and included optimal parame-
ter selection, data editing, and uncertainty derived from the
signal-to-noise ratio.

The final topology of the network, i.e., the number of hidden
layers and their nodes, was chosen through a grid search for
the trained model with the smallest root-mean-square error
for the Udall data set (Section I-C2). The performance was
estimated using a K -fold cross-validation scheme [53], and the
possible number of nodes ranged from 50 to 800 nodes for the
first hidden layer, and from 0 to 800 nodes independently for
the second, with a step interval of 50 nodes for both layers. The
optimal configuration was found to be 200 and 50 nodes for the
first and second layers, respectively. A similar grid search was
employed for determining the optimal “sferic window” size
and location, i.e., the time duration of each sferic with respect
to the ground wave peak originally centered at 207 µs, ranging
from 1 to 550 µs for the left boundary and 550–1100 µs for
the right boundary with a step interval of 50 µs. The optimal
size was found to be 700 µs, i.e., 700 data points, with the
peak centered at the 147th point.

Given the different types of lightning return strokes and how
they affect the sferic to be observed, especially positive versus
negative return stroke types, an all-purpose trained model
suffers greatly in error performance due to a generalization
difficulty (See Section III-A). The problem can instead be
divided into specific models with improved accuracy, for
positive and negative return strokes separately. Though this
can easily be achieved during training, as polarity is part of
the truth data, it is complicated to achieve when applying
the model in the real world, as explained in Section I-A,
regarding the 180◦ ambiguity in the calculated direction of the
lightning return stroke. Another scheme must be applied first in
determining which trained model is suitable for use depending
on the incoming sferic’s return stroke polarity. In our data sets,
the problem is exacerbated with a smaller and less varied
population of positive return strokes, and so only the more
ubiquitous negative lightning return strokes are considered in
this article (Section I-C). Just as with day/night, by using
an adequate data set it might be possible to train a single
model that is capable of estimating both positive and negative
return strokes, with only a marginal loss of accuracy, but this
possibility remains unexplored.

Finally, SNR was identified as a large driver of model
error performance, and, as a quantity easily measured from
the observations, it can be leveraged for better uncertainty
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estimation and user warnings in the real-time application of
the model. Categorizing the distance estimates in SNR-derived
uncertainty regimes is explored in Section IV.

D. Validation

For validation of the trained models in this research, boot-
strapping (sampling with replacement) is employed for esti-
mating the trained model error statistics, and the best trained
model selected from a pool of different trained models [54].
It is important to note that as an estimator, the model learning
is constrained through the bias-variance tradeoff [55], and so
both are minimized together in the search for a model with the
lowest root-mean-squared error (RMSE), avoiding under- and
overfitting associated with minimizing bias or variance alone.

First, the supervised learning data set, observation plus truth
data, is randomized and divided into k partitions, where the
size of each partition is referred to as the fold size. The training
process, using MATLAB’s network training function train on
the MATLAB network object patternnet, follows by sampling
80% of the partitions for training, except for the simulated
data set where only 10% of the partitions are used for training
because of the larger size of that data set. MATLAB’s own
training function will separate 10% of the training data and use
it internally for its own validation of under- versus overfitting
and as a convergence stop condition for the training. The
trained model error statistics are estimated, as explained in
the next paragraph, and the RMSE is used as a measure of
the model error, i.e., accuracy and precision. The process is
repeated until a model with the best error performance is found
and the next one hundred iterations of the training fail to
generate a better model.

