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Global-scale energy flow throughout Earth’s magnetosphere is catalyzed by processes

that occur at Earth’s magnetopause (MP). Magnetic reconnection is one process

responsible for solar wind entry into and global convection within the magnetosphere,

and the MP location, orientation, and motion have an impact on the dynamics. Statistical

studies that focus on these and other MP phenomena and characteristics inherently

require MP identification in their event search criteria, a task that can be automated

using machine learning so that more man hours can be spent on research and analysis.

We introduce a Long-Short Term Memory (LSTM) Recurrent Neural Network model to

detect MP crossings and assist studies of energy transfer into the magnetosphere. As

its first application, the LSTM has been implemented into the operational data stream of

the Magnetospheric Multiscale (MMS) mission. MMS focuses on the electron diffusion

region of reconnection, where electron dynamics break magnetic field lines and plasma

is energized. MMS employs automated burst triggers onboard the spacecraft and a

Scientist-in-the-Loop (SITL) on the ground to select intervals likely to contain diffusion

regions. Only low-resolution survey data is available to the SITL, which is insufficient to

resolve electron dynamics. A strategy for the SITL, then, is to select all MP crossings. Of

all 219 SITL selections classified as MP crossings during the first five months of model

operations, the model predicted 166 (76%) of them, and of all 360 model predictions,

257 (71%) were selected by the SITL. Most predictions that were not classified as

MP crossings by the SITL were still MP-like, in that the intervals contained mixed

magnetosheath and magnetospheric plasmas. The LSTM model and its predictions are

public to ease the burden of arduous event searches involving the MP, including those

for EDRs. For MMS, this helps free up mission operation costs by consolidating manual

classification processes into automated routines.

Keywords: magnetosphericmultiscale (MMS), scientist in the loop (SITL), burst datamanagement, magnetopause,
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1. INTRODUCTION

Earth is a strongly magnetized planet whose internal dynamics
are largely influenced by its interaction with the solar wind
and the resulting cycle of magnetic reconnection (Dungey,
1961). Reconnection occurs initially at the magnetopause (MP),
at the interface between the shocked solar wind and Earth’s
magnetosphere (MSP), in what is known as the electron
diffusion region (EDR). The EDR had been enigmatic, with
few direct observations (Nagai et al., 2011, 2013; Scudder
et al., 2012; Tang et al., 2013; Oka et al., 2016) because
spacecraft lacked the spacial and temporal resolution to resolve
electron-scale dynamics. These limitations were overcome by the
Magnetospheric Multiscale (MMS) mission. Leading up to its
launch, so little was known about the EDR that it was unclear
how or if EDRs could be identified in the data, which led to
speculation into the best EDR indicator (Mozer, 2005; Scudder
and Daughton, 2008; Scudder et al., 2008; Zenitani et al., 2011;
Aunai et al., 2013; Hesse et al., 2014; Swisdak, 2016). Since launch,
however, MMS has identified more than 50 EDRs (see Webster
et al., 2018 for a partial list) and greatly expanded our knowledge
of what catalyzes the global reconnection cycle.

To do this, MMS made significant efforts to capture enough
of the right data to achieve its mission goals. The amount of
high time resolution burst data recorded onboard is such that
only about 4% can be downlinked. We present the first machine
learning (ML) model that has been fully implemented into the
mission operation’s data flow in order to ensure that the selected
4% of burst data is able to address MMS science objectives (Burch
et al., 2016; Torbert et al., 2016). Our efforts help to transfer
mission operations resources to science and to work around
external constraints to advance our understanding of energy flow
within the MSP.

MMS is not the only mission to face data limitations. Missions
such as WIND, THEMIS, Cluster, STEREO, and others have
burst mode schemes that operate only when triggered. Some
burst modes are triggered on a pre-determined duty cycle, while
others are triggered on an instrument-by-instrument basis when
on board measurements meet certain criteria. Still others are
coordinated among multiple or all instruments. While burst
modes and their triggers are mentioned in the instrumentation
literature, details about the algorithms and the criteria behind
them are mostly omitted, and their efficacy is largely unknown.
Some WIND and THEMIS triggers used to detect plasma
boundaries are described by Phan et al. (2015). Triggers used on
STEREO for shock detection, their evolution, and their efficacy
are documented in Jian et al. (2013). The MMS mission, driven
by the large data volumes required to study electron dynamics at
Earth’s MP, is the first to fully document its burst system from the
beginning of the mission. In this paper, we describe our efforts to
build upon the early mission design work in order to automate
the burst data selection process.

The MMS burst management system consists of the
automated burst system (ABS) that selects burst intervals by
passing 10 s averaged trigger data numbers (TDNs) to on-
board tables that set the burst trigger criteria (Baker et al.,
2016; Fuselier et al., 2016), and a human Scientist-in-the-Loop

(SITL) who examines all of the low-resolution survey data,
and who manually selects and classifies burst intervals. Survey
data, however, is insufficient to resolve electron dynamics. A
strategy for the SITL, then, is to select all MP crossings.
This has resulted numerous EDR encounters but is labor- and
resource-intensive; after manual reclassification, just ∼0.7% of
MP crossings, or∼0.0001% of the mission lifetime duringMMS’s
first two years contained an EDR. Such challenges were foreseen
when designing the ABS and SITL selection processes and it
was envisioned that automated algorithms would supplement or
replace them. Algorithms that use the survey data available to
the SITL on the ground fit into the “ground loop.” Presented
below are the design, implementation, and results of the first
ground loop.

Most applications of ML to magnetospheric physics problems
to-date have been geared toward the prediction of catastrophic
events, including geomagnetically induced currents (Wintoft
et al., 2015) that threaten power grids, solar energetic particles
that threaten space assets (Boubrahimi et al., 2017), and
geomagnetic indices (Lundstedt, 1997; Borovsky, 2014; Bhaskar
and Vichare, 2019) that indicate when global geomagnetic
activity could lead to such events. Most methods associate
upstream conditions at L1 to those at geosynchronous orbit or
on the ground because of the continuous data coverage linking
upstream and downstream conditions. Unfortunately, because
such models lack knowledge of processes internal to the MSP
(e.g., Bhaskar and Vichare, 2019), they tend to suffer precisely
during the extreme events they are trying to predict. Space
weather prediction can be improved by creating several ML
models with knowledge of specific aspects of magnetospheric
dynamics. We later describe how several MMS ground loops
could be combined to identify complex geomagnetic processes
and support special science campaigns.

