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Abstract 
 

A listener’s interpretation of a given speech sound can vary probabilistically from moment 

to moment. Previous experience (i.e., the contexts in which one has previously 

encountered an ambiguous sound) can further influence the interpretation of speech, a 

phenomenon known as perceptual learning for speech. The present study used multi-

voxel pattern analysis to query how neural patterns reflect perceptual learning, leveraging 

archival fMRI data from a lexically guided perceptual learning study conducted by Myers 

and Mesite (2014). In that study, participants first heard ambiguous /s/-/∫/ blends in either 

/s/-biased lexical contexts (epi_ode) or /∫/-biased contexts (refre_ing); subsequently, they 

performed a phonetic categorization task on tokens from an /asi/-/a∫i/ continuum. In the 

current work, a classifier was trained to distinguish between phonetic categorization trials 

in which participants heard unambiguous productions of /s/ and those in which they heard 

unambiguous productions of /∫/. The classifier was able to generalize this training to 

ambiguous tokens from the middle of the continuum on the basis of individual subjects’ 

trial-by-trial perception. We take these findings as evidence that perceptual learning for 

speech involves neural recalibration, such that the pattern of activation approximates the 

perceived category. Exploratory analyses showed that left parietal regions 

(supramarginal and angular gyri) and right temporal regions (superior, middle and 

transverse temporal gyri) were most informative for categorization. Overall, our results 

inform an understanding of how moment-to-moment variability in speech perception is 

encoded in the brain. 
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 At its core, speech perception is a process of inferring a talker’s intended message 

from an acoustic signal. A challenge for the listener is the lack of a direct correspondence 

between the acoustic signal and the individual’s phonemic representations (i.e., the lack 

of invariance problem; Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967). 

Rather, the same acoustic information may be interpreted in distinct ways depending on 

factors such as the preceding speech context (Ladefoged & Broadbent, 1957) and the 

overall rate of the speech (Summerfield, 1981). Further complication comes from the fact 

that different talkers produce speech sounds in distinct ways (Kleinschmidt, 2019; 

Peterson & Barney, 1952). Despite these challenges, listeners typically perceive speech 

with high accuracy and with relative ease. 

 One way that listeners may achieve robust speech perception is by exploiting 

contextual cues (Kleinschmidt & Jaeger, 2015). A listener’s interpretation of the speech 

signal is strongly informed by factors such as lexical knowledge (Ganong, 1980), lip 

movements (McGurk & MacDonald, 1976), and written text (Frost, Repp, & Katz, 1988). 

Critically, context does not just guide the interpretation of speech in the moment; context 

also influences the interpretation of subsequent speech from the same talker, even when 

later speech is encountered in the absence of informative context. In other words, initial 

context can guide a listener’s ability to learn how a particular talker produces their speech 

sounds – knowledge that can be applied later when context is no help to disambiguate 

the signal. Such perceptual learning for speech is often referred to as phonetic 

recalibration or phonetic retuning.  

In a seminal study, Norris, McQueen and Cutler (2003) demonstrated how 

perceptual learning can be guided by a listener’s lexical knowledge. In that study, listeners 



PERCEPTUAL LEARNING FOR SPEECH INVOLVES NEURAL RECALIBRATION 
 

4 
  

were initially exposed to an ambiguous speech sound in contexts where lexical 

information consistently biased their interpretation toward one phoneme category. In a 

subsequent test phase, the ambiguous speech sound was embedded in contexts where 

lexical information could not be used to resolve phoneme identity. Participants generally 

interpreted the signal in a manner consistent with their previous exposure, indicating 

phonetic recalibration. Since then, a substantial body of research has provided evidence 

that lexical context can guide perceptual learning of speech sounds, with such learning 

shown to be relatively long-lasting (Kraljic & Samuel, 2005), talker-specific (at least for 

fricatives; Eisner & McQueen, 2005; Kraljic & Samuel, 2006, 2007), and robust to 

changes in the task used during exposure (Drouin & Theodore, 2018; Eisner & McQueen, 

2006) and test (Sjerps & McQueen, 2010). Additionally, phonetic recalibration has been 

elicited using other forms of contextual cues during exposure, such as lip movements 

(Bertelson, Vroomen, & De Gelder, 2003) and written text (Keetels, Schakel, Bonte, & 

Vroomen, 2016). 

Nonetheless, while context can bias a listener’s interpretation of a speech sound, 

it does not uniquely determine it, and there is a considerable amount of trial-by-trial 

variability in how a listener interprets the speech signal. In other words, the influence of 

contextual factors is probabilistic rather than deterministic. Hearing a sound that is 

intermediate between “s”-/s/ and “sh”-/∫/ in the context of epi_ode may bias the listener to 

the lexically congruent interpretation, /s/, (i.e., episode), but they may still sometimes 

interpret the phoneme in in the lexically incongruent way, epishode (Kleinschmidt & 

Jaeger, 2015). The same is true with regard to perceptual learning for speech: Having 

previously encountered an ambiguous /s/-/∫/ sound in /s/-biased contexts may make a 
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listener more likely to later interpret similar ambiguous speech sounds as /s/, but a listener 

will still occasionally interpret these ambiguous sounds as /∫/.  