Once the model is trained, it is independently validated by
sampling a fold size sector from the original data set with
replacement, and calculating the estimate’s error, i.e., the truth
minus the model’s estimated distances. The validation step is
repeated a few hundred times in order to build a statistically
meaningful distribution of the estimate errors, from which
we can approximate each model’s estimate error statistics,
a process known as bootstrapping. If the validation data set
is large enough, the true error statistics can be calculated and
compared with one arrived at by bootstrapping. The true error
statistics cannot be computed directly for the Udall and Boul-
der data sets since the subset of data not used in training is too
small to be statistically meaningful. However, the simulated
data set does contain a large number of sferics not used in
training which can be used for inferring the trained model error
statistics. Given the possible approximation errors expected
in bootstrapping [53], the bootstrapping approximation of
error statistics is compared against the true error statistics
for trained models in the simulated data set. A fold size of
at least 250 sferics is empirically found to be suitable for
approximating the error statistics for the trained models, with
less than 0.5 km of error in bias and variance approximation of
the trained model error, and the k-value is adjusted to maintain
this minimum fold size for the different data sets. If a smaller
fold size is desired, the improved bootstrap 632+ technique
can be used instead [56].

Independently, the PDF distance bin estimate given by the
model to an input sferic allows us to infer some uncertainty
information for each lightning return stroke distance estimate;
however, the PDF was found to be a poor estimator of
uncertainty when compared to the actual model statistics,
either approximated by the bootstrapping or the true model
statistics in the simulated data set. An adequate map may
be found for sferic uncertainty based on the trained model’s
output PDF, but in this study, there was no attempt to find this
map. A classification approach is still chosen so that future
implementation might take advantage of it.

IV. MACHINE-LEARNED MODEL PERFORMANCE

In this section, the trained models’ error performances for
the three data sets described above are presented and analyzed.
The model error is computed from the truth minus estimated
distance, and the computed root-mean-square error (RMSE) is
used as the primary error performance measure for the models.
Given that some error distributions have nonzero positive kur-
tosis and deviate from a normal distribution, the RMSE, and
standard deviation are inflated estimates of model uncertainty
[57], and so percentile measures are given as well for more
accurate comparisons. A summary of the error performance of
different models described in this section and in Section II is
found in Table II.

A. Simulated Sferics

The trained models based on the simulated data set give
information about the best performance that can be achieved
with our methodology, as it is a highly controlled data set of
noise-free sferics with a balanced distribution of data covering
the desired domain space, i.e., vast data of uniform distance
and ionospheric parameter distributions.

The performance of the simulated data set model is shown
in Fig. 11. The distance error histogram shows that the
estimated error distribution is close to Gaussian. The small
bias is inevitable given that the model was selected according
to RMSE, and the variance would likely suffer if bias would
have been minimized instead.

The confusion matrix shows no misclassifications beyond
one 10-km bin, and this indicates that improvements in the
error performance, i.e., rms estimate error, could still be seen
by decreasing the 10-km bin size, provided that the data set
size is increased accordingly. Also, note the slight increase
in estimate error near the distance boundaries. This error
is likely caused by the hard boundary for the categorical
distance estimate, which can only under- or overestimate
in these regions. Since the expected value of the predicted
distance is used in determining the final estimate, an even
larger systematic effect is expected. If this systematic effect is
not balanced perfectly between the left and right boundaries,
there will be a contribution to the approximated model error
mean, but in this model this contribution is insignificant
and the bias is due to a number of overestimate outliers
for sferics in the region between 100 and 200 km. Finally,
the model is also more accurate when the training/validation
data are separated between day and night, as expected in
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Fig. 11. (Left) Histogram of the error in estimated distances for the simulated sferics, accompanied by coverage shadings to indicate the percentage of events
that lie in each shaded band. (Right) Confusion matrix plot shows the inferred probabilities of the model predicted distances for a given true distance, with
each true distance row normalized.

Fig. 12. (Left) Histogram of the error in estimated distances for the Udall data set, accompanied by coverage shadings to indicate the percentage of events
that lie in each shaded band. The tails of the distribution continue beyond the error axis. (Right) Confusion matrix plot shows the inferred probabilities of the
model predicted distances for a given true distance, with each true distance column normalized.

terms of generalization requirements. This is expected given
the increase in complexity for the model that requires a larger
domain space, and thus more data for proper training. Given a
large amount of data available for training here, and the very
small increase in RMSE, the worse performance of the more
complex model is likely to be a limitation of this approach,
and different network topology (number of neurons and bin
size) might be required for any possible improvement.