The primary science goal of MMS is to study electron
dynamics associated with magnetic reconnection. However,
because electron dynamics are not resolved in the survey data,
the strategy employed by the SITL during the dayside phase is
to select all MP crossings, a prominent location for magnetic
reconnection (Phan et al., 2015). Past attempts to identify the
MP in an automated fashion used gradients in plasma parameters
such as density or ion flux (Boardsen et al., 2000; Phan et al.,
2015). Other methods introduce machine learning to identify
the MP indirectly by classifying topologically distinct regions
then locating the transition between them. The solar wind,
magnetosheath, and magnetosphere were identified by applying
probability functions (Jelínek et al., 2012) and support vector
machines (da Silva et al., 2020) to ion density and temperature
data, 3D convolutional neural network to 3D ion distribution
functions (Olshevsky et al., 2019), and random forests to
magnetic field and plasma data (Nguyen et al., 2019). The MP
is then inferred as the boundary between the MSH and MSP.
We present the first model specifically trained to identify MP
crossings, thereby automating the primary SITL task.

It is clear from the number of MP classifiers above that
identifying the MP is important not just for the SITL. The MP
is the primary location of mass, momentum, and energy transfer
into Earth’s magnetosphere. Because of this, many statistical
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TABLE 1 | Guidelines used during Phase 5A (30 September 2019 through 24 November 2019) specifying how the SITL should classify magnetopause crossings.

Event type FOM category Data signatures/Notes

Complete high magnetic shear

magnetopause crossing

1 (1− if very long crossing

or low-shear)

Full density gradients and full magnetic field rotations, includes separatrix and exhaust

boundary

Magnetopause diffusion region candidate 1+ Reversals of high speed jet and B normal during magnetopause crossing

Magnetopause diffusion region candidate 1+ Magnetopause without boundary layer. At current sheet center: positive sunward

pointing normal electric field. (Such events can be difficult to identify in SITL data)

Magnetopause: Kelvin-Helmholtz induced

current sheet

2 Quasi-periodic magnetic field and density oscillations, field direction changes. Can

select a long interval (tens of minutes) if spectacular

Magnetopause: FTE 2 Bipolar B normal and strong enhancement of |B|

Magnetopause: partial crossings 2 Incomplete B rotation and density transition (i.e., not reaching magnetospheric levels)

Boundary layer traversals 3- Excursion into the boundary layer, characterized by magnetosphere B and slight

increase in density and appearance of magnetosheath ion population

Events in categories 1–4 are given FOMs of 150–199, 100–149, 50–99, and 0–49, respectively. A “+” or “–” after a given category indicate a selection at the upper- or lower-range of

the category. FOMs ≥ 200 are reserved for special events, such as calibration intervals or a definitive EDR encounter.

studies have focused on MP properties (Paschmann et al., 1993;
Phan and Paschmann, 1996); MP processes like flux transfer
events (Fear et al., 2012), Kelvin-Helmholtz instabilities (Kavosi
and Raeder, 2015), velocity rotation events (Matsui et al., 2019),
impulse events, and kinetic Alfvèn waves (Wing et al., 2014); and
creating MP models (Boardsen et al., 2000; Jelínek et al., 2012).
Statistical studies such as these traditionally require arduous
event searches. Automated algorithms and event lists can be used
as a first-step data filter to make searches less burdensome. For
this reason, our model and its predictions are publicly available
for use in future studies (Argall et al., 2020a; Small et al., 2020).

This paper serves two purposes: (1) to document the burst
management system and infrastructure and (2) demonstrate the
performance of the first ground loop ML model. It is outlined as
follows. First, the systems for making burst selections, including
the SITL, ABS, and GLS, are described in section 2. Next, an
overview of the tools and processes developed to support the GLS
infrastructure is provided in section 3. Then, a description of the
data is given in section 4 and the model in section 5. In section
6, we present the model results and performance. Section 7 is
the Discussion, and section 7.1 outlines the GLS Hierarchy, a
framework needed to fully automate the SITL selection process.
Finally, a summary is given in section 8. Those interested in only
the model and its results are referred to sections 5 and 6.

2. BURST MANAGEMENT SYSTEMS

MMS burst memory management consists of three systems for
selecting intervals of burst data for downlink: the Scientist-in-
the-Loop (SITL), the Automated Burst System (ABS), and the
Ground Loop System (GLS).

2.1. Scientist-in-the-Loop
The SITL is a role that rotates among MMS team members.
Currently, there are 73 participating SITL scientists that have
made selections on over 1,090 orbits of data. Each orbit
contains Sub-Regions of Interest (SROIs) that encompass the
most probable MP location, the bow shock, and other regions
of scientific interest. SITLs make selections from the SROIs

within a SITL window, a timeframe in which the MMS satellites
make contact with ground-based radio communication network
and incrementally downlink data. Data is passed through to
the Science Data Center (SDC) (section 3.1) where preliminary
calibrations are applied and the data is made available to the SITL.
The SITL then uses the EVA tool (section 3.2) to interactively
select data intervals for downlink.

SITLs follow guidelines set by mission PIs and Super SITLs
(SITLs with super-user privileges) to help standardize the
selection process. Those related to the MP are provided in
Table 1. Each selection is given a Figure of Merit (FOM), a
ranking between 0 and 255 split into five categories, to prioritize
which selections are downlinked first. Priorities change based on
the type of MP crossing. For example, complete, high-shear MP
crossings receive a category 1 ranking (FOM 150–199), indirect
reconnection signatures such as FTEs receive a category 2
ranking (FOM 100–149), and boundary layer encounters receive
a category 3 ranking (FOM 50–99). Using these guidelines, the
SITL makes a median of 30 selections per orbit, with a maximum
to-date of 200 selections in a single orbit. The time spent by
the SITL in making such selections can be saved by automating
the process.

2.2. Automated Burst System
The ABS applies configurable tables of weights and offsets to 10 s
averaged burst quantities from each instrument, named Trigger
Data Numbers (TDNs), to assign a Cycle Data Quality (CDQ)
index to each 10 s buffer of burst data. The four CDQ values
provided by the four spacecraft are downlinked, multiplied by
another weighting factor, then summed to provide an overall
Mission Data Quality (MDQ) index. The MDQ index is used to
prioritize data for download (Fuselier et al., 2016).

There are 34 TDN terms available to the ABS. Early in
the mission, the system was configured to look only for large
changes in the magnetic field Bz component. Reconnection
events identified by scientists during the first 2 years of the
mission have subsequently been used to determine which of the
TDNs efficiently parameterize reconnection and to determine
their relative importance.
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For the dayside magnetopause, a set of six parameters is now
employed in the search for reconnection. These involve changes
in the magnetic field components, the electric field wave power,
the electron pressure, and the ion density. The parameters and
their corresponding weights were determined based on their
ability to select the 32 intervals that contained potential dayside
EDRs identified by Webster et al. (2018). The ABS as it is now
configured would have selected 31 of the 32 (Webster et al.,
2018) events for download with efficiency comparable to that of
the SITL.

