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a b s t r a c t

Hadron production at low transverse momenta in semi-inclusive deep inelastic scattering can be
described by transverse momentum dependent (TMD) factorization. This formalism has also been
widely used to study the Drell–Yan process and back-to-back hadron pair production in e+e−

collisions. These processes are the main ones for extractions of TMD parton distribution functions
and TMD fragmentation functions, which encode important information about nucleon structure and
hadronization. One of the most widely used TMD factorization formalism in phenomenology formulates
TMD observables in coordinate b⊥-space, the conjugate space of the transverse momentum. The Fourier
transform from b⊥-space back into transverse momentum space is sufficiently complicated due to
oscillatory integrands that it requires a careful and computationally intensive numerical treatment
in order to avoid potentially large numerical errors. Within the TMD formalism, the azimuthal
angular dependence is analytically integrated and the two-dimensional b⊥ integration reduces to
a one-dimensional integration over the magnitude b⊥. In this paper we develop a fast numerical
Hankel transform algorithm for such a b⊥-integration that improves the numerical accuracy of TMD
calculations in all standard processes. Libraries for this algorithm are implemented in Python 2.7 and
3, C++, as well as FORTRAN77. All packages are made available open source.
Program summary
Program Title: Fast Bessel Transform (FBT)
CPC Library link to program files: http://dx.doi.org/10.17632/65zkb53z8d.1
Developer’s repository link: http://github.com/UCLA-TMD/Ogata
Licensing provisions: MIT
Programming language: Python 2/3, C++, FORTRAN77
Nature of problem: In order to perform extractions of transverse momentum distribution functions,
numerical Hankel transforms must be performed from b⊥-space to momentum space. However, these
numerical Hankel transforms are a huge bottleneck in these extractions, making these extractions
extremely computationally intensive.
Solution method: We develop a numerical Hankel transform algorithm by optimizing Ogata quadrature
formula. This algorithm improves the performance of these numerical Hankel transforms by nearly an
order of magnitude.

© 2020 Published by Elsevier B.V.
✩ The review of this paper was arranged by Prof. Z. Was.
✩ This paper and its associated computer program are available via the
omputer Physics Communication homepage on ScienceDirect (http://www.
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1. Introduction

The transverse momentum dependent (TMD) parton distri-
bution functions (PDFs) and fragmentation functions (FFs) have
received great attention from both theoretical and experimental
communities in recent years. These TMD PDFs and FFs, or in
short called TMDs, provide new information on hadron structure:
the three-dimensional imaging of hadrons in both longitudinal
and transverse momentum space [1–4]. Significant progress has
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een made in the last few years in terms of measuring trans-
erse momentum dependent unpolarized and polarized cross
ections in experiments, as well as extracting the associated spin-
ndependent and spin-dependent TMDs in phenomenology, see
efs. [5,6] and references therein.
TMDs are non-perturbative objects in Quantum Chromody-

amics (QCD) and thus they have to be either computed on the
attice, or extracted from experimental data. For recent develop-
ents on lattice computation of TMDs, see Ref. [7]. On the other
and, in order to extract TMDs from the experimental data, one
elies on proper QCD factorization theorems [8]. TMD factoriza-
ion [9–12] describes cross sections in scattering events where
he relevant transverse momentum q⊥ of the observed final state
s much smaller than the hard scale Q : q⊥ ≪ Q . In such a region,
he cross section can be factorized in terms of TMD PDFs and/or
Fs and perturbatively calculable short distance hard coefficients.
he relevant processes that have been extensively studied include
emi-inclusive deep inelastic scattering (SIDIS) [13,14], Drell–
an type process in proton–proton collisions [15–23], and back-
o-back dihadron production in e+e− collisions [24,25]. There
are also other new opportunities in studying TMDs which are
proposed recently in e.g. Refs. [26–43], and usually involve jet
measurements.

Within the TMD factorization formalism, the cross section is
written as a convolution of the relevant transverse momentum
dependent functions. To motivate our discussion and thus make
the case more concrete, let us take SIDIS as an example. The
differential cross section for the unpolarized scattering process
of e(ℓ) + p(P) → e(ℓ′) + h(Ph) + X can be written as [44]

dσ h

dxbj dy dz d2q⊥

=
2πα2

EM

Q 2

1 + (1 − y)2

y
W (q⊥, xbj, z,Q ) , (1)

where the standard SIDIS variables are defined as

q = ℓ− ℓ′, Q 2
= −q2, xbj =

Q 2

2P · q
,

y =
P · q
P · ℓ

, z =
P · Ph
P · q

.