B. Udall Data Set

The model trained on the Udall data set, mostly affected
by class imbalance, has a promising accuracy for real-time
application, with an RMSE of 53 km, in light of possible
improvements discussed in Section IV-D.

The error performance of the model trained on the Udall
data set, shown in Fig. 12, suffers primarily from the nonuni-
formity of the data distance distribution. On the histogram plot
(left), the error estimate has a distribution much narrower at the
top and wider at the base compared to a normal distribution.
The gross misclassifications, larger than 50 km, though small
in number, continue beyond 100 km and greatly affect the

Fig. 13. Map of the estimate RMSE for sferics in the Udall validation data
set. The receiver location, and range circle of 100, 300, 500, and 700 km
from the receiver are shown for reference.

model accuracy. As a measure of precision, the standard
deviation and RMSE seem to be conservative; more illustrative
are the error bounds of 9.76 km for the 68th percentile and
117.77 km for the 95th percentile. The large positive kurtosis
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Fig. 14. (Left) Histogram of the error in estimated distances for the Boulder data set, accompanied by coverage shadings to indicate the percentage of events
that lie in each shaded band. The tails of the distribution continue beyond the error axis. (Right) Confusion matrix plot shows the inferred probabilities of the
model predicted distances for a given true distance, with each true distance column normalized.

of the error distribution indicates a large number of outliers.
It is possible that careful data selection will allow for better
performance on some of the grossly misclassified sferics,
larger than 300 km, as these might arise from improperly
classified or overlapping sferics, as well as the use of bagging,
as explained in Section III-A.

The confusion matrix shows a satisfactory performance for
sferics closer than 300 km. The overall error performance
correlates directly with the number of events for the given
distances, displayed in Fig. 4, from 1) the large uniform
number of sferics closer than 300 km, 2) a peak of events at
420 km, 3) the lack of sferics in the 300–600 km region, to 4)
a peak of events at 600 km. The class imbalance is seen to be
so problematic in this case, that the model tends to predict dis-
tances of 420 and 600 km, which had a vast number of training
sferics associated with them, and that is especially the case for
sferics which belong to underrepresented distance bins. The
weakness of the model predictions cannot be solely attributed
to the lack of sferics at specific regions, as the intrinsically
lower SNR values for more distant sferics and the fact that
some of them are below the noise floor, effectively reducing
data coverage, also contributes to the model inaccuracies.

Fig. 13 shows a map of RMSE for the sferics of the
validation data set. The azimuthal dependence of the model
and its contribution to model accuracy are considerably less
significant than the other dependencies described above. Even
with the sparsity of azimuthal variety at 500 km, where there
is a large number of sferics to the southwest and east, for
sferics whose azimuths correspond to the northwest the error
is indistinguishable from the prediction error for events to the
southwest or east.

C. Boulder Data Set

The model trained on the Boulder data set, with low SNR
and various parasitic signals, has much lower accuracy, RMSE
of 72 km and 68th percentile error of 52.7 km, but still
performs reasonably well in estimating distances given the
poor data quality. Thus, the methodology presented here can

Fig. 15. Map of the estimate RMSE for sferics in the Boulder validation
data set. The receiver location, and range circle of 100, 300, 500, and 700 km
from the receiver are shown for reference.

be used even in a noisier environment at the cost of larger
uncertainties.

The error performance of the trained model for the Boulder
data set, as seen in Fig. 14, is poor and falls far from
what can be achieved with the simulated sferics. The lower
SNR for this data set is the primary cause of the model’s
deficiency. Again nonuniformity in the sferics’ distance distri-
bution leads to a model with corresponding distance regions of
better performance (300–500 km) and of worse performance
(100–300 km). Thus, it seems that the method overemphasizes
training on more numerous sferics at a given distance. The esti-
mation at farther distances suffers from poor error performance
due to a different mechanism explained by the SNR decrease
with distance, which has been seen on the Udall data set.
Additionally, the models perform better, in terms of estimate
error, when only day or night data are used separately just
like with the simulated data set, only here the difference is
significant. The reason for the significant difference between
using the day and night data together or separately is likely
due to the larger domain model needing more data to be
properly trained. This unmet requirement is especially true on
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Fig. 16. (Left) Plot of the SNR distance error relation discovered in the Udall model performance. (Right) Distance error histogram for only events predicted
to be closer than 250 km.

