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Abstract—Sensors that can rapidly assess physiology in the
clinic and home environment are poised to revolutionize research
and practice in the management of chronic diseases such as heart
failure. Ultrawideband (UWB) radar sensors provide a viable
and unobtrusive alternative to traditional sensor modalities for
physiological sensing. In this paper, we consider the problem of
estimation of multilayer tissue profiles using an ultrawideband
radar sensor. We pose the joint estimation of the ultrawideband
pulse waveform and the multilayer tissue profile as a blind
deconvolution problem. We show that constraints on the pulse
waveform (bandwidth and time duration) and the structure of
tissue range profile (sparsity) can be used to regularize the inver-
sion. We derive both convex and non-convex algorithms for the
joint estimation of the pulse waveform and the tissue reflectivity
profile and demonstrate the effectiveness of the proposed methods
with measured and simulated data experiments.

I. INTRODUCTION

Sensors that can rapidly assess physiology in the clinic
and home environment are poised to revolutionize research
and practice in diagnosing and treating health conditions and
long-term chronic disease care [1]. RF frequencies penetrate
all skin, fat, muscle tissue and therefore provide a viable
alternative to traditional modalities of ECG and Ultrasound for
sensing of physiology without requiring electrodes, conductive
gels or cuffs. In particular, if an ultrawideband (UWB) radar
sensor is used to interrogate human body, each tissue interface
(air-skin, skin-muscle, muscle-bone, etc.) causes a different
reflection point to the impinging wideband pulses providing
a rich backscatter signal [2], [3], [4], [5] that can inform on
tissue composition and motion.

Specifically, ultrawideband radar sensing provides a unique
opportunity to monitor pulmonary and peripheral edema-water
retention in home and clinic environments. Technological
advances in earlier detection of edema have revolved around
measurements of transthoracic and intrathoracic impedance
using implanted sensors. As electromagnetic (EM) wave prop-
agation in the body is affected strongly by the dielectric
properties of the tissues, radar-based sensors show promise as
a non-invasive tool to monitor fluid retention in the lungs that
can replicate the utility of these implanted diagnostic systems
without requiring expensive procedures.

However, near-field on-body measurements with a UWB
radar sensor raises significant technical challenges. The trans-
mitted UWB waveform from the antenna is highly dependent
on the antenna-skin interface and can have high inter-subject
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variability. Even for the same subject antenna transfer function
can change based on the placement and skin conditions. As
a result, tissue properties have to be estimated from radar
returns jointly with the transmitted waveform. In addition,
high-resolution recovery is required to resolve multiple lay-
ers of tissue in range, which can be only accomplished by
incorporating prior information on the unknown reflectivity
profile.

In the following, we pose the blind deconvolution problem
of jointly estimating the pulse waveform and the multi-
layer tissue profile and provide both convex and non-convex
methods for its solution, exploiting known structure in the
transmitted waveform and the reflectivity profile of the tissues.
We illustrate the effectiveness of the proposed methods using
experiments with measured and simulated data.

II. SYSTEM MODEL

We consider a monostatic ultrawideband radar sensor that
transmits a short duration UWB pulse, h € RT, and records
the backscattered signal from a near field object composed
of multiple layers of dielectric material. Let the vector y €
RY denote N time samples of the received backscatter signal,
which is modeled as the linear convolution of the reflectivity
profile of the multilayer dielectric media & € RN =71, with
the unknown pulse waveform h

y=hxex. @))

While the electric pulse feeding the antenna can be charac-
terized precisely, in a setting where the antenna is placed on
the body directly, there is considerable uncertainty in the trans-
mitted waveform because the wideband antenna characteristics
are highly variable with respect to the antenna-skin interface.
Therefore, we formulate the problem as blind deconvolution,
where we aim to recover both the transmitted pulse h and
the tissue profile x jointly using the measurement y. The
blind deconvolution problem is a highly ill-posed bilinear
problem and inherently suffers from identifiability problems
due to the scale and shift ambiguities between h and x.
The reasons for non-identifiability are due to an orthonormal
transformation ambiguity [6], [7], [8] (which generalizes the
shift and rotational ambiguity), scaling ambiguity and a trivial
global optima [9] such that the solution is h = y the
measurement and £ = § the Kronecker delta function for
the class of loss functions and regularizing functions that are
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commonly used in blind deconvolution. Recent works [10],
[11] have established requirements on the structure of the
signals and the number of measurements required to make
the problem identifiable. Non-convex algorithms exploiting the
structure in the signals were also proposed. However, these
methods rely on the unstructured basis functions and which are
not applicable to the structure in the signals in our problem.
Here, instead we impose constraints on the reflectivity profile
x and transmitted waveform h to regularize the inversion
problem. Specifically, we know that the transmitted pulse h
is nearly bandlimited such that the energy of the signal in the
frequencies outside the passband is sufficiently small. In addi-
tion, h is also known to have short time duration, i.e., without
loss of generality, all the signal energy is reserved in the first
T < N samples of h. By explicitly enforcing this structure
we can avoid the trivial global minimum discussed earlier.
Constraints on the transmitted waveform can be augmented
with prior information about the structure of the reflectivity
profile x. In the next section, we briefly review EM wave
propagation in layered dielectric media and show that sparsity
in reflectivity profile « follows directly from the underlying
phenomenology.