For the magnetotail, a different set of parameters is used. Six
trigger terms that respond strongly to reversals of the magnetic
field and bulk velocity were identified in data acquired during the
2017 magnetotail phase of the mission. Weights and gains were
optimized through linear regression. The resulting ABS tables
currently in use would have captured two well-substantiated
magnetotail EDR encounters (Torbert et al., 2018; Zhou et al.,
2019) with total download of burst intervals equivalent to the
actual number of SITL selections.

2.3. Ground Loop System
The GLS is designed to be a system of ML or empirical models
that automate the event classification process using all of the data
available to the SITL. Data available to the SITL is of restricted
use because it is lower quality that the Level-2 science-quality
data freely available to the public. ML models trained on SITL
data, such as the MP model described in this manuscript, may
not perform as well when applied to Level-2 data. And, vice
versa, a model trained using Level-2 data may under-perform if
incorporated into the GLS.

The first GLS model (section 5) uses the text description given
to each burst selection by the SITL as the ground-truth manual
classification for training purposes. To encourage expansion of
the GLS, our model development notebooks (Small et al., 2020)
can generate additional models simply by changing the text filter
(e.g., replace “Magnetopause” with “Dipolarization Front”). SITL
classifications significantly reduce the time required to train a
supervised learningmodel, and the variety of selections made can
facilitate a hierarchical ground loop infrastructure (section 7.1),
thereby reducing the burden of the SITL and allowing them to
spend more time looking for new science.

3. INFRASTRUCTURE AND TOOLS

3.1. Science Data Center
The MMS Science Data Center (SDC) is a collection of virtual
machines and software applications that collectively support the
science data processing and data access requirements for the
MMS mission. It has been running since mission launch in
March 2015 and currently manages a collection of over 11million
science data files accessible to MMS mission team members and
4 million files available to the public.

One of the key activities for the GLS is the ability to process
the data used as input to the ground loop prediction models. This
activity starts with a fixed time schedule or an external event set
to trigger a science data processing job. The event sets relevant
to the GLS are Deep Space Network (DSN) contacts that transfer

spacecraft telemetry data to a ground station. The ground station
transfers the raw data files to a NASA facility which then uploads
them to the LASP Payload Operations Center (POC), where they
are ingested to a raw telemetry database. A spacecraft-specific
processing task is scheduled at the end of each DSN contact,
delayed enough to allow the various data transfer and ingest
tasks to complete. Each MMS instrument has a set of associated
processing tasks for different data rates (survey vs. burst) and data
levels. Processing tasks for the SITL ground loop are associated
with survey data and the lowest data levels.

The GLS model-evaluation task is delayed an additional
amount to allow completion of the various science data products
that it needs to evaluate the model. Each GLS job produces a
csv file containing the time range and FOM for each of the
automated selections. A dropbox manager transfers the ground-
loop selections into main SDC storage and indexes it for web-
service access by the remote scientist’s EVA tool (section 3.2).
The EVA tool can then plot the ground-loop selections alongside
those of the ABS and the science data products, allowing the SITL
to make informed selections.

The SITL must make selections within 12 hr of observation
time to ensure that spacecraft commands used to “lock”
the selected memory buffers are received before valuable
observations are overwritten by newer ones. Although current
MMS orbit periods are about 84 hr, spacecraft memory can hold
only about 48 h of burst data. The spacecraft contacts have
variable schedules and cannot be optimized just for MMS. The
SDC completes the GLS processing within about 2 h of the end of
each DSN contact, well within required time limits.

The SDC mails reports to a broad team of experienced
MMS SITL scientists, allowing review and comment on the
latest selections. If it becomes practical to make fully automated
selections based on algorithmic analysis, the SDC could short-
circuit the human loop and transfer GLS results directly to the
POC without human intervention.

3.2. EVA
EVA is a graphical user interface (GUI) designed specifically for
the MMS/SITL activity and provided as a part of the MMS plug-
in for the Space Physics Environment Data Analysis Software
(SPEDAS) package (Angelopoulos et al., 2019). SPEDAS is a
software package for the IDL language that provides scripts for
convenient plotting of spacecraft time series data and particle
distributions. The MMS plugin includes the EVA GUI software,
as well as software routines to load and plot data from every
instrument onboard MMS. The main functions of EVA are to:

1. Load and display reduced-resolution, survey data for the
entire duration of Region-of-Interest (ROI)

2. Help the SITL to identify and prioritize scientifically-valuable
time ranges for downlinking the full-resolution burst data, and

3. Send the list of selected time ranges and their FOMvalues back
to SDC for commanding.

A key feature of EVA is that it provides some pre-defined
parameter sets. Parameter sets consist of data products frequently
used by the SITLs (many are listed in Table 2) in combinations
tailored to individual instruments, specific investigations, or
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TABLE 2 | Features used for the development and application of the GLS magnetopause model.

Instr. Feature Description

AFG

1–3 (Bx , By , Bz ) X, Y, and Z-components of the magnetic field in DMPA coordinates

4 |B| =
√

B2
x + B2

y + B2
z Magnitude of the magnetic field

5 Q1Bx Quality value for Bx

6 PB = |B|2/µ0 Magnetic pressure

7 θC = arctan (By/Bx ) Clock angle.

EDP

8–10 (Ex , Ey , Ez ) X-, Y-, and Z-component of the DC electric field in DSL coordinates

11 |E| =
√

E2
x + E2

y + E2
z Magnitude of the electric field

DIS

12–42 Ei Omni-directional energy spectrogram

43 Ni Number density

44–45 (Vi,x , Vi,y ) Bulk velocity in DBCS coordinates

46–47 (Qi,xx , Qi,yy ) Heat-flux vector in DBCS coordinates

48–49 Ti,‖, Ti,⊥ Parallel and perpendicular temperatures

50–55 Pi Upper diagonal elements of pressure tensor in DBCS coordinates

55–60 Pi Upper diagonal elements of pressure tensor in DBCS coordinates

61 Ai = Ti,‖/Ti,⊥ − 1 Temperature anisotropy

62 Ti = (Ti,‖ + 2Ti,⊥)/3 Scalar temperature

63 Q1Ni Quality value for Ni

64 Q1Vi,z . Quality value for the Vi,z

65 Q1Ni |Vi |. Quality value for ion ram pressure

DES

66–97 Ee Omni-directional energy spectrogram

98 Ne Number density

99–100 (Ve,x , Ve,y ) Bulk velocity in DBCS coordinates

101–102 (Qe,xx , Qe,yy ) Heat-flux vector in DBCS coordinates

103–104 Te,‖, Te,⊥ Parallel and perpendicular temperatures

105–110 Pe Upper diagonal components of pressure tensor in DBCS coordinates

111–116 Pe Upper diagonal components of pressure tensor in DBCS coordinates

117 Ae = Te,‖/Te,⊥ − 1 Temperature anisotropy

118 Te = (Te,‖ + 2Te,⊥)/3 Scalar temperature

119 pe = (Pe,xx + Pe,yy + Pe,zz )/3 Scalar pressure

120 Q1Ne Quality value for Ne

121 Q1Ve,z Quality value for Ve,z velocity

Multiple

122 γ1 = Ti/Ti Custom feature

123 γ2 = 2Ti/|E| Custom feature

Post-processing on the ground allows the raw data to be partially calibrated and expanded into a richer dataset than is available on the spacecraft. The model makes use of most data

available to the SITL plus metafeatures that were used as burst triggers for previous missions.