(2)

The unpolarized structure functions W in Eq. (1) can be factorized
as follows

W (q⊥, xbj, z,Q ) = H(Q , µ)
∑
q

e2q

∫
d2k⊥d2p⊥fq/p(xbj, k2⊥)

× Dh/q(z, p2⊥) δ
(2) (k⊥ + p⊥/z + q⊥) . (3)

here q⊥ = −Ph⊥/z, eq is the fractional electric charge for the
uarks, and H(Q , µ) is the hard function to be given by Eq. (35)
n Section 4. On the other hand, the vectors k⊥ and p⊥ are the
omentum of the produced quark relative to the parent proton
nd the momentum of the produced hadron with respect to the
ragmenting quark, respectively. The function fq/p(xbj, k2⊥) is the
MD PDF while Dh/q(z, p2⊥) is the TMD FF. Here we have sup-
ressed the additional scale parameters in the TMDs, which are
ssociated with QCD evolution of the TMDs [45–49]. In general,
he convolution and integration of TMDs over the momenta k⊥

nd p⊥ are quite involved. Thus in the original Collins–Soper–
terman (CSS) approach [50], one takes a Fourier transformation
rom the momentum space to the coordinate b⊥ space,1

˜ (b⊥, xbj, z,Q ) =

∫
d2q⊥ eiq⊥·b⊥ W (q⊥, xbj, z,Q ), (4)

1 There are also other approaches in the literature that do not work in the
⊥ space, see e.g. Refs. [51,52]. Notice that we drop explicit dependence on xbj
nd z for the rest of this paper.
2

and thus one can write

W (q⊥, xbj, z,Q ) =H(Q , µ)
∑
q

e2q

∫
d2b⊥

(2π )2
e−iq⊥·b⊥

× fq/p(xbj, b⊥)Dh/q(z, b⊥) ,

=H(Q , µ)
∑
q

e2q

∫
∞

0

db⊥b⊥

2π
J0(q⊥b⊥)

× fq/p(xbj, b⊥)Dh/q(z, b⊥) , (5)

where b⊥ = |b⊥| is the magnitude of the vector b⊥, J0 is the
Bessel function of the first kind of order 0, and fq/p(xbj, b⊥),
Dh/q(z, b⊥) are the Fourier transform of the TMD PDF and FF,
respectively. In going from the first to second line in Eq. (5), we
perform analytically the integration over the azimuthal angle φ,

2π

0

dφ
2π

e−iq⊥b⊥ cos(φ)
= J0(q⊥b⊥) , (6)

and thus the two-dimensional Fourier transform reduces to a
one-dimensional Hankel transform.

For the polarized scattering, the generic structure of the cross
sections can be written as [10,44]

qα
⊥
W (q⊥, . . .), qα

⊥
qβ

⊥
W (q⊥, . . .) (7)

ith W (q⊥, . . .) representing a generic function of q⊥ = |q⊥|

and ‘‘· · ·’’ denoting the other kinematic variables. The Fourier
transform of such functions will lead to Bessel functions of order
1 and 2. In fact, as shown in [53], all the spin-dependent struc-
ture functions at leading-power can be expressed in terms of an
integration over b⊥ multiplied by the Bessel functions of J0, J1, or
2. Generically the integrals become

∞

0

db⊥bν+1
⊥

2π
Jν(q⊥b⊥)W̃ (b⊥) , (8)

where the function W̃ (b⊥) contains the b⊥ space TMD physics.
Without loss of generality the integration form stemming from

he Fourier transform encountered in TMD observables can be
ritten as
∞

0
dx f (x) Jn(x), (9)

where x = b⊥q⊥, Jn(x) is the Bessel function of order n, and f (x)
is usually a smooth function of x that slowly decays as x → ∞.
Such an integration can be extremely computationally intensive
and time consuming with standard integration routines based
on adaptive Gaussian quadratures or Monte Carlo integration
methods due to the oscillatory nature of the Bessel functions. In
the context of TMD global analysis, one has to compute the above
integration many times, and for different kinematic regions, in
order to find the best fit for the non-perturbative TMDs. This has
become a huge hurdle for TMD phenomenology in the past for
carrying out the global QCD analysis on TMDs using the data from
HERMES, COMPASS, JLAB 6 GeV, Relativistic Heavy Ion Collider
(RHIC) and BELLE experiments and it will become even more chal-
lenging for the large amount data that is expected from the JLab
12 GeV program and the future Electron Ion Collider (EIC). For this
reason, as well as the complexity of the TMD evolution, improving
the efficiency and the speed of the numerical integration of Eq. (9)
is extremely desirable.