A. Multilayer Propagation Model

We consider a one dimensional setting, where an EM wave
traveling through the x-axis at spatial position x( is repre-
sented as a complex exponential, Fy = Aed(kzo—wt) where
A € R is the amplitude, & (rad/m) denotes the wavenumber, w
(rad/sec) and t (sec) represent the angular frequency and the
time (temporal position) respectively. In Fig. 1, we illustrate
the propagation of the EM wave Ej in a 3-layer structure.
Here, for a given medium ¢, we represent the dielectric
properties, i.e., permittivity, permeability and conductivity by
€i, i and o; respectively. If multiple boundaries separating
different media exist, then the resulting backscattered signal is
given by the infinite summation of multiple reflections. In the
case of Fig. 1, where we have 2 boundaries, the total reflected
wave is given by E,. = EyI',, where I',. is of the form

o0
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2
where t;; = 2n;/(n; +n;) and ry; = (n; — nj)/(n; + ny)
represent the transmission and reflection coefficients from
medium ¢ to medium j. Here 81 = 2diny is the two-way
delay and n; = /2101 is the refractive index of medium 1.
The loss index 7; is approximated as 1 ~ dio1+/p1/e1.
For multilayer structures, since the reflected wave energy
significantly drops after a certain number of reflections, (2)
can be generalized in the following truncated form

K
Lr=Y ape 7%, (3)
k=1

where the effects of all propagation losses are combined into
the coefficients o, € R and the arbitrary time delays are given
by 0y, € [0, N—T. This observation reveals that the reflectivity
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Fig. 1: Multilayer Propagation Model.

profile x consists of impulses in time domain at locations 6’s
with amplitudes ay,’s. By discretizing the range of 6}’s, we can
form a sparse approximation to the summation term in (3)

K

Zake_j“’e’“ ~Ouxforw=01,. N-T, (4

k=1
where ©,, = [1,e7w! . corresponds to first
N —T+1 elements of one row of the N x N DFT matrix F' and
x € RV=T+1 represents the K-sparse time domain reflection
coefficients. Using the DFT matrix F', the measurements (1)
can be represented in the frequency domain as

Fy = diag(Fh)Fx. ®)

,e—jw(N—T)}T

Here, h and « are zero-padded accordingly to have proper
dimensions in (5). The above discussion reveals the structure
of h and x, which can be used to regularize the inversion
process. Specifically, h is a short pulse in time domain with
a nearly bandlimited frequency spectrum whereas x is a
sparse vector. In the next section, we introduce two different
approaches exploiting these structures to recover h and x
jointly from the measurement y.

III. JOINT RECOVERY OF TRANSMITTED WAVEFORM AND
REFLECTION COEFFICIENTS

This section introduces two different approaches to jointly
recover the transmitted pulse and the reflection coefficients.
The sensor measurements are modeled in the frequency do-
main as

FY = diag(Fh)FX, (6)

where Y € RV*L is the time domain measurement matrix,
where /*" column corresponds to the ¢! measurement, h €
RY is the time domain transmitted pulse and ¢*" column of
matrix X € RV*Z is the impulse response of the reflectivity
profile corresponding to the /" measurement. The goal is to
recover both h and X from the observed measurements Y .
One can easily construct the following optimization problem
using (6),

argmin |FY — diag(Fh)FX|%, (7)

)
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where X = [z, ®2,...,xz] and x; € RY. However, this
formulation does not utilize any of our prior knowledge
on the optimization variables X and h. Moreover, because
of its non-convex structure, convergence to global minima
is not guaranteed and we cannot use the merits of convex
optimization algorithms. To overcome these problems, in the
following sections, we provide two different approaches that
1) transforms the problem into a convex optimization problem
while partially utilizing our prior knowledge and i) enforces
several constraints to fully utilize our prior knowledge in a
non-convex setting. Before proceeding to the next sections,
we note that any solution to this problem still suffers from
the scaling ambiguity, i.e., both (Ah, £ X) and (h, X) yields
the same measurements Y for any scalar A. Therefore, both
approaches presented below recover h and X up to a scale.

