

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. APPL. ALGEBRA GEOMETRY © 2021 Society for Industrial and Applied Mathematics
Vol. 5, No. 2, pp. 388–416

Computing Linear Extensions for Polynomial Posets Subject to Algebraic
Constraints\ast

Shane Kepley\dagger , Konstantin Mischaikow\dagger , and Lun Zhang\dagger

Abstract. In this paper we consider the classical problem of computing linear extensions of a given poset
which is well known to be a difficult problem. However, in our setting the elements of the poset are
multivariate polynomials, and only a small “admissible” subset of these linear extensions, determined
implicitly by the evaluation map, are of interest. This seemingly novel problem arises in the study
of global dynamics of gene regulatory networks in which case the poset is a Boolean lattice. We
provide an algorithm for solving this problem using linear programming for arbitrary partial orders
of linear polynomials. This algorithm exploits this additional algebraic structure inherited from
the polynomials to efficiently compute the admissible linear extensions. The biologically relevant
problem involves multilinear polynomials, and we provide a construction for embedding it into an
instance of the linear problem.

Key words. algebraic geometry, dynamical systems, linear programming, order theory

AMS subject classifications. 14Q30, 37N25, 03C10, 06A07, 06B99

DOI. 10.1137/20M1343208

1. Introduction. Consider a set of real polynomials \scrP , defined on a domain Ξ \subset \BbbR d,
equipped with a partial order \prec . We are interested in identifying linear extensions (total
orders compatible with \prec) that are satisfied by \scrP under evaluation at a point in Ξ. To
be more precise consider a semialgebraic set Ξ \subset \BbbR d, called the evaluation domain, and a
collection of polynomials \scrP := \{ p0, . . . , pK\} \subset \BbbR [x1, . . . , xd]. Let \prec denote a partial order on
\scrP such that if p \prec q, then

(1) p(\xi) < q(\xi) for all \xi \in Ξ.

Let SK+1 denote the set of permutations on K +1 symbols. We identify linear extensions
of \scrP with a subset of SK+1 as follows. Given \sigma \in SK+1, let \prec σ denote the linear order

pσ(0) \prec σ pσ(1) \prec σ \cdot \cdot \cdot \prec σ pσ(K).

We define the realizable set associated to \sigma by

(2) Ξσ :=
\bigl\{

\xi \in Ξ : pσ(k)(\xi) < pσ(k+1)(\xi) for all 0 \leq k \leq K - 1
\bigr\}

.

\ast Received by the editors June 5, 2020; accepted for publication (in revised form) March 16, 2021; published
electronically June 28, 2021.

https://doi.org/10.1137/20M1343208
Funding: The authors acknowledge support from NSF DMS-1521771, DMS-1622401, DMS-1839294, the NSF

HDR TRIPODS award CCF-1934924, DARPA contracts HR0011-16-2-0033 and FA8750-17-C- 0054, and NIH grant
R01 GM126555-01.

\dagger Department of Mathematics, Rutgers University, Piscataway, NJ 08854 USA (sk2011@math.rutgers.edu,
mischaik@math.rutgers.edu, lz210@math.rutgers.edu).

388

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 389

Observe that if Ξσ \not = \emptyset , then \prec σ is a linear extension of \prec . The algebraically constrained
linear extension problem (AC-LEP) defined by (\scrP ,\prec ,Ξ) is to determine

\scrT (\scrP ,\prec ,Ξ) := \{ \sigma \in SK+1 : Ξσ is nonempty\} .

Notice that in the formulation of the AC-LEP we have identified the partial order \prec σ with
the associated element in SK+1. We will use this identification throughout the remainder of
the paper. We say that each \sigma \in \scrT (\scrP ,\prec ,Ξ) is an admissible linear extension.

As is discussed in section 2 our immediate motivation for studying the AC-LEP comes
from modeling the dynamics of regulatory networks in biology and in particular characterizing
relevant subsets of the parameter space. For the moment we attempt to put this problem into
a broader mathematical context, as the problem itself, as well as our solutions for some special
cases, has elements of both classical real algebraic geometry and order theory.

Quantifier elimination and real algebraic geometry. Observe that if Ξ = \BbbR d and \scrP is
an arbitrary collection of polynomials, then \sigma \in SK+1 is admissible if and only if there exists
\xi \in \BbbR d such that pσ(k)(\xi) - pσ(k+1)(\xi) < 0 for all 0 \leq k \leq K. These inequalities define a
semialgebraic set. Therefore, if \prec is the trivial partial order (i.e., \scrP is a single antichain),
then this instance of AC-LEP is equivalent to the classical problem of decidability for real
semialgebraic sets.

The previous example illustrates a major challenge in solving the AC-LEP. The first
general algorithm for solving the quantifier elimination/decidability problem for polynomials
in \BbbR d with feasible running time was the cylindrical algebraic decomposition (CAD) given
by Collins [13] in 1975. The CAD algorithm works by subdividing Ξ into subsets on which
the polynomials are sign invariant. Given such a decomposition, decidability is reduced to
simply evaluating each polynomial at a sample point located in each subset and checking
if it satisfies the necessary inequalities. Unfortunately, the computational complexity of the
algorithm grows like

(3) \scrO
\Bigl(

(2D)2
d - 1 (K + 1)2

d - 122
d - 1 - 1

\Bigr)

where D = max \{ deg p : p \in \scrP \} .

This worst case running time is known to be sharp even for classes of “nice” polynomials,
e.g., linear [10], and moreover, the worst case is also typical [4]. As a result, the question of
whether or not \sigma \in \scrT (\scrP ,\prec ,Ξ), even for a single \sigma \in SK+1, is often intractable for problems
of practical interest.

In addition, the CAD algorithm does not provide partial information. It either runs to
completion, in which case it is guaranteed to provide an answer, or it provides no information.
Furthermore, we note that if additional algebraic constraints are added, e.g., we assume Ξ0 \subset
Ξ \subset \BbbR d is a strict semialgebraic subset, then the CAD algorithm can handle this by simply
appending the polynomial constraints which define Ξ0 to the set of polynomials. However,
this dramatically increases the complexity of the CAD algorithm, despite the fact that the
number of admissible linear extensions can only decrease.

Some improved algorithms have been proposed which aim to reduce the complexity of
specific aspects of the problem or for special classes of polynomials (e.g., [34, 8, 9]). These im-
provements often provide dramatic algorithmic speedups for checking whether \sigma \in \scrT (\scrP ,\prec ,Ξ)

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

390 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

for a single linear extension. However, these algorithms have the same worst case running time
as the general CAD algorithm, and understanding which classes of polynomials benefit is still
a very active area of research. Therefore, these improved algorithms alone are not sufficient
to handle instances of AC-LEP since we are interested in determining which of the (K + 1)!
possible semialgebraic sets are nonempty. An efficient algorithm that does not produce a
decomposition of Ξ into sign invariant subsets would still need to be called (K + 1)! times.
However, we will make use of these improved algorithms as a postprocessing step which we
discuss further in section 4.

Computing linear extensions of Boolean lattices. Let us momentarily ignore the alge-
braic structure in the AC-LEP by forgetting that \scrP is a collection of polynomials. Hence,
we focus only on the poset structure (\scrP ,\prec) and consider the problem of computing all linear
extensions. The related problem of counting all linear extensions of a partial order is a well
studied problem in order theory. Its importance is due in large part to its connection with
the complexity of sorting elements in a list. If one considers a list of (K + 1) distinct values
which have been partially sorted by making pairwise comparisons on a subset of its elements,
then these comparisons induce a partial order. Therefore, the linearly ordered values of the
fully sorted list are given by one of the possible linear extensions for the partial order. As a
result, the complexity of completely sorting a list is intimately connected to counting linear
extensions for posets.

Observe that computing the set of all linear extensions of (\scrP ,\prec) is not easier than counting
them which is known to be #P -complete [6]. In particular, a polynomial time algorithm for
computing all possible linear extensions for arbitrary posets would imply that P = NP by
Toda’s theorem [49]. Moreover, we are interested not only in counting linear extensions but
in explicitly computing them. Therefore, we are also concerned with how fast the number of
admissible linear extensions grows.

For reasons we discuss in section 4, we are specifically interested in the case that (\scrP ,\prec)
is a Boolean lattice. Specifically, for fixed n \in \BbbN , define Sn := \{ 1, . . . , n\} , and let 2Sn denote
its power set. The standard n-dimensional Boolean lattice is the poset, (2Sn ,\prec B), where \prec B

is the partial order defined by inclusion. We say a poset, (\scrP ,\prec), is an n-dimensional Boolean
lattice if (\scrP ,\prec) is order isomorphic to the standard n-dimensional Boolean lattice, and we
write \prec B in place of \prec .

Estimating the number of linear extensions for Boolean lattices was first considered in
[44] which established a nontrivial upper bound. Later, Brightwell and Tetali [7] proved the
following result that essentially settles the question for all practical considerations. If Q(n)
denotes the number of linear extensions of an n-dimensional Boolean lattice, then

(4)
logQ(n)

2n
= log

\biggl(

n

\lfloor n/2\rfloor

\biggr)

 -
3

2
log e+\scrO

\biggl(

lnn

n

\biggr)

.

The estimate in (4) illustrates a major challenge in solving the instances of AC-LEP of
interest in this paper. Consider an instance of AC-LEP given by (\scrP ,\prec B,Ξ) where (\scrP ,\prec B) is
an n-dimensional Boolean lattice and Ξ is any evaluation domain. Suppose we had a black
box for efficiently computing all linear extensions of a Boolean lattice denoted by L \subset SK+1.
Furthermore, assume we also had a “CAD”-like algorithm which could efficiently check if

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 391

Ξσ \not = \emptyset . Then, one would need to call this algorithm only #L-many times as opposed to
(K + 1)! as we argued above. However, the growth estimate in (4) implies that the number
of calls to this algorithm would still grow exponentially.

This work. In this work we present efficient algorithms for solving two specific instances
of the AC-LEP. The first is the linearly constrained linear extension problem (LC-LEP), in
which \scrP is a set of linear polynomials, Ξ is the interior of a polyhedral cone (i.e., Ξ is defined
by a finite number of linear inequalities), and \prec is an arbitrary partial order. We present
an efficient algorithm for solving the LC-LEP in section 3. The second instance of the AC-
LEP, which we call the parameter space decomposition (PSD) problem and describe now (see
Definition 4.6 for a precise definition), is motivated by an application from systems biology
described in section 2.

Definition 1.1. For n \in \BbbN , an interaction function of order n is a polynomial in n variables,
z = (z1, . . . , zn), of the form

(5) f(z) =

q
\prod

j=1

fj(z)

where each factor has the form

fj(z) =
\sum

i\in Ij

zi

and the indexing sets \{ Ij : 1 \leq j \leq q\} form a partition for \{ 1, . . . , n\} . We define the interac-
tion type of f to be n := (n1, . . . , nq) where nj denotes the number of elements in Ij.

Remark 1.2. We leave it to the reader to check that the order of the indexing sets Ij does
not matter for any of the analysis in this paper. Therefore, for convenience in reporting results
(see section 5) we will always assume that

n1 \geq n2 \geq \cdot \cdot \cdot \geq nq.

To define an instance of the PSD problem, fix an interaction function f of order n, and
let \scrP be the collection of polynomials in the 2n positive real variables, \{ \ell i, \delta i : 1 \leq i \leq n\} ,
obtained by evaluating f(z) with each zi \in \{ \ell i, \ell i + \delta i\} . Taking all possible combinations of
zi for 1 \leq i \leq n produces the polynomials for the PSD problem,

(6) \scrP = \{ p0, . . . , p2n - 1\} \subset \BbbR [\ell 1, . . . , \ell n, \delta 1, . . . , \delta n].

In section 4, we will define an indexing map between the 2n elements of \scrP and the standard
n-dimensional Boolean lattice. Let \prec B denote the Boolean lattice partial order with respect
to this index map, and set Ξ = (0,\infty)2n. The PSD problem is the instance of the AC-LEP
defined by (\scrP ,\prec B,Ξ). In section 4, we prove that (\scrP ,\prec B,Ξ) satisfies (1). However, we present
some examples before continuing.

