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Abstract—Spiking neural networks (SNNs) have emerged as a
new generation of neural networks, presenting a brain-inspired
event-driven model with advantages in spatiotemporal informa-
tion processing. Due to the need for high power consumption of
compute-intensive neural accelerators, adequate power delivery
network (PDN) design is a key requirement to ensure power effi-
ciency and integrity. However, PDN design for SNN accelerators
has not been extensively studied despite its great potential benefit
in energy efficiency.

In this paper, we present the first study on dynamic heteroge-
neous voltage regulation (HVR) for spiking neural accelerators
to maximize system energy efficiency while ensuring power
integrity. We propose a novel sparse-workload-aware dynamic
PDN control policy, which enables high energy efficiency of
sparse spiking computation on a systolic array. By exploring
sparse inputs and all-or-none nature of spiking computations for
PDN control, we explore different types of PDNs to accelerate
spiking convolutional neural networks (S-CNNs) trained with the
dynamic vision sensor (DVS) gesture dataset. Furthermore, we
demonstrate various power gating schemes to further optimize
the proposed PDN architecture, which leads to a more than a
three-fold reduction in total energy overhead for spiking neural
computations on systolic array-based accelerators.

Index Terms—spiking neural networks, power delivery net-
works, systolic arrays, voltage regulation

[. INTRODUCTION

As a brain-inspired computing model, spiking neural net-
works (SNNs) have emerged as a new generation of neural
network models [5], [16], [17], [21], [30]. The all-or-none
nature, event-driven operation, and inherent spatiotemporal
characteristics of SNNs support a variety of network models,
including convolutional neural networks, which have been
widely adopted in vision-oriented tasks. Especially, spiking-
CNNs, or simply S-CNNs, are well-suited for processing
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complex spatiotemporal data such as image recognition, pat-
tern recognition, and gesture recognition, with their inherent
temporal aspect.

Despite strong demand and potential, hardware acceleration
of spiking computation has been proposed by only a few
previous works, such as [2], [9], [27], [28] and neuromorphic
chips including IBM’s TrueNorth [3] and Intel’s Loihi [12].
Furthermore, the aforementioned works offer an architecture
for general spiking models rather than a specific dataflow or
mapping strategy of given tasks.

While the basic accelerator architecture is one key research
focus for energy-efficient spiking neural computation accel-
eration, design of efficient power delivery networks (PDNs)
is also a major challenge for an optimization of the overall
system energy efficiency [18], [22], [31]. Huge power loss due
to power delivery failure may lead to a significant degradation
in overall energy efficiency, and cause timing error due to
decreased power integrity. For large-scale systems, including
multi-core processors and system-on-ship (SoC), various volt-
age regulation schemes in the PDN benefit the energy effi-
ciency and power delivery integrity of the system in supporting
computationally-intensive workloads [7]. While there exist a
few works to incorporate optimized power delivery in the
PDN for computationally-intensive neural networks [7], [25],
[29], little work has been devoted to SNN architectures. More
specifically, PDN design optimization for SNNs, considering
the all-or-none nature of spiking activities and inherent spa-
tiotemporal characteristics, has not been explored.

A recent SNN architecture work proposed holistic recon-
figurable dataflow optimization for S-CNNs, using variable
tiling, specifically focusing on the positioning of the tempo-
ral dimension. [20] proposed a temporal parallel processing
method developed for spiking computation on the systolic
array where the time dimension is mapped in parallel for
time-batched computation, sidestepping temporally sequential
operation in conventional SNNs. By efficiently handling partial
sums and filters with structured mapping methodology, [20]
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Fig. 1. Schematic representation of spiking computation.

achieved orders of magnitude of performance improvement
for accelerating deep Alexnet and VGG-16.

We are motivated by this approach, i.e., temporal parallel
processing, which enables independent processing between
columns and coordinates with the power domain control.
By extending the temporal parallel processing concept with
predetermined sparse input information and heterogeneous
voltage regulation (HVR) schemes, we propose a HVR based
sparse-workload-aware PDN architecture for spiking neural
computation on systolic array-based SNN accelerators.

