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Abstract—With the growing performance and wide application
of deep neural networks (DNNs), recent years have seen enor-
mous efforts on DNN accelerator hardware design for platforms
from mobile devices to data centers. The systolic array has been
a popular architectural choice for many proposed DNN accelera-
tors with hundreds to thousands of processing elements (PEs) for
parallel computing. Systolic array-based DNN acceslerators for
datacenter applications have high power consumption and non-
uniform workload distribution, which makes power delivery net-
work (PDN) design challenging. Server-class multicore processors
have benefited from distributed on-chip voltage regulation and
heterogeneous voltage regulation (HVR) for improving energy
efficiency while guaranteeing power delivery integrity. This paper
presents the first work on HVR-based PDN architecture and
control for systolic array-based DNN accelerators. We propose
to employ a PDN architecture comprising heterogeneous on-chip
and off-chip voltage regulators and multiple power domains. By
analyzing patterns of typical DNN workloads via a modeling
framework, we propose a DNN workload-aware dynamic PDN
control policy to maximize system energy efficiency while ensur-
ing power integrity. We demonstrate significant energy efficiency
improvements brought by the proposed PDN architecture, dy-
namic control, and power gating, which lead to a more than
five-fold reduction of leakage energy and PDN energy overhead
for systolic array DNN accelerators.

I. INTRODUCTION

Neural networks have been adopted in many disciplines
including image and pattern classification. Recent advance-
ment in machine learning (ML) has made convolutional neural
networks (CNNs) one of the most successful and widely
adopted models for image classification and video analysis.
Since the introduction of the AlexNet deep neural network
(DNN) model [1] and its successful training on graphic
processing units (GPUs), many large-scale DNNs have been
proposed for which high-performance general-purpose GPUs
(GPGPUs) are routinely deployed to accelerate both inference
and training. While having produced promising results in many
application domains, modern DNNs have grown to a very large
size and can routinely have a deep architecture with hundreds
of layers, resulting in a huge number of MAC operations
during inference and training. For example, as the first DNN
architecture that exceeds human ability in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [2], the ResNet
DNN model has up to 152 layers and requires 11.3 billion
FLOPs to classify an image [3]. High computational and
energy cost required by inference and training hinders the
deployment of large DNNS.

The development of dedicated hardware DNN accelerators
offers a viable solution to addressing the computational and
energy dissipation challenges that come with deep learning.
Among the proposed deep learning hardware accelerator archi-
tectures, systolic array [4] has been adopted in many industrial
designs such as Google’s Tensor Processing Unit (TPU) [5],
NVidia’s Tensor Cores, and ARM’s ML Processor due its low
complexity, high compute intensity, and high data distribution
bandwidth. This hardware architecture comprises multiple in-
terconnected processing elements (PEs) by which the multiply-
accumulate (MAC) operations in CNNs can be accelerated in
a parallel fashion. The optimization of systolic array hardware
accelerator architectures has been targeted in prior work. For
instance, Scale-Sim [6] is a systolic array CNN accelerator
simulator which provides cycle-accurate memory access traces
and estimated bandwidth requirements and can be used for
design space exploration. [7] proposes a framework called
ThUnderVolt which enables aggressive voltage underscaling
of systolic arrays to save power.

This work primarily concerns of high energy dissipation
of systolic array-based DNN accelerators in datacenters and
cloud computing. In these settings, DNN accelerators may be
commissioned to support computationally-intensive machine
learning and data analytics applications. A large amount of
power must be properly delivered to these DNN accelera-
tors via a power delivery network (PDN) across the circuit
board and the accelerator chip, posing major challenges to
the PDN design. PDN design in general presents a major
challenge to the development of a wide variety of processor
systems including server-class multi-core processors and large-
scale systems-on-a-chips (SoCs) which burn large amounts of
power. While delivering high power, an improperly designed
PDNs may incur large losses, hence compromising the overall
system’s energy efficiency, and fail to sufficiently suppress
power supply noise, jeopardizing power delivery integrity and
causing timing errors.