regions of space. For example, there are parameter sets for
the magnetopause, magnetotail, bow shock, and solar wind.
By selecting a specific parameter set, in addition to the
desired spacecraft ID, date, and time period, a SITL scientist
can go straight to the task of viewing data needed for
the SITL activity.

Parameter sets are displayed as tiles of time-series data
in an interactive window in which the SITL can add, edit,

and delete burst selections. In the earlier phases of the
mission, EVA would append an ABS selections panel to
the bottom of the window and the SITL scientist would
manually adjust them while inspecting the data. Today,
ground loop selections are also available to better guide
the SITL in their selection process. This helps reduce
personal bias when selecting similar phenomena, such as
MP crossings.
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FIGURE 1 | The GLS magnetopause model is an example of a supervised learning model that made use of data labeled previously by the SITL for training and

testing. Applying historical SITL labels to preprocessed data significantly reduce the time needed for model development.

3.3. PyMMS
PyMMS (Argall et al., 2020b) is a software package written in
Python and freely available on GitHub and PyPI that makes full
use of theMMS SDC’s data API. It is able to download instrument
data (including both SITL and L2 quality data), as well as the
ABS, GLS, and SITL selections. The SITL provides an ASCII text
description of each burst interval that they select, which can be
easily downloaded and searched with PyMMS to train supervised
learning models. The GLS model described in this paper (section
5) was trained in this way.

Note that the SITL, GLS, or ABS selections can be submitted
multiple times (section 3.1), often with changes, so the available
selections files have duplicate and overlapping entries, and may
not necessarily be in chronological order. Also, because of
downlink and storage limitations, selections of long duration
are broken into smaller chunks. PyMMS has tools to deal with
these issues.

4. DATA

The flow of data used to train the MP model is shown in
Figure 1. The SDC provides data from the Analog Fluxgate
(AFG) magnetometer (Russell et al., 2014), the Electric field
Double Probes (EDP) (Ergun et al., 2014; Lindqvist et al., 2014),
and the Fast Plasma Investigation (FPI) Dual Ion Spectrometer
(DIS) and Dual Electron Spectrometer (DES) (Pollock et al.,
2016). Fast survey data from each instrument was subjected
to a preliminary set of calibrations to produce SITL-quality
data, which is suitable for making informed decisions about
burst selections but not for deep scientific scrutiny. This is

necessary because of the urgency with which selections need
to be made.

From these products, the 123 features listed in Table 2 were
chosen to be inputs into the ML model. Most are standard
products from the instruments, such as the B and E fields
and their magnitudes, and the plasma energy spectrograms and
moments. Others, like the temperature anisotropy, the custom γ

values, and the Q1 values are metafeatures, features computed
from the standard features. The Q1 features are gradient-based
trigger terms used on Wind and THEMIS, and are calculated as
Q1x = |x−x̄|, where x̄j+1 = [x̄j(2M−1)+xj]/2M , andM = 2 sets
the amount of smoothing (Phan et al., 2016). This set of features
represents a large portion of the data available to the SITL.

It is worth noting that all features listed in Table 2 are
calculated from single spacecraft data; in this case, MMS1. This
was done primarily for three reasons: (1) contact times for data
downlink are variable so data from multiple spacecraft is not
guaranteed, (2) orbit configurations can change; spatial gradients
valid in a tetrahedron configuration are not be valid in a strong
of pearls, and (3) events may occur at different times for different
spacecraft, especially in a string of pearls. If the model does
not produce satisfactory results for other spacecraft, or if an
instrument on MMS1 experiences a problem that invalidates any
of the features in Table 2, the model can be retrained.

Data from 1 January 2017 to 30 January 2017 were used to
train the model. During this time period, MMS had a single
SROI keyed on apogee (8 < XGSE < 12RE); apogee was
at 12RE geocentric distance and was located near the subsolar
point (−6 < YGSE < 0RE). The amount of training data was
limited by resources on the platform onwhichmodel training was

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 September 2020 | Volume 7 | Article 54



Argall et al. MMS SITL Ground Loop

FIGURE 2 | Evolution of the non-linearity and time-dependence of neural network models that make up the bidirectional Long Short Term Memory GLS

magnetopause model.

performed. Once downloaded, all data outside of the intervals
selected and labeled by the SITL were discarded to ensure the
accuracy of the ground truth. The data was then interpolated
onto the 4.5 s cadence of the FPI fast survey data products, then
scaled and regularized. Because of an imbalance between the
number of measurements that were selected as MP crossings
compared to those that were not, class weights were applied to the
“MP” and “not MP” classified data. We normalized all features
with standardization, calculated as x′ = x−x̄

σx
, where x is the

original vector for a given feature, x̄ is the average of that vector,
and σx is its standard deviation. This method of normalization
is widely used in machine learning applications to boost the
performance of the model’s gradient descent while learning.
Finally, each orbit was broken down into consecutive sequences
of 250 measurements to reduce computational complexity. Of all
such sequences, 80% were used for training and 20% were used
for testing.

5. GLS MAGNETOPAUSE MODEL

We develop an ML model that aids and automates a key task
performed by the SITL. Using the same low-resolution data as
the SITLs, we identify time intervals that are likely to contain
MP crossings. The ML models are trained using historical data
annotated by SITL selections. The input is a low-resolution (4.5 s)
time sequence of the data quantities outlined in Table 2. The goal
is to predict, for each data point at time t, whether the particular
4.5 s interval would be selected by the SITL as an MP event.