A. Approach 1

We first convert the bilinear structure of (7) into a linear
form by applying a simple trick [12], [13]. First, we construct
the M x N dimensional partial DFT matrix F', by taking the
M rows of F' corresponding to the passband (2. Assuming
Fqh is nonzero, define diag(Ay,) = diag(Foh)™1,ie., Ay €
CM is the entry-wise inverse of Fqh. Replacing F by Fq
in (6) and multiplying by diag(Aj) from left yields

diag(A,)FoY = FoX. (8)

By this rearrangement, we achieved a linear equation on
both Aj;, and X. However, (8) admits the trivial solution of
A = 0px1 and X = Opxyr. In order to eliminate this
trivial solution, we can introduce a convex constraint which
is of the form 17A;, = M, where 1 = [1,1,...,1]7 with
properly selected length. Since we use F'q instead of F', the
bandlimited structure of h is explicitly enforced. Sparsity of X
can be exploited by minimizing the ¢y-norm. However, since
fp-norm minimization is i) not convex and ii) not feasible in
practice, we use the ¢1-norm, which is the convex relaxation of
£y-norm. Now, we can construct the following blind recovery
problem as in [12]

argmin ||diag(Ap)FoY — FoX||% + | X1
anX ©)
subject to 1TA;, = M.

where ) is the regularization parameter. Since this problem is
both linear and convex on the optimization parameters, we can
use off-the-shelf algorithms to solve for both A; and X. After
Ay, is being found, we can easily convert it back to F'oh and
take the inverse Fourier transform to obtain the time domain
pulse h.

In this approach, both bandlimited structure of h and the
sparsity of X are utilized. We also note that there exists
another trivial solution other than (A, X) = (0arx1,0nx1)
when L = 1, i.e.,, we have only one measurement. This is the
case where X is a single impulse and A, is the entry wise
inverse of F\qY . Hence, at least two different measurements,
i.e., L = 2, are required in this approach.
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B. Approach 2

As discussed in the previous section, the main problem in
solving this bi-convex problem lies in the case of the trivial
global optima. In the convex formulation presented above,
this global solution was excluded from the constraint set by
utilizing multiple measurement vectors. In this non-convex
formulation we further encode additional structure in the
transmitted waveform namely the shortness in duration of the
transmitted pulse in the ultra-wideband setting. This problem
of sparse blind deconvolution problem has been recently ana-
lyzed in [14], [15] where the short duration of the input pulse
is used to avoid the trivial global optima. In order to reduce
the effects on scale ambiguity, we further enforce the unit
norm constraint on the energy of the transmitted pulse. This
sphere constraint leads to a non-convex constraint set but this
approach provides a method to enforce the shortness constraint
in time-domain for the transmitted pulse. The optimization
problem is given as follows

argmin |FY — diag(Fh)FX||% + \| X |1
h,. X (10)
subject to [R5 =1, [[hrc|3 <e,

where \ is the regularizing constant, T¢ is the complement
of the support set T' in time domain where the transmitted
waveform is non-zero and e represents the energy of the
transmitted signal outside the pulse duration. The bilinear
problem in (10) is solved using the block-wise coordinate
descent method, which has been analyzed in solving multi-
convex problems in [16]. Therefore, the optimization problem
is solved by alternating between optimization of the reflection
coefficients using the current estimate of the transmitted pulse
and subsequently updating the estimate of the transmitted
pulse while keeping the reflection coefficients fixed. The
optimization problem in estimating the reflection coefficients
involves solving an ¢; regularized problem. The estimation of
the transmitted pulse involves solving the convex optimization
problem on the surface of the sphere, therefore a simple
projected gradient method is used to solve the problem. The
next section presents the performance of the proposed methods
to recover the transmitted pulse as well as the reflectivity
profile on simulated as well as real data.

IV. RESULTS

In this section, we illustrate the performance of the pre-
sented approaches using experiments with measured and sim-
ulated data. In each case, 96% of the transmitted pulse
energy is occupied in the band of 0.5 — 3.5 GHz, i.e., the
transmitted pulse is nearly bandlimited, and a sampling rate
of 36 GSamples/sec is used to obtain 512 samples of the
received backscatter signal. Here, note that we normalized all
the recovery results and the ground truths to eliminate the
effect of scaling ambiguity in illustrations.

A. Numerical Experiments

In the first set of experiments, we use randomly generated
measurements. We first generate a Gaussian pulse and obtain
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Fig. 2: Recovery results for randomly generated measurements. (a),(d): Pulse recovery in frequency domain using Approach
1 and 2 respectively. (b),(c): Recovered reflection coefficients using Approach 1 for L = 2 case. (e),(f): Recovered reflection

coefficients using Approach 2 for L = 2 case.

the measurements by convolving this pulse with a random
set of reflection coefficients. Both the amplitudes and the
positions of the reflection coefficients are randomly generated
using the uniform distributions U[—1,1] and U[0, N — T + 1]
respectively. For all measurements, the number of spikes is
fixed to be 5. We also add white Gaussian noise to all the
measurements such that the signal-to-noise ratio (SNR) is
fixed to 30dB. We illustrate the random measurements and the
corresponding recovery results in Fig. 2. We observe that both
the convex and the non-convex approaches recover the original
transmitted waveform accurately in the frequency domain. We
also observe that the positions and the magnitudes of the
reflection coefficients are successfully recovered.