the dayside of the domain, which has a significantly lower
number of sferics than its night counterpart. Additionally,
as opposed to the Udall data set, this set shows more azimuthal
dependence, where a large number of sferics to the southwest,
with relatively small errors, does not translate to good accuracy
for the same distances in other directions, as seen in Fig. 15.
It would be important to distinguish if this is truly an azimuthal
dependence caused by the topology in the region, or because
of a lack of representation of the ionosphere states given the
time of day.

D. Model Performance Considerations

As the best model performance for real data is still much
worse than the trained model from simulated sferics, some
limitations and adjustments are considered in this section.
As a properly calibrated low-noise instrument is expected to
generate observations with quality similar to that of the Udall
data set, only that data set is studied here.

Although a sensitivity analysis was not performed as part of
this study, it is possible to learn whether there is any usable
information on stroke distance from the observer present in
the groundwave portion of a sferic alone. For this experiment,
a model was trained for the Udall data set with a very narrow
sferic “window size,” with the right boundary only 10 points
(10 µs) after the groundwave peak, essentially removing the
skywave from the input data. The results for this method,
shown in Table II, demonstrate that this method can estimate
distances, though they are worse than the results using the
skywave. These results indicate that there is some observability
of the distance in the sferic groundwave. This confirms that
the skywave delay is not the only feature that can be exploited
in a trained neural network model, which as seen in Section II,
is not enough for arriving at the highest precision estimates
with the simulated or Udall data sets.

Regarding the uncertainty associated with the model’s out-
put, note that there is a strong relationship between SNR and
the estimated distance error, as shown explicitly in Fig. 16.
This information can be used at the application level for
better informing the expected uncertainty for a given sferic.

As an illustration of such an application, three SNR bands
were delimited spanning SNR values from ≥0 (original result
from above), ≥50, and ≥200, where standard deviations
and percentiles present the statistics for each band, as given
in Table II.

Additionally, it is clear that the model error performance
is greatest for closer distances. By limiting the scope of the
estimation to sferics that were estimated to be closer than
250 km, a better error performance from the original model
can be expected, RMSE of 36 km, as shown in Fig. 16. Note
that in this Udall data set, there is a large local uniform
distribution of sferics in this regime of sferics closer than
250 km from the receiver, which is also necessary for the
performance observed in the first place. By limiting the
estimates on predicted distances as opposed to true distances,
this technique can be employed at the application level, and
still allows for estimation of more distant events. With the
prerequisites of enough data uniformly distributed at least for
closer sferics, which is easier than farther sferics because of the
smaller area delineated, the improvement in error performance
with closer sferics is expected to be true for any data set. This
improvement in error performance is expected to be limited,
however, as the skywave becomes relatively weak compared
to the ground wave for closer sferics. Note also that with a
more adequate data set uniformly covering all of the distances
and hours of the night and with enough sferics, we are led
to conclude that the accuracy seen here for closer sferics is
attainable for all of the desired distances.