Ogata has introduced a quadrature formula in Ref. [54] that
is optimized for integrands with Bessel functions for exactly the
same integral as in Eq. (9). As will be discussed in Section 2,
this quadrature method has two parameters, h and N , which
control the node spacing and the truncation of the quadrature
sum, respectively. While this formalism has been previously used
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Fig. 1. Illustration of the schematic difference between the optimized and fixed
h Ogata methods. The arrows indicate the flow of the parameters h and N as
q⊥ is increased for each scheme.

in TMD analysis in Ref. [55]; the scheme used in this refer-
ence suffers from large numerical inefficiencies. Namely Ref. [55]
method takes the parameter h to be held fixed for the entire
global analysis, while increasing N to reach convergence of the
integration. We will therefore refer to this method as a ‘fixed
h Ogata scheme’. In this paper, we propose a new numerical
algorithm by which the parameter h is optimized for an input
number of nodes N , referred to as ‘optimized h Ogata scheme’.
Fig. 1 illustrates the difference between these two schemes. We
note that while the fixed h Ogata method used in Ref. [55] is
sufficient for the extraction of TMDs from several hundred data
points, future high precision global extraction of TMDs will utilize
tens of thousands data points. Moreover, the reliable estimation
of errors of parameters may warrant Monte Carlo fitting methods,
such as ones used in JAM15 extraction from Ref. [56].

As the Fourier transforms are a huge bottleneck in these ex-
tractions, the numerical inefficiencies of fixed h Ogata methods
will be massively amplified to the point where precision extrac-
tions may no longer be feasible. We demonstrate in this paper
that the optimized Ogata quadrature is more efficient than the
traditional adaptive Gaussian quadrature method, Monte Carlo
method, as well as fixed h Ogata quadrature method. The rest of
this paper is organized as follows. In Section 2, we summarize the
relevant formalism for the Ogata quadrature method and describe
our optimized numerical algorithm in detail. In Section 3, we give
a demonstration of the optimized Ogata quadrature and bench-
mark the algorithm against adaptive Gaussian quadrature using
an exponential function which has an analytic Fourier transform.
In Section 4, we apply our numerical method to an example of
a phenomenological form of TMDs. We conclude our paper in
Section 5.

2. Optimized Ogata quadrature formalism

In this section we first review the original Ogata quadra-
ture formalism and then discuss our optimization scheme for
performing high efficiency numerical integrals relevant to TMD
analysis. The Ogata method is based on a quadrature formalism
that was first introduced in Ref. [57] by Frappier and Olivier.
The quadrature formula for the integrand of the form |x|2n+1f (x)
reads:∫

∞

−∞

dx |x|2n+1f (x) = h
∞∑

j=−∞,j̸=0

wnj |xnj|2n+1 f (xnj) + O
(
e−c/h) ,

(10)

where the function f (x) must be an integrable function for the
sum to be finite. The nodes xnj and the weights wnj of the quadra-
ture are given by

xnj = hξnj , wnj =
2

2 , (11)

π ξn|j|Jn+1(πξn|j|) c

3

with j = ±1,±2, . . ., and ξnj the zeros of the Bessel function
Jn(πx) of order n, i.e. Jn(πξnj) = 0, and the parameter 1/h repre-
sents the node density. The term O

(
e−c/h

)
accounts for the error

of the quadrature sum approximation at a finite h as described
in equation (2.2) of Ref. [54], and c is a positive constant, whose
precise value depends on the functional form of f (x). For the time
being, we will be interested in the case of f (x) being an even
function of x which results in the following quadrature formula∫

∞

0
dx x2n+1 f (x) = h

∞∑
j=1

wnj x2n+1
nj f (xnj) + O

(
e−c/h) . (12)

n practice the sum in Eq. (12) is truncated at a given j = N which
ntroduces an error of

nN+1 = h
∞∑

j=N+1

wnj x2n+1
nj f (xnj) (13)

nd the quadrature formula becomes

∞

0
dx x2n+1 f (x) = h

N∑
j=1

wnj x2n+1
nj f (xnj) +

[
InN+1 + O

(
e−c/h)] .

(14)

The following change of variables, see Ref. [54], optimizes the
onvergence of integrals of the typical TMD functional form from
q. (9):

=
π

h
ψ(t) with ψ(t) = t tanh

(
π
2 sinh t

)
, (15)

so that Eq. (9) becomes∫
∞

0
dx f (x)Jn(x) =

π

h

∫
∞

0
dt ψ ′(t)f

(π
h
ψ(t)

)
Jn

(π
h
ψ(t)

)
=
π

h

∫
∞

0
dt |t|2n+1ψ

′(t)f
(
π
hψ(t)

)
Jn

(
π
hψ(t)

)
t2n+1 ,

(16)

where ψ ′(t) = dψ(t)/dt . At this point, it is important to realize
that the part of the integrand besides the factor |t|2n+1 is an even
unction of t . Thus we can apply Eq. (12) and obtain the following
quadrature formula∫

∞

0
dx f (x) Jn(x) = π

N∑
j=1

wnj f
(π
h
ψ(xnj)

)
Jn

(π
h
ψ(xnj)

)
ψ ′(xnj)

+
[
I ′

nN+1 + O
(
e−c/h)] , (17)

where I ′

nN+1 are the same truncation errors defined in Eq. (13)
but with the transformed integrand,

I ′

nN+1 = π

∞∑
j=N+1

wnj f
(π
h
ψ(xnj)

)
Jn

(π
h
ψ(xnj)

)
ψ ′(xnj) . (18)