The main contributions of this work are:

o« We present HVR based PDN architecture and control
policy for spiking neural computation on systolic array
accelerators, which applies to S-CNN models.

« We investigate how the dataflow, which enables temporal
parallel processing, coordinates with power gating based
on the sparse nature of the spiking models, and propose
a sparse-workload-aware dynamic PDN control policy.

« We show how the PDN architecture, especially the two-
/three-stage network, dynamic PDN control policy, and
various gating schemes reduce the energy overhead of
the SNN accelerators.

This work presents the first work on HVR based PDN
architecture and control for spiking neural computation on
systolic array-based accelerators. We demonstrate various gat-
ing schemes with different PDN architectures to boost energy
efficiency for a real-world application with the dynamic vision
sensor (DVS) gesture dataset [4]. The proposed techniques de-
liver more than a three-fold reduction in total energy overhead.

II. BACKGROUND
A. Spiking Neural Computation

Apart from traditional neural network models, SNNs offer a
viable solution to the deployment of energy-efficient hardware
design with two unique aspects.

1) Data representation: All data types in non-spiking,
conventional networks, are multi-bit data. As in [10], [11],
[13], [15], [24], 8 to 16-bit precision is the most frequently
applied data representation for all types of data, i.e., input
feature map (IFmap), filter and output feature map (OFmap).
On the other hand, SNNs communicate via binary-valued input
and output spikes as shown in Fig. 1.
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Fig. 2. Schematic representation of three-stage hybrid voltage regulation
architecture.

2) Temporal processing: Temporal processing in spiking
models is another key unique aspect. SNNs explicitly models
the input into all-or-none binary values across multiple time
points. As shown in Fig. 1, a spiking neuron integrates presy-
naptic spike inputs and conditionally generates spike output
only if the membrane potential exceeds firing threshold of a
neuron. Depending on leaky behavior, we classify the neuron
as integrate-and-fire (IF) [6] or leaky integrate-and-fire (LIF)
neuron model [14], which are the two most widely adopted
neuron models.

B. Systolic Arrays

Systolic arrays have been a widely-adopted choice with their
advantages in high compute density, low hardware complexity,
and simple data distribution with neighbor-to-neighbor con-
nections. 2-D systolic array offers spatial-locality and data
reuse in both horizontal and vertical directions, i.e., top-to-
bottom and left-to-right, lend themselves as an cfficient archi-
tecture model for processing compute-intensive tasks such as
neural network accelerators [19], [23], [26].

C. Spiking Neural Computations on a Systolic Array

Mapping complex spatiotemporal spiking neural computa-
tions on the systolic array are non-trivial with its unique nature
discussed in Section II-A. [20] proposed holistic reconfig-
urable dataflow optimization for S-CNNs, especially focusing
on the added time dimension. Among various dataflow types,
temporal parallel processing method to perform computation
across multiple time points concurrently suggests an energy-
efficient dataflow strategy while overcoming the limitation
of stereotyped temporally-sequential computation in spiking
models.

Based upon [20], we follow the dataflow with temporal
parallel processing as shown in Fig. 3, where O, I and W
are the matrices of the output feature maps (OFmaps), input
feature maps (IFmaps), and filters, respectively. U is a given
stride size, and f is a spike generation function. We optimize
the power delivery network upon aforementioned dataflow as
will be discussed in later section.