The goal of the current study is to understand how variability in the interpretation 

of ambiguous speech sounds is reflected in patterns of brain activation, particularly 

following phonetic recalibration. Some insight into this question comes from two multi-

voxel pattern analysis (MVPA) studies of perceptual learning for speech. In one such 

study, Kilian-Hütten, Valente, Vroomen, and Formisano (2011) used lip movements to 

guide phonetic recalibration, collecting fMRI data while participants alternated between 

exposure blocks (where disambiguating visual information guided interpretation of a 

stimulus ambiguous between ‘aba’ and ‘ada’) and test blocks (where participants 

categorized this ambiguous stimulus as well as two surrounding ambiguous tokens). 

Phonetic recalibration was observed in that participants categorized ambiguous stimuli 

as ‘aba’ more often after /b/-biased blocks than after /d/-biased blocks. To examine how 

trial-by-trial perception was reflected in the pattern of functional activation, the authors 

trained a support vector machine (SVM) on trial-by-trial patterns of activation from the 

bilateral temporal lobes, labeling trials based on perceptual identification data. When 

tested on activation patterns from held-out trials, the classifier was significantly above 

chance in its ability to correctly identify how the subject had perceived the stimulus on 

that trial. Furthermore, the most discriminative voxels tended to be left-lateralized and 

specifically located near primary auditory cortex. Similar results were obtained by Bonte, 

Correia, Keetels, Vroomen, and Formisano (2017), who used written text (aba or ada) to 

guide phonetic recalibration of ambiguous auditory stimuli (a?a). Using a similar SVM 

approach, Bonte and colleagues found that the subject’s trial-by-trial interpretation of an 
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ambiguous stimulus could be identified based on the pattern of activity across the bilateral 

superior temporal cortex. Taken together, the results of these studies suggest that a 

listener’s ultimate percept of an ambiguous sound can be recovered from the pattern of 

activity in temporal cortex.  

Because these previous studies were largely interested in whether perceptual 

information was encoded in early sensory regions, their analyses were restricted to 

bilateral temporal cortex. However, there are reasons to suspect that the pattern of neural 

activity in other regions may also provide information about the underlying percept, at 

least following lexically guided perceptual learning. Of particular relevance here is a 

lexically guided perceptual learning study by Myers and Mesite (2014). In that study, 

participants alternated between lexical decision blocks (during which they were exposed 

to an ambiguous /s/-/∫/ sound in lexically disambiguating contexts, such as epi_ode or 

refre_ing) and test blocks (wherein participants performed a phonetic categorization task 

with a continuum of stimuli from /asi/ to /a∫i/). Functional neuroimaging data collected 

during the phonetic categorization task implicated a broad set of neural regions in the 

process of lexically guided perceptual learning. In particular, the response of the right 

inferior frontal gyrus (IFG) to ambiguous tokens depended on whether the exposure 

blocks had biased subjects to interpret the ambiguous speech sound as /s/ or /∫/. The 

authors also reported several left hemisphere clusters – including ones in left parietal 

cortex (left supramarginal gyrus, or SMG) and in left IFG – that showed an emergence of 

talker-specific effects over the course of the experiment. Such findings suggest that a 

subject’s perceptual experience may be encoded in regions beyond temporal cortex, at 

least when lexical information guides phonetic retuning. 
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Notably, Myers and Mesite (2014) employed only univariate statistics to investigate 

the neural basis of subjects’ perceptual experiences. By contrast, MVPA exploits potential 

interactions between voxels (focal and/or distributed) to uncover otherwise hidden 

cognitive states. MVPA also allows researchers to investigate the generalization of multi-

voxel patterns across different cognitive states, which is crucial for studying invariance to 

specific experimental dimensions (Correia et al., 2014; Correia, Jansma, & Bonte, 2015). 

In the current study, we used MVPA to analyze patterns of functional activation 

during the course of lexically guided perceptual learning, considering a broad set of 

regions implicated in language processing. To this end, we re-analyzed data originally 

collected by Myers and Mesite (2014). In the phonetic categorization task used by Myers 

and Mesite, participants were asked to categorize both ambiguous stimuli (i.e., stimuli 

near the phonetic category boundary) as well as unambiguous ones (i.e., stimuli near the 

endpoints of the phonetic continuum). This allowed us to ask whether the information 

needed to distinguish unambiguous stimuli can be generalized to distinguish between 

ambiguous stimuli on the basis of trial-by-trial perception. Hence, we trained SVM 

classifiers on multi-voxel patterns from the unambiguous tokens of the continuum; one 

unambiguous token had been created by averaging the waveforms of a clear /s/ and a 

clear /∫/ but weighting the mixture toward /∫/ (20% /s/ and 80% /∫/), and the other was a 

blend weighted toward /s/ (70% /s/ and 30% /∫/). Both training tokens were perceived 

unambiguously, and participants categorized them with near-perfect accuracy. We then 

examined whether the classification scheme that was useful for distinguishing 

unambiguous tokens could be used to distinguish ambiguous tokens in the middle of the 

continuum (a 40% /s/ token and a 50% /s/ token, for which subjects exhibited considerable 
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variability in their phonetic categorization). Critically, we labeled test stimuli on the basis 

of how they were ultimately perceived on that individual trial. If functional activation 

patterns reflect variability in perception, then the patterns of activation should differ 

between trials where the same acoustic information (e.g., the 40% /s/ token) was 

interpreted as a /s/ or as a /∫/. In this way, we can glean insight into how a subject’s 

perceptual experience, which may vary from trial to trial even when acoustics are held 

constant, is reflected in the underlying neural patterns of activation. Furthermore, by 

training the classifier on unambiguous stimuli and testing it on ambiguous tokens, we can 

directly test how subjects’ neural encoding of ambiguous speech sounds compares to 

their encoding of unambiguous stimuli. 