Our machine learning model is based on neural networks
(NNs) (Goodfellow et al., 2016). A conceptual understanding
of the MP model is built up from the NNs shown in Figure 2.
The most simple of NNs is a perceptron, which takes a linear
combination of the input features, xi, for a given time sample
and passes the results through a sigmoid (“S” -shaped) activation
function that maps the result to the interval [0, 1] to predict

the output. Training occurs via backpropagation, a process by
which the error in the prediction is used to adjust the weights
applied to the inputs, usually via some gradient of the sigmoid
function. After iterating, the NN output, y, converges to a
“yes” or “no” prediction. Perceptrons identify linear relationships
between inputs and outputs.

Feed Forward NNs (FFNNs), Recurrent Neural Networks
(RNNs), and Long-Short Term Memory (LSTM) Neural
Networks evolve the perceptron to learn more complex, non-
linear concepts. FFNNs do so by adding hidden layers whose
weights determine the relationship between the input features
themselves. They are trained via backpropagation in the same
way as perceptrons. Like perceptrons, FFNNs make predictions
using data from a single time sample. RNNs take the output
of a FFNN at time t−1 and combine it with the input
of the FFNN at time t0, thereby incorporating the context
inherent to time series data. Training backpropagates errors
not only through the hidden layers, but also through time.
Vanishing gradients in long prediction chains cause RNNs to
have short-term memory. LSTMs create long-term memory
by applying gates to information carried forward from past
predictions. Our model uses an adaptation of the LSTM to
identify MP crossings.

The GLS MP model is composed of two bidirectional LSTM
layers (Goodfellow et al., 2016), as depicted in Figure 3. The
output activation functions are hyperbolic tangents and the
recurrent activation functions passed to units in t+1 and t−1

time steps are logistic. Each LSTM layer is followed by a
drop-out layer with a drop probability of 0.4 as a means of
forgetting information. Dropout layers help to reduce over-
fitting when training the network (Srivastava et al., 2014). The
output layer is a single unit with a logistic (sigmoid) activation
function. The LSTM’s output is passed through a threshold filter
before contiguous segments of selected points are grouped to
form selections.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 7 September 2020 | Volume 7 | Article 54



Argall et al. MMS SITL Ground Loop

FIGURE 3 | The Architecture of the GLS magnetopause model mimicks how scientists interpret data. It makes decisions by placing data in the context of past and

future observations.

Contiguous data points with positive predictions are
combined to determine the time interval and duration of a
suspected MP crossing. These suspected MP crossings are then
presented to SITLs during their selection process to quicken,
improve, and ultimately replace the manual selection process.
Figure 1 shows a graphical representation of the data flow in our
proposed automated SITL model. Data is downloaded from the
SDC using PyMMS (section 3.3) and is pre-processed (section 4)
before being fed to our model to identify predicted MP crossings.
These predictions are saved to csv files and stored on the SDC’s
servers until finally transferred to the EVA team for a SITL to
view when making selections.

The training and validation data, notebook used to create the
model, as well as the weights, scaling parameters, and notebook

to run the model are publicly available (Argall et al., 2020a;
Small et al., 2020). Both notebooks have a flag to switch between
SITL-quality and science-quality data, and the model creation
notebook can easily be modified to generate a new model for any
SITL-classified event type. Additional details about the model,
threshold filter, and the hardware the model was trained on can
be found in the Supplementary Material.

6. RESULTS

6.1. Case Studies
On 19 October 2019, the model was installed and executed at
the SDC for the first time and has been providing guidance
to the SITL ever since. By this time, MMS apogee was near
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FIGURE 4 | Burst selections made by three different SITL scientists surrounding the magnetopause crossings of three separate orbits. Just as the SITLs have different

opinions on how and what to select, and with what FOM value, so too do the GLS and ABS.

25RE geocentric distance and had transitioned from one SROI to
three SROIs to capture the inbound and outboundmagnetopause
crossings (SROI1 and SROI3), and a segment of the solar wind
(SROI2). Figure 4 shows MP crossings from SROI1 on orbits
1055 (left) and 1058 (center), and SROI3 on orbit 1075 (right),
along with the selections made by the ABS, GLS, and SITL. The
MP is identified in the ion and electron energy spectrograms
(panels 1 and 2) as the transition between the hot, tenuous
plasma of themagnetosphere and the colder, denser plasma of the
magnetosheath. MMS transitions outward from the MSP to the
MSH in SROI1 and inward from the MSH to the MSP in SROI3.
During the transition, the MSH and MSP plasmas are observed
simultaneously, Bz (panel 3) often changes sign, and the density
(panel 4) transitions from ∼1 cm−3 in the MSP to > 10 cm−3

in the MSH. SITL selections for these intervals are displayed in
the bottom panel while the SITL-provided description of each
selection is given in Table 3. Panels 5 and 6 show similarities
and differences between the time intervals and FOM values of
selections made by the SITL and those made by the ABS and GLS.

Orbits 1055 and 1058 SROI1, and orbit 1075 SROI3 were
chosen because of the presence or absence of GLS and ABS
selections. Orbit 1055 SROI1 consisted of three full and one
partial MP crossings as the MP moved back and forth over the
spacecraft during the 1.5 hour interval shown. Both the ABS

and GLS made selections similar to the SITL, but with notable
differences. First, whereas the SITL selected a large portion
of the MSP and MSH on either side of the MP to provide
relevant contextual information, the ABS and GLS selections
were more focused on the MP transition. In this case, they are
under-selecting when compared to the SITL, but are correctly
identifying the MP (i.e., they are not classifying the surrounding
MSP and MSH as the MP like the SITL did). Second, the GLS
makes a selection at∼2,022 that the SITL does not. This selection
represents a typical false-positive for the GLS despite the fact that
the interval is MP-like in that the MSP and MSH plasmas are
observed simultaneously and the plasma density is higher than
the MSP proper. So, while differences exist between the SITL,
ABS, and GLS, those differences are often subtle, and similar
differences also exist between selections made by different SITL
scientists. We consider the SITL to be the ground truth for the
sake of model validation; however, operationally the GLS acts as
a co-SITL with its own suggestions for what should be selected.

During orbit 1058 SROI1, the SITL selected intervals
containing cold ions (∼0722–0722), the boundary layer (∼0744–
0820), an MP crossing (∼0823–0845), and a flux transfer event
(∼0839–0841; see Table 3). None of these intervals were selected
by the ABS but the GLS captured most of them. In particular,
the intervals marked “cold ions” and “boundary layer’’/‘‘BL” were
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TABLE 3 | Selections made by the SITL during the intervals shown in Figure 4.