Example 1.3. The simplest nonlinear PSD problem arises from the interaction function

f(z) = (z1 + z2)z3

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

392 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

which has interaction type, n = (2, 1). The PSD polynomials for this interaction function are
given by

p0 = (\ell 1 + \ell 2)\ell 3, p4 = (\ell 1 + \ell 2 + \delta 1)\ell 3,

p1 = (\ell 1 + \ell 2)(\ell 3 + \delta 3), p5 = (\ell 1 + \ell 2 + \delta 1)(\ell 3 + \delta 3),

p2 = (\ell 1 + \ell 2 + \delta 2)\ell 3, p6 = (\ell 1 + \ell 2 + \delta 1 + \delta 2)\ell 3,

p3 = (\ell 1 + \ell 2 + \delta 2)(\ell 3 + \delta 3), p7 = (\ell 1 + \ell 2 + \delta 1 + \delta 2)(\ell 3 + \delta 3).

The PSD evaluation domain is Ξ = (0,\infty)6, and the partial order, \prec B, is imposed on \scrP by
identifying pi with the vertex of a unit cube whose coordinates are (i)2 \in \BbbF 3

2 where (i)2 is
the binary expansion of i. The solution to this PSD problem is the set of admissible linear
extensions of (\scrP ,\prec B) such that \sigma \in \scrT

\bigl(

\scrP ,\prec B, (0,\infty)6
\bigr)

if and only if Ξσ \not = \emptyset . We note that
there are 8! = 40, 320 linear orders on \scrP . However, only 48 of these are linear extensions of
\prec B, and of these, only the following 20 linear extensions are admissible:

(0, 1, 2, 3, 4, 5, 6, 7)

(0, 1, 2, 3, 4, 6, 5, 7)

(0, 1, 2, 4, 3, 5, 6, 7)

(0, 1, 2, 4, 3, 6, 5, 7)

(0, 4, 2, 6, 1, 5, 3, 7)

(0, 1, 2, 4, 6, 3, 5, 7)

(0, 1, 4, 2, 5, 3, 6, 7)

(0, 1, 4, 2, 5, 6, 3, 7)

(0, 1, 4, 2, 6, 5, 3, 7)

(0, 4, 1, 5, 2, 6, 3, 7)

(0, 1, 4, 5, 2, 3, 6, 7)

(0, 1, 4, 5, 2, 6, 3, 7)

(0, 2, 1, 3, 4, 6, 5, 7)

(0, 2, 1, 4, 3, 6, 5, 7)

(0, 4, 2, 1, 6, 5, 3, 7)

(0, 2, 1, 4, 6, 3, 5, 7)

(0, 2, 4, 1, 6, 3, 5, 7)

(0, 2, 4, 6, 1, 3, 5, 7)

(0, 4, 1, 2, 5, 6, 3, 7)

(0, 4, 1, 2, 6, 5, 3, 7).

The 28 “missing” linear extensions are those which do not satisfy certain algebraic con-
straints which are imposed by the polynomial structure. For example, observe that for fixed
\xi \in (0,\infty)6, if p3(\xi) < p6(\xi), then p1(\xi) < p4(\xi) must also hold.

Unlike the partial order which constrains all possible linear extensions, this order relation
is conditional. Indeed, there exist choices of \xi such that p3(\xi) > p6(\xi) in which case there is
no requirement imposed on the order of p1(\xi), p4(\xi), and in fact, there are admissible linear
extensions which satisfy both choices, e.g., the first two orders in column four. As another
example, observe that p5(\xi) < p6(\xi) if and only if p1(\xi) < p2(\xi). This algebraic constraint is
bi-conditional. However, it too cannot be represented in the partial order since both choices
occur in at least one admissible order.

To emphasize the role of the interaction function in determining the algebraic constraints,
we consider a similar PSD problem that is also an instance of LC-LEP.

Example 1.4. Consider the interaction type, n = (3) with corresponding interaction func-
tion

f = z1 + z2 + z3.

As in Example 1.3, we obtain 8 PSD polynomials given explicitly by

p0 = \ell 1 + \ell 2 + \ell 3, p4 = \ell 1 + \ell 2 + \ell 3 + \delta 1,

p1 = \ell 1 + \ell 2 + \ell 3 + \delta 3, p5 = \ell 1 + \ell 2 + \ell 3 + \delta 1 + \delta 3,

p2 = \ell 1 + \ell 2 + \ell 3 + \delta 2, p6 = \ell 1 + \ell 2 + \ell 3 + \delta 1 + \delta 2,

p3 = \ell 1 + \ell 2 + \ell 3 + \delta 2 + \delta 3, p7 = \ell 1 + \ell 2 + \ell 3 + \delta 1 + \delta 2 + \delta 3.D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 393

The evaluation domain and partial order are identical to the PSD problem in Example 1.3.
Nevertheless, only the following 12 linear extensions are admissible:

(0, 1, 2, 3, 4, 5, 6, 7)

(0, 1, 2, 4, 3, 5, 6, 7)

(0, 1, 4, 2, 5, 3, 6, 7)

(0, 1, 4, 5, 2, 3, 6, 7)

(0, 2, 1, 3, 4, 6, 5, 7)

(0, 2, 1, 4, 3, 6, 5, 7)

(0, 2, 4, 1, 6, 3, 5, 7)

(0, 2, 4, 6, 1, 3, 5, 7)

(0, 4, 1, 2, 5, 6, 3, 7)

(0, 4, 1, 5, 2, 6, 3, 7)

(0, 4, 2, 1, 6, 5, 3, 7)

(0, 4, 2, 6, 1, 5, 3, 7).

Similarly, the missing 36 linear extensions in this example fail to satisfy some algebraic
constraints. In both cases, the set of admissible linear extensions is a fraction of the set of all
linear extensions of the Boolean lattice. In other words, the algebraic structure implies that the
admissible linear extensions are a sparse subset of all linear extensions. The algorithm in this
paper exploits the algebraic and order theoretic aspects of the PSD problem to overcome the
computational complexity limitations which plague both problems in general. Furthermore, we
prove that this algorithm finds all possible linear extensions. For both examples we obtained
the (12 and 20, respectively) admissible solutions without first computing the linear extensions
of (\scrP ,\prec B) and then checking which are admissible.

Related work. As is indicated above our original motivation for this paper arises from
problems in systems biology for which explicit complete solutions to the PSD problem are
required. As such the majority of this introduction has focused on the question of efficacy of
computation. However, there is another direction in which the work of this paper overlaps
with other efforts. In particular, observe that the case where the interaction function is linear,
i.e., has interaction type n = (n), solving the AC-LEP is equivalent to identifying all the
cells of a hyperplane arrangement. This latter problem has been the subject of considerable
study (see [46] for an introduction), and in particular, Maclagan [32] provides the number of
solutions for the linear PSD problem for n = 1, . . . , 7. Our computations (see Table 1) lead
to the same numbers, as expected.

After accounting for symmetry in the number of linear PSD solutions for interaction types
(1, 1, 1, 1), (1, 1, 1, 1, 1), and (1, 1, 1, 1, 1, 1), reported in column two of Table 1, we obtain

336

4!
= 14 =: a4,

61920

5!
= 516 =: a5,

89414640

6!
= 124, 187 =: a6

which align with sequence A009997 in the On-Line Encyclopedia of Integer Sequences [42].
From [22], we know this sequence represents the number of comparative probability orderings
on all subsets of n elements that can arise by assigning a probability distribution to the
individual elements. The equivalence of comparative probability orderings and solutions to
the linear PSD problem follows directly from the definition of comparative probability.

Organization of paper. The remainder of this paper is organized as follows. In section 2
we briefly describe how the PSD problem arises naturally in the study of global dynamics for
gene regulatory networks. In section 3, we present an efficient algorithm for solving instances
of the LC-LEP. In section 4, we show that the LC-LEP is related to the PSD problem in the
following way. If

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

is an instance of the PSD problem, then we construct an
associated instance of LC-LEP, denoted by (\scrP \prime ,\prec B,Ξ

\prime), which satisfies the inclusion

(7) \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

\subseteq \scrT
\bigl(

\scrP \prime ,\prec B,Ξ
\prime
\bigr)

.

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

394 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

We refer to this instance of LC-LEP as the linearized PSD problem associated to (\scrP ,\prec B,
(0,\infty)2n). We exploit this construction and the algorithm for solving the LC-LEP presented
in section 3 to provide a means of efficiently computing a collection of candidates that contains
the solution to the PSD problem. We prove that in some cases the inclusion in (7) is actually
an equality. More generally, this inclusion is strict, but the candidate set is a sparse subset
of the collection of all linear extensions of (\scrP ,\prec B). In this case we describe algorithms for
removing the nonadmissible solutions.

Finally, in section 5 we present the results for all PSD solutions with order up to 4.
Additionally, we have some results for PSDs of orders 5 and 6. For the remaining cases and
PSDs of higher order the computations become too large, i.e., we do not have immediate use
for them in applications, and they require significant computing resources.

2. Dynamic Signatures Generated by Regulatory Networks. This section provides a
brief description of how the AC-LEP arises in the context of mathematical modeling of prob-
lems from systems biology with a few comments at the end indicating its potential application
in more general settings of nonlinear dynamics. Biologists often describe regulatory networks
in terms of annotated directed graphs, such as that shown in Figure 1(a) where the labeling
of the edges, n \rightarrow m or n \dashv m, indicates whether node n activates or represses node m. Our
goal is to describe the type of dynamics that can be expressed by the regulatory network.
This requires two things: (i) a mathematical framework in which we can rigorously discuss
dynamics when an analytic expression of the nonlinearity is unknown, and more specifically,
(ii) imposing a mathematical interpretation on the regulatory network that is compatible with
its use as a biological model.

We discuss both of these topics in the following sections but hasten to add that there
are other complementary approaches to this problem. Perhaps the strongest dichotomy is
between Boolean models and ordinary differential equation (ODE) models (see [1] for a brief
overview and references). Recent efforts in the ODE direction seek to go from networks to

(a)

5 1 4

2

3

(b) xn

\ell m,n

\ell m,n + \delta m,n

\theta m,n

Figure 1. (a) Example of a regulatory network. (b) Model for edge n \rightarrow m where \ell m,n indicates low level
of growth rate of xm induced by xn and \ell m,n + \delta m,n indicates high level of growth rate of xm induced by xn.
\theta m,n provides information about the value of xn that lies between low values inducing low and high expression
levels.

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 395

explicit polynomial vector fields (see [26] and references therein). The approach we describe
lies somewhere between these two. Our approach is partially combinatorial, and thus we
obtain efficacy similar to that of the Boolean models, but we maintain continuous parameteri-
zation (hence the necessity of the results of this paper), and therefore our computations can be
interpreted in the context of ODEs. However, unlike methods based on explicit vector fields,
we derive the structure of the dynamics via order theory and algebraic topology. Understand-
ing the relative strengths and weaknesses of these various methods is still an active area of
research.

2.1. Mathematical framework. Classical nonlinear dynamics focuses on invariant sets
and bifurcations, both of which are extremely sensitive to parameters, e.g., nonlinearities.
Unfortunately, this is precisely the information that is unknown in multiscale systems such as
those associated with biology. C. Conley proposed that in these situations one should focus on
isolated invariant sets [14], as there is a sheaf structure associated to them [41], and thus they
are not subject to the above-mentioned sensitivity. Furthermore, he developed an algebraic
topological invariant for isolated invariant sets, called the Conley index, from which one can
recover considerable information about the existence and structure of the invariant set [40].
In particular, using the homology Conley index one can identify the existence of invariant sets
[14], equilibria [45, 35], periodic orbits [37], heteroclinic orbits [15], chaotic dynamics [39, 48],
and semiconjugacies onto nontrivial dynamics [38, 36].

