AnyOpt: Predicting and Optimizing IP Anycast Performance

Xiao Zhang*°, Tanmoy Sen', Zheyuan Zhang', Tim April®, Balakrishnan Chandrasekaran®,
David Choffnes*, Bruce M. Maggs*®, Haiying Shen’, Ramesh K. Sitaraman*°, Xiaowei Yang*
*Duke University, ° Akamai Technologies, "University of Virginia,
inije Universiteit Amsterdam, *Northeastern University, “Emerald Innovations, *University of Massachusetts Amherst

Abstract

The key to optimizing the performance of an anycast-based sys-
tem (e.g., the root DNS or a CDN) is choosing the right set of sites
to announce the anycast prefix. One challenge here is predicting
catchments. A naive approach is to advertise the prefix from all
subsets of available sites and choose the best-performing subset,
but this does not scale well. We demonstrate that by conducting
pairwise experiments between sites peering with tier-1 networks,
we can predict the catchments that would result if we announce
to any subset of the sites. We prove that our method is effective in
a simplified model of BGP, consistent with common BGP routing
policies, and evaluate it in a real-world testbed. We then present
AnyOpt, a system that predicts anycast catchments. Using AnyOpt,
anetwork operator can find a subset of anycast sites that minimizes
client latency without using the naive approach. In an experiment
using 15 sites, each peering with one of six transit providers, AnyOpt
predicted site catchments of 15,300 clients with 94.7% accuracy and
client RTTs with a mean error of 4.6%. AnyOpt identified a subset
of 12 sites, announcing to which lowers the mean RTT to clients by
33ms compared to a greedy approach that enables the same number
of sites with the lowest average unicast latency.

CCS Concepts

« Networks — Network performance analysis; Network mea-
surement; Network performance modeling.

Keywords
Anycast, Routing, BGP, Performance Optimization

ACM Reference Format:

Xiao Zhang, Tanmoy Sen, Zheyuan Zhang, Tim April, Balakrishnan Chan-
drasekaran, David Choffnes, Bruce M. Maggs, Haiying Shen, Ramesh K.
Sitaraman, Xiaowei Yang. 2021. AnyOpt: Predicting and Optimizing IP Any-
cast Performance. In ACM SIGCOMM 2021 Conference (SSIGCOMM °21), Au-
gust 23-27, 2021, Virtual Event, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3452296.3472935

1 Introduction

IP anycast [28, 31] is the practice of announcing the same IP address
prefix from multiple network locations, and it is commonly used

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8383-7/21/08...$15.00
https://doi.org/10.1145/3452296.3472935

for load balancing and latency reduction. In part due to its inherent
support in the routing system and potential for improving perfor-
mance, anycast is used in large and popular services such as DNS
(to distribute DNS query load [27, 36]), content delivery networks
(CDNis) (to reduce latency between servers and clients [7, 12]), and
distributed denial of service (DDoS) mitigation services (to distribute
and scrub attack traffic loads [29, 39]). A key challenge for deploying
anycast services effectively is that mappings between client net-
works and anycast sites (i.e., anycast catchments) are determined by
BGP’s policy-based routing decisions rather than service providers’
goals such as minimizing latency and balancing load. In fact, several
measurement studies have revealed that some anycast catchments
exhibit unexpectedly inflated latency [6], and increasing the number
of anycast sites in a deployment (in an attempt to reduce the distance
between clients and sites) counter-intuitively increases the average
latency for clients and disrupts attempts to balance load [25].

As aresult, managing anycast deployments is a challenging task
that requires expert knowledge and continuous intervention in re-
sponse to BGP path changes, regular maintenance [12], or DDoS
attacks [29]. Network operators lack tools that can accurately predict
the system performance under different anycast configurations (i.e.,
the set of sites making announcements and the next-hop neighbors
to whom the prefix is announced). Since BGP paths are determined
by non-public policy information, such tools will require measure-
ments or inferences for prediction. A naive approach to measuring
the impact of all potential announcements would require probing
that scales exponentially with the number of sites under consid-
eration. Using inferred topologies [37] to predict catchments can
limit this cost, but it may introduce imprecision because of missing
information in topology models and how BGP routers break ties
among equally preferred paths.

In this paper, we address the above problems by using theoreti-
cal foundations to develop efficient measurement, prediction, and
optimization techniques that allow an anycast operator to optimize
a deployment for low latency while balancing load. This problem
is important because latency is critical to the revenue generation
of many Internet services [41]. Specifically, we present an exper-
imental approach, AnyOpt, for predicting anycast catchments. A
service operator can use AnyOpt to optimize an anycast network’s
deployment or dynamically reconfigure the network.

The key, empirically informed, insight that enables efficient catch-
ment prediction is that most client networks, when given an option
between any two (of potentially many) anycast sites, will consis-
tently prefer one or the other. Further, we find that when considering
all pairs of anycast sites, the set of pairwise preferences for a client
network often forms a total order. This total order makes it straight-
forward to predict a site’s catchment when we enable any subset of
the anycast sites, as most client networks will consistently pick their

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

most preferred sites in the subset. Furthermore, we observe that if a
client network has a consistent total order among the anycast sites,
we can map the anycast optimization problem to the Simple Plant Lo-
cation with Preference Orderings [20] problem and solve it offline to
find the subset of anycast sites that achieve the lowest overall latency.

Making AnyOpt accurate and efficient, however, requires address-
ing two key challenges. First, we find that not all client networks
exhibit the consistent preferences that enable our approach. We use
both theoretical analyses and measurements to understand why this
problem occurs and whether consistent preference orders can pre-
dict a site’s catchment. Our analyses reveal that a client network may
not have a total order among preferences for anycast sites when au-
tonomous systems (ASes) on the path of a BGP advertisement assign
different local preferences to the advertisement. We prove sufficient
conditions under which pairwise measurements yield a consistent
total order and the total order is predictive of a client network’s
catchment. One example that meets these conditions is that we only
announce an anycast prefix to tier-1ISPs, and we adopt this setup for
our real-world anycast testbed. Our experiments show that another
cause of inconsistent preference orderings is a BGP implementation
choice where ties between equally preferred paths are broken by the
order in which a router receives BGP advertisements, which is not
part of the BGP standard [33] but is implemented by most deployed
routers (e.g., Cisco [1] and Jupiter [2]). Once we take into account
both the policy-induced and implementation-induced inconsistent
preference orders in AnyOpt, we show that we can expect consistent
pairwise preferences. Then, we use the total orders constructed from
those pairwise preferences to predict anycast catchments.

Second, we alleviate the issue of scaling AnyOpt measurements
to large anycast deployments, e.g., those with hundreds or more
sites [9]. For a deployment of this size, pairwise preference discov-
ery experiments become impractical. For example, for an anycast
network of 100 sites, if we space each pairwise experiment by two
hours, which is necessary to avoid BGP instability, it would take
years to finish all pairwise experiments. To address this challenge,
we design AnyOpt to take a two-level approach to predict anycast
catchments. The routing structure of the Internet makes the inter-AS
and intra-AS anycast catchments two separate processes, where BGP
determines the inter-AS catchments and the (interior) routing inside
an AS determines the intra-AS catchments. Our experiments show
thatasite’s catchment at the AS level remains stable when an anycast
site is enabled or disabled within the same AS. Therefore, we can use
pairwise experiments to discover client networks’ AS-level prefer-
ences by choosing one representative site in each tier-1 AS that the
anycast network connects to and run site-level pairwise experiments
for sites within the same AS. If the latter is still prohibitive for a large
network, we discuss a heuristic approach that might further reduce
the number of BGP experiments needed for catchment prediction.

Our experiments on areal-world testbed show that AnyOpt can ac-
curately predict anycast catchments and optimize client latency dis-
tribution, when announcing an anycast prefix to only tier-1 providers.
We start with tier-1 network providers because they act as the back-
bone network that delivers the majority of the traffic for the testbed
anycast network. To extend beyond the tier-1 providers, we adopt
a heuristic to determine the impact of announcing via a peering link
while simultaneously announcing to the tier-1 providers (§ 4.4).Our
anycast testbed has 15 sites and connects with six tier-1 ASes. In the

Zhang, et al.

evaluation of transit-only configuration, we randomly choose an
anycast configuration, predict its catchments and average latency
to client networks, then deploy the configuration, and measure its
actual catchments and average latency. Then we repeated this for
38 times. We find that AnyOpt predicts catchments with 94.7% ac-
curacy and average RTTs with a mean error of 4.6%. In the offline
configuration searching, AnyOpt identifies a 12-site lowest latency
configuration that reduces the average client latency by more than
30ms compared to to configurations that greedily include sites with
the lowest average unicast latency or randomly chosen sites. For
the peering links, we also iterated through 104 peering links in the
testbed and identified 47 peering links that can improve performance;
more specifically, we find that including peering links in the 12-site
lowest-latency configuration can further reduce the mean latency
by 5ms to 7ms.

AnyOpt represents a crucial first step towards predicting and
optimizing the performance of an anycast network. Specifically, this
work makes the following contributions:

(1) We propose AnyOpt, an empirical approach that uses BGP
measurements to reveal a client network’s preferences be-
tween any two anycast sites, and then uses these to predict
and optimize anycast network performance. We report for
the first time the extent to which BGP announcement arrival
orders affect anycast catchments at scale and develop a tech-
nique to incorporate them into the catchment prediction. We
use two-level prediction techniques to reduce the number of
required experiments.

(2) We analyze the theoretical underpinnings for the heuristic
approach and prove sufficient conditions for this approach
to work.

(3) We use areal-world anycast testbed of a large content deliv-
ery network to evaluate AnyOpt. Our experiments show that
AnyOpt can predict anycast performance accurately and can
reduce the average latency to client networks by as much as
33ms (32%) compared to greedy approaches.

Ethical considerations. Active measurements such as issuing
pings and BGP announcements can cause extra load on the Internet
infrastructure. As discussed later in the paper, we mitigate these
concerns by gathering our measurements at reasonably low rates,
and target our measurements at routers (not end hosts). Our BGP
announcements use only prefixes that we control and only our AS
number in our announcements. The anycast prefixes we use do not
serve any clients. This work raises no other ethical issues.

2 Background

In this section, we briefly describe the architecture of an anycast net-
work, define the terms we use, and use real-world anycast systems
to motivate AnyOpt’s design.

2.1 Architecture of an Anycast Network

Figure 1 illustrates the architecture of an anycast network. A service
provider such as a CDN or a DDoS mitigation provider has servers
that receive anycast traffic deployed at multiple locations. These
servers offer services such as traffic scrubbing or caching. We refer
to each location where these servers are deployed as an anycast site.
A site has an onsite router that connects to one or more ASes. We

AnyOpt: Predicting and Optimizing IP Anycast Performance

\/g Q r- The rest of
Sl the Internet
//'/ﬂ\ \\(-7
| \

i
H g

Clients & Catchments

Anycast Site C

Figure 1: The architecture of an anycast network.

refer to each BGP connection to an outside AS as an ingress point.
In Figure 1, the simple anycast network has three sites, each having
two or three ingress points. We refer to the set of end systems reach-
ing one site as the catchment of the site. Figure 1 groups each site’s
catchment within an oval shape and marks the catchment’s ingress
AS/connection with the same line type.