Eq. (17) is the aforementioned Ogata quadrature formula, which
e advocate in our current paper. The variable substitution has
he useful asymptotic behavior
π

h
ψ(xnj) ≈ πξnj

[
1 − 2 exp

(
−
π

2
exnj

)]
, (19)

such that the asymptotic behavior for the Bessel function be-
comes

Jn
(π
h
ψ(xnj)

)
≈ 2πξnjJn+1(πξnj) exp

(
−
π

2
exnj

)
. (20)

his variable substitution then enforces the double exponential
onvergence of the quadrature sum in j.
The quadrature sum has two parameters, h and N , which

ontrol the efficiency and the magnitude of the error terms. To
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enerate a high efficiency algorithm, the numerical integration
ust be performed with a small N while at the same time the
rror terms must also be small, to ensure reliable results. By
nspecting Eqs. (18) and (20) one notes that for a small number of
unction calls the truncation errors will be large if h is too small.
o compensate for this, the numerical algorithm would need to
um a large number of nodes N to minimize truncation errors.
mall values of h will then tend to generate numerical inefficien-
ies. This has been the leading cause of numerical inefficiencies
n previous implementations of the Ogata quadrature method. At
he same time for larger values of h the quadrature error grows as
e−c/h, see Eq. (10). These observations indicate the need to find

ptimal values for h and N that keep the error term in Eq. (17)
s small as possible. We found that such optimal values can be
btained by enforcing the largest contribution to the quadrature
o be the first term in the truncated sum of Eq. (12) which can be
chieved by maximizing the contribution of the first node, i.e.
∂

∂h

(
h(hξn1)2n+1f (hξn1)

)
= 0 . (21)

y solving numerically Eq. (21) for h one finds the optimal value
f h for the quadrature method in Eq. (12). We will refer to this
ptimal value as hu.
It is now worth noting that hu will tend to be a large value. This

akes intuitive sense since minimizing truncation errors can be
chieved by using a large spacing parameter. However, taking a
arge value of h introduces quadrature errors which behave like
−c/h and tend to be large for h = hu. This issues can be mitigated
y using the following scheme. We first use the condition in
q. (21) to minimize truncation errors in Eq. (12). We then impose
he condition that the final nodes of Eqs. (12) and (17) are placed
t the same location by enforcing that

uξnN =
π

h
ψ(hξnN ) . (22)

his ensures that the quadrature in Eq. (17) has the same trun-
ation errors as Eq. (12) with hu. The solution for h in the above
equality is given by

h =
1
ξnN

sinh−1
(

2
π

tanh−1
(
hu

π

))
, (23)

hen hu < π . This value, labeled as ht is the optimal value for
to be used in Eq. (17). Note that ht is suppressed by a large

actor of πξnN so that ht ≪ hu. In Fig. 2 we plot the ratio ht/hu
s a function of hu for N = 10, 20, and 40. We find that in all
ases ht

hu
≪ 1 which avoids large errors in Eq. (21). We note that

Eq. (22) only has a real solution when hu < π . It turns out that
when the variance of the input function is very large, the value
of the parameter hu which was determined from Eq. (21) may be
larger than π . To ensure that there is a real solution to Eq. (22) as
well as to ensure that ht < hu for all values of N , we must set an
upper boundary on the parameter hu, which we set to be hmax =

2. When this occurs, the value of hu that we use is smaller than
the optimal value. This issue could lead to truncation errors if
the variance of the input function is sufficiently large. Beyond the
range, the user needs to rely on the number of sampling points
N in order to decrease the errors stemming from the truncation
errors.

In summary, for a given choice of number of integrand evalu-
ations N , our procedure minimizes the error contribution in h as
well as truncation errors by applying the conditions Eqs. (21) and
(22). The application of these conditions determines an optimal
choice for h in implementing the quadrature formula of Eq. (17).
We shall refer to this procedure as ‘‘the optimized Ogata quadra-
ture formula’’. We will demonstrate below the efficiency of our
formalism, first through the use of toy TMDs, and then through
QCD based TMDs.
4

Fig. 2. The solution of Eq. (23) as a function of hu at several values of N . The
solution is written as ht/hu to demonstrate that ht ≪ hu for hu < π .