V. CONCLUSION

In this preliminary study on the use of machine-learned
models for distance estimation of lightning through its emitted
radio signatures, a promising methodology and associated
software framework have been developed and documented,
including thorough validation techniques and deliberation on
improvements and critical elements. A simpler and more phys-
ically natural analytical method, based on a sferic’s skywave
delay, can be used as a simplified, first approach for estimat-
ing lightning distance. The analytical method provides some
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advantages over competing methods, such as our machine
learning method, including a much smaller requirement on
the amount of data needed to produce a model, and allowing
for a simple, direct improvement to the distance estimate
if the information on the D-region ionosphere is available.
The limitations of this analytical method were also described,
providing context to the disadvantages to be overcome by
any competing methods, including its intrinsic dependence
on the ionospheric D-region state, and a required algorithm
capable of robustly measuring the skywave delay on any sferic.
The machine-learned model’s accuracy presented here helps
to illustrate the level of performance that can be achieved for
different types of data sets, and elucidates the data set qualities
that strongly correlate with the model error performance.
The model accuracy achieved in this study with real data is
comparable to that reported on other articles using single-site
distance estimation, but it is likely that an error performance
improvement can be achieved with better data coverage used
in training, use of resampling techniques, and implementation
of bootstrap aggregating. The model error performance is far
worse than that achieved in detection networks, except for the
model trained with simulated data, which informs us of the
type of accuracies possible when using this technique with
comprehensive and noiseless data. We confirm that as the
observed sferics depend on system parameters, e.g., distance
and ionospheric states, enough comprehensive data sampling
is required for the training of accurate models. Additionally,
as the desired domain increases, so does the model complexity
and the amount of data required to train a model accurately;
i.e., training for both daytime and nighttime sferics produces
a model with a significant increase in error due to a small
and imbalanced data set, but even with a large amount of
training data there will still be a marginal accuracy cost to
the more complex model, as seen with the vast and uniform
simulated data set. The observations are not as sensitive
to other parameters, such as azimuth and topology, which
are shown to have a smaller effect in data coverage for
training. Different approaches for determining the uncertainty
at the application level were discussed, which could include
error estimates based on SNR or computed distance. Further
research must be done to improve the methodology and data
preprocessing of sferics for better performance, as well as to
better understand the tradeoffs of training different models for
different environment generalizations.

ACKNOWLEDGMENT

The authors would like to thank Dr. Patrick Blaes for
sharing his initial insights into this research, and Mr. Noah
Holland-Moritz for his contributions to the sferic extracting
algorithm.

REFERENCES

[1] A. Nag, M. J. Murphy, W. Schulz, and K. L. Cummins, “Lightning
locating systems: Insights on characteristics and validation techniques,”
Earth Space Sci., vol. 2, no. 4, pp. 65–93, Apr. 2015.

[2] K. Cummins, E. Krider, and M. Malone, “The US national lightning
detection network and applications of cloud-to-ground lightning data by
electric power utilities,” IEEE Trans. Electromagn. Compat., vol. 40,
no. 4, pp. 465–480, Nov. 1998.

[3] C. J. Rodger, J. B. Brundell, R. L. Dowden, and N. R. Thomson,
“Location accuracy of long distance VLF lightning locationnetwork,”
Ann. Geophys., vol. 22, no. 3, pp. 747–758, Jun. 2010.

[4] R. Said and M. Murphy, “GLD360 upgrade: Performance analysis and
applications,” in Proc. 24th Int. Lightning Detection Conf., San Diego,
CA, USA: Vaisala, 2016, pp. 1–8.

[5] A. C. L. Lee, “An operational system for the remote location of lightning
flashes using a VLF arrival time difference technique,” J. Atmos. Ocean.

Technol., vol. 3, no. 4, pp. 630–642, Dec. 1986.
[6] M. Füllekrug and S. Constable, “Global triangulation of intense lightning

discharges,” Geophys. Res. Lett., vol. 27, no. 3, pp. 333–336, Feb. 2000.
[7] S. A. Changnon, “Damaging thunderstorm activity in the United States,”

Bull. Amer. Meteor. Soc., vol. 82, no. 4, pp. 597–608, Apr. 2001.
[8] C. J. Schultz, W. A. Petersen, and L. D. Carey, “Lightning and severe

weather: A comparison between total and cloud-to-ground lightning
trends,” Wea. Forecasting, vol. 26, no. 5, pp. 744–755, Oct. 2011.

[9] G. J. Fishman et al., “Discovery of intense gamma-ray flashes of
atmospheric origin,” Science, vol. 264, no. 5163, pp. 1313–1316,
May 1994.

[10] F. Lyu, S. A. Cummer, and L. McTague, “Insights into high peak current
in-cloud lightning events during thunderstorms,” Geophys. Res. Lett.,
vol. 42, no. 16, pp. 6836–6843, Aug. 2015.