Orbit Date Start End FOM Description

1055 2019-11-05 19:27:03 19:38:23 150 Lower shear full magnetopause crossing with Vz flow reversal

1055 2019-11-05 19:52:53 19:59:43 150 Full lower shear magnetopause crossing

1055 2019-11-05 19:59:53 20:09:03 125 Partial magnetopause crossings with deep B-minima

1055 2019-11-05 20:26:43 20:34:33 150 Full low-shear

1058 2019-11-16 07:22:33 07:31:23 35 Cold ions

1058 2019-11-16 07:38:23 07:39:13 200 FPI Burst Cal - Segment 2 (1058) - H2 - MSP

1058 2019-11-16 07:44:23 07:59:03 35 Boundary layer

1058 2019-11-16 08:01:33 08:02:23 200 FPI Burst Cal - Segment 3 (1058) - H2 - MSP

1058 2019-11-16 08:07:13 08:10:43 70 BL Traversal

1058 2019-11-16 08:10:53 08:12:23 35 Additional context between BL traversals

1058 2019-11-16 08:12:33 08:14:33 70 BL Traversal

1058 2019-11-16 08:17:13 08:19:33 70 BL Traversal

1058 2019-11-16 08:19:43 08:22:43 35 Additional context between boundary layer traversal and MP Crossing

1058 2019-11-16 08:22:53 08:34:53 175 Full MP potentially with a jet

1058 2019-11-16 08:35:03 08:38:23 175 Continuation of FULL MP

1058 2019-11-16 08:38:33 08:39:03 35 Additional context between MP and FTE

1058 2019-11-16 08:39:13 08:41:03 80 FTE

1075 2020-01-17 20:00:13 20:01:43 105 Magnetosheath IMF rotation with bifurcated signature - unresolved exhaust

1075 2020-01-17 20:02:23 20:02:53 125 Potential magnetosheath flux rope

1075 2020-01-17 20:08:43 20:13:03 175 High-shear complete MP

1075 2020-01-17 20:13:13 20:15:23 125 Partial MPs with Vz < 0 jetting

1075 2020-01-17 20:15:33 20:15:53 45 Fill

1075 2020-01-17 20:16:03 20:17:23 125 Partial MPs

1075 2020-01-17 20:17:33 20:18:33 45 Fill

1075 2020-01-17 20:18:43 20:20:23 125 Partial MPs

1075 2020-01-17 20:20:33 20:21:33 45 Fill

1075 2020-01-17 20:21:43 20:24:23 125 Partial MPs

1075 2020-01-17 20:24:33 20:25:23 45 Fill

1075 2020-01-17 20:25:33 20:26:33 125 Partial MPs

“Partial”, “low-shear”, “high-shear”, “full”, and “complete” refer to classes of MP crossings that receive different FOM values. By selecting a “fill” interval at low-FOM, the SITL provides

context to adjacent events that is saved on board and can be increased to higher FOM later by a Super-SITL. “FPI Burst Cal” = calibration, “FTE” = flux transfer event.

selected by the GLS because they show signs of mixing of MSP
and MSH plasmas, as occurs at the MP. Such selections are
similar in nature to the false positive shown in orbit 1055 SROI1.

Orbit 1075 SROI3 is one in which the SITL and ABS select the
MP but the GLS does not. The SITL selects a complete, high-shear
MP crossing at 2010 UT followed by several partial crossings
(Table 3), as well as reconnection-like signatures in theMSHnear
2000 UT. The ABS also selects the high-shear crossing but only
some of the partial crossings. It also captures the reconnection
signatures in the MSH. For this time interval, the ABS over-
selects in the MSH and under-selects at the MP. As for the GLS,
further testing on this interval reveals that the GLS does select the
MP if the LSTM model is run on a limited interval surrounding
the MP, as opposed to the entire SROI. More generally, the GLS
selects the majority of MP crossings during all SROI1 intervals
but very rarely selects MP crossings during SROI3. These two
facts could indicate that the training and validation sets need to
be expanded to include data from a time period when MMS had
three SROIs.

6.2. Statistical Study
To more broadly assess model performance, we make
comparisons between the GLS, SITL, and ABS for all selections
made in SROI1 between 19 October 2019 and 25 March 2020.
Figure 5 is a Venn diagram depicting (a) the number of GLS
and ABS selections that have at least partial overlap with all
SITL selections and (b) only those SITL selections that were
identified as MP crossings. More detailed histograms showing
the two-way overlap between SITL and GLS, SITL and ABS,
and GLS and ABS are included in Figures S1–S3 for SROI1,
SROI3, and SROIs1 and 3, respectively. Such comparisons take
into account partial- and multiple-overlaps between SITL and
GLS selections, something not possible with the more traditional
precision, recall, and F1-score metrics (Tatbul et al., 2018)
presented in section 6.3.

6.2.1. SITL-GLS Comparison

Most selections made by the GLS are of interest to the SITL, but
the GLS is selecting more than just MP crossings. Of the 360
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A B

FIGURE 5 | A comparison of SITL, GLS, and ABS segments from SROI1 that takes into account the range-based nature of event selection intrinsic to time series

data. (A) Considers all SITL selections whereas (B) includes only SITL-classified magnetopause selections.

GLS selections, 257 (71%) were also selected by the SITL and
176 (49%) were classified as MP crossings by the SITL. At first
glance, the latter might seem low for a model that was trained
to select MP crossings. This can be explained partly because
the SITL is aware of external control factors such as telemetry
restrictions, and partly because some GLS segments are MP-like
but are not classified as MP crossings by the SITL, as was the case
for segments in orbits 1055 and 1058 SROI1 (Figure 4). Such
selections include intervals that exhibit plasma mixing between
theMSP andMSH. They also include bow shock crossings, which
have field and plasma gradients similar to those present during
MP crossings. While not MP crossings, these extra selections
made by the GLS are still of interest to the SITL, as indicated by
the larger number of overlapping segments when all of the SITL
selections are included.

Again, because of the possibility of partial and multiple
overlaps in time series selections, the inverse relationship relating
the number SITL selection also selected by the GLS can only
be qualitatively inferred (for a quantitative comparison, see
Figures S1–S3). On one hand, the GLS selections represent only
a small percentage (30%) of all SITL selections. On the other
hand, the majority of SITL MP crossings (78%) are selected by
the GLS. Machine learning models, therefore, are an effective
means of automating subsets of SITL functions outlined in the
SITL guidelines. Later (section 7.1), we discuss how multiple
GLS models can be combined to assimilate more of the manual
classification tasks.

6.2.2. SITL-ABS Comparison

Next, we compare the ABS to all SITL selections (Figure 5A)
and to only those SITL selections that were classified as MP
crossings (Figure 5B). The SITL selects 229 of 278 ABS segments,
a larger percentage (82 vs. 71%) than GLS segments; however,
only 19% of ABS segments (59 of 278) were classified as MP by
the SITL. Conversely, only 28% of SITL selections and 34% of

MP crossings were selected by the ABS (Figures S1E,K). While a
majority of ABS selections are of interest to the SITL, the ABS is
significantly under-selecting both in general and with respect to
MP crossings.