Algorithm 1: Pseudocode for mapping S-CNNs
Input: IFMAP: I[T|[C|[H][H], FILTER: W[M][C][R][R]
Output: OFMAP: O[T][M][E][E]

/* For all OFMAP pixels */
1 for z, y=0; z, y<E; a++, y++ do
/* For all Output channels and Timesteps */
2 for m=0; m < [M/A;] do
3 for t=0;1 < [T/A,] do
/* For all Input channels */
4 for ¢=0; ¢c<C; c++ do
5 Parallel/* Array operation */
6 for t, m=0; t, m< Ay, Ap, t++, m++ do
/* For all elements of unrolled filter */
7 for i, j=0; i, j<R; i++, j++ do
/* Partial sum */
s P(t-+A, | [m-+7A,] (2] [yl 7][¢] =
9 I[t+t Ay [c][Uz+i][Uy+j] x W [m+mAg][c][i][5]
/* Synaptic input integration */
10 P{t][m[el[y] +— Ple][m]la]y][i1](c
11 end
12 end
13 end
/* Membrane potential update */
1 P'[{[m][2][y] = P{4[m][z][y] + Pt — 1][m][a][y
/* Conditional spike generation */
5 ollm[als] = (P [Aml[l)
16 if O[t][n][m][z]ly] = 1 then
17 | Pplt][n][m][z][y] = 0 // Reset
18 end
19 else
20 | Prllnlimally] = Pl mlo]ly]
21 end
22 end
23 end
24 end

25

26 H: [Fmap width / height, E: OFmap width / height,

27 R: Filter width / height, C: Number of IFmap channels,

28 M: Number of OFmap channels, T: Number of time steps,

20 Ay, Ap: Array width / height

300<z,y<E, E=H-R+U)/U, 0<c<C,0<m<M 0<t<
T,0<n<N

Fig. 3. Pseudo algorithm of the temporal parallel processing dataflow.

D. Voltage Regulation for Neural Network

Power delivery network (PDN) is becoming an increasingly
complex task to match stringent power requirement of power
supply to on-chip devices [29]. To ensure an adequate supply
of power with efficiency and integrity, various types of PDN
architectures have been explored. For example, [25], [29]
proposed heterogeneous voltage regulation (HVR) with three-
stage PDN which consists of off-chip buck converters, on-ship
buck converters and low-dropout VRs (LDOs). Compared to
conventional two-stage PDNs, three-stage PDN better supports
workload aware power management of machine learning tasks
and reduces energy dissipation with rich heterogeneity and
tunability, as shown in Fig. 2.

With rapidly growing applications, neural network ac-
celerators require a large amount of power to support
computationally-intensive data processing. Thus, power deliv-
ery is one of the major challenges for a variety of processor
system designs, including server-class, multi-core processors
and systems-on-chips (SoCs). [7] proposed dynamic power
delivery network (PDN) control policy for systolic array deep
neural network (DNN) accelerators. Recognizing the need for
efficiency and integrity of power delivery to DNN accelerators,

[7] proposed an optimized PDN architecture with dynamic
control and power gating method.

We adopt and extend the three-stage PDN architecture for
spiking computations in this paper. Importantly to note that,
we apply sparse-workload information and fine-grained power
control with various gating schemes, which is not considered
in [7].

III. SPARSE-WORKLOAD-AWARE VOLTAGE REGULATION

Mapping the spiking computations on a systolic array with
pre-determined variable tiling strategy, or simply dataflow has
significant impacts on energy dissipation but less extensively
explored [20]. Furthermore, there exists a dearth of compre-
hensive approaches that capture the exact interactions in data
movement/computation and introduces application-specific op-
timization for given tasks. Apart from the energy dissipation
of the accelerator, another key aspect of the system’s overall
energy efficiency is power delivery. As discussed previously,
PDN design offers potential benefits in power saving for
computationally-intensive workloads such as neural network
accelerators.

Recognizing the potential advantage to employ PDN design
optimization for spiking neural computation, we propose a
method to jointly coordinate the dataflow in the spiking neural
accelerator with the power control policy. Our key observation
is that the spiking activities in SNNs can be interpreted as a
sparse matrix, which opens up the opportunity for an efficient
PDN control aligned for the systolic array.