[11] S. A. Cummer, U. S. Inan, and T. F. Bell, “IonosphericDregion remote
sensing using VLF radio atmospherics,” Radio Sci., vol. 33, no. 6,
pp. 1781–1792, Nov. 1998.

[12] F. Adcock and C. Clarke, “The location of thunderstorms by radio
direction-finding,” J. Inst. Electr. Engineers-III, Radio Commun. Eng.,
vol. 94, no. 28, pp. 118–125, Mar. 1947.

[13] E. P. Krider, R. C. Noggle, and M. A. Uman, “A gated, wideband
magnetic direction finder for lightning return strokes,” J. Appl. Meteor.,
vol. 15, no. 3, pp. 301–306, Mar. 1976.

[14] I. I. Kononov, I. A. Petrenko, and V. S. Snegurov, “Radiotechnical
techniques for locating thunderstorms,” (in Russian), Hidrometeoizdat,
p. 222, 1986, doi: 10.1016/0021-9169(95)00011-P.

[15] D. A. Smith et al., “A method for determining intracloud lightning and
ionospheric heights from VLF/LF electric field records,” Radio Sci.,
vol. 39, no. 1, Feb. 2004, Art. no. RS1010.

[16] H. Zhang et al., “Locating narrow bipolar events with single-station
measurement of low-frequency magnetic fields,” J. Atmos. Solar-Terr.

Phys., vols. 143–144, pp. 88–101, Jun. 2016.
[17] S. A. Cummer et al., “The source altitude, electric current, and intrinsic

brightness of terrestrial gamma ray flashes,” Geophys. Res. Lett., vol. 41,
no. 23, pp. 8586–8593, Dec. 2014.

[18] E. H. Lay and X.-M. Shao, “High temporal and spatial-resolution detec-
tion of D-layer fluctuations by using time-domain lightning waveforms,”
J. Geophys. Res., vol. 116, no. A1, Jan. 2011, Art. no. A01317.

[19] V. B. Somu, V. A. Rakov, M. A. Haddad, and S. A. Cummer, “A study
of changes in apparent ionospheric reflection height within individual
lightning flashes,” J. Atmos. Solar-Terr. Phys., vol. 136, pp. 66–79,
Dec. 2015.

[20] J. R. Wait, “On the theory of the slow-tail portion of atmospheric
waveforms,” J. Geophys. Res., vol. 65, no. 7, pp. 1939–1946, Jul. 1960.

[21] C. Mackay and A. C. Fraser-Smith, “Lightning location using the slow
tails of sferics,” Radio Sci., vol. 45, no. 5, pp. 1–10, Oct. 2010.

[22] C. Mackay and A. C. Fraser-Smith, “World coverage for single station
lightning detection,” Radio Sci., vol. 46, no. 3, pp. 1–9, Jun. 2011.

[23] V. A. Rafalsky, A. P. Nickolaenko, A. V. Shvets, and M. Hayakawa,
“Location of lightning discharges from a single station,” J. Geophys.

Res., vol. 100, no. D10, p. 20829, Feb. 2004.
[24] V. Rafalsky, A. Shvets, and M. Hayakawa, “One-site distance-finding

technique for locating lightning discharges,” J. Atmos. Terr. Phys.,
vol. 57, no. 11, pp. 1255–1261, Sep. 1995.

[25] J. B. Brundell, C. J. Rodger, and R. L. Dowden, “Validation of
single-station lightning location technique,” RadioSci., vol. 37, no. 4,
pp. 12-1–12-9, Aug. 2002.

[26] I. Avionics. (1997). Strike Finder Lightning Detection.
Accessed: Apr. 10, 2019. [Online]. Available: http://www.insightavionics.
com/strikefinder.htm

[27] L. C. Avionics. (1998). Stormscope. Accessed: Apr. 10, 2019. [Online].
Available: https://www.l3commercialaviation.com/avionics/products/
stormscope/

[28] S. Mallick et al., “Performance characteristics of the NLDN for return
strokes and pulses superimposed on steady currents, based on rocket-
triggered lightning data acquired in Florida in 2004-2012: Evaluation
of NLDN Performance,” J. Geophys. Res. Atmos., vol. 119, no. 7,
pp. 3825–3856, Apr. 2014.