One indication of the strength of Conley’s proposition is that it is possible to study a
differential equation (ordinary or partial) or a continuous map (finite or infinite dimensional)
numerically and with appropriate bounds on the errors, to draw rigorous conclusions about the
dynamics from homological Conley index computations [39, 18, 27, 19]. The weakness of the
above-mentioned results is that they are perturbative in nature, i.e., the results are computed
at given parameter values and the results are guaranteed to be true for a sufficiently small
neighborhood of that parameter value. In practice one can extract numerical bounds for the
size of the neighborhood, but they tend to be small.

For multiscaled systems such as those arising in systems and synthetic biology we need
to be able to investigate dynamics over large ranges of parameter values. This was done
in the context of low dimensional maps with a low dimensional parameter space [3, 12, 11].
The strategy is to subdivide parameter space uniformly, for each region of parameter space
compute dynamics with error bounds valid over the entire region, and once again interpret the
structure of the dynamics using the Conley index. While the approach is extremely effective
for low dimensional problems it is difficult to extend to higher dimensions for two reasons:

R1 the cost of computing effective numerical error bounds becomes prohibitive, and
R2 the subdivision of parameter space is not chosen according to the underlying dynamics

and refinement of the subdivision leads to exponential growth with dimension in the
number of subdivisions.

With R1 in mind W. Kalies, R. Vandervorst, and the third author have developed an
approach to dynamics that is based on combinatorics, order theory (posets and lattices), and
algebraic topology. The combinatorics arises from the choice of a decomposition of the phase
space into closed regular sets, and the dynamics is characterized by a relation on this collection
of closed regular sets. It is proven that Conley’s fundamental characterization of dynamics

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

396 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

in terms of attractor-repeller pairs or equivalently Morse decompositions can be completely
recovered via this combinatorial approach [28, 29, 30]. The algebra of the order theory, in
particular Birkhoff’s theorem relating finite posets with finite distributive lattices, provides
an algorithmic approach for the identification of index pairs from which the Conley index can
be computed [31]. This in turn allows one to obtain a chain complex that codifies gradient-
like structure of the dynamics and the Conley indices of all the associated isolated invariant
sets [25]. Observe that, at least conceptually, we have replaced the numerical computations
by combinatorial computations. In practice, at least for the biological regulatory networks
discussed below, this combinatorial approach is extremely efficient with respect to both time
and memory [17].

Dealing with R2 is the raison d’être for this paper. As is made clear below for the
regulatory networks of interest our closed regular sets take the form of cubes determined by
parameter values. The relation on these cubes that represents the dynamics is obtained by
determining the directions of inequalities. All possible sets of directions are in turn determined
by understanding the orders of the polynomials \scrP defined by (6). Thus, solving the AC-LEP
provides us with an a priori optimal potentially nonlinear decomposition of parameter space.

2.2. Mathematical interpretation of regulatory networks. We now turn to our mathe-
matical interpretation of a regulatory network that is compatible with its use as a biological
model. With this in mind, we assign to node m a state variable, xm > 0, that corresponds
to the quantity of a protein, mRNA, or a signaling molecule. Precise nonlinear expressions
for the interactions of the variables are not assumed to be known, but we do assume that the
sign of the rate of change of xm is determined by the expression

(8) - \gamma mxm + Λm(x),

where \gamma m indicates the decay rate and Λm is a parameter dependent function that characterizes
the rate of growth of xm. Note that Λm is a function of xn if and only if there exists an edge
from n to m in the regulatory network.

Since the biological model provides minimal information about the effect of xn on xm we
want to choose a mathematical expression with a minimal set of assumptions. The rates of
growth of xm due to xn are labeled as 0 < \ell m,n < \ell m,n + \delta m,n. Figure 1(b) corresponds to an
edge n \rightarrow m, and \theta m,n indicates that the rate of increase \ell m,n must occur at some lesser value
of xn and the rate of increase \ell m,n + \delta m,n must occur at some greater value of xn. An arrow
of the form n \dashv m leads to the opposite relation.

This introduces three positive parameters, \ell m,n, \delta m,n, and \theta m,n, for each edge in the
regulatory network. Note that this is the minimal number of parameters that allows one to
quantify the assumption that xn activates xm (or equivalently that xn represses xm). We
encode this information with the following functions:

\lambda +
m,n(xn) :=

\Biggl\{

\ell m,n if xn < \theta m,n,

\ell m,n + \delta m,n if xn > \theta m,n,
and \lambda -

m,n(xn) :=

\Biggl\{

\ell m,n + \delta m,n if xn < \theta m,n,

\ell m,n if xn > \theta m,n.

(9)

We do not assume that the values of \ell m,n, \delta m,n, or \theta m,n are known (see Figure 1(b)). This is
intentional as many of these parameters do not have an easy biological interpretation and/or

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 397

correspond to physical constants which are difficult or impossible to precisely measure. Thus,
the goal is not to determine the dynamics at any particular choice of parameters but to
determine the range and robustness of the qualitative dynamics exhibited by a network.

A regulatory network such as that of Figure 1(a) does not indicate how multiple inputs
to a particular node should be processed. An approach that is used is to assume a simple
algebraic relationship involving sums and products of the \lambda \pm . As an example, a reasonable
choice for x1 of Figure 1(a) is

(10) Λ1(x2, x3, x4) =
\bigl(

\lambda +(x2) + \lambda +(x3)
\bigr)

\lambda - (x4).

Observe that each \lambda \pm takes only two values, and therefore, generically (10) takes 8 distinct
values which are precisely the values of the elements of \scrP in the PSD of Example 1.3.

As is suggested in the caption of Figure 1(b), we do not interpret the values of \lambda \pm or
Λ as literal expressions of the nonlinear interactions, but rather, we regard the associated
parameter values as landmarks of whatever of the “true” nonlinear function is. This has
several consequences.

1. We cannot expect (8) to provide precise information about the growth rate of xm.
Therefore we restrict our attention to asking whether xm is increasing or decreasing.
However, we wish to answer this question over all the possible parameter values \gamma , \theta ,
\ell , and \delta .

2. The only values of xm at which the dynamics of xn change are of the form \theta m,\ast . The
associated hyperplanes xj = \theta k,j decompose the phase space, [0,\infty)N , where N is
the number of nodes in the network, into N -dimensional rectangular regions called
domains.

3. Since we have determined \scrT
\bigl(

\{ p0, . . . , p7\} ,\prec , (0,\infty)6
\bigr)

for (10) we can determine all
possible signs of (8) associated with (10) by cataloguing the relative values of \gamma 1\theta j,1,
j = 4, 5, with respect to \{ p0, . . . , p7\} .

The Dynamic Signatures Generated by Regulatory Networks (DSGRN) library contains
software that, given the information of the form provided by consequence 3, is capable of
efficiently building a database of the global dynamics of a regulatory network over all of
parameter space [17, 33]. In [17] the authors considered networks whose nodes have at most
three in-edges and at most three out-edges. This constraint was due to the difficulty in
solving the PSD problem, and the results of this paper provide a means to vastly expand the
capabilities of DSGRN [33]. In particular, DSGRN can now handle the algebraic combinations
of 4 to 6 in-edges, as is indicated in section 5, and arbitrarily many out-edges.

We remark that DSGRN is proving to be a versatile tool in the realm of systems and
synthetic biology with applications in the realm of regulatory networks relevant to oncology
[17, 24, 53], developmental biology [20], yeast cell cycle [16], and synthetic biology [23].

2.3. Extensions. The focus of this paper is on the PSD problem because of the immediate
need, arising from applications, to expand the capabilities of DSGRN to handle regulatory
networks with nodes that have more than three in- and out-edges. However, as should be
clear from section 2.1 the mathematical foundations for our approach is quite general. In
particular, the dynamics associated with functions described in section 2.2 or more generally
with the PSD problem (see Definition 4.6) represent a rather special subclass. Two immediate

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

398 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

generalizations that are being pursued in other work, but rely on application of the techniques
of this work, are as follows.

The first generalization is to replace the constant \gamma m in (8) by a function \gamma m(x). This allows
the DSGRN strategy to be applied in the systems biology setting to regulatory networks that
involve post-transcriptional regulation. The second generalization is to replace the functions
\lambda \pm
m,n given in (9) by a step function involving multiple steps without necessarily assuming

monotonicity. In this setting we no longer have the Boolean lattice as the minimal partial
order, but the essential arguments of this paper still apply.

3. Solving the LC-LEP. In this section, we provide an efficient algorithm to solve the
LC-LEP defined in section 1. Note that if q \in \BbbR [x1, . . . , xd] is a linear polynomial, then
evaluation of q defines a linear functional on \BbbR d. Thus, there exists a unique vector uq \in \BbbR d,
that we call the representation vector for q, satisfying

q(\xi) = uq \cdot \xi for all \xi \in \BbbR d.

Recall that the evaluation domain for the LC-LEP is the interior of a polyhedral cone. Thus,
there exists a collection of linear polynomials \scrQ Ξ such that

(11) Ξ =
\Bigl\{

\xi \in \BbbR d : \xi \cdot uq > 0 for all q \in \scrQ Ξ

\Bigr\}

.

We assume that (11) is satisfied for the remainder of this section.
To foreshadow our approach recall that by definition \sigma \in \scrT (\scrP ,\prec ,Ξ) if and only if Ξσ \not = \emptyset .

Our approach to determining the latter is to recast it in the language of linear algebra on
cones in \BbbR d. From this perspective, the problem is equivalent to rigorously solving a linear
programming problem, and the efficacy of our algorithm is based on the fact that this can be
done efficiently. With this goal in mind, we begin with a few remarks concerning cones and
ordered vector spaces.

3.1. Cones.

Definition 3.1. A subset C \subset \BbbR d is a cone if v \in C and \theta \in [0,\infty) implies that \theta v \in C.
The cone C is pointed if it is closed and convex and satisfies

(12) C \cap - C = C \cap \{ - v : v \in C\} = 0.

Observe that (12) implies that a pointed cone does not contain any lines. A vector v \in \BbbR d

is a conic combination of \{ v1, . . . , vk\} \subset \BbbR d if v = \theta 1v1 + \cdot \cdot \cdot + \theta kvk where \theta 1, . . . , \theta k \geq 0.
Suppose V = \{ v1, . . . , vk\} \subset \BbbR d. The conic hull of V is given by

cone(V) :=

\Biggl\{

k
\sum

i=1

\theta ivi : 0 \leq \theta i, i = 1, . . . , k

\Biggr\}

.

The following result is left to the reader to check.

Proposition 3.2. Given V = \{ v1, . . . , vk\} \subset \BbbR d, cone(V) is the smallest closed convex cone
that contains V .

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 399

We make use of the following propositions.

Proposition 3.3. Suppose V = \{ v0, . . . , vm\} \subset \BbbR d is a collection of nonzero vectors such
that cone(V) is a pointed cone. Then, there exists some v\prime \in \BbbR d such that v\prime \cdot vi > 0 for all
0 \leq i \leq m.

Proof. Observe that - vm /\in cone(\{ v0, . . . , vm - 1\}) \subset cone(V) since cone(V) is pointed.
Hence \{ - vm\} and cone(\{ v0, . . . , vm - 1\}) are disjoint, convex, closed subsets of \BbbR d.

Therefore, by the hyperplane separation theorem [5], there exists v\prime \in \BbbR d such that v\prime \cdot
 - vm < 0 and v\prime \cdot v > 0 for any v \in cone(\{ v0, . . . , vm - 1\}).

Proposition 3.4. Suppose V = \{ v0, . . . , vm\} \subset \BbbR d is a collection of nonzero vectors such
that cone(V) is a pointed cone. If - v /\in cone(V), then cone(V \cup \{ v\}) is pointed.

Proof. Suppose that cone(V \cup \{ v\}) is not pointed. Then, there exists w \not = 0 such that
w, - w \in cone(V \cup \{ v\}) or equivalently

w =

m
\sum

i=0

\alpha ivi + \alpha v and - w =

m
\sum

i=0

\beta ivi + \beta v

where \alpha i, \beta i, \alpha , \beta are all nonnegative. Note that if \alpha = \beta = 0, then \pm w \in cone(V), which
contradicts the assumption that V is pointed. The sum of the two equations above is

 - (\alpha + \beta)v =
m
\sum

i=0

(\alpha i + \beta i)vi.