 

Methods 

Data collection 

 Data were obtained from Myers and Mesite (2014), to which the reader is referred 

for full details regarding stimuli construction and data acquisition. We analyzed data from 

24 adults (age range: 18-40 years, mean: 26), all of whom were right-handed native 

speakers of American English with no history of neurological or hearing impairments. 

Participants completed alternating runs of lexical decision and phonetic categorization, 

completing five runs of each. During lexical decision, participants encountered ambiguous 

/s/-/∫/ stimuli in contexts where lexical information biased their interpretation, with half of 

the participants receiving /s/-biased contexts (e.g., epi_ode) and half receiving /∫/-biased 

contexts (e.g., refre_ing). During phonetic categorization blocks, participants heard four 

tokens from an /asi/-/a∫i/ continuum – two tokens that were unambiguous (20% /s/ and 
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70% /s/) as well as two that were perceptually ambiguous (40% /s/ and 50% /s/). 

Participants made behavioral responses during the lexical decision and phonetic 

categorization tasks, and buttons were pressed using their right index and middle fingers; 

response mappings were counterbalanced across participants. Across all runs, 

participants received 160 phonetic categorization trials (8 per token during each of the 5 

runs). The study implemented a fast event-related design with sparse sampling (Edmister, 

Talavage, Ledden, & Weisskoff, 1999), where each 2-second EPI acquisition was 

followed by 1 second of silence. Auditory stimuli were only presented during silent gaps. 

 

Data analysis 

 Feature estimation. For the present analyses, functional images were minimally 

preprocessed in AFNI (Cox, 1996) using an afni_proc.py script that simultaneously 

aligned functional images to their anatomy and registered functional volumes to the first 

image of each run. The remaining analyses were conducted using custom scripts in 

MATLAB (The Mathworks Inc., Natick, MA, USA). We next estimated the multi-voxel 

pattern of activation for each trial of the phonetic categorization task; note that lexical 

decision trials were not included in these analyses. Because data were obtained using a 

rapid event-related design, we used a least squares-separate approach to estimate a 

beta map for each trial (Mumford, Turner, Ashby, & Poldrack, 2012). In this approach, a 

separate general linear model is performed for every trial. In each model, the onset of the 

current trial is convolved with a basis function, and this is then used as the regressor of 

interest. A nuisance regressor is made from a vector of all other trial onsets convolved 

with the same basis function. This approach leads to more accurate and less variable 
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estimates of single-trial activations in rapid event-related designs, thereby leading to more 

reliable MVPA analyses (Mumford et al., 2012). For our analyses, we used a double 

gamma function as the basis function, following the recommendation of Mumford and 

colleagues. We set the onset of the audio stimulus to be the onset of the response 

function but otherwise used the default parameters in the spm_hrf function.  

ROI selection. In contrast to previous studies that have only considered the activity 

of temporal cortex (Bonte et al., 2017; Kilian-Hütten et al., 2011), we considered the 

pattern of activity across a broad set of regions implicated in language processing. 

Specifically, we considered bilateral frontal cortex (inferior and middle frontal gyri), 

parietal cortex (supramarginal and angular gyri), temporal cortex (superior, middle and 

transverse temporal gyri) and insular cortex. Note that precentral and postcentral gyri 

were excluded from this mask because of the concern that classification accuracy in these 

areas could be driven by the motor requirements of making a behavioral response on 

every trial. Regions were defined anatomically using the Talairach and Tournoux (1988) 

atlas built into AFNI and are visualized in Figure 1A. Group-level masks were warped into 

each subject’s native brain space in AFNI using the 3dfractionize program so that 

classification analyses could be performed in each subject’s native brain space.   

 Classification and cross-validation approach. Multi-voxel patterns were analyzed 

using support vector machines (SVMs) that were trained on beta maps from trials in which 

participants heard unambiguous tokens (20% /s/ and 70% /s/). These unambiguous trials 

were labeled as /s/ or /∫/ depending on their acoustics, not subjects’ trial-by-trial 

perception, though subjects had near-ceiling (94%) accuracy in classifying these stimuli. 

This ensured that training sets were balanced (i.e., there were an equal number of /s/ 
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trials and /∫/ trials). After training on the unambiguous endpoint stimuli, SVMs were tested 

in their ability to classify ambiguous stimuli from the middle of the continuum (the 40% /s/ 

and 50% /s/ tokens).  