Authorized licensed use limited to: National Center for Atmospheric Research. Downloaded on July 29,2021 at 00:58:54 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1016/0021-9169(95)00011-P


ANTUNES DE SÁ AND MARSHALL: LIGHTNING DISTANCE ESTIMATION USING LF LIGHTNING RADIO SIGNALS 5907

[29] S. Tumanski, “Induction coil sensors—A review,” Meas. Sci. Technol.,
vol. 18, no. 3, p. R31, 2007.

[30] U. S. Inan, S. A. Cummer, and R. A. Marshall, “A survey of ELF and
VLF research on lightning-ionosphere interactions and causative dis-
charges,” J. Geophys. Res., vol. 115, no. A6, Jun. 2010, Art. no. A00E36.

[31] K. P. Spies and J. R. Wait, Mode Calculations for VLF Propagation in

the Earth-Ionosphere Waveguide, U.S. Dept. Commerce, Office Tech.
Services, Washington, DC, USA, 1961, no. 114.

[32] M. Yamashita and K. Sao, “Some considerations of the polarization error
in direction finding of atmospherics—I. Effect of the Earth’s magnetic
field,” J. Atmos. Terr. Phys., vol. 36, no. 10, pp. 1623–1632, Oct. 1974.

[33] M. Yamashita and K. Sao, “Some considerations of the polarization error
in direction finding of atmospherics-II. Effect of the inclined electric
dipole,” J. Atmos. Terr. Phys., vol. 36, no. 10, pp. 1633–1641, Oct. 1974.

[34] R. A. Marshall, C. L. Da Silva, and V. P. Pasko, “Elve doublets and
compact intracloud discharges,” Geophys. Res. Lett., vol. 42, no. 14,
pp. 6112–6119, Jul. 2015.

[35] F. Horner, “The design and use of instruments for counting local
lightning flashes,” in Proc. IEE—B, Electron. Commun. Eng., vol. 107,
no. 34, pp. 321–330, Jul. 1960.

[36] J. R. Wait and K. P. Spies, Characteristics Earth-Ionosphere Waveguide

for VLF Radio Waves. U.S. Dept. Commerce, Nat. Bureau Standards,
Washington, DC, USA, 1964, no. 300.

[37] R. A. Marshall, “An improved model of the lightning electromagnetic
field interaction with the D-region ionosphere,” J. Geophys. Res.,
vol. 117, no. A3, Mar. 2012, Art. no. A03316.

[38] V. Rakov and A. Dulzon, “A modified transmission line model for
lightning return stroke field calculations,” in Proc. 9th Int. Symp.

Electromagn. Compat., 1991, pp. 229–235.
[39] D. A. Chrissan and A. C. Fraser-Smith, “Seasonal variations of glob-

ally measured ELF/VLF radio noise,” Radio Sci., vol. 31, no. 5,
pp. 1141–1152, Sep. 1996.

[40] D. A. Chrissan and A. C. Fraser-Smith, “A comparison of low-frequency
radio noise amplitude probability distribution models,” Radio Sci.,
vol. 35, no. 1, pp. 195–208, Jan. 2000.

[41] M. Cohen, U. Inan, and E. Paschal, “Sensitive broadband ELF/VLF
radio reception with the AWESOME instrument,” IEEE Trans. Geosci.

Remote Sens., vol. 48, no. 1, pp. 3–17, Jan. 2010.
[42] M. Gardner and S. Dorling, “Artificial neural networks (the multilayer

perceptron)—A review of applications in the atmospheric sciences,”
Atmos. Environ., vol. 32, nos. 14–15, pp. 2627–2636, Aug. 1998.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

[44] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, Aug. 1996.