3. Benchmarking the numerical precision

In this section, we demonstrate the efficiency of the optimized
Ogata quadrature method using toy TMDs for which the exact
Fourier–Bessel transform is known. We will compare the numeri-
cal efficiency of the optimized Ogata quadrature against adaptive
Gaussian quadrature, which is available in QUADPACK integration
routine in Ref. [58]. It is important to emphasize that even though
we mainly demonstrate the method for the integration involving
Bessel function J0(x), we have checked that it works equally well
for integration involving either J1(x) or J2(x), relevant for TMD
tudies in polarized scattering.
To assess the efficacy of our quadrature method we will map

he error of the integration relative to the exact known result as
function of number of integrand calls. As discussed before we
re interested in performing integrals of the form

(q⊥) =

∫
∞

0

db⊥b⊥

2π
W̃ (b⊥) J0(b⊥q⊥) , (24)

here the function W̃ (b⊥) contains the b⊥ space TMD physics.
herefore we will use a toy W̃ (b⊥) which mimics the b⊥ space
ehavior of realistic unpolarized TMDs that has an exact analytic
ourier–Bessel transform. Specifically we choose the gamma dis-
ributions which are given in terms of the distribution’s mean, β ,
nd variance, σ , as

˜ (b⊥, β, σ ) =
1
b⊥

(
βb⊥

σ 2

)β2/σ2
e−

β b⊥
σ2

Γ

(
β2

σ2

) . (25)

his function has an exponential b⊥-dependence, and has been
used in the literature for TMD studies [59]. Its exact Fourier–
Bessel transform is given by

W exact(q⊥, β, σ ) =
1
2π

(
σ 2

β

) Γ

(
β2

σ2 + 1
)

Γ

(
β2

σ2

) 2F̃1

(
1
2

(
β2

σ 2 + 1
)
,

1
2

(
β2

σ 2 + 2
)

; 1; −
q2

⊥
σ 4

β2

)
, (26)

where 2F̃1 (a, b; c; d) is the regularized Gaussian hyper-geometric
function. The function W̃ (b⊥, β, σ ) has a single peak in b⊥ space,
hich is given in terms of β and σ as

peak
⊥

=
β2

− σ 2

β
. (27)

We further introduce a parameter Q to our toy TMDmodel, which
is the inverse of the bpeak

⊥
, i.e.

Q =
1
peak =

β

2 2 . (28)

b

⊥
β − σ
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uch a Q -dependence mimics the hard scale Q encountered in
CD based TMDs such as the photon virtuality in SIDIS reac-
ions [50,60]. Notice that it is the quantity q⊥/Q that controls how
scillating the toy TMD is. The larger q⊥/Q is, the more oscillating
he integrand is in b⊥ space and the more numerically intensive
he integration becomes.

For our demonstration, we take Q = 2 (GeV) and σ = 1
GeV−1) similar to the usual JLab kinematics. We choose q⊥ =

.2, 2, and 4 (GeV), and plot the integrands on the left hand
ide of Fig. 3. As one can see clearly, the integrands do become
ore oscillating as q⊥/Q increases. To test the precision of our

ormalism, we take as an example in our optimized Ogata formula
n Eq. (17).

Ogata(q⊥, β, σ ) = π

N∑
j=1

wnj f
(π
h
ψ(hξnj)

)
Jn

(π
h
ψ(hξnj)

)
ψ ′(hξnj) (29)

The relative percent error is defined as

rel. error (%) =

⏐⏐⏐⏐W exact(q⊥, β, σ ) − WOgata(q⊥, β, σ )
W exact(q⊥, β, σ )

⏐⏐⏐⏐ × 100 ,

(30)

where the exact result W exact(q⊥, β, σ ) is given in Eq. (26). For
this analysis, we increase the number of nodes at q⊥ = 0.2, 2, 4
GeV until the best relative error for the numerical inversion is
of the order of one percent. This requires 4,7 and 10 nodes at
q⊥ = 0.2, 2, 4 GeV, respectively. On the right panel of Fig. 3, we
plot the relative percent error of the numerical integration as a
function of the parameter h for q⊥ = 0.2, 2, and 4 GeV. One can
see that in each case, there is an optimal value of the parameter
h, which minimizes the measured error.

Intuitively having a small node spacing h should result in a
small error, since the error in h is of the order O(e−c/h) in Eq. (17).
However, the truncation errors I ′

nN+1 in Eq. (17) will generate
large errors in the numerical integration, due to the factors of
f
(
π
hψ(hξnj)

)
Jn

(
π
hψ(hξnj)

)
, unless one increases N significantly.

herefore, for a small and fixed number of nodes N , there is an
ptimized h that minimizes the errors as argued in Section 2. On
he right panel of Fig. 3, we indicate with stars the values of h
which are determined by the optimization conditions Eqs. (21)
and (22). We find that within this range of kinematics, our opti-
mization conditions indeed determine suitable values of h for our
quadrature method which is key to achieve high efficiency in the
numerical integration.

We now compare the efficiency of the optimized Ogata
quadrature against adaptive Gaussian quadrature. Note that the
optimized Ogata quadrature first samples the integrand to deter-
mine the optimal value of h using Eq. (21). The integration routine
5

then samples the integrand at N nodes to perform the sum. This
results in a total number of integrand calls Ntot . To control Ntot
for adaptive Gaussian quadrature, we change the relative error
tolerance of the integrator. Likewise, we measure the total num-
ber of function calls of adaptive Gaussian quadrature requested
by the numerical routine. In Fig. 4 we plot the relative error as a
function of Ntot for small, intermediate and large values of q⊥/Q .
As is evident, the optimized Ogata quadrature method is more
efficient than adaptive Gaussian quadrature, for all three probed
regions of q⊥/Q with relative errors that go below 0.1%.