If functional activation patterns reflect a subject’s perceptual experience (which 

results in part from the biasing effects of lexical context), then the pattern of activation 

should depend on how a subject ultimately perceived a trial; thus, patterns corresponding 

to a single stimulus (e.g., 40% /s/) may differ depending on how the acoustics were 

ultimately interpreted on that trial. Notably, for ambiguous tokens, the lexically-biasing 

context shifted the phonetic category boundary and significantly increased the probability 

that individuals who heard /s/-biased lexical contexts would assign the /s/ label to 

ambiguous tokens (and the opposite for the /∫/-biased group). As such, for one SVM, the 

ambiguous stimuli used for testing were labeled based on each subject’s trial-by-trial 

behavioral classification and thus reflected not only the stochasticity of perception of 

ambiguous tokens but also the effects of biasing context on those tokens. Alternatively, 

functional activation patterns may instead reflect only acoustic information. In this case, 

patterns for the 40% /s/ token may more closely resemble patterns from 20% /s/ trials 

than patterns from 70% /s/ trials. Therefore, for a second SVM, ambiguous stimuli were 

labeled based on which unambiguous token they more closely resembled acoustically 

(i.e., the 40% /s/ token labeled as /∫/ and the 50% /s/ token as /s/).  

To ensure that no individual run biased results, the training set was divided into 

five folds using a leave-one-run-out approach for further cross-validation. That is, in each 

fold, the SVM was trained on the unambiguous patterns from only four of the five runs; it 

was then tested in its ability to classify the ambiguous boundary patterns from all five 
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runs. By-subject classification accuracies were computed by averaging across folds. Note 

that because our classification procedure involved training on patterns from unambiguous 

trials and testing on patterns from ambiguous trials, the training and test sets were entirely 

non-overlapping.  

In the absence of an effective cross-validation scheme, the use of a large ROI can 

lead to overfitting (i.e., finding a multivariate solution in the training data that does not 

generalize to the test data). As such, for each fold, feature selection and classification 

were performed using Recursive Feature Elimination (RFE). RFE entails iteratively 

identifying and eliminating the voxels that are least informative to classification, therefore 

reducing the dimensionality of the data and preventing against overfitting. RFE in 

particular has been identified as an optimal method for recovering cognitive and 

perceptual states from auditory fMRI data (De Martino et al., 2008). To this end, 90% of 

the training trials were randomly selected on each iteration of the RFE procedure; this 

“split” of the training data was used to train the classifier and to identify the most 

discriminative voxels. This procedure was repeated, and after four splits, the classification 

outcomes were averaged. The voxels that ranked in the 30% least discriminative voxels 

(averaged across the four splits) were eliminated, and only the voxels that survived this 

feature selection step were considered in the next iteration. 10 iterations were performed 

per fold, meaning that feature selection occurred 10 times per fold (and that there was a 

total of 40 splits for each fold). 

Because the RFE procedure entails discarding the least informative voxels, 

chance-level accuracy may be greater than 50% when RFE is used. Therefore, to 

evaluate the performance of the classifier against chance, we repeated the above 
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procedure with randomly shuffled training labels; 100 permutations were conducted for 

each subject. Permuted accuracy values were averaged across folds and permutations 

in order to generate by-subject estimates of chance. To assess whether the classifier 

performed significantly above chance, we conducted a one-tailed paired samples t-test 

that compared each observed classification accuracy to the accuracy value that would 

have been expected by chance. Note that because our goal was to leverage decoding 

techniques to provide insight into brain function (rather than to predict behavioral 

performance on future trials), we do not require high classification accuracy; instead, the 

goal is only to assess whether classification accuracy is significantly above chance in 

order to assess whether particular brain regions can discriminate between two categories 

of interest (Hebart & Baker, 2018). 

 

Results 

As reported by Myers and Mesite (2014), participants’ performance on the phonetic 

categorization task was influenced by the contexts in which they had previously 

encountered the ambiguous sounds (Figure 1B). Notably, however, the influence of 

previous context is not deterministic; that is, it is not the case that participants always 

classified ambiguous /s/-/∫/ sounds as /s/ after hearing ambiguous tokens in /s/-biased 

lexical frames. Rather, context had a probabilistic influence on phonetic categorization 

responses, and critically, there was considerable trial-to-trial variability in behavioral 

responses, particularly in subjects’ classification of ambiguous tokens. In this study, we 

examined the trial-to-trial variability in the multi-voxel patterns of functional activation 

when participants heard ambiguous tokens.  
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Our approach was to train a support vector machine to classify unambiguous trials 

as /s/ trials or /∫/ trials. We then assessed whether the learned classification scheme 

yielded above-chance accuracy when the SVM was tested on held-out trials in which 

participants heard ambiguous tokens near the phonetic category boundary. As shown in 

Figure 1C, classification of ambiguous tokens was significantly above chance when the 

ambiguous tokens were labeled based on subjects’ trial-by-trial behavioral percepts, as 

evidenced by a one-tailed t-test against the permuted chance values, t(23) = 2.43, p = 

0.012. However, classification was not above chance when ambiguous tokens were 

labeled based on which unambiguous token they were acoustically closer to (i.e., the 40% 

/s/ token was labeled as /∫/ and the 50% /s/ token labeled as /s/), t(23) = -3.14, p = 0.998. 