2.2 Motivating Examples

A key motivating application of our work is the configuration man-
agement of systems such as Akamai DNS [36] or an anycast-based
CDN [7, 12]. Akamai DNS is one of the world’s largest authoritative
DNS systems, serving millions of queries per second from a few hun-
dred sites that host 24 distinct anycast prefixes. Each anycast prefix
is hosted from a subset of about 30 sites that form an “anycast cloud”.
Each domain name hosted on Akamai DNS is assigned to a delega-
tion set of about 6 anycast prefixes. When a recursive DNS resolver
(i.e., client) requests an authoritative translation of a domain name, it
sends the request to an anycast prefix that is in the delegation set of
that domain name. The request is then routed to a site within that pre-
fix’s anycast cloud by BGP. That site then responds with the answer.
The key challenge in configuring Akamai DNS is assigning each
of the 24 anycast prefixes to a subset of sites such that the average
query response latency experienced by the resolvers is minimized. As
network conditions (e.g., routing policy or load) change, the subset
of sites that host each anycast prefix must be recomputed to maintain
optimal anycast performance. Since the number of ways to configure
an anycast cloud is exponentially large, it is infeasible to predict the
catchments of sites accurately, and, consequently, impractical to
estimate the query latency achieved in each configuration. The state-
of-the-art for configuring large anycast networks such as Akamai
DNS is based on Monte Carlo simulations [36]. Our work is focused
on improving the state-of-the-art in configuring anycast networks.
AnyOpt assists the problem of optimally configuring an anycast
cloud using a principled measure-model-and-optimize approach that
is directly applicable to real-world systems such as Akamai DNS.
An anycast-based CDN faces a similar configuration challenge.
For a CDN service provider, the latency between a client and an edge
server can have a multiplicative effect on page-load times, given the
many round-trips typically required to download various resources.
Therefore, reducing latency by even tens of milliseconds can result
in a substantial reduction of page-load times [22]. Simply adding
more anycast sites, however, does not necessarily improve the mean
latency between the clients and an anycast network [25]. Even if
some sites offer poor performance for clients, BGP may prefer these
sites to others for policy reasons. In such cases, AnyOpt can reliably

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

Table 1: Locations of the 15 anycast sites along with the transit
providers and counts of peers at each location.

Site Location Transit #peers

1 Atlanta Telia 4
2 Amsterdam Telia 1
3 Los Angeles Zayo 6
4 Singapore TATA 15
5 London GTT 14
6 Tokyo NTT 3
7 Osaka NTT 4
8 Los Angeles Zayo 4
9 Miami NTT 7
10 London Sparkle 2
11 Newark NTT 7
12 Stockholm Telia 14
13 Toronto TATA 9
14 Sao Paulo Sparkle
15 Chicago GIT 5

identify which anycast sites improve performance, obviating manual
interventions.

2.3 Anycast Configuration

Although an anycast network cannot control the catchment of a site,
it can “shape” the catchment with three control knobs: (1) the sites
from which it announces an anycast prefix, (2) the ASes to which
it announces the prefix at a particular site, and (3) the BGP path
attributes it uses when announcing the prefix. Specifically, if we use
S to denote the set of sites an anycast network has (or considers to
open), the network can choose to announce an anycast prefix from
any subset of S. For each anycast site s;, let’s denote the set of ASes it
connectstoas Ps;. The service provider can choose any subset of Ps; to
announce the prefix. For each BGP announcement, the network can
vary the parameters associated with the announcement, including
the Multiple Exit Discriminator (MED) and the AS path length.

There are, hence, more than 22 s | possible ways to configure
an anycast network. As a first step, in this work, we explore how an
anycast network can optimize its performance by finding (a) from
which subset of sites to announce the anycast prefix and (b) to which
ASes at each site to announce the anycast prefix. We assume that
an anycast network sets the path attributes to default values when
it announces an anycast prefix. We call a site or an AS as “enabled,”
when it is chosen to announce an anycast prefix. We refer to the
combination of the chosen subset of sites and the chosen ASes at
each site as an anycast configuration.

3 Overview

In this section, we describe the anycast testbed used in this work, the
experiments for discovering a client network’s pairwise preferences,
and the high-level idea of using the preference orders to predict and
optimize the performance of an anycast network.

3.1 Anycast Testbed

Our testbed consists of an instance of GoBGP (version 2.14.0) [30],
an open-source BGP implementation, running on an Ubuntu (18.04.3
LTS) server with 4 cores and 16GB of RAM. The GoBGP instance
uses generic routing encapsulation (GRE) tunnels [14] to peer with
alarge CDN’s routers at different locations as described in Table 1.

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

Anycast Site B

The rest of
the Internet

Ping Taréét’s’é/cratchments An;l;;;i gi;e C
Figure 2: This figure illustrates the testbed we use for RTT
and catchment measurements.

The routers at different locations serve as anycast sites. Each anycast
site has a tier-1 transit provider to ensure global reachability, i.e.,
any client or end-user in the Internet can reach the anycast site.
In addition to the transit provider, each site peers with a few other
ASes (Table 1), including some under a settlement-free policy, i.e.,
where neither network pays the other for transit. We launch all
active experiments and collect our measurements from the Ubuntu
server, which we henceforth refer to as the orchestrator.

We deploy an anycast configuration as follows. First, we establish
BGP sessions between the orchestrator and the routers at chosen
anycast sites. Then, we program GoBGP [30] to announce an anycast
prefix assigned to us via the BGP sessions between the orchestrator
and the site routers. The router at an anycast site likely peers with
multiple other neighbors. We use, hence, BGP’s community attribute
to control to which next-hop neighbors the router should advertise
our anycast prefix. We can choose, therefore, to advertise to a site’s
transit provider or any chosen peer by appropriately setting the
community attribute.

We develop a measurement tool that is similar to Verfploeter [13].
We run this tool at the orchestrator to measure the catchments. We
also improve the tool to measure the RTT between any client and
any anycast site as we soon describe.

Measuring catchments. For a given anycast configuration, we
measure each site’s catchment. We use these measurements in two
ways. First, we use them to determine a client network’s prefer-
ence between two anycast sites, henceforth referred to as pairwise
preference. Second, we compare the predicted catchments with the
empirically observed catchments. To gather the measurements, we
send ICMP requests [32] from the orchestrator to a large number of
ping targets, which are routers in different client networks chosen
by the CDN hosting our experiments to evaluate its network’s global
performance. We set the source address of each ICMP request to an
IP anycast address that we advertise and its destination address to
atarget’s IP address. When a target responds to this request, i.e., to
the anycast address, it will be routed to an enabled anycast site. The
router at the site will then forward that reply to the orchestrator,
via a preconfigured GRE tunnel. The GRE tunnel carrying the reply,
thus, identifies the target’s catchment site.

Measuring RTTs. We canmeasure the RTT from the orchestrator
toany target, but, for predicting and optimizing anycast performance,
we must measure the RTT between the anycast site and the target.
Rather than indirectly estimating the RTT between a site and a tar-
get from the physical distance between the two or approximating
the RTT through appropriate proxies as in King [19], we use the
following approach. First, we announce an anycast prefix from only

Zhang, et al.

one anycast site and send ICMP requests via the GRE tunnel con-
nected to that site. We include a timestamp in the request for RTT
measurements. Second, when the orchestrator receives a reply from
a target, we subtract the echoed timestamp from the current time
to calculate the RTT between the orchestrator and the target. Third,
we periodically measure the “tunnel” RTT between the orchestrator
and each anycast site. Finally, we subtract from the measured RTT
between the orchestrator and a target, the corresponding tunnel RTT,
i.e,, the RTT between the orchestrator and the site through which
the orchestrator received the target’s ICMP responses. For each RTT
measurement, we repeat the ICMP requests seven times and use the
median value (to filter outliers) as the RTT between the concerned
site and the target. If the link experience high packet loss rates, we
can still sample a median RTT from at least three valid responses.

As an example, in Figure 2, suppose we only announce our prefix
to AS3. Even though we send out the ICMP requests to the targets
from both anycast site B and anycast site C, the ICMP replies will
only return to anycast site B. Therefore, we can measure the RTT
between any target and the orchestrator. By subtracting the tunnel
RTT from the orchestrator to site B, we obtain the RTT between a
target and site B.

3.2 Choosing Ping Targets

To understand the impact of anycast configurations on client net-
works’ performances, we conduct active measurements (with ICMP
probes). The targets of these ICMP measurements are routers in or
near the targeted client networks.

To select our targets for measurements, we follow an approach
used by the CDN hosting our testbed [23]. Specifically, we merge the
network paths from the end-users to a CDN’s edge server into a tree,
rooted at the edge server. We then pick a common ancestor that is
closest to the end-users. In our active measurements, we ping such
targets from diverse networks to obtain a reasonable approximation
of the global performance of end-users. Additionally, the targets also
help us avoid sending ping probes to real end-users. Our target set
contains 15,300 IP addresses from 12,143 /24 network prefixes or 5317
ASes. Each target is representative of one or more client networks.

3.3 Pairwise Preference Discovery

We conduct pairwise BGP experiments to elicit a client network’s
preference orders. For each experiment, we choose two sites s; and s
from the available anycast sites for comparison. We announce an IP
anycast prefix from these two sites to only their corresponding tran-
sit providers, for reasons we soon describe in §4.1. If a ping target’s
response reaches site s; instead of site sj, we record that the client
network prefers s; to sj. By pinging all targets in one experiment,
we obtain all client networks’ preferences between s; and s;.

3.4 Prediction and Optimization

With the RTT measurements and pairwise preference experiment
results, we can predict an anycast configuration’s performance and
choose an optimal configuration. If a client network’s set of pairwise
preferences has no cycles, we can construct a total preference order
for the network. For any subset of anycast sites enabled, we predict
the client network’s catchment site as its most preferred site within
that subset. A client network’s pairwise preferences may, however,

AnyOpt: Predicting and Optimizing IP Anycast Performance

not form a total order, and we discuss why this situation may happen
in §4.

Given the RTTs and preference predictions, we can map an any-
cast optimization problem to the Simple Plant Location Problem with
clients’ Preference Orderings (SPLPO) [20] for optimization. SPLPO
is an extension to the well-known (uncapacitated) plant location
problem [10]. It considers the problem of how to open facilities that
have the overall lowest cost when each client has a preference order
among the set of possible facility locations. If we consider a “facility
location” as an anycast site, and use the RTT as the cost, then anycast
performance optimization problem becomes exactly the SPLPO prob-
lem. The SPLPO problem is NP-hard [5], and we show in Appendix B
that even approximating the minimum cost of SPLPO is NP-hard.

A network operator can, however, solve or approximate the op-
timization problem using offline simulations. When the number of
anycast sites is small, he or she can solve it exhaustively. When the
number of sites is large, he or she may not find the (theoretically)
optimal configuration, but he or she can find a configuration that
has the best performance among all configurations she simulates.