This implies that - v \in cone(V), contradicting the assumption that cone(V) is pointed.

The previous propositions illustrate the importance of solving the cone inclusion problem:
given a vector v \in \BbbR d and finite set of vectors V \subset \BbbR d, determine whether or not v \in cone(V).
Algorithm 1, stated below, solves this problem. Observe that checking if v \in cone(V) is
equivalent to solving the following linear programming feasibility problem:

Does there exist \alpha

such that V\alpha = v(13)

and \alpha \geq 0?

where V is the column matrix of V .
Linear programming is a powerful tool that is widely used in convex optimization, and

as a result, there are many available solvers/algorithms for solving the linear programming
feasibility problem [50]. The results can be made rigorous by performing computations using
interval arithmetic [47] or rational linear programming [2] in the case that V is rational.
Observe that the PSD problem defined in section 1 satisfies this constraint. As is made
clear in section 5, we use different solvers depending on the machine employed to do the
computations. In any case, we take for granted the existence of a rigorous solver for the
feasibility problem in (13) as a “black box” which we call LPSolver which is employed in the
following algorithm.D

o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

400 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

Algorithm 1: Cone inclusion

Input: v, V = \{ v1, . . . , vm\} , LPSolver
Output: True,False
Result: Return True if v \in cone(V) otherwise False

1 Function InCone(v, V, LPSolver):
2 Return LPSolver(v, V)

3 End Function

The next algorithm uses Proposition 3.4 (see line 4) and Algorithm 1 to determine if a set
of vectors defines a pointed cone.

Algorithm 2: Cone pointedness

Input: V = \{ v1, . . . , vm\}
Output: True,False
Result: Return True if cone(V) is pointed otherwise False

1 Function CheckCone(V):
2 V \prime = \{ v1\}
3 for i = 2 ... m do
4 if InCone(- vi, V

\prime) then
5 Return False
6 else
7 V \prime = V \prime \cup \{ vi\}
8 end

9 end
10 Return True

11 End Function

We now show that the LC-LEP can be reformulated as a problem of identifying whether
some specific subsets of vectors generate pointed cones.

Definition 3.5. Given an instance of the LC-LEP, (\scrP ,\prec ,Ξ), we define the base cone as
cone(V0) := cone(VΞ \cup V\prec) where VΞ and V\prec are defined as follows. Set

VΞ := \{ uq : q \in \scrQ Ξ\} ,

where \scrQ Ξ are the representation vectors as defined in (11). Applying Algorithm 2 to VΞ (and
the fact that we assume Ξ \not = \emptyset) shows that cone(VΞ) is pointed. Define

V\prec := \{ u : u is the representing vector of p - q where q \prec p and p, q \in \scrP \} .

Observe that if (\scrP ,\prec) satisfies (1), then the representation vector for p - q is an element of
V\prec by definition. Therefore, by Proposition 3.3, V\prec is pointed.

The motivation behind our definition of V0 is that it characterizes the algebraic constraints
in the LC-LEP in terms of linear algebra that can be efficiently checked. The next proposition
shows that the same idea works for linear extensions.

Given \sigma \in SK+1, we define

(14) Vσ := V0 \cup
\Bigl\{

upσ(i+1)
 - upσ(i)

: pσ(i) \in \scrP , i = 0, . . . ,K - 1
\Bigr\}

.D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 401

Proposition 3.6. For any \sigma \in SK+1, Ξσ \not = \emptyset if and only if cone(Vσ) is a pointed cone.

This proposition is a trivial application of a well known result in convex optimization. If
Ξ denotes the closure of Ξ, then Ξ is a convex cone. Its dual cone is defined to be the set

\Bigl\{

y \in \BbbR d : y \cdot \xi \geq 0 for all \xi \in Ξ
\Bigr\}

,

and we observe that this set is nothing more than cone(VΞ). Similarly, for each \sigma \in SK+1,
Ξσ is again a convex cone, as it is simply a restriction of Ξ obtained by imposing finitely
many additional linear constraints, and cone(Vσ) is its associated dual cone. Consequently,
Proposition 3.6 follows from the fact that a convex cone is pointed if and only if its dual cone
is nonempty. A proof of this result can be found in [21]. We emphasize that the importance
of Proposition 3.6 is the implied equivalence

\scrT (\scrP ,\prec ,Ξ) = \{ \sigma : Ξσ \not = \emptyset \} = \{ \sigma : cone(Vσ) is pointed\} .

3.2. An algorithm for identifying \bfscrT (\bfscrP ,\prec ,Ξ). In this section we present an algorithm
for solving an arbitrary instance of the LC-LEP.

Algorithm 3: LC-LEP solver

Input: \sigma part = [],\scrP , V = V0, Ret = \{ \}
Output: \scrT (\scrP ,\prec ,Ξ)
Result: Ret: collection of all linearly realizable total order under restriction of V

1 Function OrderingGenerator(\sigma part,\scrP , V, Ret):
2 if \sigma part == [] and CheckCone(V) is not True then
3 Return
4 end
5 l + 1 = length of \sigma part
6 if l == K then
7 add \sigma part to Ret

8 Return

9 end
10 for i = 0 .. K do
11 if i \not \in \sigma part then
12 u\prime = upi - upσpart(l)

13 if not InCone(- u\prime , V) then
14 OrderingGenerator(\sigma part + [i],\scrP , V \cup \{ v\prime \} , Ret)
15 end

16 end

17 end

18 End Function

In the Algorithm 3, for convenience, we take upσpart(- 1)
= 0. To prove the correctness

of the algorithm it is useful to denote the return of Algorithm 3 given input (\scrP ,\prec ,Ξ) as
\scrT alg(\scrP ,\prec ,Ξ).

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

402 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

Definition 3.7. For fixed (\scrP ,\prec ,Ξ), \sigma \in SK+1 and for k = 1, . . . ,K, define

Vσ,k = \{ upσ(i)
 - upσ(i - 1)

\} i=1,...,k \cup V0,

where V0 is the base cone for (\scrP ,\prec ,Ξ) as in Definition 3.5, and upσ(j)
, j = 0, . . . ,K, is the

representation vector of pj \in \scrP . For convenience, we define Vσ,0 = V0, and we observe that
Vσ,K = Vσ from (14).

Theorem 3.8. Algorithm 3 solves the LC-LEP.

Proof. Given (\scrP ,\prec ,Ξ), we need to show that \scrT (\scrP ,\prec ,Ξ) = \scrT alg(\scrP ,\prec ,Ξ). We may assume
that cone(V0) is pointed since if not, then both \scrT alg(\scrP ,\prec ,Ξ) and \scrT (\scrP ,\prec ,Ξ) are empty.

We first show that \scrT alg(\scrP ,\prec ,Ξ) \subset \scrT (\scrP ,\prec ,Ξ), i.e., for any \sigma \in \scrT alg(\scrP ,\prec ,Ξ) we show
that the set Ξσ \not = \emptyset . As indicated above we assume cone(V0) = cone(Vσ,0) is pointed. For
Algorithm 3, lines 2–4 returns the empty set if cone(V0) is not pointed. Otherwise, it passes
to lines 5–9 which check if \sigma part is a total order over \{ 0, . . . ,K\} . If so, it is added to the
return variable, Ret. If \sigma part is not a total order, then lines 10–17 extend it to a total order
by recursively constructing Vσ,i from Vσ,i - 1 for 1 \leq i \leq K.

Therefore, it suffices to show that Vσ,k are all pointed for k = 1, . . . ,K.
Fix k \in \{ 1, . . . ,K\} . In lines 11–12, we find a candidate i \in \{ 0, . . . ,K\} which is not in the

image of \sigma part, and we define Vσ,k+1 = Vσ,k\cup \{ u\prime \} where u\prime = upi - upσ(k)
. In line 13, we verify

that - u\prime /\in V = Vσ,k - 1, and it follows from Proposition 3.4 that cone(Vσ,k) is pointed. For
each \sigma appended to Ret, we have that cone(Vσ,k) is pointed for k = 0, . . . ,K. In particular,
cone(Vσ,K) = cone(Vσ) is pointed, and from Proposition 3.6, we have Ξσ \not = \emptyset .

We now prove that \scrT (\scrP ,\prec ,Ξ) \subset \scrT alg(\scrP ,\prec ,Ξ). Assume that \sigma \in \scrT (\scrP ,\prec ,Ξ). By definition
this means that Ξσ \not = \emptyset , and from Proposition 3.6, Vσ is pointed. For each k = 1, . . . ,K, we
have Vσ,k \subset Vσ, and thus Vσ,k is pointed. As Vσ,k is pointed, we know - (upσ(k)

 - upσ(k - 1)
) /\in

Vσ,k - 1 for k = 1, . . . ,K. Therefore, line 13 in Algorithm 3 will not fail to extend \sigma at each
step in the recursion, and after K recursive extensions, \sigma will be appended to Ret, and thus,
\sigma \in \scrT alg(\scrP ,\prec ,Ξ).

3.3. Complexity analysis. As discussed in section 1, computing linear extensions of a
poset is at least as hard as counting them, which has been established to be a difficult prob-
lem. While the algebraic constraints induced by the evaluation domain reduce the number of
admissible linear extensions, it is not clear whether or not the constrained problem is easier
(i.e., whether or not the LC-LEP is also #P -complete). The answer may depend on the par-
tial order, the evaluation domain, or both. In any case, this appears to be a difficult and open
problem which is outside the scope of this work. Consequently, we do not attempt to provide
any rigorous asymptotic estimates of Algorithm 3.

However, for the instances of LC-LEP solved in this work, our algorithm is dramatically
more efficient than a brute force algorithm as evidenced by the results in section 5. By brute
force we mean an algorithm which checks every linear order on \scrP to determine whether or
not it is admissible. Thus we conjecture that Algorithm 3 is more efficient in the typical case
which explains our results.

A heuristic, but not rigorous, justification is as follows. We start by assuming a fixed
implementation for the InCone function in Algorithm 1. This is the core algorithm in the

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 403

sense that it dominates the computational cost of Algorithm 3. Let (\scrP ,\prec ,Ξ) be a given
instance of the LC-LEP where \scrP = \{ p0, . . . , pK\} \subset \BbbR [x1, . . . , xd], and let \scrT (\scrP ,\prec ,Ξ) \subseteq SK+1

denote the solution of the LC-LEP.
We consider the number of InCone function calls required to solve this instance (i.e., we

suppose that each call to InCone has unit computational cost). It is trivial to count the number
of calls to InCone necessary for a brute force search. By Proposition 3.6, Ξσ is nonempty for
any \sigma \in SK+1 if and only cone(Vσ) is pointed which is determined by a single InCone call.
Therefore, a brute force search recovers \scrT (\scrP ,\prec ,Ξ) in exactly (K + 1)! calls to InCone.

To contrast this with Algorithm 3, consider a fixed \sigma \in SK+1 which is not admissible.
Hence, there exists a least index, i \in \{ 0, . . . ,K\} , such that

\sigma \prime
\bigm|

\bigm|

\{ 0,...,i - 1\}
= \sigma
\bigm|

\bigm|

\{ 0,...,i - 1\}
for at least one \sigma \prime \in \scrT (\scrP ,\prec ,Ξ)

and
\sigma \prime
\bigm|

\bigm|

\{ 0,...,i\}
\not = \sigma
\bigm|

\bigm|

\{ 0,...,i\}
for any \sigma \prime \in \scrT (\scrP ,\prec ,Ξ).

Consequently, in the ith recursive call, line 13 of Algorithm 3 returns False, and \sigma is “pruned”
(i.e., removed from consideration as a candidate solution). In other words, \sigma has already been
ruled incompatible with the algebraic constraints imposed by \prec and Ξ using only its partial
image obtained by restriction to the subset \{ 0, . . . , i\} . The key observation is that this applies
to every such incompatible linear extension. In other words, every \sigma \prime \in SK+1 satisfying

\sigma \prime
\bigm|

\bigm|

\{ 0,...,i\}
= \sigma
\bigm|

\bigm|

\{ 0,...,i\}

is also pruned in this step. Evidently, there are (K - i)! such extensions which are simulta-
neously removed which results in saving (K - i)! calls to InCone compared to the brute force
search.