4. Application to TMDs

In this section we use the optimized Ogata quadrature to
calculate the SIDIS q⊥-differential cross sections in QCD TMD fac-
orization framework. We then use these calculations to describe
OMPASS charged hadron multiplicity data [14]. In addition, we
se adaptive Gaussian quadrature and Vegas Monte Carlo algo-
ithm for the same calculations to benchmark the performance.

Let us first summarize the basic ingredients for the implemen-
ation of the unpolarized SIDIS structure function W in Eq. (5) in
he CSS TMD framework [9,47]. In such context the TMD PDFs
nd TMD FFs can be expressed as

q/p(xbj, b⊥, µ, ζ ) =

∑
j

∫ 1

xbj

dx̂
x̂
Cpdf
q/j

(
xbj/x̂, b∗, µb∗

)
fj/p

(
x̂, µb∗

)
(31)

× exp
(
Spert − gA(xbj, b⊥, bmax)

× −
1
2
gK (b⊥, bmax) ln

(√
ζ

Q0

))
,

Dh/q(z, b⊥, µ, ζ ) =

∑
j

∫ 1

z

dẑ
ẑ
C ff
j/q

(
z/ẑ, b∗, µb∗

)
dh/j

(
ẑ, µb∗

)
(32)

× exp
(
Spert − gB(z, b⊥, bmax)

× −
1
2
gK (b⊥, bmax) ln

(√
ζ

Q0

))
,

here µ is the renormalization scale, ζ is the rapidity scale,
pdf
q/j and C ff

j/q are perturbatively calculable coefficient functions
see Ref. [47]), and fj/p

(
x̂, µb∗

)
and dh/j

(
ẑ, µb∗

)
are the standard

ollinear PDFs and FFs, respectively. We will use the initial scale
2
0 = 2.4 GeV2. We follow the usual b∗-prescription [9] to avoid
he Landau pole of αs, with

∗ =
b⊥√

1 + b2 /b2
. (33)
⊥ max
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Fig. 4. From left to right, the relative percent error of optimized Ogata and adaptive Gaussian quadrature as a function of total number of calls Ntot to the integrand
t small, moderator and large transverse momentum: q⊥/Q = 0.1 (left), q⊥/Q = 1 (middle), and q⊥/Q = 2 (right).
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Fig. 5. SIDIS b⊥ space integrand from Eq. (5) for the differential cross section at
NLO+NLL for π+ production for three different values of transverse momenta:
q⊥/Q = 0.1, 1, and 2, respectively. For the rest of the external kinematics we
select Sℓp = 52.7 (GeV2), xbj = 0.25, z = 0.5, and Q 2

= 2.5 (GeV2) within the
coverage of the HERMES experiment [13].

The perturbative Sudakov factor Spert is given by

Spert =
1
2

∫ µ

µb∗

dµ′

µ′

[
2γ (µ′) − ln

(
ζ

µ′2

)
γK (µ′)

]
+ K̃ (b⊥, µb∗

) ln
(√

ζ

µb∗

)
, (34)

.e., the evolution is done from the auxiliary scale µb∗
= 2e−γE /b∗

to the scale µ. In the actual phenomenology, we set the rapidity
scale ζ = Q 2 and set the renormalization scale µ = Q . We
will implement the TMD evolution at next-to-leading-logarithmic
(NLL) accuracy, and use the coefficient functions C at next-to-
leading order (NLO). All the relevant NLO coefficients and NLL
anomalous dimensions can be found in Refs. [9,47]. In addition,
we use NLO expression for hard function H(Q , µ) in Eq. (5) from
Ref. [47] reads

H(Q , µ) = 1 +
αs

π
CF

[
3
2
ln

(
Q 2

µ2

)
−

1
2
ln2

(
Q 2

µ2

)
− 4

]
, (35)

nd we set µ = Q so that the logarithmic terms vanish. Finally,
we choose the parametrizations for the non-perturbative factors
used in Refs. [61,62] which are given by

gA(xbj, b⊥, bmax) = gqb2⊥, gB(z, b⊥, bmax) =
gh
z2

b2
⊥
,

gK (b⊥, bmax) = g2 ln
(
b⊥

b∗

)
,

(36)

with gq = 0.106 GeV2, g2 = 0.84, and gh = 0.042 GeV2. The
expression for the W term in Eq. (5) is given by

W̃ (b⊥, xbj, z,Q ) =H(Q , µ)
∑
q

e2q Cpdf
q/j ⊗ fj/p(xbj, µb∗)

× C ff
⊗ d (z, µ )
i/q h/i b∗ v

6

× exp
[
2Spert − (gq + gh/z2) b2⊥

−g2 ln
(
b⊥

b∗

)
ln

(
Q
Q0

)]
(37)

where ⊗ is the convolution operator given in Eqs. (38) and (39)
in [61].