Joint optimization of efficiency and integrity of power
delivery is a complex matter; it is compounded by limited pin
connections to off-chip voltage regulation modules, additional
power loss caused by power distribution and voltage regula-
tors, and large spatiotemporally non-uniform DC/transient load
currents, which can inject severe noise to the power/ground
rails of the on-chip devices.

Due to the increased proximity between voltage regulators



and on-chip current loads, integration of multiple distributed
on-chip voltage regulators has been shown to be promising for
addressing the efficiency and integrity challenges of power
delivery as demonstrated in Intel’s Haswell [8] and IBM’s
POWERS [9] processors. Going beyond distributed on-chip
voltage regulation, heterogeneous voltage regulation (HVR)
offers rich adaptability and rapid response to fast changing cur-
rent loads by utilizing voltage regulators of distinct and com-
plimentary characteristics in terms of form-factor, response
time, and conversion/regulation efficiency [10]. Multiple volt-
age conversion/regulation stages comprising efficient off-chip
and on-chip switching converters and area-efficient on-chip
linear regulators enable highly adaptive power delivery. Such
HVR systems can be adapted by a workload-aware control
policy [10] which extends the commonly used dynamic power
management techniques [11]-[14].

This paper presents the first work on HVR based PDN
architecture and control for systolic array DNN accelerators.
We propose to employ a PDN architecture comprising hetero-
geneous on-chip and off-chip voltage regulators and multiple
power domains, specifically optimized for the targeted systolic
array-based accelerators. By analyzing patterns of typical
DNN workloads via a modeling framework, we propose a
workload-aware dynamic PDN control policy to maximize sys-
tem energy efficiency while ensuring power delivery integrity.
We demonstrate significant energy efficiency improvements
brought by the proposed PDN architecture, dynamic PDN
control, and power gating leading to a more than 5-fold
reduction of leakage energy and PDN energy overhead for
systolic array DNN accelerators.

II. SYSTOLIC ARRAY (SA) BASED ACCELERATOR
MODELING

A. Overview

We focus on the systolic array architecture as shown in
Fig. 1, which has been used in many DNN accelerator designs
[51, [15], [16]. It comprises an array of processing elements
(PEs) capable of performing MAC operations. Systolic arrays
enjoy low complexity and high compute intensity and can be
readily leveraged to parallelize matrix-matrix multiplications,
which are the dominant computation in a DNN. The data
are fed from the edges of the array and propagate to the
target PEs via unidirectional data links. Based on a chosen
dataflow design, the PEs may store incoming input/weight
data or intermediate results, i.e. partial sums (Psums), in their
local scratchpad memories (e.g. register files) to exploit data
reuse, leading to reduced bandwidth requirement and energy
dissipation.

B. Dataflow modeling

The dataflow of a systolic array-based DNN accelerator
determines how the MAC operations in a neural network layer
are mapped to PEs of the systolic array, how input/weight
data are fetched and reused, and how output data, e.g. Psums,
are stored. We consider two commonly explored types of
dataflows: output stationary (OS) and weight stationary (WS),
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Fig. 1. Architecture of systolic array-based DNN accelerators.

where the output or filter weight data are kept stationary in
the array to maximize their reuse, respectively [15].
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Fig. 2. A systolic array with output stationary (OS) dataflow.

1) Output stationary: The OS dataflow is shown in Fig. 2.
To enable filter weight and input feature map (IFMAP) data
reuse, the computation of a pixel in the output feature map
(OFMAP) is assigned to a PE according to the location of
PE in the array and the position of the pixel in the OFMAP.
PEs in the same row compute the outputs for pixels at the
same positions but in different channels so that they share the
same convolution window in the IFMAP. The PEs in the same
column compute the outputs for pixels in the same channel of
the OFMAP but at different positions so that they share the
same filter data.

Because the data can only be fed from the edges of the array
and propagate across the array via unidirectional links, there is
one cycle delay between the arrivals of adjacent IFMAP data
and filter data stream. The activation of PEs starts from the
top left corner and ripples down to the bottom right corner of
the array.