If an anycast network has a total of |S| sites, each having one
transit provider as in our testbed, then to optimize or predict an
anycast network’s performance, a network operator needs to run
0(|S|?) pairwise experiments to obtain each client network’s total
preference order and O(|S|) experiments to obtain a client network’s
RTT to each site. In contrast, if we do not employ the prediction
or optimization technique, the operator needs to deploy 0(251)
anycast configurations to measure and compare the performance of
each configuration. We formally describe the optimization model in
Appendix B and show that the model can optimize for latency while
meeting the load constraints of a site.

3.5 Practical Challenges

We have outlined the high-level idea behind AnyOpt’s design. How-
ever, to make it useful, we must address the following challenges.

No total order. 'When we perform the pairwise preference discov-
ery experiments, a client network may not exhibit consistent pair-
wise preferences that form a total order. Without a total order, we can-
not predict a site’s catchment for an arbitrary anycast configuration.

To address this challenge, we formally analyze the sufficient rout-
ing conditions under which a client network has a total order over
a set of anycast sites and the total order predicts a site’s catchment
(§4.1). We modify the pairwise experiments described in this section
to induce and discover a client network’s total order.

Too many experiments. A naive approach for pairwise prefer-
ence discovery requires at least O(|S|?) BGP experiments. As it takes
on the order of minutes for BGP to converge and routers implement
route damping for frequently changing prefixes, conducting such ex-
periments at scale may become impractical. Solving the optimization
problem using an exhaustive search also becomes infeasible.

We reduce the number of experiments by separating AS-level
catchment prediction from intra-AS catchment prediction (§ 4.3).
This technique reduces the number of pairwise BGP experiments
from O(|S|?) to O(|I|?)+O(avgSite® x|I|), where I is the set of tran-
sit ISPs an anycast network connects to and avgSite is the average
number of sites connecting to a transit provider. For a large anycast
network, this number of experiments may still be infeasible. We,

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

® ®
(2,3,C)

A) (1) (2) (6)
(5)

4,1,A)
(4,5,6,B)
(4,1,2,3,C)

Figure 3: This example explains why a client network (dst)
may not exhibit a total preference order among anycast sites
A, B, and C. Arrows point from providers to customers. AS 1
prefers the path originated at site C, as it is a customer router,
while AS 4 prefers the path from A, as it has a shorter AS path.

hence, describe a heuristic method to approximate a client network’s
intra-AS site preferences. This heuristic can eliminate the need for
intra-AS pairwise preference discovery experiments.

4 Design

Below, we discuss how we address the practical challenges that
AnyOpt faces.

4.1 Sufficient Conditions for Total Orders

First, we investigate why client networks exhibit a total preference
order and why this order can be used to predict anycast catchments.
With this understanding, we can determine whether our experimen-
tal approach is generally applicable to other networks.

BGP routing model. ~We analyze anycast routing using the Gao-
Rexford BGP routing model [16]. For simplicity, we consider two
kinds of contractual relationships: provider-customer and peer-to-
peer. In the former, a provider AS advertises a route received from
a customer AS to all its other neighbors, while in the latter, a peer
only advertises another peer’s routes to its customers.

When a BGP router receives different route advertisements to
the same prefix from its neighbors, it chooses the “best” path for
reaching the prefix and advertises only the best path to its neighbors
based on its export policies. The algorithm for determining the best
path works as follows [33]. When a router compares two paths, it
lexicographically compares two tuples, each consisting of an ordered
list of attributes of the corresponding paths. The first element in the
tuple of path attributes is local preference (LOC_PREF). An AS would
generally prefer an economically profitable route. Therefore, under
common BGP policies, an AS would prefer a customer route to a peer
route and prefer a peer route to a provider route. When the routes
have the same LOC_PREF, BGP breaks ties using the following path
attributes, in the given order: AS path length, origin of prefix, MED,
type of BGP session, interior cost, router Id, and neighbor address.

Why a total order might not exist? As aBGP path passes along
from one AS to another, each AS may rank the paths differently. An
AS may prefer a path with a longer AS path length, while a down-
stream AS may prefer one with a shorter AS path length (all due
to differences in LOC_PREF values at the two ASes). Suppose that

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

A, B, and C are three anycast sites, and dst is a client network that
receives anycast announcements (Figure 3). Each circle represents
an AS and an arrowed line points from a provider AS to a customer
AS. To elicit the preferences between the sites A and B, we use A
and B to announce our anycast prefix. The client network dst will
choose the path originated from site A, as both paths from A and B
are provider routes, and the path from A has a shorter AS path. So we
observe A > ;; B, where the operator > ;; denotes “preferred by dst”
When we compare the preferences between A and C, dst will choose
C (i.e., C>45; A), since AS 1 prefers a customer route to a provider
route and will advertise only the path from C to AS 4. Finally, when
we compare B and C, dst will choose B (i.e., B> 4,; C), as it has the
same LOC_PREF as the path from C but with a shorter AS path. This
scenario leads to cyclic pairwise preferences—no total order.

Why do we observe total orders in practice? If aclient network
might not exhibit a total preference order under the common BGP
model, why do our experiments observe so many instances of a
consistent total order? To answer this question, we focus on the case
where anycast sites peer only with tier-1 networks and make two
assumptions: (a) any network that has settlement-free peering with
atier-1 network has settlement-free peering with all tier-1 networks;
and (b) valley-free routing [16] holds. Then, if a network receives one
or more announcements for an anycast prefix, then all of them should
come from either peers (if the receiving network is a tier-1 network)
or from providers (if the receiving network is not a tier-1 network). In
selecting a path, anon-tier-1 network will, hence, only choose among
paths advertised by providers. The available paths will, therefore,
have the same LOC_PREF under the common BGP policy for any non-
tier-1 network receiving the anycast prefix announcement, and the
AS path length will be the most significant route selection criterion.
Furthermore, except for AS_PATH, the rest of BGP route attributes
are all based on AS-local or router-local identifiers. We can view them
collectively as one combined neighbor_ID. These local identifiers
are numerical and therefore have a total order. Under these condi-
tions, we prove in Appendix A that the following theorem holds.

THEOREM 4.1. Ifin a network a BGP speaker selects its best paths
by comparing (AS_PATH, neighbor_ID), then the paths from a client
network to all available anycast sites form a total order. Pairwise pref-
erence comparison experiments are able to discover this total order, and
this total order is predictive of a client network’s catchment site when
any subset of anycast sites are enabled.

This sufficient condition suggests that if an anycast network an-
nounces an anycast prefix from only tier-1 transit providers, then
under the common BGP routing policy, a client network will exhibit
a total preference order among the anycast network’s sites.

4.2 Practical BGP Implementation Issues

Below, we discuss two major challenges stemming from BGP imple-
mentations and how we address them.

Arrival orders of BGP advertisements. In our experiments, we
observe that when we compare the same two sites, client networks
may sometimes prefer different sites. This behavior is inconsistent
with the BGP specification and introduces cyclic preferences in our
experiments. Upon investigating this issue, we found that real-world
BGP implementations use another attribute—the arrival time of a

Zhang, et al.

route advertisement—as a tie-breaker after the “interior cost” at-
tribute. Both Cisco [1] and Juniper [2] describe this tie-breaking
algorithm in their online documents, albeit the attribute is not part
of the BGP specification [33]. Our empirical result shows that, after
resolving the arrival order problem, the ratio of clients that have a
consistent total order increases significantly. This result suggests
that tie-breaking based on the arrival-order is a widespread imple-
mentation, and it is frequently triggered in a router’s route selection
process. This is in contrast to findings from Anwar et al. [4], where
arrival order affected only 1.6-2.5% of measured paths.

To cope with this implementation issue, we take the arrival or-
ders of route advertisements into account in our experiment design.
In our pairwise experiments, we explicitly discover the client net-
works that are affected by the arrival orders of a route advertisement
and incorporate the arrival orders in anycast catchment prediction.
Specifically, we space the route advertisements from two different
sites by an interval T such that the first advertisement arrives earlier
than the second at a client network globally. We measure each client
network’s catchment twice, with the route-advertisement order in
the second experiment being the reverse of that in the first. If a net-
work’s preference stays the same across the two experiments, we
conclude that the network has a strict preference order between these
two sites; otherwise, we conclude that it has equivalent preferences.

Later, when predicting the catchments for an anycast configura-
tion, we consider how the order of announcements would affect a
site’s catchment and use the corresponding pairwise comparison
results to predict the catchments. For instance, if we choose a con-
figuration of three sites A, B, and C, and we announce an anycast
prefix in the order of first A, then B, and last C, we will use a client
network’s preference orders obtained from the measurements when
A is announced before B, and B is announced before C for predicting
the catchments.

Our experiments reveal that the order of BGP announcements
primarily affects a network’s preference at the AS-level. It does not
have any effect on a network’s preference orders when the prefix
announcements are from different sites within the same AS.

Multi-path routing. Some routers may split traffic to the same
destination prefix among multiple paths. A network’s traffic may, as
a consequence, reach different anycast sites, leading to inconsistent
total orders. This practice of multi-path routing complicates the
catchment prediction and could explain why the inconsistent total
orders exhibited by some networks.

Most networks exhibit, however, consistent total orders after we
take into account the arrival orders of route advertisements. We
ignore the networks that continue to exhibit inconsistent total or-
ders (i.e., even after taking route-announcement orders into account)
from catchment prediction and optimization, but still include them
when identifying catchments and measuring client RTTs under a
given configuration.

4.3 Two-level Preference Discovery

A real-world anycast network, such as Akamai DNS [36], may have a
few hundred sites. It is impractical to run pairwise measurements for
anetwork of this size. To reduce the number of preference measure-
ments, we exploit the two-level structure—inter-AS and intra-AS—of
routing in the Internet.

AnyOpt: Predicting and Optimizing IP Anycast Performance

When one or more sites that connect to the same AS advertise
an anycast prefix, the site-level differences disappear (i.e., cannot
be observed) once a neighboring AS re-advertises the prefix to its
neighbors. Suppose that a client network is not directly connected
to an anycast site. Then, if we discover the client network’s total
preference order among the ASes that interconnect it to the anycast
network, we can predict which ingress AS the network will use.
Within that AS, the interior routing metrics determine which site
the network will use. This routing structure allows us to separate the
discovery of a client network’s preference order at the AS-level from
that at the site-level. More concretely, our two-level approach first
predicts the AS-level (or provider-level) preferences of a client net-
work, and then proceeds to discover the client network’s site-level
preferences, across available sites within an AS.

Provider-level preference discovery. To elicit a client network’s
pairwise preferences at the AS (or provider) level, we choose two tran-
sit providers and use one representative site from each provider for
announcing the anycast prefix, as described in §3; we repeat the exer-
cise across all pairs of transit providers. Recall that I denotes the set of
transit providers of an anycast network. We need O(|I|2) pairwise ex-
periments to discover a client network’s total order. The experiments
in our testbed show that when we vary the representative site or the
number of representative sites for each transit provider, 94.2% of the
client networks on average do not change their pairwise preferences.