Pruning incompatible partial images early leads to an exponential reduction in the number
of InCone calls which explains the results shown in Table 1. However, a more rigorous analysis
for the complexity of Algorithm 3 amounts to estimating how early a given incompatible partial
image is pruned. It is likely that this is heavily dependent on either \prec or Ξ, or both, and may
also depend on the order in which the partial images are extended.

4. Solving the general PSD problem. In this section we present a solution for the PSD
problem described in section 1. The solution is based on the observation that the PSD problem
naturally has a Boolean lattice structure. Therefore, the linear PSD problem is an instance of
the LC-LEP and reduces to a simple application of the algorithms presented in section 3. For
nonlinear PSD problems, we construct a map that “embeds” it into an instance of LC-LEP
(of higher dimension) in the sense that the inclusion in (7) holds for the Boolean partial order.
We prove a sufficient condition for which this inclusion is equality and describe a method for
disqualifying spurious solutions when it is strict.

4.1. The PSD as an instance of AC-LEP. Throughout this section
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

denotes a PSD problem for a fixed interaction function f of order type n \in \BbbN q as defined in (6)
where \prec B is the Boolean lattice partial order. Our first goal is to show that

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

satisfies (1) and, in particular, that every \sigma \in \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

is a linear extension of a
Boolean lattice. We start by defining appropriate indices for the elements of \scrP .

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

404 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

Definition 4.1. Suppose n \in \BbbN q is the interaction type for f \in \BbbR [z1, . . . , zn]. As in
Definition 1.1 let \{ I1, . . . , Iq\} denote the indexing sets for each summand of f which form
an integer partition of I := \{ 1, . . . , n\} . For each 1 \leq j \leq q, we consider Ij as an or-
dered set, and for 1 \leq k \leq nj, we let Ij(k) denote the kth largest element of Ij. Let
E := \{ \alpha : \{ 1, . . . , n\} \rightarrow \{ 0, 1\} \} be the set of all Boolean functions defined on I. The Bool-
ean indexing map, denoted by B : E \rightarrow

\bigl\{

0, . . . , 2n - 1
\bigr\}

, is defined by the formula

B(\alpha) :=

q
\sum

j=1

nj
\sum

k=1

\alpha (Ij(k))2
n - Ij(k).

In other words, E and B are defined so that for each d \in I, \alpha (d) is the dth binary digit of
B(\alpha) in little-endian order.

We will also consider \alpha \in E as a vector of Boolean functions defined as follows. Let Ej

denote the set of Boolean functions defined on Ij . Then, elements of E can be represented as
vectors of the form

\alpha = (\alpha 1, . . . , \alpha q) where \alpha j := \alpha
\bigm|

\bigm|

\bigm|

Ij
\in Ej for 1 \leq j \leq q.

Note that under this identification, E has the equivalent representation as E = E1\times \cdot \cdot \cdot \times Eq.

Definition 4.2. Suppose n \in \BbbN q is the interaction type for an interaction function, f \in
\BbbR [z1, . . . , zn] as in Definition 1.1, and E denotes the corresponding Boolean indices. For
\alpha \in E, define pα \in \scrP \subset \BbbR [\ell 1, . . . , \ell n, \delta 1, . . . , \delta n] by the formula

(15) pα :=

q
\prod

j=1

\left(

\sum

k\in Ij

\ell k + \alpha (k)\delta k

\right)

 .

When convenient, we use a linear indexing scheme for elements of \scrP which we define via
the Boolean indexing map by identifying pi := pα where \alpha = B - 1(i). To avoid confusion,
we exclusively use Greek subscripts when referring to elements of \scrP by their Boolean indices
and Latin subscripts when referring to elements of \scrP by their linear indices. We leave it
to the reader to check that the linearly indexed polynomials in Examples 1.3 and 1.4 are in
agreement with that of Definition 4.2 via this identification.

Definition 4.3. Let \alpha , \beta \in E be a pair of Boolean indices corresponding to n \in \BbbN q. An
ordered pair (\alpha , \beta) satisfies the one bit condition if \alpha (Ij(k)) \leq \beta (Ij(k)), for all 1 \leq j \leq q and
0 \leq k \leq nj - 1, with equality for all but exactly one (j, k) pair.

Remark 4.4. Observe that if (\alpha , \beta) satisfy the one bit condition and (j0, k0) is the unique
pair for which \alpha and \beta take different values, then \alpha (Ij0(k)) = 0 and \beta (Ij0(k)) = 1.

Remark 4.5. The one bit condition induces a poset structure on E by setting \alpha \prec \beta for
each (\alpha , \beta) satisfying the one bit condition and extending the relation transitively. The one
bit condition is a covering relation for the partial order.

Definition 4.6. Suppose n \in \BbbN q is the interaction type for an interaction function, f \in
\BbbR [z1, . . . , zn] as in Definition 1.1, and E denotes the corresponding Boolean indices. Let \scrP be

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 405

the set of polynomials indexed as in Definition 4.2. The PSD problem is defined by the triple,
(\scrP ,\prec , (0,\infty)2n), where \prec is given by Remark 4.5.

The next proposition proves that (\scrP ,\prec , (0,\infty)2n) satisfies (1) and furthermore that (\scrP ,\prec)
is a Boolean partial order which justifies expressing the PSD problem as

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

.

Proposition 4.7. Consider a PSD problem (\scrP ,\prec , (0,\infty)2n). Then,
1. (\scrP ,\prec) is a Boolean lattice;
2. for any \alpha , \beta \in E, if \alpha \prec \beta , then

pα(\xi) < pβ(\xi) for all \xi \in (0,\infty)2n.

Proof. To prove the first claim, let Sn = \{ 1, . . . , n\} , and let (2Sn ,\prec B) denote the standard
Boolean lattice. Define a map, \varphi : E \rightarrow 2Sn , by the formula

\varphi (\alpha) = \{ j \in Sn : \alpha (j) = 1\} ,

and we note that \varphi is a bijection since E is defined to be the collection of all Boolean maps
defined on Sn. Furthermore, for any \alpha , \beta \in E, we have by Definition 4.3 that \alpha \prec \beta if and
only if

\{ j \in Sn : \alpha (j) = 1\} \subset \{ j \in Sn : \beta (j) = 1\}

implying that \varphi is an order isomorphism.
To establish the second claim, we must show that if \alpha \prec \beta , then pα(\xi) < pβ(\xi) holds for

all \xi \in (0,\infty)2n. Note that by transitivity, it suffices to prove this holds for (\alpha , \beta) satisfying
the one bit condition. In this case we have

\beta (Ij(k)) - \alpha (Ij(k)) =

\Biggl\{

1 if j = j0 and k = k0,

0 otherwise

for some j0 \in \{ 1, . . . , q\} , k0 \in \{ 0, . . . , nj0 - 1\} . If \xi = (\ell 1, . . . , \ell n, \delta 1, . . . , \delta n) \in Ξ, then from (15)
we have

pβ(\xi) =

\left(

\left(

\sum

k\in Ij0

\ell k + \alpha (Ij(k))\delta k

\right)

 + \delta k0

\right)

\prod

j \not =j0

\sum

k\in Ij

\ell k + \alpha (Ij(k))\delta k

= pα(\xi) + \delta k0
\prod

j \not =j0

\sum

k\in Ij

\ell k + \alpha (Ij(k))\delta k

> pα(\xi)

as required.

With Proposition 4.7 in mind, we return to writing \prec B in place of \prec for the PSD problem
where \prec B is the partial order of a Boolean lattice inherited by \scrP from the one bit condition.

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

406 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

4.2. The linear PSD problem. We consider two cases of the PSD problem: the interaction
type n \in \BbbN q for the function f \in \BbbR [z1, . . . , zn] has the form n = (n) or n = (1, 1, . . . , 1). In
the first case, f is linear (see Example 1.4) and the PSD problem is an instance of LC-LEP.
In the second case, log f is linear, so after a simple change of variables, we obtain an instance
of LC-LEP with equivalent solutions since log is monotone and hence order preserving. We
focus on the first case, leaving it to the reader to check that the second case is same modulo
the evaluation domain (\BbbR 2n versus (0,\infty)2n). Following the algorithm described in section 3,
we encode the partial order defined by \prec B as a set of linear constraints defined by a base cone
which we must show is pointed. We begin by denoting the set of representation vectors for \scrP
as

\scrV :=
\Bigl\{

upα \in \{ 0, 1\} 2n : upα is the representation vector of pα, \alpha \in E
\Bigr\}

.

We define the set

(16) V\prec B
:=
\bigl\{

upβ - upα : upα ,upβ \in \scrV , (\alpha , \beta) satisfies the one bit condition
\bigr\}

,

which encodes the \prec B partial order into the representation vectors. These vectors will be the
generators of the base cone for the algorithm in section 3. Thus, we must show that cone(V\prec B

)
generates a pointed cone.

Lemma 4.8. Let C0 := cone(V\prec B
) denote the cone generated by V\prec B

; then C0 is pointed.

Proof. By Proposition 3.2, C0 is closed and convex, so it suffices to prove that if v \in C0

and - v \in C0, then v = 0. Fix \xi \in (0,\infty)2n, and suppose (\alpha , \beta) satisfies the one bit condition.
By the formula in (15) it follows that

pβ - pα = \delta i

for some i \in \{ 1, . . . , n\} . Since \delta i = \xi n+i > 0 for all \xi \in Ξ, it follows that

pβ(\xi) - pα(\xi) > 0

for every (\alpha , \beta) satisfying the one bit condition. Passing to the representation vectors, it
follows that for every v \in V\prec B

, we have v \cdot \xi > 0. Taking the conic hull, we have that if
v \in C0 \setminus \{ 0\} , then v \cdot \xi > 0. It follows that if v, - v \in C0 simultaneously, then v \cdot \xi \geq 0 and
 - v \cdot \xi \geq 0 implying v = 0.

4.3. The general PSD problem. Given a general PSD problem
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

we
present the construction of an LC-LEP denoted by (\scrP \prime ,\prec B,\BbbR

m) with the property that
\scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

\subseteq \scrT (\scrP \prime ,\prec B,\BbbR
m). The importance of this is that (\scrP \prime ,\prec B,\BbbR

m) can be
solved using Algorithm 3, and hence we obtain a rigorous upper bound on \scrT

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

.

Definition 4.9. Given an interaction type n \in \BbbN q, let E = E1 \times \cdot \cdot \cdot \times Eq denote the corre-
sponding Boolean indices. Set m :=

\sum q
j=1 2

nj , and define the linearized evaluation domain to
be

(17) \BbbR 2n1 \times \cdot \cdot \cdot \times \BbbR 2nq \sim = \BbbR m.

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 407

Define a polynomial ring in m indeterminates with Boolean indexing by

(18) \scrR := \BbbR
\bigl[\bigl\{

xj,αj
: \alpha j \in Ej , 1 \leq j \leq q

\bigr\} \bigr]

,

and define a collection of linear polynomials by

\scrP \prime :=
\bigl\{

p\prime α : \alpha \in E
\bigr\}

\subset \scrR where p\prime α :=

q
\sum

j=1

xj,αj
.

The linearized PSD problem determined by n is to compute \scrT (\scrP \prime ,\prec B,\BbbR
m).

Theorem 4.10. Fix an interaction type, n \in \BbbN q, and let \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

and \scrT (\scrP \prime ,
\prec B,\BbbR

m) denote the corresponding PSD and linearized PSD problems, respectively. The fol-
lowing are true.

1. Let \alpha , \beta \in E and \xi \in (0,\infty)2n. If pα(\xi) < pβ(\xi) and

\xi \prime j,αj
= log

\left(

\sum

k\in Ij

\xi k + \alpha j(k)\xi n+k

\right)

 \in \BbbR m,

then p\prime α(\xi
\prime) < p\prime β(\xi

\prime).