2) Weight Stationary: In the WS dataflow, each PE keeps
the weight data associated with one pixel location in a filter



stationary as shown in Fig. 3. The PEs in the same row
are assigned with the pixels at the same position and in
the same channel of different filters. The PEs in the same
column are assigned with the pixels in the same filter but
at different positions. Therefore, the PEs in the same row
share the same data stream in the IFMAP. After finishing
all the multiplications associated with the assigned pixels and
generating all Psums, the PEs are assigned with other pixels in
a filter if the processing of the current layer is not completed.
As shown in the figure, the weight data are fed to the assigned
PEs from the top of the array first. Then, the data streams of
the IFMAP are fed from the left side of the array from which
the PEs start to compute.

Unrolled filters
(Loaded to PEs before computing)

Unrolled Convolution Window l
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Fig. 3. A systolic array with weight stationary (WS) dataflow.

3) PE Utilization: As discussed previously, both dataflows
allow for data reuse based on assigning certain MAC op-
erations to specific PEs in the array, which may limit the
utilization of the PEs. Fig. 2 and Fig. 3 show that it is
possible for certain PEs to be unused. In the OS dataflow, each
column corresponds to a filter and each row corresponds to the
same position in different channels of the output feature map.
Therefore, the maximal number of utilized columns is bound
by the number of filters and the maximal number of active
rows is bound by the dimension of the output feature map.
However, in the WS dataflow, each row corresponds to pixels
at the same position and the same channel in different filters.
Hence, the maximal number of active rows is bound by the
number of pixels in a filter. What is common to both dataflows
is that each column corresponds to a filter, and therefore, the
maximal number of active columns is always bound by the
number of filters in a given layer.

C. Power modeling

At the architecture level, the energy consumption of CPUs
and GPUs can be commonly evaluated using an architectural
simulator and a set of power models. For example, architec-
ture simulators GEMS5 [17] and GPGPU-Sim [18] provide
statistics of hardware utilization, which may be fed into
architecture-level power models such as McPAT [19], Wattch
[20], GPUWattch [21] to generate power dissipation data. To

characterize the power/energy dissipation of the targeted dedi-
cated systolic array DNN accelerators, we follow a similar set
of steps to first generate architecture-level utilization traces and
then use architectural power models to estimate power/energy
dissipation. The overall work flow is based on integrating and
adapting the SCALE-Sim simulator [6] as shown in Fig. 4.
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Fig. 4. The power modeling flow for SA hardware accelerators.

SCALE-Sim [6] is an architecture-level simulator for CNN
accelerators with its main focus on design space exploration
and estimation of data bandwidth requirements. It produces
memory access trace based on the configuration of the accel-
erator hardware under simulation and the CNN model to be
accelerated. SCALE-Sim only models the convolutional layers
and fully connected layers which may contribute to more
than 80% of the total computations in a CNN [6], [22], [23].
One limitation of SCALE-Sim, however, is that it does not
provide PE utilization traces. We developed an architecture-
level systolic array simulator to generate the operation traces
for PEs.

The power modeling work flow starts from the inference of
the targeted CNN model to extract the input feature maps and
filter data of all its layers. The computation trace of each PE
in the systolic array is generated by running our SA simulator
based on the CNN’s IFMAP and filter data and the assumed
dataflow, i.e. WS or OS. The PE computation traces from the
SA simulator are combined with the memory access traces
from SCALE-Sim and fed into several power models for power
trace generation.

CACTI [24] is an architecture-level power, area and timing
modeling framework for SRAM based structures, which is
used in this work for power estimation of on-chip memory. We
adopt approaches similar to ones in [22] and [23] to estimate
the PE energy dissipation by:

Ecomp = Neomp X €comp;

where E ., is the total energy spent on computation, Neomp
is the number of MAC operations, and ecomp is the power
consumption per MAC operation. As in [15], we assume that
each PE can skip trivial computation with zero inputs that
leads to a zero output to save power. Apart from dynamic
power, leakage power contributes a large portion of the total
chip power at advanced technology nodes. 40% of the total
chip power consumption is considered leakage power based on
the estimation in [25]. We adopt the published power data from
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Fig. 5. The three-stage hybrid voltage regulation architecture.

[15] to estimate the power dissipation of one MAC operation
and the chip leakage power.