Site-level preference discovery. To discover a client network’s
site-level preferences among anycast sites within each transit provider,
we proceed as follows. We choose two sites for each transit provider,
announce the anycast prefix and measure the client network’s pref-
erence order; as before, we repeat this experiment with other site
pairs. We found that the announcement order has no impact on the
client network’s site-level preferences.

Site-level preference discovery might still be prohibitively costly
for a large anycast network. We could, however, use the following
heuristic to eliminate this step. Once a client network’s traffic enters
an AS that hosts multiple anycast sites, that AS’s interior routing
protocol determines the network’s catchment site, typically based
on shortest path routing metrics. We can, therefore, approximate a
client network’s site-level preference order in a given AS using the
shortest path distances from the client network’s ingress point to the
anycast sites inside the AS. Per our experiments in some tier-1 net-
works, the shortest-path distance is closely correlated with a client
network’s RTT to an anycast site. We use, therefore, the RTT from a
client network to an anycast site to predict the site-level preference:
the shorter the RTT, the more preferable the site.

Once both the provider-level and site-level preference-discovery
steps are completed, a network operator can determine a network’s
preference order among its transit providers as well as across the sites
within each transit provider. Armed with the preference orders and
the RTT measurements, they can predict the catchments of a given
anycast configuration for a specific announcement order, thereby
predicting the latency and load distribution. They can furthermore
simulate the performance of various anycast configurations and
deploy the ones that best fit their performance requirements.

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

4.4 Incorporating Peers

With the steps above, AnyOpt can generate an optimal transit-only
anycast configuration. However, an anycast network may include
peering connections. As peering connections can be settlement-free
and deliver traffic to client networks via shorter AS paths, incorpo-
rating them in an anycast configuration may improve performance
and reduce transit cost. However, it is not straightforward how to in-
corporate peers in an anycast configuration, as previous work [8, 18]
suggests that peer connections can worsen the performance of a
transit-only anycast configuration.

While it is our future work to study how to incorporate peering
connections in an anycast configuration in more depth, we develop
a heuristic technique to conservatively include only the beneficial
peers in an anycast configuration. We refer to this heuristic as the
“one-pass” method. Again, it is based on measurements and offline
optimization.

In the one-pass method, we first measure whether enabling a peer
will reduce the average latency of the baseline configuration where
only transit providers are enabled. If so, we consider the peer as a
beneficial peer. From the optimal transit-only configuration found by
AnyOpt, we enable one peer at a time, measure the peer’s catchment
after the peer is enabled, and measure how the average latency has
changed. If the average latency is reduced, we mark this peer as a
beneficial peer. We then disable this peer, measure another peer, and
so on until we measure all peering connections of an anycast net-
work. If an anycast network has a total of M peers, this step requires
M BGP measurements.

After we identify the beneficial peers, we use a greedy offline
algorithm to choose the set of peers to add to the transit-only config-
uration. We rank the beneficial peers by the size of their catchments
measured during the one-pass experiments. We start with including
the beneficial peer with the largest catchment, and then examine
the beneficial peer with the second largest catchment, and so on.
For each peer we consider, we estimate whether including this peer
will reduce the average latency. If it will reduce the average latency,
we include it in the configuration. Otherwise, we skip it. We note
that the one-pass experiments we conduct only include one peer ata
time. Thus we cannot predict the catchment of a peer and hence, the
average latency, accurately when multiple peers are enabled simulta-
neously. To overcome this challenge, we conservatively assume that
when we add a peer with a smaller catchment size, all client networks
in the peer’s catchment discovered in the one-pass experiments will
switch to that peer. Only if the average latency is reduced in this
case, we will include the peer. Otherwise, we will skip the peer.

Experimentally, we find that the one-pass method can further
reduce the average latency of a transit-only configuration, but not
by much. It is around 5ms for our testbed. It is our future study to
investigate why the reduction is this small. One plausible explana-
tion is that the beneficial peers in total only attract a small fraction
of the overall traffic in our testbed, as we show in § 5.4. This result
may not hold for other anycast networks where peering connections
attract larger amounts of traffic, but Schlinker et al. also observed
that peer routes and provider routes had similar performance in
terms of latency for the Facebook network [35].

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

4.5 Putting it Together

Finally, we summarize the steps it takes to predict an anycast net-
work’s catchments and to optimize its performance.

(1) For each site, we announce a test anycast prefix to a tran-
sit provider the site connects to. We use this experiment to
measure the RTT from a client network to this site (refer §3).

(2) We run pairwise preference measurements among all transit

providers of the anycast network. We consider the impact of
the arrival orders of BGP advertisements by announcing each
pair twice with areversed order in the second measurement to
get enough information for simulating all possible announce-
ment orders. We choose one representative site from each
transit provider to perform these experiments.
For each transit provider, we use pairwise experiments to dis-
cover a client network’s preferences among the sites within
this transit provider. For a large anycast network with many
sites where this approach is infeasible, we approximate a
client network’s preferences by its RTTs to the sites within
the transit provider.

(3) Using the above experiments, we compute offline the total
preference order of each client network for the announce-
ment order that maximizes the number client networks with
a consistent total order. We exclude a client network in this
computation if its pairwise preferences do not exhibit a total
order. We use the total order to predict the catchment site of
a client network given a site-level anycast configuration. We
can enumerate through as many configurations as required
offline and choose the best ones to deploy. After the deploy-
ment, we can include the beneficial peering links discovered
using the one-pass method described in §4.4.

Analysis. We now estimate the number of BGP measurements
needed as well as the time it takes to finish them for optimizing the
Akamai DNS anycast network [36] with a transit-only configuration.
Akamai DNS has a few hundred sites. We use 500 sites and 20 transit
providers to approximate the Akamai DNS network. For a network of
this size, site-level pair-wise experiments are infeasible. We instead
use a client network’s RTTs to the anycast sites to approximate their
intra-AS site-level preferences. In total, we require 500 singleton
experiments for measuring a client network’s RTT to each site and
380 pair-wise measurements for discovering the network’s pair-wise
preferences between any two transit providers. We can, however,
run the BGP measurements in parallel with different anycast pre-
fixes. Suppose that we use four test anycast prefixes (the number of
prefixes we use in our testbed), and we separate each BGP experi-
ment by two hours. Then the 500 singleton measurements will take
500:2/4 =250 hours or about 10 days to finish. The 380 pair-wise
experiments will take 380+%2/4=190 hours or around eight days to
finish. So for an anycast network of size as large as the Akamai DNS
system, a network operator can perform these measurements once
amonth and use the results to adjust their network configurations.
If the topological features of the Internet such as a client network’s
average RTT to a site remains stable over the course of a month, then
AnyOpt is suitable for such large networks.

Zhang, et al.

5 Performance Evaluation

In this section, we use real-world experiments on the anycast testbed
described in §3.1 to evaluate AnyOpt. In particular, we answer the
following questions:

(1) How does the order in which we announce an anycast prefix
from different sites affects the catchment of each site?

(2) How effective are the pairwise preference elicitation exper-
iments in discovering the total ordering of AS-level and site-
level preferences of client networks in a provider-only anycast
configuration?

(3) How accurately can we predict the catchments in a provider-
only anycast configuration?

(4) Can AnyOpt’s catchment prediction help in optimizing any-
cast deployment for performance (e.g., in terms of latency
reduction)?

5.1 Pairwise Preference Discovery

In this section, we answer the first two questions regarding the
impact of BGP announcement order and our ability to observe a
total preference order. We begin with experiments to assess inter-AS
preferences and then repeat the same for intra-AS preferences.

Inter-AS experiments & impact of announcement order. Any-
Opt uses pairwise experiments to discover a client network’s pref-
erence order between two anycast sites. If a network has a total
ordering among all sites, AnyOpt uses it to predict its catchment
for a given anycast configuration. We take the two-level approach
described in §4.3 to discover a network’s preference orders for any-
cast sites on our testbed. For the AS-level preference discovery, we
pick two transit providers and run two pairwise comparison exper-
iments. In each experiment, we announce an anycast prefix to a
representative site from each provider AS respectively. After BGP
stabilizes, we measure each site’s catchment and the RTT from a
target network to each catchment site as described in §3. We separate
the two announcements by six minutes in each experiment, and in
the second experiment, we reverse the order of the announcements
in the first experiment. As we describe in §4.2, BGP implementations
break ties using the arrival order of route advertisements. Therefore,
anetwork’s preference may differ across the two experiments.
Naturally, we first investigate how catchments change when we
switch the prefix announcement order between two transit providers.
Figure 4a shows that around 6% to 14% of ping targets change their
catchment sites, suggesting that the arrival order of the BGP an-
nouncements breaks the tie between two equally preferred paths.
Note that the change of a client network’s preference is not due to
transient path changes, as 1) we wait long enough for BGP to con-
verge to measure the catchments, and 2) we separate the first and sec-
ond experiments by two hours and withdraw the prefix announced in
the first experiment before we announce it in the second experiment.
Next, we check whether a client network’s pairwise preferences
can form a total order among the set of transit providers. As a com-
parison, we also run pairwise experiments without considering the
order of BGP announcements. That is, we announce an anycast
prefix simultaneously from a representative site in each of the two
providers. Our testbed has a total of six transit providers. We use it to
emulate an anycast network with three to six providers respectively.

AnyOpt: Predicting and Optimizing IP Anycast Performance

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

0.2 PE o o 0 E O EETOEOE YA %) 0.3 H H 4] 1
o EsESsExEEzE>ExE : :
28 =T E8i23062I 8258 @ Simultaneous F—%— © -t
S EoiebESErr8s8ss8eas8s [95—,03:
= 0. ey T NEEZ ’
g CrobrEsfCisgfgg =% Ordered —+— » -
8 FoE 2 25 SN o ©0.2 =] b et 8
@ 5042 Nz S8 S £ s] £ 506 .
= . a5 L X Q o - K.
a3 L 5 L “6804 ~.

. X

5 §oo08 [s 501 . - s< \
5_2 | 5; | F 830.2— Ordered —- \)(-
S 2004 | o 1x © Simultaneous - =X
EE 1 firng o 1 w 0 | 1 | 1
s

oL u 3 4 5 6 7 8 9 10 11 12 13 14 15

Provider pairs

(@

Number of providers

(b)

Number of anycast sites

(©

Figure 4: (a) A significant fraction of ping targets switch their preferences based on the order in which they receive the anycast
prefix announcements. (b) Announcing an anycast prefix simultaneously (in red) from two transit provider ASes leads to more
clients without a total preference ordering compared to separating the announcements from the two ASes by six minutes (in blue).
(c) Fraction of ping targets with a total ordering remains steady at 85% as the number of sites increases and the announcement

order is controlled, but falls drastically otherwise.

For each emulation, we choose a random X € [3,6] number of tran-
sit providers and run pairwise preference discovery experiments
among those providers.

Figure 4b shows that as the number of providers increases the
fraction of networks that do not have a total order increases. The
error bars in Figure 4b show the variance among different measure-
ments. Incorporating the order of BGP announcements reduces the
fraction of networks without a total ordering by half. When there
are six transit providers, if we do not consider the announcement
order, 21.7% of networks do not have a total preference order among
the providers. In contrast, if we consider the announcement order,
this number decreases to 10.8%.