In other words, the features that could be used to classify multi-voxel patterns for 

unambiguous trials as /s/ or /∫/ could be used to classify ambiguous trials based on how 

they were ultimately perceived, but not based on their acoustic similarity to those 

unambiguous tokens.  

These results indicate that a subject’s ultimate perception of an ambiguous 

stimulus can be recovered from the multi-voxel pattern across a broad set of regions 

involved in language processing. Notably, however, there was a considerable degree of 

variability in how accurately the classifier was able to recover subjects’ perceptual 

interpretation of the ambiguous stimuli. To probe the nature of this variability, we 

considered whether classification accuracy was related to subjects’ behavioral 

performance on the phonetic categorization task. In particular, we measured the extent 

to which subjects labeled ambiguous tokens in line with their biasing condition (e.g., how 

often subjects labeled ambiguous tokens as ‘s’ if they had previously heard ambiguous 
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tokens in /s/-biased lexical frames). As shown in Figure 1D, there was a marginal 

relationship between classification accuracy and the proportion of bias-consistent 

responses made by each subject, r = 0.386, t(22) = 1.961, p = 0.062. Taken together, the 

present results indicate that as phonetic recalibration occurs, there is also some degree 

of neural retuning such that functional activation patterns reflect the subject’s ultimate 

percept. Further, the extent of neural returning may be related to the degree of phonetic 

recalibration observed behaviorally. 

Because we considered a broad set of language regions in our primary analyses, 

we are limited in our ability to make strong claims about which regions are involved in this 

neural retuning process. To pursue this question of which regions contain more 

discriminative patterns, we also conducted a series of exploratory region-of-interest (ROI) 

analyses, examining the classifier’s performance when it was only given information 

about voxels in certain anatomically-defined regions. In particular, we parcellated our 

initial set of voxels into the eight regions shown in Figure 1A: left frontal, left insula, left 

temporal, left parietal, and the corresponding regions on the right. 

Figure 2A shows the performance of the classifier when considering only the 

voxels in a particular region; results from one-tailed paired samples t tests are provided 

in Table 1. Because our primary analyses only found above-chance accuracy when the 

SVM classified ambiguous tokens with respect to subjects’ trial-by-trial percepts, these 

exploratory ROI analyses also labeled test trials based on trial-level behavioral 

responses.1 Results indicated that subjects’ behavioral responses could be successfully 

                                                
1
 As described above, we did not achieve above-chance classification when our SVM 

considered whether ambiguous tokens could be distinguished based on which 
unambiguous token they more closely resembled acoustically. This is particularly striking 
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recovered when the classifier only considered the voxels in left parietal cortex, t(23) = 

2.002, p = 0.029 (uncorrected). Above-chance accuracy was also achieved in right 

temporal cortex, t(23) = 1.734, p = 0.048 (uncorrected). No other regions yielded 

classification accuracy levels that were significantly above chance, all p > 0.05. 

As before, we also examined whether classification accuracy was related to 

subjects’ behavioral performance on the phonetic categorization task. We found that the 

proportion of bias-consistent responses subjects made on ambiguous trials was a 

significant predictor of classification accuracy when the classifier only considered voxels 

from left parietal cortex, r = 0.506, t(22) = 2.751, p = 0.012, but not when the classifier 

only considered voxels from right temporal cortex, r = 0.200, t(22) = 0.960, p = 0.348 

(Figure 2B). 

 

General Discussion 

 Speech perception is a nondeterministic process, wherein the same acoustic 

signal can be interpreted differently from instance to instance. Such moment-to-moment 

variability is particularly pronounced near phonetic category boundaries, where phoneme 

identity is decidedly ambiguous (Liberman, Harris, Hoffman, & Griffith, 1957).2 Additional 

                                                

because the RFE algorithm iteratively eliminates voxels that are least informative for the 
classification, allowing the more informative voxels to exert a relatively large influence 
over the ultimate multivariate solution. Thus, if an “acoustic similarity” classification could 
have been made from any of the voxels considered in the primary analyses, these voxels 
should, in principle, have been identified. We therefore refrain from conducting 
exploratory ROI analyses where ambiguous trials are labeled with respect to the 
underlying acoustics, especially since the risk of a Type I error increases with additional 
comparisons. 
2 Such variability may emerge at a number of stages in processing, potentially being 
influenced by perceptual warping near the category boundary, the particular acoustic 
features that listeners happen to be attending at a given moment (Riecke, Esposito, 
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variability in the interpretation of the speech signal is driven by listeners’ perceptual 

histories, as in the case of lexically guided perceptual learning (Norris et al., 2003). More 

generally, the challenge of speech perception may be characterized as one of inference 

under uncertainty, in which different perceptual outcomes are associated with varying 

degrees of probability, and the probability of any single outcome need not be 100% 

(Kleinschmidt & Jaeger, 2015). In the current investigation, we examined archival data 

from a lexically guided perceptual learning study by Myers and Mesite (2014) in which 

participants completed alternating blocks of lexical decision and phonetic categorization.  

We considered how trial-level variability in phonetic categorization of ambiguous speech 

(specifically, speech ambiguous between /s/ and /∫/) was reflected in patterns of functional 

activation across the brain.  