The differences between the ABS and GLS are most likely
due to how they were trained. The ABS was trained to select
MP crossings that contain EDRs, which typically exhibit larger
amplitude variations than MP crossings that do not. Non-EDR
time intervals that exhibit large amplitude variations are still of
interest to the SITL, but most MP crossings do not exhibit such
activity (e.g., the MP crossings in Orbit 1058 shown in Figure 4),
meaning they are not selected by the ABS.

6.2.3. ABS-GLS Comparison

We have been incorporating the ABS into the discussion so
far because it is representative of how most other missions
with burst memory management systems select data. Here, we
compare it to the new GLS machine learning model. While the
two systems were trained differently and for slightly different
purposes, comparing them may provide a general impression of
(a) the efficacy of a linear combination of summary data (TDNs)
vs. a non-linear combination of a more robust dataset (survey
data), and (b) models trained for a specific task vs. a potential
catch-all model. A comparison may also be influential to future
mission designs.

The Venn Diagram shows that only a small fraction of GLS
segments were selected by the ABS (83 of 360, or 23%). Of those,
nearly all (81) were selected by the SITL, but only about half (43)
were classified as MP crossings. The GLS selects a similarly low
fraction of ABS segments (30%), but of the 53 ABS segments
that were also selected by the SITL as MP crossings, the GLS
selected 42 of them (Figures S1F,L). So although both the GLS
and ABS under-select compared to all SITL selections, they are
not redundant; they each make useful, complementary selections
that are highly relevant to the SITL.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 11 September 2020 | Volume 7 | Article 54



Argall et al. MMS SITL Ground Loop

A B C

FIGURE 6 | Point-by-point comparison between (A) all SITL and GLS selections, (B) SITL selections filtered for magnetopause crossings and GLS selections, and (C)

all SITL and ABS selections. Such a point-wise metric is typical for machine learning models but does not properly weight predictions with partial or multiple overlap,

as when the SITL selects additional context around a given event (Figure 4, Orbit 1055), or when multiple GLS selections are encompassed by one SITL selection

(Figure 4, Orbit 1058).

6.3. Performance Metrics
6.3.1. Precision, Recall, and F1 Score

Performance of the MP model is directly tied to the threshold
filter described in section 5. The filter turns the prediction into
a binary classifier, where 1 indicates that the observations are
from the MP and 0 indicates otherwise. If the model predicts
an MP crossing (or not) that was actually classified as a MP
crossing by the SITL, this is known as a true positive (false
negative). Conversely, if the model classifies the observations as
MP (or not) and the SITL does not, this is known as false positive
(true negative). Such labels were determined for predicted GLS
segments using all SITL selections and only those selections
classified as MP crossings, as well as for ABS segments. They are
shown in the form of a confusion matrix in Figure 6 for SROI1
during the same date range as covered by Figure 5.

Results from the confusion matrix can be summarized by the
precision, recall, and F1 scores. Precision is the fraction of all
positive predictions that were correctly classified, while recall
is the fraction of all actual positive cases that were correctly
predicted and gives a sense of the number of cases missed by the
model. The F1 score is a measure that captures the properties of
both precision and recall.

The precision, recall, and F1 score for the GLS were (0.58,
0.15, 0.23) for all SITL selections and (0.42, 0.39, 0.41) for just
the MP SITL selections. The GLS precision is higher and its recall
is lower when compared to all SITL selections, alluding to the
MP-like selections that were not classified as MP encounters by
the SITL, as mentioned in relation to Figure 4. From recall, we
infer that large fraction of MP points are left unselected by the
GLS. This is due, in part, to the fact that the SITL is selecting
contextual information than the GLS is not (again, see Figure 4).
The F1 score is higher when only MP selections are considered,
reflecting the better match between the model and the
data considered.

For the ABS, the precision, recall, and F1 score were (0.64,
0.24, 0.35). High precision and low recall indicates that most ABS
selections are important to the SITL, but that the SITL is selecting
much more than the ABS. Similar conclusions were deduced

FIGURE 7 | Trade-off between over-selecting false events and under-selecting

true events. For MMS, electron diffusion regions are rare and difficult to

impossible to observe with the SITL data, so the SITL is willing to over-select

by choosing all MP crossings, but they still has to contend with telemetry

restrictions. The choice of thresholds for the GLS MP model tries to emulate

this approach.

from the Venn diagram in Figure 5. The F1 score is better than
that of the GLS when all selections are considered, but lower than
when the GLS is compared to only MP points.

6.3.2. ROC Curve

The ability of a model to distinguish between positive
and negative cases is indicated by the Receiver Operating
Characteristic (ROC) curve, which plots recall (the true positive
rate) against the false positive rate, or the number of false
positives out of all actual negative cases, for a variety of threshold
values. If the area under the ROC curve is 1.0, the positive and
negative cases are perfectly distinguishable by the model. If it
is 0.5, the model has no ability to distinguish between positive
and negative cases. The ROC curve from the validation data of
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the GLS MP model is shown in Figure 7. It has an area under
the curve of 0.92, indicating it can tell MP data from non-MP
data accurately.

Implementing the model requires a choice in threshold values
that involves a trade-off between true positive and false negative
rates. The MP model uses a threshold value of 0.5, resulting
in a true positive rate of 0.7 and a false positive rate of 0.07.
Comparing to the confusion matrix results in Figures 6A,B, both
the model recall and false positive rates are lower than for the
validation set. Themodel selects fewer SITL-classified points (MP
or otherwise), but also makes significantly fewer false predictions
than for the validation set.

7. DISCUSSION

The GLS MP model presented above is the first ML model
implemented into the MMS burst management system to
automate critical mission operation tasks. To fully automate the
burst selection process, the GLS and ABS systems need to be
expanded to:

1. Identify the variety of phenomena listed in the Seasonal
SITL Guidelines.

2. Assign appropriate FOM values to each phenomena.
3. Include an appropriate amount of context around

each selection.
4. Respond to external control factors.

To classify all phenomena within the SITL Guidelines (Item
1), models could be trained on all SITL selections. However,
as the SITL rotates and mission priorities change, model
performance would suffer. A better approach would be
to create a hierarchy of classification models, as described
in section 7.1.