Intra-AS experiments. After AS-level preference discovery, we
determine each network’s preference orders among the anycast sites
within the same transit provider AS. To do so, we choose a transit
provider and announce an anycast prefix from any two sites within
the transit provider. The site-level catchment is determined by an
AS’sinterior routing mechanism. Therefore, the BGP announcement
order should not affect site-level catchment. For a transit provider
with N sites, we run N#(N —1)/2 pairwise site-level experiments
for discovering a network’s preference order. For our testbed, each
provider has two to four sites. So it takes one to six pairwise exper-
iments to discover a network’s preferences per provider.

After the two-level preference measurements, we calculate a net-
work’s total preference order among all sites by first ranking the
transit providers based on the network’s preference for a specific
announcement order and then ranking the sites within each provider.
We then calculate the fraction of networks that have a total order.
Similarly, as a comparison, we also run pairwise site-level preference
discovery experiments without considering the BGP announcement
order. To do so, we pick two random sites and announce an anycast
prefix from these two sites simultaneously. We measure a network’s
pairwise preferences and compute its total preference order. We
vary the number of sites in the experiments to emulate an anycast
network of varying sizes.

We start with an anycast network with one site in each transit
provider connected to our testbed. When we add more sites, the
fraction of networks that have a total preference order sharply de-
creases (as shown in Figure 4c) if we do not consider the impact of

BGP announcement orders on route selection. When the number of
sites reaches 15, only 15.5% of networks have a total preference order.
In contrast, when we consider BGP announcement orders and use
the two-level pairwise preference discovery mechanism, 88.9% of
networks still exhibit a total preference order, which enables AnyOpt
to accurately predict the catchments of an anycast configuration.

5.2 Catchment Prediction

Next, we evaluate whether AnyOpt can accurately predict catch-
ments and the overall latency of an anycast configuration, which
answers question (3). We first choose a random subset R from all
sites in our anycast testbed. We then use each client network’s total
preference order (among this subset) under a BGP announcement
order for predicting the client network’s most preferred site among
Rand its RTT to its catchment site. We do not predict catchments
for client networks that do not exhibit a total order. We then deploy
the configuration R under the same BGP announcement order and
measure the resulting catchment of each site in R and each target’s
RTT to its catchment site. We compare the predicted catchments and
RTTs with the measured ones to gauge the accuracy of AnyOpt’s
predictions. We then vary the subset R and repeat the above steps.

Figure 5 summarizes the results. In Figure 5a, we show the results
from three experiments. In the first two experiments, we choose
four and six transit providers in our anycast testbed and enable a
representative site in each provider. In the third experiment, we
enable all 15 sites. We measure the fraction of client networks for
which we correctly/incorrectly predict their catchment sites and the
fraction of networks that do not have a total order. The figure shows
that when the number of sites increases, the number of networks
that have a total preference order decreases. However, within those
networks that have a total order, we can correctly predict the catch-
ment sites more than 93% of the time. There are several reasons that
might lead to no total orders, such as multipath routing, uncommon
BGP policies, and routing configurations that violate the sufficient
conditions for a total order (§4.1).

We plot the CDF of the absolute values of the differences between
the predicted average RTT (of all targets) of an anycast configuration
and the measured average RTT of the same anycast configuration

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

Correct] Incorrect B4 No Total Order Wl 1
g i i
2 s] 0
c 08 L
had L
g os s 00T
o - o
5 04 0.4
c - L
2 02 02
5] R L
o PR
e 0 0

4 6 15 0 2

Number of sites

(a) Catchment prediction accuracy

Zhang, et al.
1 s
[—
~ 0.8 /
/ Cosl /
© 04
02| / :
. i S W
6 8 10 0 002 004 006 008 0.1 0.12

4

Absolute Estimation Error for Avg RTT (ms)

(b) Absolute RTT estimation error

Relative Estimation Error for Avg RTT

(€) Relative RTT estimation error

Figure 5: Evaluation of catchment prediction accuracy. (a) AnyOpt predicts most catchments correctly when client networks
exhibit a total ordering; (b,c) the vast majority of errors in RTT estimates are small.

in Figure 5b. We compute the CDF from 38 random anycast configu-
rations with the number of sites ranging from 1 to 14. Per this figure,
the predicted average RTT is within 6ms of the measured RTT for
more than 80% of anycast configurations.

Figure 5c¢ shows the relative errors of the predicted average RTT
when compared with the measured average RTT for each anycast
configuration we choose. For all configurations we tested, the mean
predicted average RTT error is less than 4.6%.

Takeaways. These results are encouraging. They suggest that
once we obtain a client network’s total preference order and the
RTTs from each site to each target, we can accurately predict the
catchments and the overall RTT of an anycast configuration for our
testbed.

5.3 Performance Optimization

In this section, we answer question (4). In addition to predicting the
catchments of an anycast configuration, AnyOpt assists in finding
a configuration (i.e., the set of sites enabled to announce an anycast
prefix) that results in the lowest average RTTs between the any-
cast sites and the targets. To estimate the extent of potential RTT
reductions, we conduct the following experiments. We use offline
computations to iterate over as many anycast configurations for our
testbed as we could possibly compute within a time bound, which
we currently set to six hours. For each configuration, we choose a
prefix announcement order that yields the largest fraction of client
networks with a total preference order. The computation returns a
12-site configuration out of 15-site testbed. We deploy this AnyOpt-
optimized configuration and measure the catchments of each site
and the average client latency. We then compare the average RTT
of the AnyOpt configuration with two other types of configurations
and the default configuration of enabling all 15 sites.

N-Greedy. 1In these configurations, we enable N sites using a
greedy algorithm. We enable the sites in a configuration according
to their average unicast RTTs to all client networks. Recall that we
measured those RTTs by announcing an anycast prefix from only
one site. We choose the top N sites with the lowest average RTTs to
the measurement targets, deploy the configuration, and measure its
catchments and RT Ts. The 12-Greedy configuration has the same
number of sites as in the AnyOpt-optimized configuration.

4-Random. To simplify management, network operators may
choose to use only a small number of providers and sites. For this

[T
a
@)
12-Greedy = =
4-Random =-= __
i 4-Greedy ----*
I A l 'l l]
0 50 100 150 200 250
RTT per ping target (ms)
Figure 6: AnyOpt-optimized configuration substantially

outperforms other approaches in terms of RTT.

scenario, we assume a network chooses two providers and two sites
in each provider. We randomly generate three such configurations,
deploy them, and measure their catchments and RTTs.

We show CDF of the resulting RTTs to each target network un-
der each scenario in Figure 6. The 4-Random line is the result from
the best random four-site configurations we generate. The median
RTT for the AnyOpt-optimized configuration (the “AnyOpt” line)
is 43ms, while that of the greedy configuration of the same number
of sites (the “12-Greedy” line) is 76ms. Put another way, AnyOpt
improves the median RTT by 43.4% for the same number of sites.
Compared with other configurations, AnyOpt improves the median
RTT by 27-59.8%. Although not shown in the figure, the AnyOpt
configuration also has a 33ms lower average RTT compared to the
greedy configuration with the same number of sites. It has 14—35ms
lower average RTT than the other configurations.

Consistent with observations from prior work, we find that the
configuration with all 15 sites enabled (the “15-all” line in Figure 6)
exhibits worse performance than a smaller AnyOpt configuration
with 12 sites. However, the 12-site AnyOpt configuration substan-
tially outperforms the other configurations with fewer or the same
number of sites. This result shows that more sites can lead to sub-
stantially better performance when using the right measurements
and optimization approach.

5.4 Incorporating Peering Links

Next, we show how incorporating peering links to the transit-only
AnyOpt configuration can impact the average client latency. The

AnyOpt: Predicting and Optimizing IP Anycast Performance

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

1 4 1
J/_’/ 3 os L “-“.‘__,‘,c
[I @ 12 ™ / T _’.,0""
£ 0.6 |-
~ w
8 osl Cof — s 't 7/
= o
21:—1 0.4 [AnyOpt+AllPeers ===+
i -2 02 AnyOpt+BenefitPeers = =
-3 - AnyOpt ——
0.6 Ll—t H PR N S N S | 4 11 FoY) A NP NSRRI R S T
0% 5% 10% 15% 20% 25% #1 #11 #21 #31 #41 #51 #61 #71 0 50 100 150 200 250

Percentage among all ping targets

()

Peering link index

RTT per ping target (ms)

(©

Figure 7: Impact of non-transit peers on AnyOpt performance. (a) CDF of a peer AS’s catchment when adding a peering link to
AnyOpt’s transit-only configuration. (b) Mean RTT changes when adding a peering link to AnyOpt’s transit-only configuration.

(c) CDF of client RTTs after incorporating peering links.

AnyOpt testbed includes 104 non-transit peering links. Among them,
only 72 peering links can reach some of our ping targets, which could
be due to routing configurations, e.g., a peer may filter our testbed
traffic, or a peer’s catchment is too small to include any ping target.

To estimate a peer’s impact on the average client latency, we
enable each peer separately on the AnyOpt-optimized transit-only
configuration (as described in §4.4). We then measure the peer’s
catchment size under this configuration and how the average client
RTT has changed. If enabling the peer reduces the average RTT, we
deem it a beneficial peer. Figure 7a shows the CDF of a peer’s catch-
ment size distribution, and Figure 7b shows how enabling a peer
changes the RTT averaged over all ping targets. We rank the peers
by the value of average RTT changes they introduce. As can be seen,
more than 80% of the peer links on our testbed have a catchment size
consisting of fewer than 2.5% ping targets. Only a few peers have
noticeable impact on the average RTTs.

We then use the one-pass heuristic to enable the beneficial peers
that are likely to reduce the average RTT of the AnyOpt-optimized

configuration. We refer to this configuration as AnyOpt+BenefitPeers.

We measure the RTT distribution of each ping target under this con-
figuration, and compare it with the configuration of enabling all peers
(AnyOpt+AllPeers) and AnyOpt. Per Figure 7c, AnyOpt+AllPeers
and AnyOpt+BenefitPeers have similar performance. Both perform
slightly better than AnyOpt, but not significantly. Specifically, Any-
Opt+BenefitPeers reduces AnyOpt’s average RTT from 68 ms to
63ms, while AnyOpt+AllPeers reduces it to 61ms. We note that in
our testbed, enabling all peers leads to a configuration with a slightly
lower mean RTT than the configuration identified by the one-pass
heuristic. This result may not be generally applicable to other any-
cast networks, and a conservative approach such as the one-pass
heuristic, which includes beneficial peers one-by-one, will be useful
in situations where enabling all peers worsens the performance of
a transit-only configuration.

6 Limitations and Future Work

This work has a few key limitations and leaves open a number of
interesting directions for future work. We discuss them below.

Testbed We obtain all experimental results on the anycast testbed
we use. Although from our theoretical analysis, we expect that other
networks would obtain similar results, this hypothesis is yet to be
validated by real-world experiments on other anycast networks.