 We observed that the pattern of functional activation across the brain reflects a 

subject’s ultimate interpretation of an ambiguous speech sound, even as this 

interpretation may vary from trial to trial. In particular, multi-voxel pattern analyses 

indicated that the information that was useful for classifying unambiguous stimuli (i.e., 

those near the endpoints of the phonetic continuum) could also be used to classify 

ambiguous stimuli (i.e., those near the phonetic category boundary) on the basis of 

subjects’ trial-level perceptual interpretations. That is, when a listener interpreted an 

ambiguous stimulus as /s/, the pattern of activation better resembled a canonical 

(unambiguous) /s/ pattern than a canonical /∫/ pattern. Note that our analyses did not 

                                                

Bonte, & Formisano, 2009), and/or decision-level inconsistency in labeling (Best & 
Goldstone, 2019; Hanley & Roberson, 2011). However, the current data cannot 
adjudicate between these different explanations, as participants made explicit behavioral 
responses on every trial. 
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include precentral and postcentral gyri; as such, it is unlikely that our results reflect the 

motor requirements of making a behavioral response on every trial. Strikingly, the more 

that subjects’ behavioral responses to ambiguous stimuli were influenced by the lexical 

contexts they had previously encountered, the greater the classifier’s ability to classify 

ambiguous stimuli, although this correlation did not reach significance. Taken together, 

these results suggest that the phonetic retuning observed in lexically guided perceptual 

learning studies may be accompanied by a comparable degree of neural retuning.  

We also attempted to classify ambiguous stimuli based on which unambiguous 

stimulus they better resembled acoustically. However, we found that even across a broad 

set of regions involved in language processing, the classification boundary that separated 

unambiguous stimuli into /s/ and /∫/ categories could not be used to classify ambiguous 

tokens based on acoustic proximity (i.e., to label a 40% /s/ token as a /∫/ and a 50% /s/ 

token as a /s/). One possibility is that the fine-grained acoustic detail needed to make 

such a distinction is not preserved in cortical representations, or at least in the BOLD 

signal measured in functional MRI studies. Data from a categorical perception study by 

Bidelman, Moreno and Alain (2013) are consistent with this view. In that study, the authors 

found that the functional activity of the brainstem varied continuously with changes in the 

spectral content of the speech signal, but the activity of cortex mostly reflected subjects’ 

ultimate interpretation of the signal, with only very early cortical waves (i.e., those before 

175 ms) showing fine-grained sensitivity to the speech sound. We suggest that additional 

studies focusing on the functional responses of earlier auditory regions might inform our 

understanding of how the fine-grained auditory details of ambiguous speech are mapped 

onto perceptual interpretations in the wake of perceptual learning. 
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 The present investigation follows other MVPA studies (Bonte et al., 2017; Kilian-

Hütten et al., 2011) that have considered how context can guide perceptual learning for 

speech. In these studies, trial-by-trial interpretations of ambiguous speech sounds were 

recoverable from the activation of bilateral temporal regions. Critically, the present study 

differed from previous ones in three notable ways. First, our analyses examined whether 

the distinctions that matter for classifying unambiguous tokens can be generalized to also 

classify ambiguous tokens; by contrast, the classification approach used in these previous 

studies was to consider only whether ambiguous tokens could be distinguished from each 

other according to the reported percept. As such, the present study shows that sounds 

that are perceptually grouped in the same phonetic category are also more similar to one 

another in terms of the evoked neural response, as the classification boundary between 

unambiguous tokens can be used to distinguish ambiguous tokens based on perception. 

Second, the present study considered phonetic recalibration that was driven by lexical 

information specifically, whereas previous studies considered aftereffects of written text 

and of lip movements. Some researchers have noted that while lipread and lexical 

information seem to influence phonetic recalibration similarly, there may be important 

differences between them – and potentially differences in the underlying mechanism (van 

Linden & Vroomen, 2007). Lip movements influence the perception of speech even at 

early stages of development and themselves constitute a source of bottom-up 

information; lexical information, by contrast, exerts its influence only at developmentally 

later stages and potentially guides recalibration in a top-down fashion. As such, the 

mechanisms underlying different forms of phonetic recalibration may vary, at least when 

context is provided by lexical information versus by lip movements. For instance, if we 
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consider visual information from the face during speech to be a bottom-up signal, it may 

have a more central effect on phonetic recalibration, and thus be found earlier in the 

processing stream in the temporal lobe. By contrast, lexical information can only be 

brought to bear after the word is accessed, and as such recalibration may be more 

apparent in parietal regions more distal from first-stage acoustic-phonetic processing. 

Finally, the present study considered a large set of regions that have been implicated in 

language processing, not only the STG.  

Exploratory analyses of the current data set further examined classification ability 

within anatomically-defined regions of interest when the support vector machine was 

trained on unambiguous tokens and tested on its ability to classify ambiguous tokens 

based on trial-level perception. These follow-up analyses indicated that above-chance 

classification of ambiguous stimuli could also be achieved when considering only voxels 

in left parietal cortex (supramarginal and angular gyri) or, alternatively, when only 

considering right temporal cortex (superior, middle and transverse temporal gyri).  