A. Sparsity in SNNs

As introduced in the previous section, SNNs models the
input into binary values across multiple time points. As a
result, handling sparsity is a key challenge for real-world
applications in SNNs considering binary input matrix. Fig. 5
shows a normalized average firing rate of the neurons in
the first convolution layer (CONV1) for DVS gesture dataset
using 300 timesteps. On average, most of the neurons remain
silent while the number of neurons exponentially decreases as
the firing rate increases. For example, there exist only 6.04
neurons out of 65,536 neurons on average, which fires 150
times across 300 timesteps, for 1,463 input samples.

B. Proposed PDN architecture

Recognizing the need for handling sparsity, we propose a
sparse-workload-aware, dynamic PDN control policy for S-
CNNs. As shown in Fig. 3, we follow the dataflow in [20],
which enables temporal parallel processing and simplified
control of columns in an array for a targeted OFmap pixel.
While this dataflow specifies data scheduling via variable
tiling, we propose in-depth PDN control policy optimization
considering data sparsity, as shown in Fig. 4.

According to Fig. 3 and Fig. 4, the systolic array computes
a partial result of a specific pixel in OFmap. For a given
pixel of OFmap, the array conducts parallel processing both
in the horizontal and vertical axis, i.e., through multiple time



Unrolled Input

Sparse Spike input

Time
/\l | by o

e : Active column

Time
//I [

|

Input Channel

Output Channel
|

Unrolled Filter

—> [iafulo filesfdifebr]es
[l s st

QA RANAAN

1
1auuvyy nding

Fig. 4. Schematic representation of the temporal parallel processing dataflow and sparse IFmap.

—— AVG Firing

0.1
0.01

0.001

Neurons %

1E-4

1E-5 T T T
0.00 0.25 0.50

Firing %

Fig. 5. Normalized average firing activity rates of the neurons in first
convolution layer of DVS gesture dataset. The percentage of neurons and firing
rates are normalized to the total number of neurons, and the total number of
timesteps, respectively.

points (row-wise), and across different channels (column-
wise). Importantly, this dataflow enables to compute each
column independently as partial sums are not required from
other columns (time points). We can separate the computation
between different time points, for the most computationally-
intensive step, i.e., feedforward synaptic input integration step.
This opens up the opportunity to separate computations across
columns, which enables the formation of independent power
domains to support few grouped columns in a systolic array.
More specifically, columns without nonzero input elements
become inactive throughout the array iteration, as shown in
Fig. 4. In most cases of array iteration, power savings can be
brought by sparse nature of spiking activities as discussed in
the earlier section.

However, blindly employing power shut down for columns
may lead to an inaccurate outcome. Important to note that,
columns that are inactive for a specific array iteration and
columns that are unused for entire array iterations should be
classified. If we power-off the inactive columns at a specific
array iteration, membrane potential values are not maintained

and hence causes wrong result for input integration step at
the next iteration. It requires the power network to have more
fine-grained control for ensuring minimum power supply to
maintain the membrane potential.

To tackle the above issue, we propose various control
policies in different types of PDN architecture, which will be
discussed in the following section.

IV. EVALUATION METHODOLOGY

To support various PDN architecture and power domain
control with gating schemes, we consider a 65nm 100MHz
systolic array accelerator with an array size of 256x256 as
identical to Google’s TPU [1]. Also, we adopt CACTI [8]
for the evaluation of the energy dissipation which is widely-
adopted, an architecture level power modeling framework [7],
[20], [23], [26]. We specify the power control characterization
of the accelerator-based upon sparse data for DVS gesture
inference.

A. PDN Architectures

We power the accelerator with two different PDN archi-
tectures, i.e., two-stage PDN and three-stage PDN, with and
without dynamic control. The two-stage PDN architecture
consists of off-chip buck converters and on-chip buck con-
verters. Compared to a single-stage PDN architecture, the
two-stage PDN improves the quality of power delivery and
supports a multicore system much faster [29]. However, the
response time of on-chip buck converters may still limit
the PDN performance, which is tackled by three-stage PDN
architecture. The three-stage PDN architecture includes an
additional network of distributed on-chip LDO, which enables
to drive power domains.