Large anycast networks. Although we outlined a heuristic ap-
proach in §4.3 that uses a client network’s RTTs to anycast sites
of a large anycast network to discover the network’s intra-AS site
preferences, we have not yet to test the effectiveness of this approach
on other anycast networks.

Settlement-free peers. We have performed experiments to fine-
tune a baseline anycast configuration consisting of only advertise-
ments to tier-1 transit providers. We also used a one-pass method
to evaluate the peering links we had in our infrastructure. Our eval-
uation showed that the RTT reduction brought by these peerings is
small. While interesting, our findings might be impacted by limited
connectivity in our testbed (15 sites and 104 peering links). An open
question is how much performance might change if we advertised
to settlement-free peers for other larger anycast networks.

Stability analysis. Deploying AnyOpt as a production system
would require a longitudinal study to determine how often client
total orders change, and by how much. This information would then
govern the frequency of the pairwise experiments that would be nec-
essary to keep the total orders up to date. We have only conducted a
few experiments in January 2021 to gauge whether the performance
of an anycast configuration remains stable. That is, if we deploy the
optimal configuration given by AnyOpt, will it remain optimal? We
deployed a configuration and measured it weekly in the first three
weeks of January 2021. The results are promising, more than 90% of
the catchments remain unchanged and the average RTT is also very
stable in the three-week duration. It is our future work to study the
stability of an optimal configuration in detail.

Other control knobs. A network operator can modify the BGP
attributes of an anycast prefix advertisement (e.g., prepend its own
AS numbers) to influence catchments. She can also use the BGP poi-
soning technique [21] to avoid a specific AS hop along the path. It is
in our future work to explore how to use these “knobs” for catchment
prediction and performance optimization.

Reducing the number of experiments. When the number of
transit networks that an anycast network connects to grows larger
(e.g., 20 or more), performing a quadratic number of experiments
becomes burdensome. It is natural to ask whether the total orders
could be learned, or learned approximately, using fewer experiments.
One possible future direction to reducing the number of experiments
would be to rely on publicly available BGP routing tables to infer

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

as much about catchments as possible, and then to supplement the
information gleaned from these tables with active measurements.

7 Related Work

Measuring IP anycast performance. 1P anycast has long been
used by Internet services to provide automatic load balancing and
latency reduction among service replicas. Previous work focuses
on measuring the performance of deployed IP anycast systems,
including DNS root servers [6, 11, 17, 22, 22, 24, 26, 27, 29] and
CDNss [7, 12, 22]. Most of the studies on root DNS anycast systems
show that global IP anycast often fails to route clients to the replicas
that provide the lowest latency or to evenly distribute the workload
among the replicas. As an example, Li et al. [25] showed that for the
D-root name server, only one third of its clients’ queries were routed
to their geographically closest anycast sites. Differently, Calder et
al. [7] and Koch et al. [22] show that for Microsoft CDN, only 35%
of users experience anycast latency inflation.

Explaining and improving poor performance. Sarat et al. [34]
proposed to limit the radius of an anycast prefix announcement to
prevent a client from reaching a topologically distant site. However,
as a global ISP often has a network spanning a large geographic area,
limiting the radius of a BGP announcement cannot prevent a client
from reaching a distant site. Ballani et al. [6] hypothesized that the
sub-optimal performance of IP anycast is due to BGP’s routing be-
havior. BGP is performance oblivious, and ASes configure their BGP
routers to find the “cheapest” rather than the best performing routes.
They proposed to host all anycast sites through one tier-1 provider. Li
etal. [25] proposed to embed the origin router’s geographic location
in a BGP announcement to make BGP latency aware. Alzoubi et
al. [3] proposed to use a central route controller and MPLS tunnels
to direct anycast traffic to specific anycast sites within one ISP, but it
is difficult to generalize this approach to large anycast networks that
span multiple ISPs, as across-domain MPLS engineering is not well
supported by ISPs. Fastroute [15] describes an anycast architecture
that combines DNS redirection and anycast routing to manage the
workload of a large CDN.

Different from this body of work, AnyOpt aims to predict anycast
catchment and enable a service provider to choose an optimal any-
cast configuration. It can reduce the overall client latency without
modifying BGP announcements to embed geographic information.
Although we do not explicitly address load-balancing in this work,
as we explain in §3 and Appendix B, a network operator can add a
load constraint to the optimization problem or predict how load will
change by accurately predicting anycast catchment.

Measuring and inferring anycast catchment. Cloudflare’s Verf-
ploeter [12, 13] measures the catchment of an anycast site without
using a large number of active probes. Verfploeter sends out ICMP
requests to hosts with the source addresses of the requests set to an
anycast address. A host’s ICMP reply will reach its corresponding
catchment site. Vries [13] et al. have shown that Verfploeter can
accurately map out the catchment of an anycast site, overcoming
the limitation of previous work that uses RIPE Atlas [38] to measure
anycast catchment. Another body of work [11, 25, 40] uses RIPE
Atlas to send active probes to an anycast address, but RIPE Atlas has
a skewed geographic distribution. AnyOpt borrows Verfploeter’s

Zhang, et al.

architecture to map an anycast site’s catchment, but enhances the
architecture to measure a client’s RTT to an anycast site (§3).

Sermpezis and Kotronis [37] proposed to use the inferred AS-level
Internet topology for predicting anycast catchment. Their approach
cannot, however, accurately predict how ASes break ties among
equally preferred routes. In addition, any incorrect inference in the
AS topology will exacerbate the inaccuracy of its prediction. As
shown in their simulations, when the number of anycast sites in-
creases from two to four sites, the number of nodes with certain
inference decreases from 15000 to 6000 and will keep decreasing
as the number of anycast sites increases.

In contrast, AnyOpt takes a measure-model-and-optimize ap-
proach. It uses carefully designed BGP experiments to discover how
ASes choose paths and combine the experimental results with offline
computation for anycast performance prediction and optimization.
In the future, we plan to investigate whether we can combine Any-
Opt with an inference-based method to further reduce the number
of BGP experiments required for making accurate predictions.

8 Conclusion

In this paper, we introduced AnyOpt and showed how it can be used
to minimize the latency and balance the load of an anycast network.
The key idea is that, in certain circumstances, the site preferences of
each client network exhibit a total order and we can discover the total
orders of all client networks using pairwise preference-elicitation
experiments that announce an anycast prefix from any two available
sites. We prove the sufficient conditions under which a client net-
work exhibits a total order and use a two-level approach consisting
of inter-AS experiments followed by intra-AS experiments to reduce
the total number of experiments. With the total order in hand for
each client network, we can predict the catchment of each anycast
site for any particular subset of sites that might advertise. Then by
formalizing the problem as an instance of the SPLPO problem, we can
find a set of anycast sites that minimize latency while balancing load
(i.e., satisfying capacity constraints). Our evaluation using a testbed
that has 15 global sites demonstrates the feasibility of our system.
AnyOpt can predict catchment areas with small errors using only
a quadratic number of experiments, and solving the resulting opti-
mization problem yields tangible reductions in latency. To the best of
our knowledge, AnyOpt is the first work that systematically tackles
the anycast performance prediction and optimization problem.

9 ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Jennifer Rex-
ford for their helpful comments, and Haoyu Wang and Shen Zhu for
helping with an early draft of this paper. We sincerely thank the net-
work engineering team at Akamai Technologies, especially Aaron
Block and Aaron Atac, whose help made this work possible. We thank
Kamesh Munagala for help in proving that even approximating the
minimum cost of SPLPO is NP-hard. This work was supported in part
by the National Science Foundation under awards 1910867, 1763617,
1763742,1822965, and 1827674, and in part by subcontracts from Aka-
mai Technologies in support of DARPA prime contract HR0011-17-C-
0030. Additional support was provided by Microsoft Research Faculty
Fellowship 8300751 and AWS Machine Learning Research awards.

AnyOpt: Predicting and Optimizing IP Anycast Performance

References

[1

=

[10

[11]

[12]

[13]

[14]

(15

[16]

[17

[18

2016. BGP Best Path Selection Algorithm. Retrieved Jun 28, 2021 from
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-
bgp/13753-25.html

2020. Understanding BGP Path Selection. Retrieved Jun 28, 2021 from
https://www.juniper.net/documentation/en_US/junos/topics/reference/
general/routing-protocols-address-representation.html

Hussein A. Alzoubi, Seungjoon Lee, Michael Rabinovich, Oliver Spatscheck,
and Jacobus Van Der Merwe. 2011. A Practical Architecture for an
Anycast CDN. ACM Trans. Web 5, 4, Article 17 (Oct. 2011), 29 pages.
https://doi.org/10.1145/2019643.2019644

Ruwaifa Anwar, Haseeb Niaz, David Choffnes, Italo Cunha, Phillipa Gill, and
Ethan Katz-Bassett. 2015. Investigating Interdomain Routing Policies in the
Wild. In Proceedings of the 2015 Internet Measurement Conference (Tokyo, Japan)
(IMC ’15). Association for Computing Machinery, New York, NY, USA, 71-77.
https://doi.org/10.1145/2815675.2815712

Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. 2012. Complexity and approximation:
Combinatorial optimization problems and their approximability properties. Springer
Science & Business Media. https://www.springer.com/gp/book/9783540654315
Hitesh Ballani, Paul Francis, and Sylvia Ratnasamy. 2006. A Measurement-
Based Deployment Proposal for IP Anycast. In Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement (Rio de Janeriro, Brazil) (IMC
’06). Association for Computing Machinery, New York, NY, USA, 231-244.
https://doi.org/10.1145/1177080.1177109

Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. 2015. Analyzing the Performance of an Anycast CDN. In Pro-
ceedings of the 2015 Internet Measurement Conference (Tokyo, Japan) (IMC
’15). Association for Computing Machinery, New York, NY, USA, 531-537.
https://doi.org/10.1145/2815675.2815717

Ignacio Castro, Juan Camilo Cardona, Sergey Gorinsky, and Pierre Francois. 2014.
Remote Peering: More Peering without Internet Flattening. In Proceedings of the
10th ACM International on Conference on Emerging Networking Experiments and
Technologies (Sydney, Australia) (CoONEXT ’14). Association for Computing Ma-
chinery, New York, NY, USA, 185-198. https://doi.org/10.1145/2674005.2675013
Danilo Cicalese, Jordan Augé, Diana Joumblatt, Timur Friedman, and Dario Rossi.
2015. Characterizing IPv4 Anycast Adoption and Deployment. In Proceedings
of the 11th ACM Conference on Emerging Networking Experiments and Technologies
(Heidelberg, Germany) (CoNEXT ’15). Association for Computing Machinery, New
York, NY, USA, Article 16, 13 pages. https://doi.org/10.1145/2716281.2836101
Gérard Cornuéjols, George Nemhauser, and Laurence Wolsey. 1983. The uncapic-
itated facility location problem. Technical Report. Cornell University Operations
Research and Industrial Engineering. https://hdl.handle.net/1813/8491

Ricardo de Oliveira Schmidt, John Heidemann, and Jan Harm Kuipers.
2017. Anycast Latency: How Many Sites Are Enough?. In Passive
and Active Measurement, Mohamed Ali Kaafar, Steve Uhlig, and Jo-
hanna Amann (Eds.). Springer International Publishing, Cham, 188-200.
https://link.springer.com/chapter/10.1007/978-3-319-54328-4_14