III. HYBRID VOLTAGE REGULATION

Fig. 5 shows a conceptual block diagram of a general three-
stage hybrid voltage regulation (HVR) architecture [10]. Our
goal is to adapt it for robust and efficient power delivery for
SA DNN accelerators. The HVR system consists of a cluster
of off-chip buck converters and on-chip voltage regulators
and the on-chip PDN (power grids). Power-efficient off-chip
buck converters are to downconvert the system supply voltage
to a level suitable for chip-level processing. The on-chip
PDN is powered by multiple area-efficient low-dropout voltage
regulators (LDOs) distributed across the chip, acting as the
third stage of voltage regulation for ensuring minimum power
supply ripple for the on-chip circuits. To improve the overall
system efficiency, a second stage of voltage conversion based
on a cluster of on-chip buck converters is added, allowing more
tunablity of the PDN and helping reduce the power loss of
LDOs by decreasing the voltage drop across the LDOs’ power
transistors. The power efficiency characteristics of various
voltage regulators are characterized offline and stored in on-
chip lookup tables (LUTs). Activity counter based power
sensors are deployed on-chip to estimate the load current to
the PDN.

Fig. 6 shows the control flow of the three-stage HVR
architecture. The estimated load current is relayed to an on-
chip controller that uses pre-characterized efficiency LUTSs
of the voltage regulators to optimally set the numbers of
active off-chip and on-chip buck converters, Nor¢ and N,
respectively, and their output voltages to maximize the energy
efficiency of the entire PDN while meeting a specified power
integrity constraint. Control commands are issued based on
two control cycle periods: 15,y = 100us and T, = lus. In
each T, control cycle, the optimal values N,r; and off-chip
buck converter output voltage are updated based on the current
load estimated from the previous control cycle. At the inner
loop of the control and during each shorter 7, control cycle,

the optimal values for IV,,, and the output voltage of the on-
chip buck converters (Vjcx), Which is also the input voltage
to the on-chip LDOs, are set.
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Fig. 6. Control flow for the 3-stage HVR architecture

IV. PDN DESIGN FOR SA-BASED DNN ACCELERATORS

We discuss how to adapt the general HVR architecture
by introducing DNN workload aware power gating to sig-
nificantly reduce leakage energy of the targeted accelerators,
and modify dynamic control policy to address systolic-array
specific power integrity challenges.



A. DNN workload aware power gating

As discussed in Section II-B3, the PE utilization of a
systolic array-based DNN accelerator depends on the dataflow
and the sizes/numbers of input feature maps, output feature
maps, and filters. Hence, the PE utilization can vary widely
from layer to layer of a CNN. Shutting down the unused PEs
in the array can save a significant amount of leakage power
of the unused PEs. As a commonly adopted low-power design
technique, however, power gating may come with large area
and power overheads due to reasons such as inclusion of gating
transistors and gating control, particularly at a fine-grained
level.

Fortunately, due to the regularity and predictability of DNN
workloads on a systolic array, coarse-grained power gating can
be realized to achieve large leakage saving with low overhead.
The key issue is to partition a given systolic array into multiple
power domains in a way cognizant of the intended dataflows.
As described in Section II-B3, in both WS and OS dataflow
we modeled in this work, the maximal numbers of active PE
columns in the array are bound by the number of filters in
a convolutional layer. The number of filters in each layer of
commonly adopted CNN models is a power of 2. For example,
the convolution layers in the ResNet-50 model have 2% filters,
where k ranges from 6 to 11. It becomes natural to divide
the array into a small number of power domains with each
containing the same number of 2™ columns, where m < k,
as shown in Fig. 7. Whenever the number of filters in a layer
is less than the width of the systolic array, it may become
possible to turn off several power domains to save leakage
power. As we will show in Section V-C, having no more than
8 power domains is sufficient to gain substantial leakage power
saving for practical deep CNN models.
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Power
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Fig. 7. Partition the systolic array into multiple power domains.
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Fig. 8. Proposed LDO input-voltage boost mechanism during the startup
phase.

B. Dynamic control for power integrity assurance

The current load estimation accuracy is a key to the success
of the HVR dynamic control policy described in Section III.
It has been demonstrated in [10] that HVR can lead to large
energy efficiency gains when equipped with an enhanced
current load estimation accuracy provided by additional on-
chip power supply noise sensors and an integrated machine
learning (ML) predictor while ensuring power integrity.