Dynamic control policy adjusts active voltage regulators
dynamically where static control fixes the number of active
voltage regulators. With or without using dynamic control
policy, we combine the two different PDN architecture with
control policy and compare four different types of PDN:
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TABLE I
AN OVERVIEW OF THE GATING TECHNIQUES IN PDN ARCHITECTURES.

PDN Gating |
Data gating

Description

Skip computation in each PE, if the input is

zero

Use minimum power level to maintain scratch pad
memory to store membrane potential. When inputs
for a specific column are all zeros, PDN lowers
the power level for a corresponding power domain
while computation is not performed

Power-off the unused power domains, which is
mainly due to unmatched dimension between
array size and input variable

Clock gating

Power gating

2-stage static, 2-stage dynamic, 3-stage static and 3-stage
dynamic.

B. Dynamic Control Policy with Gating Strategy

We apply three different gating strategies for dynamic
control policy of PDN as summarized in Table I.

1) Data gating: As presented in [11], we can significantly
reduce energy dissipation by skipping the computation in
each PE whenever the input is zero. For a computationally-
intensive neural network application, data gating presents
a high-efficient performance for energy reduction at each
processing unit level.

2) Clock gating: During each systolic array processing
iteration, there exist active columns to perform a computation
for non-zero inputs as shown in Fig. 4. However, the remaining
columns only require a minimum power level to maintain
the membrane potential in its local memory, i.e., scratchpad
memory. Fortunately, predictability from the pre-calculated
sparse information of workload ensures successful control of
each clock domain.

3) Power gating: Mapping variables into a systolic array
results in dimension mismatch. Whenever the dimension is less
than the width or height of the array, corresponding columns or
rows of the array remains unused, which leads to incorporate
power gating strategy. For example, mapping the time variable
with 300 timesteps to 256x256 introduce the remaining 44
columns after the first array iteration.

TABLE I
AN OVERVIEW OF THE APPLIED GATING SCHEMES.

Gating scheme | Description

Scheme A Data gating only.
Scheme B Data gating + clock gating.
Scheme C Data gating + clock gating + power gating.

TABLE IIT
AN OVERVIEW OF THE NETWORK STRUCTURE.

Layer | Number of channels | Number of neurons
CONV1 | 64 32X32
CONV2 | 128 32X32
CONV3 | 256 16X16

We demonstrate the results of different PDN architectures
based on the three gating schemes as shown in II, among
various combinations of gating strategies.

C. DVS gesture dataset

We present the result based on a practical DVS gesture
which is a dataset for real-time gesture recognition [4]. The
dataset consists of 1463 input samples of 11 different hand
gestures. We adopt the most-widely adopted rate-based coding
scheme and convert each input sample into a 300 timestep
binary matrix. This work is primarily focused on convolution
layers in network structure as summarized in Table III. Based
on a trained network, we employ 1,463 input samples to
evaluate the energy consumption of systolic array system in
different PDN architectures with various gating schemes. Note
that, we utilize the spiking activities for DVS gesture inference
to manage the proposed gating schemes.

V. RESULTS

We perform a comprehensive evaluation of energy efficiency
in different PDN architectures and gating schemes based upon
the setups described in Section IV. We break down the PDN
architecture energy consumption into five different energy
overhead sources. Throughout this section, we denote those
sources, i.e., LDO regulators, processor, the off-chip buck
converters, the package, and the on-chip buck converters, as
1do, processor, off-buck, pkg and on-buck, respectively.