Wouter B. de Vries, Salman Aljammaz, and Roland van Rijswijk-Deij. 2020.
Global-Scale Anycast Network Management with Verfploeter. In NOMS
2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. 1-9.
https://doi.org/10.1109/NOMS47738.2020.9110449

Wouter B. de Vries, Ricardo de O. Schmidt, Wes Hardaker, John Heidemann,
Pieter-Tjerk de Boer, and Aiko Pras. 2017. Broad and Load-Aware Anycast Map-
ping with Verfploeter. In Proceedings of the 2017 Internet Measurement Conference
(London, United Kingdom) (IMC ’17). Association for Computing Machinery, New
York, NY, USA, 477-488. https://doi.org/10.1145/3131365.3131371

Dino Farinacci, Tony Li, Stanley P. Hanks, David Meyer, and Paul S. Traina.
2000. Generic Routing Encapsulation (GRE). RFC 2784. RFC Editor. 1-9 pages.
https://www.rfc-editor.org/rfc/rfc2784.txt

Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt, Jie Liu, Yingying
Chen, and Oleg Surmachev. 2015. FastRoute: A Scalable Load-Aware Anycast
Routing Architecture for Modern CDNs. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15). USENIX Association,
Oakland, CA, 381-394. https://www.usenix.org/conference/nsdil5/technical-
sessions/presentation/flavel

Lixin Gao and Jennifer Rexford. 2001. Stable Internet Routing without
Global Coordination. IEEE/ACM Trans. Netw. 9, 6 (Dec. 2001), 681-692.
https://doi.org/10.1109/90.974523

Danilo Giordano, Danilo Cicalese, A. Finamore, M. Mellia, M. Munafo, Diana
Joumblatt, and D. Rossi. 2016. A First Characterization of Anycast Traffic from
Passive Traces. In IFIP workshop on Traffic Monitoring and Analysis (TMA). ouvain
La Neuve, Belgium, 30-38. https://hal-imt.archives-ouvertes.fr/hal-01383092
Vasileios Giotsas, George Nomikos, Vasileios Kotronis, Pavlos Sermpezis,
Petros Gigis, Lefteris Manassakis, Christoph Dietzel, Stavros Konstantaras, and
Xenofontas Dimitropoulos. 2021. O Peer, Where Art Thou? Uncovering Remote

[19

[20

[21

[22

(23]

[24

[25

[26

[27

[28

[29

(30]

[31

(32

[33

[34

[35

[36

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

Peering Interconnections at IXPs. IEEE/ACM Transactions on Networking 29, 1
(2021), 1-16. https://doi.org/10.1109/TNET.2020.3025945

Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. 2002. King:
Estimating Latency between Arbitrary Internet End Hosts. In Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet Measurment (Marseille, France)
(IMW °02). Association for Computing Machinery, New York, NY, USA, 5-18.
https://doi.org/10.1145/637201.637203

Pierre Hanjoul and Dominique Peeters. 1987. A facility location problem with
clients’ preference orderings. Regional Science and Urban Economics 17, 3 (1987),
451-473. https://doi.org/10.1016/0166-0462(87)90011-1

Ethan Katz-Bassett, Colin Scott, David R. Choffnes, ftalo Cunha, Vytautas
Valancius, Nick Feamster, Harsha V. Madhyastha, Thomas Anderson, and Arvind
Krishnamurthy. 2012. LIFEGUARD: Practical Repair of Persistent Route Failures.
In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (Helsinki, Finland)
(SIGCOMM ’12). Association for Computing Machinery, New York, NY, USA,
395-406. https://doi.org/10.1145/2342356.2342435

Thomas Koch, Ke Li, Calvin Ardi, Ethan Katz-Bassett, Matt Calder, and John
Heidemann. 2021. Anycast in Context: A Tale of Two Systems. In Proceedings
of the 2021 Conference of the ACM Special Interest Group on Data Communication
(Virtual Event) (SIGCOMM °21). Association for Computing Machinery, New York,
NY, USA, 20. https://doi.org/10.1145/3452296.3472891

F Thomson Leighton, Ravi Sundaram, Matthew Levine, and Adrian Soviani. 2007.
Method for generating a network map. US Patent 7,251,688.

Matthew Lentz, Dave Levin, Jason Castonguay, Neil Spring, and Bobby Bhat-
tacharjee. 2013. D-Mystifying the D-Root Address Change. In Proceedings of
the 2013 Conference on Internet Measurement Conference (Barcelona, Spain)
(IMC ’13). Association for Computing Machinery, New York, NY, USA, 57-62.
https://doi.org/10.1145/2504730.2504772

Zhihao Li, Dave Levin, Neil Spring, and Bobby Bhattacharjee. 2018. Internet
Anycast: Performance, Problems, & Potential. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication (Budapest, Hungary)
(SIGCOMM °18). Association for Computing Machinery, New York, NY, USA,
59-73. https://doi.org/10.1145/3230543.3230547

Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, and Jianping Wu. 2013. Measuring
Query Latency of Top Level DNS Servers. In Passive and Active Measurement,
Matthew Roughan and Rocky Chang (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 145-154. https://link.springer.com/chapter/10.1007/978-3-642-
36516-4_15

Ziqian Liu, Bradley Huffaker, Marina Fomenkov, Nevil Brownlee, and ke claffy.
2007. Two Days in the Life of the DNS Anycast Root Servers. In Passive and
Active Network Measurement, Steve Uhlig, Konstantina Papagiannaki, and Olivier
Bonaventure (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 125-134.
https://link.springer.com/chapter/10.1007/978-3-540-71617-4_13

Chris Metz. 2002. IP anycast point-to-(any) point communication. IEEE Internet
Computing 6, 2 (2002), 94-98. https://doi.org/10.1109/4236.991450

Giovane C.M. Moura, Ricardo de O. Schmidt, John Heidemann, Wouter B. de
Vries, Moritz Muller, Lan Wei, and Cristian Hesselman. 2016. Anycast vs.
DDoS: Evaluating the November 2015 Root DNS Event. In Proceedings of the
2016 Internet Measurement Conference (Santa Monica, California, USA) (IMC
’16). Association for Computing Machinery, New York, NY, USA, 255-270.
https://doi.org/10.1145/2987443.2987446

NTT Labs. 2020. BGP implemented in the Go Programming Language.
https://github.com/osrg/gobgp.

Craig Partridge, Trevor Mendez, and Walter Milliken. 1993. Host Anycasting
Service. RFC 1546. RFC Editor. https://www.rfc-editor.org/rfc/rfc1546.txt

Jon Postel. 1981. Internet Control Message Protocol. RFC 777. RFC Editor. 1-14
pages. https://www.rfc-editor.org/rfc/rfc777 txt

Yakov Rekhter, Tony Li, and Susan Hares. 2006. A Border Gateway Protocol 4 (BGP-4).
RFC 4271. RFC Editor. 1-103 pages. https://www.rfc-editor.org/rfc/rfc4271.txt
Sandeep Sarat, Vasileios Pappas, and Andreas Terzis. 2005. On the Use of Anycast
in DNS. In Proceedings of the 2005 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems (Banff, Alberta, Canada)
(SIGMETRICS °05). Association for Computing Machinery, New York, NY, USA,
394-395. https://doi.org/10.1145/1064212.1064271

Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan, and
Ethan Katz-Bassett. 2019. Internet Performance from Facebook’s Edge. In
Proceedings of the Internet Measurement Conference (Amsterdam, Netherlands)
(IMC °19). Association for Computing Machinery, New York, NY, USA, 179-194.
https://doi.org/10.1145/3355369.3355567

Kyle Schomp, Onkar Bhardwaj, Eymen Kurdoglu, Mashooq Muhaimen, and
Ramesh K. Sitaraman. 2020. Akamai DNS: Providing Authoritative Answers
to the World’s Queries. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (Virtual Event, USA)
(SIGCOMM °20). Association for Computing Machinery, New York, NY, USA,
465-478. https://doi.org/10.1145/3387514.3405881

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

[37] Pavlos Sermpezis and Vasileios Kotronis. 2019. Inferring Catchment in Internet
Routing. Proc. ACM Meas. Anal. Comput. Syst. 3, 2, Article 30 (June 2019), 31 pages.
https://doi.org/10.1145/3341617.3326145

[38] RIPE NCC Staff. 2015. RIPE Atlas: A global internet measurement network.
Internet Protocol Journal 18, 3 (2015).

[39] Akamai Technologies. 2020. Prolexic Routed. —Retrieved Jan 28, 2021 from
https://www.akamai.com/us/en/multimedia/documents/product-brief/prolexic-
routed-product-brief.pdf

[40] Lan Wei and John Heidemann. 2017. Does anycast hang up on you?. In
2017 Network Traffic Measurement and Analysis Conference (TMA). 1-9.
https://doi.org/10.23919/TMA.2017.8002905

[41] Einav Yoav. 2019. Amazon found every 100ms of latency cost them 1% in sales.
Retrieved Jan 28, 2021 from https://www.gigaspaces.com/blog/amazon-found-
every-100ms-of-latency-cost-them-1-in-sales/

Appendix

Appendices are supporting material that has not been peer-reviewed.

A Using pairwise
measurements to predict client preference

AnyOpt relies on pairwise measurements to predict which site is
chosen by a client from among the set of sites that announce a given
prefix. We now theoretically explore the following questions. Un-
der what conditions are pairwise measurements guaranteed to be
consistent with a total ordering of the sites? That is, the outcomes
from the pairwise measurements are guaranteed to not to contain a
cycle. If a consistent total ordering exists, when is that total ordering
guaranteed to be predictive? That is, the total ordering accurately
predicts the site chosen by the client for every subset of possible sites
announcing the prefix. Finally, are there situations when pairwise
measurements are not consistent and/or not predictive?

Whether or not a set of pairwise measurements yield a predictive
total order depends on the policies executed by each router. When
a router receives multiple route announcements for a prefix in its
incoming links, it uses a selection policy to choose one of these an-
nouncements and further uses an export policyto decide the outgoing
links on which the selected announcement must be sent. We will
assume that the selection and export policies are compliant with the
BGP model of Gao-Rexford criterion[16]. Gao-Rexford states that
a router selects route announcements from a customer first, peer
next, and provider last. For its export policy, the model states that
aroute learned from a customer is sent to all outgoing links, a route
learned from a peer is sent to its customers, and a route learned from
a provider is sent to its customers.

A link is said to be empty if no announcement is transmitted over

that link. The following hold.

LEMMA 1. LetSandS’be two subsets of the incoming links of a router
RsuchthatS CS’. Let E(S) (resp. E(S’)) be the event that announcements
for the prefix are received by R in exactly the links in S (resp., S’). For
any Gao-Rexford compliant policy, the following statements hold.

(1) Ifanoutgoing linkl of R is non-empty in E(S), thenl is non-empty
in E(S’). This statement says that if a router R receives route
announcements from more incoming links, it cannot shrink the
set of outgoing links it exports to.