 The suggestion that left parietal regions are important for encoding trial-by-trial 

perceptual interpretations of speech sounds is particularly striking. Left parietal regions 

have been implicated in the interface between phonological and lexical information (e.g., 

Prabhakaran, Blumstein, Myers, Hutchison, & Britton, 2006), and neuroimaging studies 

have suggested that top-down lexical effects on phonetic processing may manifest 

through top-down influences of left parietal cortex on posterior temporal regions (Gow, 

Segawa, Ahlfors, & Lin, 2008; Myers & Blumstein, 2008). Consistent with this view, we 

observed a significant relationship between the degree to which lexical context influenced 

behavior (measured in terms of the proportion of bias-consistent behavioral responses) 
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and the degree of neural retuning (as reflected by classification accuracy). However, 

because previous MVPA studies of phonetic recalibration (Bonte et al., 2017; Kilian-

Hütten et al., 2011) have restricted their analyses to the temporal lobes, it is an open 

question whether the involvement of left parietal regions is specific to phonetic 

recalibration guided by lexical context. It may be the case that perceptual learning of 

speech always entails neural retuning observable in left parietal cortex; indeed, the 

supramarginal and angular gyri have been implicated in discriminating between 

phonemes across a range of behavioral tasks (Turkeltaub & Branch Coslett, 2010) and 

in sensitivity to phonetic category structure (Joanisse, Zevin, & McCandliss, 2007; 

Raizada & Poldrack, 2007). We therefore suggest that future work carefully consider the 

involvement of parietal cortex in encoding details about subjects’ trial-by-trial perception 

of speech, particularly when perception is guided by lexical information.  

 In addition to the findings in left parietal cortex, we found that the perception of 

ambiguous speech sounds could be recovered from temporal cortex, though notably, we 

observed above-chance classification in right temporal cortex, not left. Prominent 

neurobiological models of speech perception posit that the early analysis of speech 

sounds is accomplished by bilateral temporal regions, though the specific role of right 

temporal regions in speech perception is not as well understood as compared to left 

temporal regions (Binder et al., 1997; Hickok & Poeppel, 2000, 2004, 2007; Yi, Leonard, 

& Chang, 2019). Notably, right posterior temporal cortex has been implicated in 

discriminating between different talkers’ voices (Belin, Zatorre, Lafaille, Ahad, & Pike, 

2000; Formisano, De Martino, Bonte, & Goebel, 2008; von Kriegstein & Giraud, 2004) 

and in recognizing talker differences in how acoustic detail maps onto phonetic categories 
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(Myers & Theodore, 2017), while right anterior temporal regions are thought to be 

involved in voice identification based on talker-specific acoustic details (Belin, Fecteau, & 

Bédard, 2004; Schall, Kiebel, Maess, & von Kriegstein, 2014). Given that lexically guided 

perceptual learning has been characterized as a process in which listeners make 

inferences about how a particular talker produces their speech (Kraljic, Brennan, & 

Samuel, 2008; Kraljic & Samuel, 2011; Kraljic, Samuel, & Brennan, 2008; Liu & Jaeger, 

2018), the importance of right temporal regions in the present results may reflect the talker 

specificity of perceptual learning for speech. Alternatively, the engagement of the right 

hemisphere may reflect its purported role in analyzing spectral or longer-duration cues 

(e.g., Poeppel, 2003), as the current study used fricative stimuli (/s/ and /∫/) that are 

differentiated by such cues.  

 Notably, we observed a significant relationship between the size of the lexical 

effect on behavior (i.e., how often subjects labeled an ambiguous token as ‘s’ after 

previously hearing ambiguous tokens in /s/-biased lexical contexts) and classification 

accuracy when our analysis was limited to left parietal cortex, but we did not observe such 

a relationship when our analysis was limited to right temporal cortex. Such a pattern of 

results might be understood through a framework in which left parietal cortex is involved 

in lexical-phonetic interactions and the right temporal cortex is involved in conditioning 

phonetic identity on talker identity. Under such a framework, we might expect the degree 

of neural retuning in left parietal cortex to reflect the influence of lexical context on 

phonetic processing, whereas we might expect the degree of neural retuning in right 

temporal cortex to reflect the talker specificity of phonetic recalibration. Because the 
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current study did not manipulate talker identity (i.e., listeners only heard one voice 

throughout the experiment), we defer a serious treatment of this hypothesis to future work.   

The view that trial-by-trial perceptual experiences are reflected in the activation of 

temporal cortex is also supported by several electrophysiological studies. In an 

electrocorticography study conducted by Leonard, Baud, Sjerps, and Chang (2016), for 

instance, participants listened to clear productions of minimally contrastive words, such 

as /fæstr/ (faster) and /fæktr/ (factor), as well as a stimulus in which in the critical segment 

(here, either /s/ or /k/) was replaced by noise (e.g., /fæ#tr/). Meanwhile, neural activity 

was recorded through electrodes placed directly on the surface of the left or right 

hemisphere. As in previous phoneme restoration studies (Warren, 1970), participants 

subconsciously “filled in” the missing sound, and here, their perception was bi-stable, with 

participants sometimes interpreting the ambiguous stimulus as faster and sometimes as 

factor. Critically, when participants encountered an ambiguous stimulus, the activity of 

bilateral STG reflected their ultimate perception: When they interpreted the ambiguous 

stimulus as faster, STG activity approximated the STG response to a clear production of 

faster, and when they interpreted the ambiguous stimulus as factor, STG activity 

resembled the response to a clear production of factor. Similar results come from an 

electroencephalography study by Bidelman et al. (2013), who found that the event-related 

responses to ambiguous vowel stimuli – specifically, the amplitude of the cortical P2 wave 

– depended on how the signal was perceived on a particular trial; consistent with the 

findings of Leonard et al., the P2 wave is thought to originate from temporal cortex. In the 

present study, we observed a similar pattern of results in that (right) temporal lobe 

responses to ambiguous stimuli differed depending on subjects’ perceptual experiences, 
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with the activation pattern on an ambiguous trial approximating the pattern for the clear 

version of the perceived stimulus. 