Having established the QCD based TMD setups, let us examine
the behavior of the SIDIS cross section in b⊥ space. In Fig. 5 the
b⊥ space integrand given in Eq. (5) for the SIDIS differential cross
ection is plotted, for three different values of q⊥/Q = 0.1, 1.0
nd 2.0, respectively. We take the lepton–proton center-of-mass
nergy square Sℓp = 52.7 (GeV2), xbj = 0.25, z = 0.5, and
2

= 2.5 (GeV2). These kinematics are within the coverage of
he pion production in unpolarized lepton–proton SIDIS data at
he HERMES experiment [13]. Just like in the case of the toy
MDs in Section 3, the integrand becomes more oscillating as
⊥/Q increases. As a consequence, the numerical estimation of
he Fourier–Bessel transform from b⊥-space to q⊥-space becomes
ncreasingly more challenging for larger values of q⊥/Q .

We next analyze the performance of our optimized Ogata
uadrature to get the q⊥-space cross sections against the fixed h
gata, adaptive Gaussian quadrature, and the Vegas Monte Carlo
ntegration routines. For that we consider a related experimental
bservable, the hadron multiplicity which has been measured by
oth HERMES [13] and COMPASS [14] experiments. The COMPASS
adron multiplicity is defined as [14]

h(q⊥, xbj, z,Q ) =
π

z2
dσ h

dxbjdydzd2q⊥

/
dσ DIS

dxbjdy
, (38)

here the numerator is the SIDIS cross section for the production
f a hadron h that we have been discussing so far, and the de-
ominator is the inclusive DIS cross section. In Fig. 6, we plot the
bsolute value of the theoretical prediction for the hadron multi-
licity, |Mh+

(q⊥, xbj, z,Q )|, as a function of q⊥/Q , using the above
entioned integration algorithms. For illustration, we choose the
inematics to be consistent with hadron multiplicity data from
OMPASS experiment: four panels correspond to optimized Ogata
n the top left 0.02 < xbj < 0.032, z = 0.2, and 1.7 GeV2 < Q 2 <

GeV2. The (labeled as ‘Opt. Ogata’), standard Ogata in the top
ight (labeled as ‘Fixed h Ogata’), adaptive Gaussian quadrature
n the bottom left (labeled as Quad), and Vegas Monte Carlo in
he bottom right (labeled as Vegas), respectively. We also plot the
OMPASS experimental data in Fig. 6 for comparison.2
Note that at relatively large hadron transverse momentum

⊥/Q ≳ 2, the theoretical calculations in TMD factorization
ormalism would become negative. There, one has to include the
o-called Y -term [9], or switch/match onto the usual collinear
actorization formalism [50,64]. For very large values of Q , such a

2 In order to describe the data, the normalization issue with the COMPASS
ata must be resolved. We follow the work done in [63] to normalize the
OMPASS multiplicities such that the data and theory are equal at the lowest
alues of the transverse momentum in each z bin.
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Fig. 6. The theoretical prediction for the hadron multiplicity, |Mh+

(q⊥, xbj, z,Q )|, as a function of q⊥/Q , using four different integration algorithms: the optimized
gata quadrature (‘‘Opt. Ogata’’, top left panel), the standard Ogata method (‘‘Fixed h Ogata’’, top right panel), the adaptive Gaussian quadrature (‘‘Quad’’, bottom
eft panel), and the Vegas Monte Carlo algorithm (‘‘Vegas’’, bottom right panel). For illustration, we choose the kinematics to be consistent with the COMPASS
xperiment: 0.02 < xbj < 0.032, z = 0.2, and 1.7 GeV2 < Q 2 < 3 GeV2 . The experimental data from COMPASS [14] are also shown for comparison (red solid points).
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
witching/matching from TMD factorization to simply a collinear
actorization is straightforward and usually happens when q⊥

ecomes very large q⊥ ∼ Q . It turns out that for small values
f Q (order of several GeV) which are most relevant for data at
ERMES, COMPASS, and JLab, the matching is very tricky and
oes not occur as a sharp transition in the usual W + Y prescrip-
ion. Due to this, it is very important that in phenomenological
pplications the matching can be implemented without large
umerical errors stemming from the Bessel transform using an
fficient algorithm such as the one we are proposing. In the
icinity of q⊥ ∼ Q the calculation should be specifically precise
n order to allow for the transition to happen. Moreover since
he precise location of where the transition occurs can only be
onfronted phenomenologically, it is important that the ability to
ransform the W term into q⊥ space is as precise as possible to
void any biases for the TMD extraction. See, e.g. Refs. [65,66] for
ore details. It is because of this reason that our demonstration

n Fig. 6 covers the broad region of q⊥, from the small q⊥ ≪ Q
to much larger q⊥ ≳ Q .