To assign appropriate FOM values (Item 2), two basic
approaches could be considered: use a regression instead of
a classification model, or create another model that classifies
only on sub-types of MP crossings. In terms of the LSTM MP
model, radial basis functions could be used instead of sigmoid
functions for activation. Unlike sigmoid functions, radial basis
functions map inputs to a continuous output variable so the
model could be trained to predict FOM values. These models,
however, would have to be retrained whenever mission priorities
changed. As an example from MMS, during Phase 3B, low-shear
MP crossings were classified as Category 3 events, whereas in all
other phases they have been Category 1. To be more adaptable
to changing mission priorities, events classified as MP crossings
by the MPmodel could go through another stage of classification
that identifies their sub-type (complete/partial, high-/low- shear,
etc). The sub-type, then, passes through a look-up table to assign
a more appropriate FOM value.

Adding contextual information (Item 3) is relevant to the
selections made on orbits 1055 and 1058 SROI1 in Figure 4.
Model predictions could go through some post-processing
to simply expand the selection forward and backward in
time by a fixed amount or by some percentage of the
selection duration.

Outside of the science considerations are operational control
factors (Item 4), such as the amount of on-board memory
available to store selections. Such considerations often influence
the number of selections that the SITL makes. Once GLS
selections are made (Items 1 and 3), they can be passed through
the GLS Guideline look-up table and assigned an appropriate
FOM (Item 2), then filtered through a system monitor that is
aware of the state of on-board memory and can make decisions
regarding the current set of selections. In some sense, the FOM
prioritization does this intrinsically; however, selecting 2.5 h of
a low-shear, slow MP crossing could potentially overwrite many
other selections.

The GLS is an example of progressive autonomy (Truszkowski
et al., 2005). It follows similar efforts undertaken by NASA
to reduce mission costs through greater autonomy in ground
control and spacecraft operations (Truszkowski et al., 2006).
Autonomy can alleviate mission complexity and provide real-
time decision making when communications latency exists
(Truszkowski et al., 2004). The GLS MP model represents
a key advancement toward reducing mission complexity by
(1) facilitating larger data rates and more spacecraft through
consolidation of event selection processes into a near real-time
expandable and adaptable machine learning framework, and
(2) accurately identifying and classifying events associated with
prime science objectives.

7.1. Ground Loop Hierarchy
In the design phase, it was always envisioned that the ABS
and GLS would eventually replace the SITL. So now that the
first ground loop is in place, what can be done to expand
the ground-loop infrastructure for that purpose? We propose
the Ground Loop Hierarchy. The Hierarchy follows leaders in
industry that found that combining many specialized models
often out-performs one comprehensive model (e.g., Rascoff and
Humphries, 2015) For the GLS, this means training a hierarchy of
models, as shown in Figure 8. At its lowest level, The Hierarchy
consists of region classifiers that segregate data from topologically
distinct regions of space. Tier 2 of the hierarchy consists of
event classifiers that identify phenomena that are peculiar to a
specific region. A third tier could distinguish between similar
events to assign more appropriate FOM values, as suggested by
the SITL Guidelines for MP crossings (Table 1). The final tier
then activates sets of event classifiers from Tier 2 to answer
science questions.

Applying the Ground Loop Hierarchy to the dayside region of
Earth, all of the SITL data would be passed through the region
classifiers to identify which data was recorded in the solar wind,
magnetosheath, and magnetosphere, with the bow shock and
magnetopause data being classified as the transitions between
regions. Next, solar wind data would be passed to the Hot Flow
Anomaly (HFAs) event classifier to identify HFAs. A similar
process would be applied to all event classifiers, such as to identify
mirror mode structures in the magnetosheath, plasmaspheric
plumes in the magnetosphere, etc. In this way, the model that
classifies HFAs does not have to know anything about the
magnetosheath or magnetosphere. Finally, as mission objectives
evolve from the primary mission through extended missions,
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FIGURE 8 | A hierarchy of machine learning models to automate science objectives and reduce mission costs. Data is filtered through region classifiers (green

rectangles) and passed to specialized event classifiers (black text) specific to those regions. Multiple event classifiers are activated together to automate science

campaigns (blue ovals).

different combinations of event classifiers can be activated to
adapt to changing science goals or to strategic science campaigns.

As an example of a science campaign, we build upon a
recent MMS discovery of micro-injections at the dusk flank MP
in conjunction with ULF wave activity (Fennell et al., 2016).
Simulations proposed that Kelvin-Helmholtz waves (KHWs) on
the MP surface were the cause (Kavosi et al., 2018). To gain
more insight into this multi-scale process, one could create event
classifiers for micro-injections (Claudepierre et al., 2020), field
line resonances, and KHWs. Formulating a science campaign
around micro-injections would entail activating each model. The
models not only allow the mission to detect a complex series of
events, they can also provide additional insights into the nature of
the phenomena. Results from such automated science campaigns
can be distributed to the wider scientific community in near
real time, increasing the potential scientific impact and return of
the data.

Work on the Ground Loop Hierarchy is already underway.
Several models that could serve as region classifiers have already
been developed (Nguyen et al., 2019; Olshevsky et al., 2019;
Piatt, 2019; da Silva et al., 2020), and one is being adapted for
that purpose (Piatt, 2019). The LSTM RNN model described
above could serve as either a region or an event classifier. Other
event classifiers have been developed using MMS data (e.g.,
Claudepierre et al., 2020), but more are needed. Fortunately, the
SITL has done the work to manually classify many events in
many years of MMS data, and the tools provided as a product
of this endeavor (Argall et al., 2020a,b,c; Small et al., 2020)
further reduce the effort required to make additions to the GLS.
Soon there should be enough event classifiers to create the first
automated science campaigns, thereby establishing the Ground
Loop Hierarchy.

8. SUMMARY

MMS is providing key insights into the electron dynamics that
catalyze the global flow of energy throughout the magnetosphere.
Mission-critical science objectives depend on selecting a subset
(∼4%) of the high time resolution data that fit into its telemetry
budget. A burst management system consisting of the Scientist-
in-the-Loop (SITL), Automated Burst System, and Ground Loop
System (GLS) ensure that the right ∼4% of data makes it to the
ground. This paper documents the tools and infrastructure of
the burst management system and demonstrates the performance
of the first machine learning (ML) model implemented into the
GLS to automate the SITL selection tasks. The GLS model is a
Long Short-TermMemory Recurrent Neural Network trained on
historical SITL selections to classify the magnetopause (MP), a
primary task for the SITL as the MP is a key location for studying
electron dynamics associated with magnetic reconnection. Since
being implemented into the near real-time data stream, the GLS
MP model has selected 78% of SITL-identified MP crossings
in the outbound leg of its orbit, 44% more than the ABS.
This represents the first attempt to introduce ML into critical
mission operation tasks. By expanding the GLS into a hierarchy
of ML models, MMS progresses toward full autonomy in its
burst management system, thereby reducing operations costs
and transferring information and resources back to answering
fundamental science questions.
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