 In summary, the present work demonstrates that trial-by-trial variability in the 

perception of ambiguous speech is reflected in the pattern of activation across several 

brain regions, especially in left parietal and right temporal regions. In particular, the brain’s 

response to an ambiguous token depends on how the stimulus is interpreted in that 

moment, with the pattern of activation elicited on an ambiguous trial resembling the 

pattern elicited by an unambiguous production of the perceived category. These results 

ultimately contribute to an understanding of how the brain encodes the perceptual 

variability listeners experience during speech perception.  
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Figure 1.  
(A) Analyses considered the pattern of activation across several regions associated with 
language processing: bilateral frontal regions (inferior and middle frontal gyri), insular 
cortex, temporal regions (superior, middle, and transverse temporal gyri), and parietal 
regions (supramarginal and angular gyri). The analyses in this figure considered the 
classification ability of voxels in all these regions, irrespective of specific location. 
(B) Behavioral performance on the phonetic categorization task, previously reported by 
Myers and Mesite (2014). Subjects made more /s/ responses as stimuli became more /s/-
like, and their overall rate of /s/ responses was higher if they had previously encountered 
ambiguous stimuli in contexts where lexical information guided them to interpret the 
ambiguous stimulus as ‘s.’ Critically, there is still a considerable amount of trial-to-trial 
variability in classification of ambiguous tokens; for instance, subjects in the /s/-biased 
group interpreted the 40% /s/ token as /s/ approximately half the time and as /∫/ half the 
time.  
(C) A classifier was trained to classify unambiguous stimuli as /s/ or /∫/ and was able to 
successfully generalize to ambiguous stimuli near the phonetic category boundary, with 
significantly above-chance accuracy in determining how subjects perceived an 
ambiguous stimulus on each particular trial (left panel). However, the classifier did not 
reach above-chance accuracy when ambiguous stimuli were labeled with respect to 
acoustics (right panel). Dark points indicate mean accuracy, and error bars indicate 
standard error. Light lines indicate classification accuracy by subject, with light red lines 
indicating subjects who had previously heard ambiguous tokens in /s/-biased contexts 
and light blue lines indicating those who had previously received /∫/-biased contexts. 
(D) A follow-up analysis indicated that the classifier’s ability to recover trial-by-trial 
perceptual experiences was numerically related to individual differences in phonetic 
recalibration. In particular, the classifier was most accurate in classifying ambiguous 
tokens for subjects who showed large behavioral effects (measured as the proportion of 
bias-consistent responses made on ambiguous trials). Red points indicate subjects who 
had previously heard ambiguous tokens in /s/-biased lexical frames, while blue points 
indicate those who had heard ambiguous tokens in /∫/-biased contexts. 
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Figure 2. 
(A) Exploratory analyses considered the classifier’s ability to determine by-trial perceptual 
interpretations, considering each brain region separately. Above-chance accuracy was 
achieved in left parietal cortex and right temporal cortex, uncorrected for multiple 
comparisons. Dark points indicate mean accuracy, and error bars indicate standard error. 
Light lines indicate classification accuracy by subject, with light red lines indicating 
subjects who had previously heard ambiguous tokens in /s/-biased contexts and light blue 
lines indicating those who had previously received /∫/-biased contexts. 
(B) Follow-up analyses tested whether classification accuracy in these ROIs was related 
to the behavioral extent of perceptual learning. This relationship was significant when 
considering only the voxels in left parietal cortex (left panel) but not when considering the 
voxels in right temporal cortex (right panel). Red points indicate subjects who had 
previously heard ambiguous tokens in /s/-biased contexts, while blue points indicate 
those who had heard ambiguous tokens in /∫/-biased contexts. 
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Table 1.  
 
Results from exploratory classification analyses testing whether subjects’ trial-by-
trial interpretations of ambiguous stimuli could be recovered from the pattern of 
activation in particular sets of brain regions.  

Regions Left Right 

Frontal t(23) = -0.229, p = 0.590, n.s. t(23) = -0.566, p = 0.711, n.s. 

Insula t(23) = 0.732, p = 0.236, n.s. t(23) = 0.115, p = 0.455, n.s. 

Temporal t(23) = 0.261, p = 0.398, n.s. t(23) = 1.734, p = 0.048, * 

Parietal t(23) = 2.002, p = 0.029, * t(23) = 0.343, p = 0.367, n.s. 

* indicates classification accuracy that was significantly above chance at p < 0.05, 
uncorrected for multiple comparisons. 

 
 