[45] N. Japkowicz and S. Stephen, “The class imbalance problem: A system-
atic study,” Intell. Data Anal., vol. 6, no. 5, pp. 429–449, Oct. 2002.

[46] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data:
A technical tutorial on the state of the art,” IEEE Geosci. Remote Sens.

Mag., vol. 4, no. 2, pp. 22–40, Jun. 2016.
[47] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward

networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359–366, Jan. 1989.

[48] C. M. Bishop et al., Neural Networks for Pattern Recognition. Oxford,
U.K.: Oxford Univ. Press, 1995.

[49] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Proc. Neural Netw., Tricks Trade. London, U.K.: Springer-Verlag,
1998, pp. 9–50. [Online]. Available: http://dl.acm.org/citation.cfm?
id=645754.668382

[50] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised
learning,” Neural Netw., vol. 6, no. 4, pp. 525–533, Jan. 1993.

[51] D. M. Kline and V. L. Berardi, “Revisiting squared-error and cross-
entropy functions for training neural network classifiers,” Neural Com-

put. Appl., vol. 14, no. 4, pp. 310–318, Dec. 2005.
[52] H. Demuth, M. Beale, and M. Hagan, “Deep learning toolbox, version

13,” MathWorks, Natick, MA, USA, 2008, pp. 37–55.
[53] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy

estimation and model selection,” in Proc. IJCAI, Montreal, QC, Canada,
vol. 14, no. 2, 1995, pp. 1137–1145.

[54] R. Tibshirani, “A comparison of some error estimates for neural network
models,” Neural Comput., vol. 8, no. 1, pp. 152–163, Jan. 1996.

[55] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and
the bias/variance dilemma,” Neural Comput., vol. 4, no. 1, pp. 1–58,
Jan. 1992.

[56] B. Efron and R. Tibshirani, “Improvements on cross-validation:
The 632+ bootstrap method,” J. Amer. Stat. Assoc., vol. 92, no. 438,
pp. 548–560, Jun. 1997.

[57] P. H. Westfall, “Kurtosis as peakedness, 1905–2014.R.I.P,” Amer. Sta-

tistician, vol. 68, no. 3, pp. 191–195, Jul. 2014.

Andre L. Antunes de Sá (Student Member, IEEE)
received the B.A. degree in physics and astronomy
from Amherst College, Amherst, MA, USA, in 2014,
and the M.S. degree in aerospace engineering sci-
ences from the University of Colorado Boulder,
Boulder, CO, USA, in 2016, where he is currently
pursuing the Ph.D. degree in aerospace engineering
sciences.

His research interests include radio instrument
design for lightning remote sensing, thunderstorm
electrification processes, and the relation between

lightning and severe weather phenomena.
Mr. Antunes de Sá was a recipient of the NASA Earth and Space Science

Fellowship from 2017 to 2020.

Robert A. Marshall (Member, IEEE) received the
B.S. degree in electrical engineering from the Uni-
versity of Southern California, Los Angeles, CA,
USA, in 2002, and the M.S. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, USA, in 2004 and 2009, respectively.

He held research positions with the Center for
Space Physics, Boston University, Boston, MA,
USA, and the Department of Aeronautics and Astro-
nautics, Stanford University, Stanford, CA, USA.
He is currently an Assistant Professor with the Ann

and H. J. Smead Department of Aerospace Engineering Sciences, University
of Colorado Boulder, Boulder, CO, USA. He has coauthored the book
Numerical Electromagnetics: The FDTD Method (Cambridge University
Press, 2011) with U. S. Inan. His research activities include the study of
lightning–ionosphere interactions, radiation belt precipitation and atmospheric
effects, numerical modeling and applications in space physics, and small
satellite instrument development.

Dr. Marshall received the First Place in the 2007 International Radio Science
Union (URSI) Student Paper Competition. He was a recipient of the URSI
Young Scientist Award in 2011.

Authorized licensed use limited to: National Center for Atmospheric Research. Downloaded on July 29,2021 at 00:58:54 UTC from IEEE Xplore.  Restrictions apply. 