2. \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

\subseteq \scrT (\scrP \prime ,\prec B,\BbbR
m).

Proof. To prove the first claim, we define a map, T : (0,\infty)2n \rightarrow \BbbR m, by \xi \mapsto \rightarrow \xi \prime := T (\xi)
where the coordinates of \xi \prime are given by the formula

(19) \xi \prime j,αj
= log

\left(

\sum

k\in Ij

\xi k + \alpha j(k)\xi n+k

\right)

 .

Observe that T is defined to satisfy the functional equation

(20) log \circ pα(\xi) = p\prime α \circ T (\xi) for all \alpha \in E, \xi \in (0,\infty)2n.

Therefore, if \alpha , \beta \in E and \xi \in (0,\infty)2n satisfies pα(\xi) < pβ(\xi), then log (pα(\xi)) < log (pβ(\xi)),
and it follows from (20) that p\prime α(\xi

\prime) < p\prime β(\xi
\prime) where \xi \prime = T (\xi) as required.

To prove the second claim, consider \scrP and \scrP \prime equipped with the linear indices as in
Definition 4.2, and suppose \sigma \in \scrT

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

. Then, by definition there exists \xi \in
(0,\infty)2n satisfying

pσ(0)(\xi) < pσ(1)(\xi) < \cdot \cdot \cdot < pσ(2n - 1)(\xi).

Let \xi \prime = T (\xi), and apply the first result to successive pairs in the ordering which implies that
for all 0 \leq k \leq 2n - 2, we have

p\prime σ(k)(\xi
\prime) = log

\bigl(

pσ(k)(\xi)
\bigr)

< log
\bigl(

pσ(k+1)(\xi)
\bigr)

= p\prime σ(k+1)(\xi
\prime).

Thus, we \xi \prime \in \BbbR m satisfies

p\prime σ(0)(\xi
\prime) < p\prime σ(1)(\xi

\prime) < \cdot \cdot \cdot < p\prime σ(2n - 1)(\xi
\prime),

and it follows that \sigma \in \scrT (\scrP \prime ,\prec B,\BbbR
m) which completes the proof.

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

408 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

Example 4.11. Recall the PSD in Example 1.3 with interaction function f(z) = (z1+z2)z3
corresponding to interaction type n = (2, 1). The corresponding polynomials for the linearized
PSD problem are the following polynomials in m = 6 variables:

p\prime 0 = x1,(0,0) + x2,0, p\prime 4 = x1,(0,1) + x2,0,

p\prime 1 = x1,(0,0) + x2,1, p\prime 5 = x1,(0,1) + x2,1,

p\prime 2 = x1,(1,0) + x2,0, p\prime 6 = x1,(1,1) + x2,0,

p\prime 3 = x1,(1,0) + x2,1, p\prime 7 = x1,(1,1) + x2,1,

where we have used linear indexing for elements of \scrP to match the polynomials in Example
1.3.

As defined in (18), each variable of the form x1,(x,y) denotes an indeterminate in \scrR which
is identified with the element \alpha 1 \in E1, which satisfies \alpha 1(1) = x and \alpha 1(2) = y. In other
words, the binary vector subscript (x, y) denotes the two values which \alpha 1 \in E1 takes for the
inputs in I1 = \{ 1, 2\} . Similarly, x2,x is identified with \alpha 2 \in E2 satisfying \alpha 2(3) = x.

4.4. Solving the PSD problem for interaction type n = (2, 1, . . . , 1). In this section
we prove the following theorem.

Theorem 4.12. Let f be an interaction function with interaction type, n = (2, 1, . . . , 1). Let
\scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

denote the corresponding PSD problem and (\scrP \prime ,\prec B,\BbbR
m) the associated

linearized PSD problem. Then \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

= \scrT (\scrP \prime ,\prec B,Ξ
\prime) where Ξ\prime = \BbbR m\cap \{ - \xi \prime 1,0+

\xi \prime 1,1 + \xi \prime 1,2 - \xi \prime 1,3 > 0\} .

The proof of the theorem is based on the following lemma.

Lemma 4.13. Fix parameters, x0, x1, x2, x3 \in \BbbR , and define the function g : \BbbR \rightarrow \BbbR by the
formula

g(t) = exp(tx0) - exp(tx1) - exp(tx2) + exp(tx3).

If x0 < x1 \leq x2 < x3, then g has a positive root if and only if g\prime (0) < 0.

Proof. Suppose first that t0 is a root of g. Expanding exp(t0x1) and exp(t0x2) to first
order about x0 and x3, respectively, and applying the mean value theorem yield the formula

(21) g(t0) = - t0 exp(t0c1)(x1 - x0) - t0 exp(t0c2)(x2 - x3) = 0

for some c1 \in (x0, x1) and c2 \in (x2, x3). We define k = c2 - c1 and multiply (21) by t0e
 - kt0

to obtain
ekt0(x3 - x2) - (x1 - x0) = 0.

Noting that c1 < x2 < c2, it follows that k > 0. Therefore if t0 > 0, then x3 - x2 < x1 - x0
or equivalently, g\prime (0) = x0 - x1 - x2 + x3 < 0.

Conversely, if g\prime (0) < 0, then g has at least one positive root since clearly g(0) = 0 and
lim
t\rightarrow \infty

g(t) = \infty .

Proof of Theorem 4.12. Suppose \sigma \in \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

, (0,\infty)2nσ is the associated real-
izable set as defined in (2), and \xi \in (0,\infty)2nσ ; then by Theorem 4.10 we have \xi \prime = T (\xi) \in \BbbR m

σ .
Note that by definition the first four coordinates of \xi \prime are given by the formulasD

o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 409

\xi \prime 1,0 = log(\xi 1 + \xi 2),

\xi \prime 1,1 = log(\xi 1 + \xi 2 + \xi n+2),

\xi \prime 1,2 = log(\xi 1 + \xi 2 + \xi n+1),

\xi \prime 1,3 = log(\xi 1 + \xi 2 + \xi n+1 + \xi n+2).

Since \xi i > 0 for i \in \{ 1, 2, n+ 1, n+ 2\} , it follows that

 - \xi \prime 1,0 + \xi \prime 1,1 + \xi \prime 1,2 - \xi \prime 1,3 > 0,

so we have \sigma \in \scrT (\scrP \prime ,\prec B,Ξ
\prime).

Conversely, suppose \sigma \in \scrT (\scrP \prime ,\prec B,Ξ
\prime) and \xi \prime \in Ξ\prime

σ. From the Boolean lattice \prec B we have
\xi \prime 1,0 < \xi \prime 1,1 \leq \xi \prime 1,2 < \xi \prime 1,3 or \xi \prime 1,0 < \xi \prime 1,2 \leq \xi \prime 1,1 < \xi \prime 1,3. Moreover, \xi \prime also satisfies - \xi \prime 1,0 + \xi \prime 1,1 +

\xi \prime 1,2 - \xi \prime 1,3 > 0. Hence, Lemma 4.13 implies that there exists t\prime > 0 such that \xi \prime := t\prime \xi \prime satisfies

exp(\xi \prime 1,0) - exp(\xi \prime 1,1) - exp(\xi \prime 1,2) + exp(\xi \prime 1,3) = 0.

Next, we define \xi \in (0,\infty)2n by

\xi j =

\left\{

exp(\xi \prime j,0), 2 < j \leq n,

exp(\xi \prime j,1) - exp(\xi \prime j,0), n+ 2 < j < 2n,
1
2 exp(\xi

\prime
1,0), j = 1, 2,

exp(\xi \prime 1,2) - exp(\xi \prime 1,0), j = n+ 1,

exp(\xi \prime 1,1) - exp(\xi \prime 1,0), j = n+ 2.

One easily verifies that \xi j > 0 for all 1 \leq j \leq 2n, and that T (\xi) = \xi \prime . From Theorem 4.10,

we have \xi \in (0,\infty)2nσ = \{ \xi \in (0,\infty)2n : pσ(0)(\xi) < pσ(1)(\xi) < \cdot \cdot \cdot < pσ(2n - 1)(\xi)\} which implies
that \sigma \in \scrT

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

.

4.5. Solving the general PSD problem. In the general case, we have \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

\subsetneq \scrT (\scrP \prime ,\prec B,\BbbR
m), and thus, computing \scrT (\scrP \prime ,\prec B,\BbbR

m) provides only a set of candidates for
\scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

. This candidate set contains spurious linear extensions, so we consider
the problem of removing linear extensions which are nonadmissible. We have two strategies
for doing this efficiently.

The first is to restrict the evaluation domain to a strict subset, Ξ\prime \subsetneq \BbbR m, such that we
still have the inclusion

(22) \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

\subseteq \scrT (\scrP \prime ,\prec B,Ξ
\prime).

Restricting to a smaller evaluation domain amounts to imposing more of the algebraic con-
straints a priori which results in improved efficiency. In order for the candidate set on the
right-hand side to be efficiently computable using the algorithm in section 3, it must be an
instance of the LC-LEP, i.e., Ξ\prime should be the interior of a polyhedral cone. For example, for
the PSD with interaction type n = (2, 1, . . . , 1), analyzed in section 4.4, we computed on the
restricted domain

Ξ\prime = \BbbR m \cap
\bigl\{

\xi \prime \in \BbbR m : - \xi \prime 1,0 + \xi \prime 1,1 + \xi \prime 1,2 - \xi \prime 1,3 > 0
\bigr\}

.

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

410 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

In terms of the algorithm in section 3, this domain restriction amounts to taking our base
cone in Algorithm 3 to be cone(V0), where

V0 = V\prec B
\cup \{ u\}

and u is the representation vector for the linear functional defined by the formula

x \mapsto \rightarrow - x1,0 + x1,1 + x1,2 - x1,3.

The requirement that this linear functional must be strictly positive is a special case of the
following lemma whose proof is a trivial computation.

Lemma 4.14. Suppose \alpha , \alpha \prime , \beta , \beta \prime are Boolean indices such that for any \xi \in (0,\infty)2n, the
following equations are satisfied:

pα(\xi) < pβ(\xi) < pβ\prime (\xi) < pα\prime (\xi),

pα(\xi) + pα\prime (\xi) = pβ(\xi) + pβ\prime (\xi).

Then,
log(pα(\xi)) + log(pα\prime (\xi)) - log(pβ(\xi)) - log(pβ\prime (\xi)) > 0.

Lemma 4.14 provides a means to restrict the evaluation domain for the general linearized
PSD problem as follows. Fix j \in \{ 1, . . . , q\} , and suppose \{ \alpha , \alpha \prime , \beta , \beta \prime \} \subset E differ only in
the jth coordinate with \alpha \prec B \beta \prec B \beta \prime \prec B \alpha \prime , and also assume that B(\alpha) + B(\alpha \prime) =
B(\beta) + B(\beta)\prime where B is the Boolean indexing map. Then, it follows that for any \xi \in Ξ,
the values

\bigl\{

pα(\xi), pα\prime (\xi), pβ(\xi), pβ\prime (\xi)
\bigr\}

satisfy both equations in Lemma 4.14. Therefore, if
u(\{ \alpha , \alpha \prime , \beta , \beta \prime \}) is the representation vector for the linear functional defined by

x \mapsto \rightarrow xj,B(β) + xj,B(β\prime) - xj,B(α) - xj,B(α\prime),

then v(\{ \alpha , \alpha \prime , \beta , \beta \prime \}) lies in Vσ for any \sigma \in \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

. Equivalently, we may impose
the required linear constraint xj,B(β)+xj,B(β\prime) - xj,B(α) - xj,B(α\prime) > 0 on the evaluation domain
of the linearized problem. Hence, for each 1 \leq j \leq q, we define

Vj :=
\bigl\{

u(
\bigl\{

\alpha , \alpha \prime , \beta , \beta \prime
\bigr\}

) : B(\alpha) +B(\alpha \prime) = B(\beta) +B(\beta)\prime , \alpha \prec B \beta \prec B \beta \prime \prec B \alpha \prime
\bigr\}

,

and for an arbitrary PSD problem, we may take our base cone to be

V0 = V\prec B
\cup VΞ where VΞ =

q
\bigcup

j=1

Vj .