A. Dynamic control policy with single power domain

In Fig. 7, four different PDN types are denoted as 2-
dynamic, 2-static, 3-dynamic and 3-static where each PDN
represents two-stage PDN with and without dynamic control,
and three-stage PDN with and without dynamic control, re-
spectively. The results are normalized to energy dissipation of
two-stage PDN with static control at each convolution layer.
In general, three-stage PDNs enables fine-grained control of
on-chip buck converters since three-stage PDNs further incor-
porates additional stage of distributed LDOs. However, this
requires additional energy consumption for LDOs where there
exists a clear benefit considering the energy consumption of
on-chip buck converters. By leveraging the dynamic adaptation
of the sparse workloads, dynamic control policy presents better
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performance for both two-stage and three-stage PDNs, as
shown in Fig. 7. As in Fig. 7, our key observation is that
the three-stage PDN with dynamic control policy improves the
energy consumption in all three convolution layers, on average
for 1,463 input samples of the DVS gesture dataset.

B. Gating scheme with multiple power domains

We demonstrate further benefits brought by the proposed
gating schemes in Table II. We compare different gating
schemes based upon the most efficient PDN architecture,
three-stage PDN with dynamic control policy, as previously
discussed. Furthermore, we explore the granularity of each
gating schemes, in terms of the number of power domains.
We denote the PDN using a number of ¢ power domains as
PG-: in Fig. 8.

For each layer in Fig. 8, the results are normalized to the
energy dissipation of three-stage, single power-domain PDN
with gating scheme A. We observe clear benefits from schemes
A to C, as inactive columns originated from zero-inputs are
optimized with clock gating, and unused power domains due
to mapping mismatch between variable and array size, are
blocked by power gating. More advanced from simple data
gating, which skips trivial computation for zero input at PE
level [11], the proposed gating scheme dynamically adopts
the sparsity incurred in spiking neural computation and thus
efficiently manages leakage power.

In all three convolution layers, the proposed gating scheme
reduces overall energy consumption, in particular with the en-
ergy savings in processor, on-chip buck converters and LDOs.
Among PDNs with different gating schemes and the number
of power domains, the proposed power gating technique can
achieve more than a three-fold reduction in energy dissipation.

VI. CONCLUSION

This work is motivated by a dearth of an efficient power
delivery network to support SNN accelerators. Based on
previously proposed dataflow which enables temporal parallel
processing of S-CNNs on systolic array, we recognize the
presence of sparsity in spiking computations and introduce
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Fig. 8. Normalized energy consumption of 3-stage PDNs with different
numbers of power domain in three convolution layers. Gating scheme A,
B and C follows the combinations of gating techniques represented in Table
II, respectively.

a sparse-workload-aware PDN architecture, which employs
gating control with respect to the input information.

We demonstrate how the various PDN architectures and
gating schemes can be applied on systolic array accelerator to
improve energy efficiency. The proposed techniques delivers
more than a three-fold reduction in total energy overhead for
accelerating dynamic vision sensor (DVS) gesture dataset.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2000851 and
No. 1948201. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in /2th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265-283.

[2] A. Afifi, A. Ayatollahi, and F. Raissi, “Implementation of biologically
plausible spiking neural network models on the memristor crossbar-
based cmos/nano circuits,” in 2009 European Conference on Circuit
Theory and Design. 1EEE, 2009, pp. 563-566.

[3] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al.,
“Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp.
1537-1557, 2015.



[4]

[51

[6]

[7

—

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low
power, fully event-based gesture recognition system,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 7243-7252.

G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass,
“Long short-term memory and learning-to-learn in networks of spiking
neurons,” in Advances in Neural Information Processing Systems, 2018,
pp. 787-797.

A. N. Burkitt, “A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input,” Biological cybernetics, vol. 95, no. 1,
pp. 1-19, 2006.

J. Chen, J. Riad, E. Sanchez-Sinencio, and P. Li, “Dynamic heteroge-
neous voltage regulation for systolic array-based dnn accelerators,” in
2020 IEEE 38th International Conference on Computer Design (ICCD).
IEEE, 2020, pp. 486-493.

K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and
N. P. Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked
dram main memory,” in 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2012, pp. 33-38.