(2) If an announcement received via an incoming link i € S was not
sent over an outgoing link | in E(S), the announcement received
via i is also not sent over that link | in E(S’). This statement says
that any additional announcement received from a neighbor

Zhang, et al.

cannot increase a router R’s preference to an announcement
received from a link i.

ProoF. The first statement is true since if the link / has an an-
nouncement sent in event E(S), the same or a more preferred an-
nouncement will be sent in event E(S’). The second statement is true
since if the announcement from i € S is not sent in E(S), then it will
not be sent in event E(S’) when strictly more choices are presented
to the router. O

A.1 Local Preference Model

We now present a simple model called the local preference model
for inter-domain routing that obeys the Gao-Rexford criterion. The
selection policy of a router in this model uses a total preference
order of its incoming links to select the announcement in the most
preferred link for re-transmission. The total preference order must
be determined “locally” in that it is oblivious to the source or path
taken by the announcement prior to reaching the router. Note that
the Gao-Rexford criterion of choosing route announcements in the
preference order of customer, peer, and producer is consistent with
alocal preference model as long as ties (say, between two customers)
are broken using a source-oblivous metric (say, link id). BGP in
practice is not source-oblivous, and we extend this model in § A.2.

LEMMA 2. In the local preference model, let A and B be two anycast
sites. When A and B are compared pairwise, let A be the “winner” and
B be the “loser” When additional sites are turned on, B will continue

to be a “loser”,
-
-—
-
-—

/
L7

Figure 8: In the pairwise comparison of A and B, the winning
path from site A (in black) is compared to paths 7’ (in blue)
from B, but not to additional paths 7'’ (in red) from B, which
don’t reach pi.

Proor. Suppose S={A,B} are the only two sites that are turned
on. Figure 8 shows the winning path of A and the paths 7’ where
the announcements from B meet that winning path 7 and lose to
A. The figure also shows other “potential” paths 7’/ where an an-
nouncement from B could have met the winning path 7, but did not,
because B was not propagated beyond a certain router on that path.

Now, suppose we turn on more sites, i.e., we turn on all sites in
S’ such that S S’. We claim that B cannot win in event E(S’) when
all sites in S’ are turned on. Note that all links in the winning path
7 of A are non-empty in E(S), since (by definition) those links carry

AnyOpt: Predicting and Optimizing IP Anycast Performance

the announcement from A. Using the first statement of Lemma 1, we
conclude that that all links in 7 are non-empty in E(S”). Consider
a path 7’ of B that meets 7 at some router R. Since the announce-
ment in 7 won at router R over the announcement in 7/, the same
must happen in E(S’), since we assume that the selection policy at
R is oblivous to the actual source of the announcements on either
path. Thus, B cannot win using path ’. Likewise, using the second
statement of Lemma 1, B cannot be propagated on a potential path
in E(S’) since it was not propogated on that path in E(S). Thus, B
cannot win using a potential path 7/, Since B cannot win on a path
or a potential path in E(S”), we conclude that B cannot win in E(S”)
and is hence a loser.]

THEOREM A.1. In the local preference model, the following hold. (i)
Pairwise site comparisons are always consistent with a total ordering,
i.e., no cycles are formed. (ii) The total ordering predicts the winner for
any subset of sites.

Proor. First, we show the existence of a compatible total ordering
by showing that a cycle cannot exist. For contradiction, suppose a
cycle exists such that Ay <Ay <... < Ap and Ay < A;.Using the pair-
wise comparison A; < Az and invoking Lemma 2, we know that A
isaloser when all sites in S” ={A;,Aj,...,Ay } are turned on. Likewise,
we can show that A;,1 <i<k, are losers in E(S”). But this is not possi-
ble as there has to be a winner in E(S”). Hence there can be no cycle.

To show that the total ordering always predicts the winner for
any set of sites, consider any set S’ = (A1, Ay, ..., Ag) such that
A1<Az<...<Aj according to the total ordering. Note that we know
that A;<A;4+1 through pairwise comparisons, since all pairwise com-
parisons were performed. Using Lemma 1, we can show that when
S’ = (A1,As,...,Ay) are turned on, Ay,...,A; must be losers. So A;
must be the winner in E(S”), as one winner should exist. O

A.2 Shortest-Path Model

The local preference model of Section A.1 assumes a total preference
order among incoming links, but in practice some incoming links
may be equally preferred. Furthermore, the local preference model
does not capture the use of other information such as AS path length
to differentiate among paths. In an attempt to capture the impact of
AS path length in the route selection process, we define the shortest
path model. In this model, each router considers path length first
and then breaks ties based on neighbor id. The model is consistent
with Gao-Rexford policy routing when, e.g., all of the paths received
at anode fall into the same class (e.g., all are from providers), which
occurs if all sites peer only with tier-1 networks.

LEMMA 3. In the shortest path model, let A and B be two anycast
sites. When A and B are compared pairwise, let A be the “winner” and
B be the “loser”. When additional sites are turned on, B will continue
to be a “loser”.

Proor. The proofis similar to Lemma 2, but we make a slightly
different argument. First, we observe that Lemma 1 still holds, since
the shortest-path model is Gao-Rexford compliant. Statement 1 of
this lemma states that if a link is non-empty in event E(S), then
it is non-empty in event E(S’), when S C §’. In the shortest path
model, we can make an additional claim that the path length of the
announcement sent over the link in E(S’) is at most the path length

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

of the announcement sent over that link in E(S), because the routers
choose the announcement with the shortest path length.

Now, consider a pairwise comparison of sites S = {A,B} with a
winning path 7 from A that was compared to paths 7’ of B during
the pairwise comparison, and additional paths 7’” from B that were
not compared to 7 as shown in Figure 8. Suppose we now turn on
more sites " such that SCS’. Let R be a router where path 7 and a
path 7’ meet. B cannot win using a path n’ in event E(S’) since it
lost to A on path 7 in event E(S) and the announcement entering
Rin 7 in event E(S’) has path length smaller or equal to the path
length of the announcement on that link in E(S). Note that if both
paths have the same length, tie breaking according to router id will
continue to prefer . Thus, B cannot win using a path 7’. Likewise,
B cannot win using an additional path 7’/ since, by statement 2 of
Lemma 1, these paths cannot appear at 7 when more sites are turned
on. Thus, B cannot win in E(S”) and is hence a loser. O

THEOREM A.2. In the shortest path model, the following hold. (i)
Pairwise site comparisons are always consistent with a total ordering,
i.e., no cycles are formed. (ii) The total ordering predicts the winner for
any subset of sites.

Proor. The proofinvokes Lemma 3 and is identical to the proof
of Theorem A.1. O

B The Optimization Model

We formally introduce the SPLPO optimization model and show how
we can extend it to meet different practical constraints. Let S denote
the set of available anycast sites and s; denote a site in this set. We
denote the set of hosts as H and use h;. to denote a host in H. We
define a preference order operator for each host hy over the set of
anycast sites S. If in the pairwise experiment, the host hy prefers the
site s; to s, we denote it as s; >, s;, where >, is the preference
order operator. Let rtt(hy,s;) denote the round trip latency from a
host hy to a site s;. We use the boolean variable xy, s, to denote a
client’s catchment. When a client’s catchment site is s;, xp, 5, =1and
vice versa. Similarly, we use a boolean variable y; to denote whether
anetwork operator enables a site s; to announce an anycast prefix:
ys; =1 means site s; is enabled and vice versa.

We now can formulate the anycast performance optimization
problem as the following problem:

|H] |S|
minZZrtthk’si Xhys; (1)
k=1i=1
S|
thk,si =1k=12,..|H|)
i=1

0<Xp, s, SYspk=12,...|Hi=1,2,...,|S] 3)
Xpps; =00r Lhp=1,2,..,|H|, i=12,...,|S] 4)
Ys; =007 Li=12,...[S| ©)

Z Xhy,si, 2 Ys; (6)
Si>hySj

Equation (3) specifies that a host h cannot choose a site s; if it is
not enabled. Equation (6) ensures that a client chooses is its most
preferred site among all enabled sites. We can extend this model in

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA

several ways. For instance, we can weigh each host’s RTT with its
workload to minimize the workload-weighted average latency. We
can also add a load constraint at each site to balance the workloads
among multiple sites. That is, if Ls; denotes the maximum load a site
s; can absorb and I(h) represents the load from each host, we can
add the following contraint to the above formulation:

|H]|

D H(hye) - i <L, Y]
k=1

B.1 Reduction of Dominating Set to SPLPO

We now provide a reduction from the NP-hard problem Dominating
Set to SPLPO. The reduction implies not only that SPLPO is NP-hard,
but that even approximating the minimum cost for SPLPO is NP-hard.

THEOREM B.1. Given an instance of the Dominating Set problem
consisting of a graph G = (V,E) and an integer K, in linear time it is
possible to generate an instance of the SPLPO problem such that if there
exists a dominating set of size K for G, then there is a zero cost solution
to the SPLPO instance using K+1 sites, but if there is no dominating
set of size K, then the cost of any solution to the SPLPO instance using
K+1 sites is infinite.

ProorF. Given a graph G=(V,E), we create an instance of SPLPO
as follows. Make each vertex v a client as well as a site. Call the client

cy, and site sy, with the distance between ¢, and s, equal to zero.

Infinitely far away, create a single site s* with its own client ¢* at
distance zero. If vertex v has neighbors N (v), in SPLPO, ¢, prefers
Sy, then sy, for w € N(v) in some order, then s*, and then the rest
of the sites in some order. Client ¢* prefers s* first. If the minimum
dominating set has size K, then a zero cost solution to SPLPO must
use K +1 sites. Any solution with distance cost zero must open s* and
adominating set of G. This is because for ¢* to have distance cost zero,
s* must be opened. But once s* is opened, for each v, one of s, or s,,
for w € N (v) must be opened, for otherwise ¢, will map to s* and pay
infinite cost. Therefore, if we set the number of sites for SPLPO to K+
1, determining if the optimal cost is zero or infinity is exactly the same
problem as determining whether G hasadominating setof size K. O

Zhang, et al.

	Abstract
	1 Introduction
	2 Background
	2.1 Architecture of an Anycast Network
	2.2 Motivating Examples
	2.3 Anycast Configuration

	3 Overview
	3.1 Anycast Testbed
	3.2 Choosing Ping Targets
	3.3 Pairwise Preference Discovery
	3.4 Prediction and Optimization
	3.5 Practical Challenges

	4 Design
	4.1 Sufficient Conditions for Total Orders
	4.2 Practical BGP Implementation Issues
	4.3 Two-level Preference Discovery
	4.4 Incorporating Peers
	4.5 Putting it Together

	5 Performance Evaluation
	5.1 Pairwise Preference Discovery
	5.2 Catchment Prediction
	5.3 Performance Optimization
	5.4 Incorporating Peering Links

	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	9 ACKNOWLEDGMENTS
	References
	A Using pairwise measurements to predict client preference
	A.1 Local Preference Model
	A.2 Shortest-Path Model

	B The Optimization Model
	B.1 Reduction of Dominating Set to SPLPO