Applying Algorithm 3 with the base cone generated by V0 is equivalent to solving the instance
of LC-LEP defined by (\scrP \prime ,\prec B,Ξ

\prime) where Ξ\prime is the restriction of \BbbR m to the subset for which
the linear functionals defined by each v \in Vj are strictly positive for each 1 \leq j \leq q.

In addition to restricting the computation to the polyhedral cones discussed above, we
can reuse solutions of smaller PSD problems in some larger computations. As an example,
suppose \scrP \prime = \{ p\prime 0, . . . , p

\prime
7\} is the set of interaction polynomials for the PSD with interaction

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 411

type n\prime = (2, 1) and \scrP := \{ p0, . . . , p15\} the polynomials for the PSD problem with interaction
type n = (2, 1, 1). Observe that each admissible linear order on \scrP \prime induces an imposed linear
order on the even indexed polynomials, \scrP even := \{ p0, p2, . . . , p14\} \subset \scrP . A similar linear order
is induced on the odd indexed polynomials, \scrP odd := \{ p1, p3, . . . , p15\} \subset \scrP . Hence, a necessary
condition to have an admissible linear extension for \scrP is that the orders of \scrP even and \scrP odd

must both be consistent with one of the PSD solutions in \scrT
\bigl(

\scrP \prime ,\prec B, (0,\infty)6
\bigr)

. This implies
the inclusion

(23) \scrT
\bigl(

\scrP ,\prec B, (0,\infty)8
\bigr)

\subseteq
\bigcup

σ\prime \in \scrT (\scrP \prime ,\prec B ,(0,\infty)6)

\scrT (\scrP ,\prec B \cup \prec σ\prime , (0,\infty)8)

where \prec B \cup \prec σ\prime represents the refinement of the Boolean lattice partial order and the partial
order induced by \sigma \prime on the even/odd subsets.

To exploit this in general, we say that the PSD problem of type n\prime is a subproblem of the
PSD problem of type n whenever the polynomials for n must obey an implied partial order
determined by the solutions of n\prime . Notice that the preceding discussion as well as (23) applies
also to an arbitrary polyhedral cone. Therefore, if there is a total of k admissible linear exten-
sions for all subproblems of the PSD problem of type n which we have previously computed,
then we bootstrap those results when computing \scrT

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

via the inclusion

\scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

\subseteq
k
\bigcup

i=1

\scrT (\scrP ,\prec B \cup \prec σ\prime
i
,Ξ\prime) \subseteq \scrT (\scrP ,\prec B,Ξ

\prime)

where \prec B \cup \prec σ\prime
i
represents the refinement of the Boolean lattice partial order and the par-

tial order induced by \sigma \prime
i on the corresponding subsets obtained from any subproblem. This

technique has been used in the computation for all the cases of order \geq 4. Observe that the
computation of \scrT (\scrP ,\prec B \cup \prec σ\prime

i
,Ξ\prime) can be done distributively for i = 1, . . . , k on different

computational nodes, which, as is indicated in section 5, we employed for the PSD problems
of orders 5 and 6.

In the special case of section 4.4, we proved that inclusion in (22) is actually equality
when Ξ\prime is constructed as we have described. However, in the typical case, these additional
algebraic constraints are not sufficient to remove all spurious linear extensions except in the
case n = (2, 1, . . . , 1). It remains an open problem to determine a smaller set Ξ\prime such that
\scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

= \scrT (\scrP \prime ,\prec B,Ξ
\prime) for other interaction types. However, in the remainder

of this section we consider the problem of extracting \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

from \scrT (\scrP \prime ,\prec B,Ξ
\prime)

when they are not equal.
Observe that we may obtain large subsets of \scrT

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

simply by sampling. The
particular strategy that we adopted is as follows. We uniformly sampled between 108 and 109

points

\xi = (l1, . . . , ln, \delta 1, . . . , \delta n) \in \BbbZ 2n
+ \cap B2n

\infty (r),

where B2n
\infty (r) = \{ \| \xi \| \infty \leq r\} . We chose r = 1000. Mathematically the particular choice of r

is not important since the PSD polynomials are homogeneous, though in practice it does have
an effect on sampling precision and speed. For each such \xi we evaluated \{ pα(\xi) : p \in \scrP \} . If

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

412 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

\sigma \in S2n denotes the linear order of these values, then \xi serves as a “witness” for the claim
that Ξσ \not = \emptyset . This produces

\scrS
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

:=
\bigl\{

\sigma \in \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

: \sigma is witnessed by at least one sample
\bigr\}

.

Obviously,

\scrS
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

\subseteq \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

\subseteq \scrT (\scrP ,\prec B,Ξ
\prime).

In general, sampling is relatively efficient, and in cases where \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

is not too
large (see Table 1 for details), we recover the entire solution.

Once we have constructed the set \scrS
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

, \scrT (\scrP ,\prec B,Ξ
\prime) from sampling and

algorithms in section 3, respectively, we apply a CAD algorithm to check whether or not the
semialgebraic set

Ξσ = \{ \xi \in Ξ : pσ(0)(\xi) < pσ(1)(\xi) < \cdot \cdot \cdot < pσ(2n - 1)(\xi)\}

is empty for each \sigma \in \scrT (\scrP ,\prec B,Ξ
\prime) \setminus \scrS

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

, and then \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

is
recovered. The CAD algorithm implementation we are using is CylindricalAlgebraicDecom-
position in Mathematica 11 [52].

4.6. Computational complexity. Analyzing the efficiency of our solver for the PSD prob-
lem can be broken into three cases. The first case is the linear PSD problem. This is an
instance of the LC-LEP in 2n variables, and consequently, the complexity analysis in section
3.3 applies.

The second case is the PSD problem with interaction type n = (2, 1, . . . , 1). By Theorem
4.12, the solution set is identical to the solutions of the associated linearized PSD problem.
The latter is an instance of LC-LEP in m = 4 + 2(q - 1) = 2(q + 1) variables, and since
q = n - 1, we have m = 2n. In other words, the computational cost of solving this PSD
problem is again equivalent to solving an instance of the LC-LEP in the same number of
variables, and the analysis in section 3.3 applies.

The final case is the general PSD problem for interaction type n \in \BbbN q, which we assume
does not satisfy either of the two previous cases. Here we cannot guarantee that the complexity
is any better than that of a CAD-based approach since the final step in our algorithm is to
determine the admissibility of every linear extension

\sigma \in \scrS
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

\setminus \scrT (\scrP ,\prec B,Ξ
\prime).

That is, any total order which is admissible for the linearized PSD problem, but is not wit-
nessed when sampling the nonlinear PSD problem, must be rigorously checked for admissibil-
ity. This is done using a CAD-based algorithm to certify whether or not the semialgebraic set,
Ξσ, is empty for each such \sigma . As discussed in section 1, solving this problem requires, again
in the worst case, computing a full CAD for \scrP subject to the additional algebraic constraints
\ell i > 0, \delta i > 0 for 1 \leq i \leq n. Consequently, our algorithm for solving the PSD inherits the
double exponential complexity of the CAD algorithm in (3). Based on the actual computa-
tions we have carried out, we conjecture that this worst case bound is not typical and may
not even be sharp. There are several heuristics which make this conjecture plausible.

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 413

The first is the fact that sampling alone was sufficient to recover the full solution of the
PSD problem in every case examined in this work (compare the first and last columns of
Table 1). Consequently, every candidate ordering which was not ruled out by sampling was
in fact nonadmissible, and the CAD-based computation only needed to certify this fact. This
is advantageous due to the fact that many speedups for the general CAD algorithm apply
specifically for proving that a semialgebraic set is in fact empty. Once again, each of these
improvements maintains the same worst case running time, but they often produce much
faster typical running times.

The second heuristic is due to the structure of the PSD problem itself. Not only are the
polynomials in \scrP linear with respect to each variable, but \scrP itself contains a “complete” set
of polynomials arising from the interaction function which forms a sort of template. This
imposes stricter algebraic constraints on the linearized PSD problem as a consequence of
Lemma 4.14. Additionally, this structure causes the PSD problems to nest into one another
neatly in the sense of (23). These properties combine to produce sets of candidate solutions
of the linearized PSD problem which are remarkably smaller than the candidates produced by
solving the linearized PSD problem naively (compare the second and third columns in Table 1).

These heuristics combined with the results for the cases we have computed make a com-
pelling case that this algorithm is already reasonably efficient, but this is by no means the
last word on the subject. Further improvements to this approach via imposing additional
algebraic constraints, improving sampling techniques, or applying the linearization technique
to other classes of polynomials are the subject of ongoing research.

5. Results for some PSD problems. In this section we provide (see Table 1) the results of
our computations for interaction functions of orders 4, 5, and 6. A slightly different approach
was taken to compute orders 5 and 6, from that used for 4. This had to do with the machines
being used but highlights the flexibility of our method.

For interaction functions of order 4, we applied Algorithm 1 using a rational linear pro-
gramming algorithm. In particular, we used the implementation MixedIntegerLinearProgram
from SageMath 8 [43]. This implies that the output of Algorithm 3 is correct. Observe that
interaction type (4) is linear and type (1, 1, 1, 1) is log linear, and therefore Algorithm 3 pro-
duces \scrT

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

. The fact that our output agrees with that of [32] suggests that our
code is functioning as desired. To compute the interaction type (2, 1, 1) we apply Algorithm 3
to obtain \scrT (\scrP \prime ,\prec B,\BbbR

m). By Theorem 4.12 this determines \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

.
To solve the PSD problem from interaction types (2, 2) and (3, 1) requires that we make use

of the strategy discussed in section 4.5. Again, we use Algorithm 3 to obtain \scrT (\scrP \prime ,\prec B,\BbbR
m).

By Theorem 4.10, \scrT
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

\subset \scrT (\scrP \prime ,\prec B,\BbbR
m). As indicated in column 7 of

Table 1, we chose 108 samples from (0,\infty)8 and identified 5344 and 3084 linear orders, respec-
tively. We ran CylindricalAlgebraicDecomposition in Mathematica 11 [52] on each element of
\scrT (\scrP \prime ,\prec B,\BbbR

m) \setminus \scrS
\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

. As can be seen by comparing columns 6 and 3, none of
these elements were admissible.

We now turn to the computations of interaction functions of orders 5 and 6. As these
problems are too big to be done on a laptop we turned to a server for which SageMath was
not installed. Thus, we made use of a numerical linear programing algorithm, linprog from
Python 3.5 package scipy [51], with the default numerical error 10 - 13, in Algorithm 1. The

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

414 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

Table 1

Computational results for several PSD problems. Column 1 indicates the interaction type. Column 2
provides the number of elements in the AC-LEP of interest. Column 3 provides the number of elements in
an associated LC-LEP. This is not relevant where the AC-LEP problem of interest is a LC-LEP problem and
is indicated by -. The * indicates that the computation was too large to complete. Column 4 provides the
number of elements in the linearized PSD problem without additional constraints. Again the irrelevance for
linear problems is indicated by -, and * indicates that the computation is large to be performed. The last column
indicates the number of cells identified via sampling. We used 108 samples for all n = 4 cases and 109 samples
for the n = 5, 6 cases. The symbol \dagger indicates that our sampling was not sufficient.

n #\scrT
\bigl(

\scrP ,\prec B , (0,\infty)2n
\bigr)

#\scrT (\scrP \prime ,\prec B ,Ξ
\prime) #\scrT (\scrP \prime ,\prec B ,\BbbR

m) #\scrS (\scrP \prime ,\prec B , (0,\infty)2n)

(1,1,1,1) 336 - - -

(4) 336 - - -

(2,1,1) 1,344 1,344 2,352 -

(2,2) 5,344 7,920 26,640 5,344

(3,1) 3,084 5,112 68,641 3,084

(1,1,1,1,1) 61,920 - - 61,920

(5) 61,920 - - 61,920

(2,1,1,1) 790,200 790,200 * 790,200

(2,2,1) - 11,035,808 * 6,570,952

(3,2) - * * 71,959,088\dagger

(4,1) - * * 11,213,616\dagger

(1,1,1,1,1,1) 89,414,640 - - 89,414,640

(6) 89,414,640 - - 89,414,640

interaction types (5) and (6) are linear and (1, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1) are log linear, and
therefore via Algorithm 3 we obtain \scrT alg

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

. We use the sampling technique
(see columns 7 and 8 of Table 1) to verify each of the elements of \scrT alg

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

,
thereby obtaining \scrT

\bigl(

\scrP ,\prec B, (0,\infty)2n
\bigr)

.
The computation for each order 4 case was done on a Mac Pro laptop (2.7 GHz Intel i5 and

memory 8GB) with computation time under 4 hours. The computation of the remaining cases
were done using a computing server with CentOs, intel 17.1, memory 32 GB, and less than 30
nodes. The computation time for both (1, 1, 1, 1, 1) and (5) was less than 4 hours, while the
computation time for (2, 1, 1, 1) was on the order of 7 days. The codes which produced all of
the computations in Table 1 are available on GitHub.