L. Chen, C. Li, T. Huang, Y. Chen, and X. Wang, “Memristor crossbar-
based unsupervised image learning,” Neural Computing and Applica-
tions, vol. 25, no. 2, pp. 393400, 2014.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 269-284. [Online]. Available:
https://doi.org/10.1145/2541940.2541967

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127-138,
2016.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp- 82-99, 2018.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), 2015, pp. 92-104.

W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240
g-ops/s mobile coprocessor for deep neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2014, pp. 682—687.

Y. Jin, Y. Liu, and P. Li, “Sso-lsm: A sparse and self-organizing
architecture for liquid state machine based neural processors,” in
2016 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH). IEEE, 2016, pp. 55-60.

Y. Jin, W. Zhang, and P. Li, “Hybrid macro/micro level backprop-
agation for training deep spiking neural networks,” arXiv preprint
arXiv:1805.07866, 2018.

W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core dvfs using on-chip switching regulators,” in 2008
IEEE 14th International Symposium on High Performance Computer
Architecture. 1EEE, 2008, pp. 123-134.

H. Kung, B. McDanel, and S. Q. Zhang, “Packing sparse convolutional
neural networks for efficient systolic array implementations: Column
combining under joint optimization,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2019, pp. 821-834.

J.-J. Lee and P. Li, “Reconfigurable dataflow optimization for spatiotem-
poral spiking neural computation on systolic array accelerators,” in
2020 IEEE 38th International Conference on Computer Design (ICCD).
1EEE, 2020, pp. 57-64.

J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in neuroscience, vol. 10, p.
508, 2016.

H. Li, J. Xu, Z. Wang, P. Yang, R. K. Maeda, and Z. Tian, “Adaptive
power delivery system management for many-core processors with

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

on/off-chip voltage regulators,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. 1EEE, 2017, pp. 1265-1268.
S. Lym and M. Erez, “Flexsa: Flexible systolic array architecture for
efficient pruned dnn model training,” arXiv preprint arXiv:2004.13027,
2020.

M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in 2013
IEEE 31st International Conference on Computer Design (ICCD).
1EEE, 2013, pp. 13-19.

J. Riad, J. Chen, E. Séanchez-Sinencio, and P. Li, “Variation-aware
heterogeneous voltage regulation for multi-core systems-on-a-chip with
on-chip machine learning,” in 2020 21st International Symposium on
Quality Electronic Design (ISQED). 1EEE, 2020, pp. 190-194.

A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Kr-
ishna, “Scale-sim: Systolic cnn accelerator simulator,” arXiv preprint
arXiv:1811.02883, 2018.

S.-Q. Wang, L. Wang, Y. Deng, Z.-J. Yang, S.-S. Guo, Z.-Y. Kang,
Y.-F. Guo, and W.-X. Xu, “Sies: A novel implementation of spiking
convolutional neural network inference engine on field-programmable
gate array,” Journal of Computer Science and Technology, vol. 35, pp.
475489, 2020.

X. Wu, Y. Wang, H. Tang, and R. Yan, “A structure-time parallel
implementation of spike-based deep learning,” Neural Networks, vol.
113, pp. 72-78, 2019.

X. Zhan, J. Chen, E. Sanchez-Sinencio, and P. Li, “Power management
for multicore processors via heterogeneous voltage regulation and ma-
chine learning enabled adaptation,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2641-2654, 2019.
W. Zhang and P. Li, “Spike-train level backpropagation for training deep
recurrent spiking neural networks,” in Advances in Neural Information
Processing Systems, 2019, pp. 7802-7813.

V. Zyuban, J. Friedrich, D. M. Dreps, J. Pille, D. W. Plass, P. J. Restle,
Z. T. Deniz, M. M. Ziegler, S. Chu, S. Islam et al, “Ibm power8
circuit design and energy optimization,” IBM Journal of Research and
Development, vol. 59, no. 1, pp. 9-1, 2015.