In this work, we avoid the additional overheads by dropping
the ML predictor and power noise sensors and leverage the
predictability of DNN workloads to address a unique power
integrity challenge introduced by the SA based WS or OS
dataflows. In each of these dataflows, the PEs in the systolic
array are sequentially activated either from the top-left corner
or the left edge of the SA during the startup phase of the
processing of a convolutional layer. As a result, large current
load surge may occur within one clock cycle as more PEs
are activited. Without accurate ML based load prediction, the
dynamic control policy may simply underestimate the required
input voltage to the on-chip LDOs required for ensuring power
integrity based on the current load estimated from the previous
control cycle.

To tackle the above problem with low overhead, we make
use the fact that the distribution of the DNN workload over the
systolic array can be well predicted in advance by interacting
with the system control logic that initializes the processing
of each neural network layer during the startup phase. As
such, during each startup phase, the on-chip LDO input voltage
(Vpuek) 1s boosted based on a safe estimation of the amount
of current surge.

An example of the proposed LDO input voltage boost is
shown in Fig.8. The blue curve is the optimal V., calculated
by the dynamic control policy which acts on the estimated
workload current in the previous control cycle. The orange
curve is the boosted V... . The SA accelerator enters the
startup phase of processing a new convolutional layer at
the 3us time. The blue curve lags the actual current load
during the startup phase. The input voltage boost mechanism
increases the Vj,cr from time 3us to Sus to prevent supply
voltage violations. The startup phase ends at the Su.s time from
which the dynamic control policy can set the V., optimally



TABLE I
NUMBERS AND SIZES OF IFMAPS AND FILTERS IN BENCHMARKED DNN MODELS

Models Input size Max # filters | Min # filters Max filter size | Min filter size
per layer per layer

ResNet 224%224%3 2048 64 4608 64

MobileNet 224%224%3 1024 32 9216 27

SSD-ResNet 1200%1200*3 | 512 16 4608 64

SSD-MobileNet | 300%300%*3 546 12 9216 27

without power supply noise violation. While boosting the
LDO input voltage during the startup phases degrades PDN
system efficiency, startup phases are only a small fraction of
the overall processing time. Hence, the resulting efficiency
degradation is negligible.

V. EXPERIMENTS AND RESULTS
A. Experimental setups

We utilize the proposed modeling framework for systolic
array (SA) accelerators to assess the performance of the
proposed PDN architecture and control policy. We consider
a 65nm 100MHz SA CNN accelerator with an array size
of 256 x 256, which is identical to that of the Google’s
TPU [5]. The power and energy characterization of the SA
accelerator is based on the data extracted from [15], [23].
40% of the total chip power is assumed to be due to leakage
[25]. The output stationary (OS) and weight stationary (WS)
dataflows are evaluated. The sizes and numbers of IFMAP
and filters are listed in Tab. I. These models vary widely
in the size of convolutional computation and are selected to
well represent both light and heavy CNN workload conditions
for comprehensive performance evaluation under a variety of
workloads and hardware utilization.

The accelerator is powered by two PDN architectures with
or without dynamic control. The two-stage PDN architecture
contains clusters of on-chip buck converters and off-chip buck
converters while the 3-stage architecture further incorporates
the third stage of distributed on-chip LDOs. Without us-
ing dynamic control, i.e. static control, intermediate output
voltages in the conversion chain and the number of active
voltage regulators are fixed while these control variables can
be adjusted dynamically with the proposed dynamic control
policy. Furthermore, our proposed dynamic control policy and
power gating approach are combined to demonstrate even
greater energy saving. The power supplies for the on-chip
memory are static in all scenarios.

For a fair comparison, all PDN architectures and control
settings are configured to meet the same minimum on-chip
power supply voltage target of 0.95V beyond which power
integrity is assumed to be ensured. For the two-stage PDN
architecture and the three-stage static PDN architecture, the
output voltages of on-chip buck converters are properly set,
respectively, to ensure power integrity. We adopt the on-chip
LDO input voltage boost mechanism described in Section IV-B
to eliminate the voltage violations during the startup phase of
the accelerator for three-stage PDNs adjusted by the dynamic
control.