Acknowledgments. The authors would like to thank Shaun Harker, Sandra Di Rocco,
Tomas Gedeon, and Mike Saks for helpful conversations.

REFERENCES

[1] R. Albert, J. J. Collins, and L. Glass, Introduction to Focus Issue: Quantitative approaches to
genetic networks, Chaos, 23 (2013), 025001.

[2] D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza, Exact solutions to linear programming
problems, Oper. Res. Lett., 35 (2007), pp. 693–699.

[3] Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk, A database schema
for the analysis of global dynamics of multiparameter systems, SIAM J. Appl. Dyn. Syst., 8 (2009),
pp. 757–789, https://doi.org/10.1137/080734935.

[4] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Algorithms Comput.
Math. 10, Springer-Verlag, Berlin, 2003, https://doi.org/10.1007/978-3-662-05355-3.

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING LINEAR EXTENSIONS FOR POLYNOMIAL POSETS 415

[5] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK,
2004.

[6] G. Brightwell and P. Winkler, Counting linear extensions is #P-complete, in Proceedings of the
Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91, New York, NY, 1991,
ACM, pp. 175–181, https://doi.org/10.1145/103418.103441.

[7] G. R. Brightwell and P. Tetali, The number of linear extensions of the Boolean lattice, Order, 20
(2003), pp. 333–345, https://doi.org/10.1023/B:ORDE.0000034596.50352.f7.

[8] C. W. Brown, Improved projection for cylindrical algebraic decomposition, J. Symbolic Comput., 32
(2001), pp. 447–465, https://doi.org/10.1006/jsco.2001.0463.

[9] C. W. Brown, Constructing a single open cell in a cylindrical algebraic decomposition, in Proceedings of
the International Symposium on Symbolic and Algebraic Computation, ISSAC, 2013, pp. 133–140,
https://doi.org/10.1145/2465506.2465952.

[10] C. W. Brown and J. H. Davenport, The complexity of quantifier elimination and cylindrical algebraic
decomposition, in Proceedings of the International Symposium on Symbolic and Algebraic Computa-
tion, ISSAC, 2007, pp. 54–60, https://doi.org/10.1145/1277548.1277557.

[11] J. Bush, W. Cowan, S. Harker, and K. Mischaikow, Conley–Morse databases for the angular
dynamics of Newton’s method on the plane, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 736–766,
https://doi.org/10.1137/15M1017971.

[12] J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi, and P. Pilarczyk,
Combinatorial-topological framework for the analysis of global dynamics, Chaos, 22 (2012), 047508,
https://doi.org/10.1063/1.4767672.

[13] G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decompostion, in
Automata Theory and Formal Languages, H. Brakhage, ed., Springer, Berlin, 1975, pp. 134–183.

[14] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. Math. 38, American
Mathematical Society, Providence, RI, 1978.

[15] C. C. Conley and J. A. Smoller, The Existence of Heteroclinic Orbits, and Applications, Lecture
Notes in Phys. 38., Springer, Cham, 1975, pp. 511–524.

[16] B. Cummins, T. Gedeon, S. Harker, and K. Mischaikow, Model rejection and parameter reduc-
tion via time series, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 1589–1616, https://doi.org/10.1137/
17M1134548.

[17] B. Cummins, T. Gedeon, S. Harker, K. Mischaikow, and K. Mok, Combinatorial representation
of parameter space for switching networks, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 2176–2212,
https://doi.org/10.1137/15m1052743.

[18] S. Day, Y. Hiraoka, K. Mischaikow, and T. Ogawa, Rigorous numerics for global dynamics: A study
of the Swift–Hohenberg equation, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 1–31.

[19] S. Day, O. Junge, and K. Mischaikow, A rigorous numerical method for the global analysis of infinite-
dimensional discrete dynamical systems, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 117–160.

[20] R. Diegmiller, L. Zhang, M. Gameiro, J. Barr, J. I. Alsous, P. Schedl, S. Y. Shvartsman, and

K. Mischaikow, Mapping parameter spaces of biological switches, PLoS Comput. Biol., 17 (2021),
e1008711.

[21] G. Ewald, Combinatorial Convexity and Algebraic Geometry, Grad. Texts in Math. 168, Springer, Cham,
1996.

[22] T. Fine and J. Gill, The enumeration of comparative probability relations, Ann. Probab., 4 (1976),
pp. 667–673.

[23] M. Gameiro, T. Gedeon, S. Kepley, and K. Mischaikow, Rational Design of Complex Phenotype
via Network Models, preprint, arXiv:2010.03803 [math.DS], 2020, https://arxiv.org/abs/2010.03803.

[24] T. Gedeon, B. Cummins, S. Harker, and K. Mischaikow, Identifying robust hysteresis in networks,
PLoS Comput. Biol., 14 (2018), e1006121, https://doi.org/10.1371/journal.pcbi.1006121.

[25] S. Harker, K. Mischaikow, and K. Spendlove, A Computational Framework for the Connection
Matrix Theory, preprint, arXiv:1810.04552 [math.AT], 2018, https://arxiv.org/abs/1810.04552.

[26] A. S. Jarrah, R. Laubenbacher, B. Stigler, and M. Stillman, Reverse-engineering of polynomial
dynamical systems, Adv. Appl. Math., 39 (2007), pp. 477–489, https://doi.org/10.1016/j.aam.2006.
08.004.

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

416 SHANE KEPLEY, KONSTANTIN MISCHAIKOW, AND LUN ZHANG

[27] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology, Appl. Math. Sci. 157,
Springer-Verlag, New York, 2004, https://doi.org/10.1007/b97315.

[28] W. D. Kalies, K. Mischaikow, and R. C. A. M. van der Vorst, An algorithmic approach to chain re-
currence, Found. Comput. Math., 5 (2005), pp. 409–449, https://doi.org/10.1007/s10208-004-0163-9.

[29] W. D. Kalies, K. Mischaikow, and R. C. A. M. van der Vorst, Lattice structures for attractors I,
J. Comput. Dyn., 1 (2014), pp. 307–338, https://doi.org/10.3934/jcd.2014.1.307.

[30] W. D. Kalies, K. Mischaikow, and R. C. A. M. van der Vorst, Lattice structures for attractors II,
Found. Comput. Math., 16 (2016), pp. 1151–1191, https://doi.org/10.1007/s10208-015-9272-x.

[31] W. D. Kalies, K. Mischaikow, and R. C. A. M. van der Vorst, Lattice Structures for Attractors
III, preprint, arXiv:1911.09382 [math.DS], 2019, https://arxiv.org/abs/1911.09382.

[32] D. Maclagan, Boolean term orders and the root system Bn, Order, 15 (1999), pp. 279–295.
[33] B. C. Marcio Gameiro, Shaun Harker, DSGRN: Dynamic Signatures Generated by Regulatory Net-

works, 2020, https://github.com/marciogameiro/DSGRN.
[34] S. McCallum, An improved projection operation for cylindrical algebraic decomposition, in European

Conference on Computer Algebra, Lecture Notes in Comput. Sci. 204, Springer, Cham, 1985, pp. 277–
278, https://doi.org/10.1007/3-540-15984-3 277.

[35] C. McCord, Mappings and homological properties in the Conley index theory, Ergodic Theory Dynam.
Systems, 8 (1988), pp. 175–198, https://doi.org/10.1017/S014338570000941X.

[36] C. McCord and K. Mischaikow, On the global dynamics of attractors for scalar delay equations, J.
Amer. Math. Soc., 9 (1996), pp. 1095–1133, https://doi.org/10.1090/S0894-0347-96-00207-X.

[37] C. McCord, K. Mischaikow, and M. Mrozek, Zeta functions, periodic trajectories, and the Conley
index, J. Differential Equations, 121 (1995), pp. 258–292, https://doi.org/10.1006/jdeq.1995.1129.

[38] K. Mischaikow, Global asymptotic dynamics of gradient-like bistable equations, SIAM J. Math. Anal.,
26 (1995), pp. 1199–1224, https://doi.org/10.1137/S0036141093250827.

[39] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer-assisted proof, Bull.
Amer. Math. Soc. (N.S.), 32 (1995), pp. 66–72.

[40] K. Mischaikow and M. Mrozek, Conley index, in Handbook of Dynamical Systems, Vol. 2, North-
Holland, Amsterdam, 2002, pp. 393–460, https://doi.org/10.1016/S1874-575X(02)80030-3.

[41] J. Montgomery, Cohomology of isolated invariant sets under perturbation, J. Differential Equations, 13
(1973), pp. 257–299, https://doi.org/10.1016/0022-0396(73)90018-1.

[42] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 2020, https://www.sagemath.
org.

[43] Sage Developers, SageMath, the Sage Mathematics Software System (Version 8), https://www.
sagemath.org.

[44] J. Sha and D. J. Kleitman, The number of linear extensions of subset ordering, Discrete Math. 63
(1987), pp. 271–278, https://doi.org/10.1016/0012-365X(87)90016-1.

[45] R. Srzednicki, On rest points of dynamical systems, Fund. Math., 126 (1985), pp. 69–81, https://doi.
org/10.4064/fm-126-1-69-81.

[46] R. P. Stanley, An introduction to hyperplane arrangements, in Geometric Combinatorics, IAS/Park
City Math. Ser. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 389–496.

[47] H. Suprajitno and I. B. Mohd, Linear programming with interval arithmetic, Int. J. Contemp. Math.
Sciences, 5 (2010), pp. 323–332.

[48] A. Szymczak, The Conley index and symbolic dynamics, Topology, 35 (1996), pp. 287–299, https://doi.
org/10.1016/0040-9383(95)00029-1.

[49] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput., 20 (1991), pp. 865–877,
https://doi.org/10.1137/0220053.

[50] R. J. Vanderbei, Linear Programming: Foundations and Extensions, Springer, Cham, 2020.
[51] P. Virtanen, R. Gommers, T. E. Oliphant, et al.; SciPy 1.0 Contributors, SciPy 1.0: Fundamental

algorithms for scientific computing in Python, Nature Methods, 17 (2020), pp. 261–272, https://doi.
org/10.1038/s41592-019-0686-2.

[52] Wolfram, Mathematica, Version 11, https://www.wolfram.com/mathematica.
[53] Y. Xin, B. Cummins, and T. Gedeon, Multistability in the epithelial-mesenchymal transition network,

BMC Bioinform., 21 (2020), 71, https://doi.org/10.1186/s12859-020-3413-1.

D
o
w

n
lo

ad
ed

 0
7
/2

8
/2

1
 t

o
 1

2
8
.6

.4
5
.2

0
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

	Introduction
	Dynamic Signatures Generated by Regulatory Networks
	Mathematical framework
	Mathematical interpretation of regulatory networks
	Extensions

	Solving the LC-LEP
	Cones
	An algorithm for identifying T(P, ,)
	Complexity analysis

	Solving the general PSD problem
	The PSD as an instance of AC-LEP
	The linear PSD problem
	The general PSD problem
	Solving the PSD problem for interaction type n=(2,1,…,1)
	Solving the general PSD problem
	Computational complexity

	Results for some PSD problems