For each integration method in this Fig. 6, the number of nodes
is increased until the relative error of the inversion associated
with doubling the number of nodes is smaller than the total
experimental uncertainty for all data points in the set.3 This curve
is plotted in orange, while in green and blue we plot the inver-
sions with roughly half and double the number of nodes as the
orange curve. For the optimized and fixed h Ogata methods, we
provide the total number of calls to the integrand Ntot . We note
that the total number of calls to the integrand for the optimized
Ogata contains two contributions. The algorithm first uses the

3 In other applications of our optimized Ogata quadrature algorithm, the same
ethod can be used to estimate the values for N for a given integrand and
esired precision.
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gradient of the h-space function h(hξn1)2n+1W̃ (xbj, z, hξn1/q⊥,Q )
to determine hopt in Eqs. (21) and (22). The numerical algorithm
then samples the nodes to perform the quadrature sum. The
first contribution tends to require more sampling points than the
second contribution. However, the perturbative factors as well as
the collinear distribution functions in this expression vary much
more slowly in h-space than the non-perturbative factors. We
find that this tends to be true in general for processes with small
Q , where non-perturbative TMD structure is more sensitive. One
can then sample only the expression h(hξn1)2n+1(hξn1/q⊥e−SNP )
to determine the value of hopt . Since sampling this expression
requires little computational power, we do not count this contri-
bution to Ntot . We also note that in principle in an actual fit where
a χ2 minimization is performed, one does not need to estimate
the h values for every step of χ2 evaluation. Instead these values
can be updated every certain number of steps during the mini-
mization. This will further enhance the efficiency of our method
compared to the other approaches. In the adaptive quadrature
and Vegas Monte Carlo methods, we indicate the average number
of calls to the integrand ⟨Ntot⟩.

As one can note, in the limit of large sampling, all the nu-
merical integrators converge to the same result. However, the
optimized Ogata quadrature converges to this result nearly an
order of magnitude faster than the fixed h method, nearly two or-
ders of magnitude faster than adaptive Gaussian quadrature, and
nearly three orders of magnitude faster than Vegas Monte Carlo
integration. This result demonstrates that our optimized Ogata
algorithm can improve significantly the numerical efficiency of
the Fourier–Bessel integration encountered in the TMD analysis.

Finally in Fig. 7, we plot four multiplicity distributions at
different values of ⟨z⟩ = 0.2, 0.3, 0.4, 0.6, respectively for the
bins 0.02 < xbj < 0.032 and 1.7 GeV2 < Q 2 <3 GeV2 using
the optimized Ogata algorithm with the number of nodes N = 6.
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Fig. 7. Comparison of COMPASS hadron multiplicity data [14] and absolute
value of the theoretical calculations using the optimized Ogata algorithm with
a number of nodes N = 6. N = 6 was chosen as it gave reliable results over the
entire region in Fig. 6. The computations are performed for 0.02 < xbj < 0.032,
.7 GeV2 < Q 2 < 3 GeV2 , and for 4 different ⟨z⟩ values as shown in the figure.
he black solid curves are the absolute values of the theoretical results.

= 6 was chosen as it gave reliable results over the entire
egion in Fig. 6. It is worthwhile to emphasize again that the
heory predictions4 become extremely efficient, thanks to the
ptimized Ogata quadrature. This gives us a great confidence that
he optimized Ogata method would be ideal in the future for
erforming efficient numerical calculations and/or for the global
nalysis of TMDs.5

. Conclusions

In this paper we have developed a high performance nu-
erical algorithm for Hankel transforms for TMD factorization

ormalism from position b⊥ space to transverse momentum q⊥

pace using the optimized Ogata quadrature method, which uses
he zeros of Bessel functions as nodes. For a relatively small and
ixed number N of functional calls to the integrand, we derived
onditions to find the optimal parameter h, which controls the
ode density. Such an optimized Ogata quadrature ensures a
mall number of calls while achieving a high accuracy at the same
ime, and thus becomes extremely efficient in TMD studies. We
se both toy TMDs, and parametrizations of QCD based TMDs
o demonstrate the efficiency of our integration algorithm. We
ound that the optimized Ogata quadrature performs nearly an
rder of magnitude faster than standard Ogata methods, nearly
wo orders of magnitude faster than adaptive Gaussian quadra-
ure, and nearly three orders of magnitude faster than Vegas
onte Carlo integration for all regions of transverse momentum

n semi-inclusive deep inelastic scattering. Our algorithm thus can
ave wide application in the future TMD computations and/or
MD global analysis. The code which illustrates the optimized
gata quadrature is available for download in Python2, Python3,
++ with Boost dependency, C++ with GSL dependency, and a
tandalone Fortran 77 with an open source license at https://
github.com/UCLA-TMD/Ogata. For information on installation and
usage visit https://ucla-tmd.github.io/Ogata/.
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sing fixed parameters from Refs. [61,62], that this numerical method can be
sed to perform efficient numerical calculations for describing TMD data.
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