B. Dynamic control policy with single power domain

First, we compare the energy efficiency of the two-stage
and three-stage PDN architectures with a single power domain
with or without the proposed dynamic control. The energy
dissipation breakdowns of the PDN for an OS and WS systolic
array are reported in Fig. 9 and Fig. 10, respectively for
four benchmarking deep learning models. For each particular
benchmark DNN, all evaluated schemes supply the same
amount of energy to the SA accelerator while they have
different energy overheads due to the power distribution and
voltage regulation in the PDN. The PDN energy overheads are
broken down to those of the LDO regulators, the on-chip buck
converters, the package, and the off-chip buck converters, de-
noted by 1do, on-buck pkg and of f-buck, respectively.
All energy components are normalized w.r.t the total energy
consumed for running the corresponding benchmark in each
case.

In Fig. 9 and Fig. 10, the three-stage PDNs with dynamic
and static control policies are denoted by 3-dynamic and
3-static, respectively. The two-stage PDNs with dynamic
and static control policy are denoted by 2-dynamic and
2—-static, respectively. For both two-stage and three-stage
PDNss, the application of the proposed dynamic control policy
improves the energy efficiency because of the dynamic adap-
tation w.r.t the workload. Among all schemes, the three-stage
PDN with dynamic control leads to the lowest energy overhead
for all benchmarks and across both OS and WS dataflows, and
can reduce the energy overhead by up to 10.21% compared
with the two-stage static PDNSs, indicating the effectiveness of
the proposed techniques.

C. Multiple power domains with power gating

Next, we evaluate the additional energy savings brought
by using multiple power domains and enabling power gating
based on the four DNN models over the OS and WS dataflows.
The results for the OS and WS systolic array are shown in
Fig. 11 and Fig. 12, respectively. 3—dynamic denotes single-
power-domain without power gating case while 3-pg-2,
3-pg-4 and 3-pg-8 denote power gating with 2, 4 and
8 power domains, respectively. The energy dissipations are
normalized w.r.t the maximum energy delivered to the SA
accelerator (processor) (excluding the overhead of the PDN)
among all PDN schemes for each benchmark. This maximum
value corresponds to the energy dissipated by the accelerator
without adopting multiple power domains and power gating.
In each case, the energies consumed by the accelerator and
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PDN, and leakage saving due to power gating are reported as
processor, pdn, and leakage in the figures.

It is evident from Fig. 11 and Fig. 12 that the proposed
power gating technique can significantly improve energy effi-
ciency via leakage saving in addition to the reduction of energy
loss in the PDN because layers with low hardware utilization
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exist in all four models. More specifically, it reduces PDN
energy overhead by up to 5.1X and leakage energy by up
to 5.3X. These savings increase substantially as more power
domains are used.

Among all four benchmarking DNN models, the proposed
power gating technique saves the largest amount of energy for



the SSD-MobileNet model because it is the most lightweight
model and has many convolution layers with less than 64 fil-
ters. Compared with those of MobileNet and SSD-MobileNet,
the energy saving for ResNet and SSD-ResNet is smaller since
the average utilization of both models is higher. The results on
these two models also suggest that finer-grained power gating
with more than 4 power domains has less additional benefit for
heavy-weight models with a larger average number of filters
per layer. Single shot detection (SSD) applications benefit
more from power gating than image classification applications
since they have a higher percentage of layers with fewer filters.

VI. CONCLUSION

We have presented the first work on HVR based PDN archi-
tecture and control for systolic array-based DNN accelerators.
PDN architectures comprising heterogeneous on-chip and off-
chip voltage regulators and multiple power domains lead to
improved energy efficiency of the targeted SA accelerators.
By using our simulation and modeling framework, we have
further demonstrated that the proposed workload-aware dy-
namic PDN control policy improves energy efficiency while
ensuring power delivery integrity. Combining the proposed
HVR PDN architectures, dynamic control, and power gating
lead to significant energy saving particularly for deep learning
models with a low average number of filters per layer.
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