In the second part of the experiments, we use measurements
that simulates the real-life reflections from layered human
tissues. We have worked on three different cases, i) single
layer of skin tissue, ii) two layers of skin and bone tissues,
iii) three layers of skin, bone and muscle tissues. For all cases,
we assume that there is an infinite length medium with known
permittivity, which we call absorber, at the inner-most layer
and all the tissues have a thickness of 1 cm. In Fig. 4, both
ground truth reflectivity profile and the recovery results for the
reflection coefficients are represented. Note that we observe
multiple reflections even for the single skin tissue case, which
is caused by the skin-absorber interface.

In the third part, we work with measurements collected from
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Fig. 3: (a): The block diagram of the system used to generate
ultra-wideband signal. (b): The designed system, which is
used to analyze the structure and dielectric properties of the
Thoracic cavity.

a test subject using the radar sensor Easysense. This sensor
is used to obtain backscattered measurements of the thoracic
cavity. These measurements are used to analyze the tissue
layer structure and study the dielectric properties of lungs. This
provides a non-invasive method to study the tissue layers.

B. Measured Data Experiments

Measurements are obtained using an experimental ultra-
wideband micro-radar platform dubbed as EasySense. Easy-
Sense utilizes an UWB pulse generator and a strobe sampler.
It includes two 1x4 antenna switching matrices that connects
to two sets of four wideband antennas. The receive frontend
includes wideband Low Noise Amplifier (LNA) making it
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Fig. 4: Recovered reflection coefficients for simulated measurements. (a),(b),(c): Recovery results for Skin, Skin-Bone, Skin-
Bone-Muscle cases respectively using Approach 1. (d),(e),(f): Recovery results for Skin, Skin-Bone, Skin-Bone-Muscle cases

respectively using Approach 2.
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Fig. 5: Recovery results for the reflection coefficients from the thoracic cavity using Approach 1 (a) and Approach 2 (b).

suitable for field measurements. The UWB pulse generator
produces monocycle pulses and samples the returns on a
window of 512 samples using strobe-sampling at a virtual
rate of 36 Gsamples/sec. The block diagram of the Easy-
Sense hardware is given in Fig. 3(a) and an image of the
measurement setup is shown in Fig. 3(b). The measurements
are obtained by using the EasySense radar sensor to monitor
the thoracic cavity of a test subject. The subject is asked to
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hold his breath during the first half of the measurement period
while being asked to breath regularly for the second half. The
pulse repetition frequency (PRF) used in this setup is 100 Hz.
This PRF is sufficient to capture the low frequency respiration
signal due to the movement of the tissue layers. Since the
backscattered signal is a superposition of the transmitted signal
from multiple bounces within these layers, we expect to see
the respiration signal across the measurements to repeat after
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Fig. 6: Recovery results for the transmitted waveform from
the thoracic cavity measurements using Approach 1 (a) and
Approach 2 (b).

a certain depth in the tissue layers. Since the transfer function
of the antenna interface with the skin tissue is unknown, we
jointly estimate the resultant transmitted signal convolved with
this unknown transfer function of the antenna-skin interface as
well as the transfer function representing the tissue layers. We
illustrate the recovered reflectivity profiles of thoracic cavity
in Fig. 5. We observe that both approaches accurately identify
the breathing and the non-breathing cycles. We also observe
that the respiration pattern repeats in deeper layers due to the
multiple bounces. In Fig. 6, we have the complex baseband
representation of the recovery results for the transmitted wave-
form in frequency domain. We observe that both approaches
recover a bandlimited waveform.

V. CONCLUSION

In this paper we formulated the problem of jointly recov-
ering the transmitted pulse along with the impulse response
representing the tissue profile. We derived convex and non-
convex formulations for this bilinear problem and introduced
constraints to avoid ambiguities and trivial solutions. We
evaluated the performance of the proposed approaches using
expereiments with simulated and measured data. For future
research, we aim to establish theoretical guarantees for the
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proposed convex formulations and study the sample complex-
ity in terms of the number of snapshots and measurements
to successfully recover the unknown signals. Furthermore, we
aim to extend the lifting framework proposed in [17] to encode
the structure present in our problem. Finally, we are interested
in analyzing the non-convex formulation of the sparse blind
deconvolution problem and study the geometry and establish
properties of the local optima following recent work presented
in [15].
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