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and TMD fragmentation functions, which encode important information about nucleon structure and
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CSS formalism TMD observables in coordinate b, -space, the conjugate space of the transverse momentum. The Fourier
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Optimized ogata quadrature oscillatory integrands that it requires a careful and computationally intensive numerical treatment

in order to avoid potentially large numerical errors. Within the TMD formalism, the azimuthal
angular dependence is analytically integrated and the two-dimensional b, integration reduces to
a one-dimensional integration over the magnitude b,. In this paper we develop a fast numerical
Hankel transform algorithm for such a b, -integration that improves the numerical accuracy of TMD
calculations in all standard processes. Libraries for this algorithm are implemented in Python 2.7 and
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been made in the last few years in terms of measuring trans-
verse momentum dependent unpolarized and polarized cross
sections in experiments, as well as extracting the associated spin-
independent and spin-dependent TMDs in phenomenology, see
Refs. [5,6] and references therein.

TMDs are non-perturbative objects in Quantum Chromody-
namics (QCD) and thus they have to be either computed on the
lattice, or extracted from experimental data. For recent develop-
ments on lattice computation of TMDs, see Ref. [7]. On the other
hand, in order to extract TMDs from the experimental data, one
relies on proper QCD factorization theorems [8]. TMD factoriza-
tion [9-12] describes cross sections in scattering events where
the relevant transverse momentum ¢, of the observed final state
is much smaller than the hard scale Q: q; < Q. In such a region,
the cross section can be factorized in terms of TMD PDFs and/or
FFs and perturbatively calculable short distance hard coefficients.
The relevant processes that have been extensively studied include
semi-inclusive deep inelastic scattering (SIDIS) [13,14], Drell-
Yan type process in proton-proton collisions [15-23], and back-
to-back dihadron production in e*e™ collisions [24,25]. There
are also other new opportunities in studying TMDs which are
proposed recently in e.g. Refs. [26-43], and usually involve jet
measurements.

Within the TMD factorization formalism, the cross section is
written as a convolution of the relevant transverse momentum
dependent functions. To motivate our discussion and thus make
the case more concrete, let us take SIDIS as an example. The
differential cross section for the unpolarized scattering process
of e(£) + p(P) — e(¢') + h(Py) + X can be written as [44]

do" ZﬂaéM 14 (1 —y)?
= W(q., xu, z, s 1
dxyy dy dz P4 0 y (gL, xvj,2,Q) (1)
where the standard SIDIS variables are defined as
2 2 Q*
=01, =—q°, = -,
q Q q xb_l 2P . q

(2)
P-q _ PP,

=—), z= .
P-¢ P.q

The unpolarized structure functions W in Eq. (1) can be factorized
as follows

W(qL,x.2,Q) = HQ )Y ¢ / P, 02D fyp (. K )
q

x Diyq(z, p2)8@ (ki +p1/z+4q)) . (3)

where q, = —Py1/z, ¢4 is the fractional electric charge for the
quarks, and H(Q, w) is the hard function to be given by Eq. (35)
in Section 4. On the other hand, the vectors k;, and p, are the
momentum of the produced quark relative to the parent proton
and the momentum of the produced hadron with respect to the
fragmenting quark, respectively. The function fy/,(xp;, kzl) is the
TMD PDF while Dh/q(z,pi) is the TMD FF. Here we have sup-
pressed the additional scale parameters in the TMDs, which are
associated with QCD evolution of the TMDs [45-49]. In general,
the convolution and integration of TMDs over the momenta k
and p, are quite involved. Thus in the original Collins-Soper-
Sterman (CSS) approach [50], one takes a Fourier transformation
from the momentum space to the coordinate b, space,’

W(bL,ij,Z, Q)= /dqu L W(qy, xp, 2, Q), (4)

1 There are also other approaches in the literature that do not work in the
b, space, see e.g. Refs. [51,52]. Notice that we drop explicit dependence on xy;
and z for the rest of this paper.
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and thus one can write

d? b
W(qL. Xbj. 2. Q) =H(Q. Z / = ey
X fq/p(xbja by )Dnsq(z, b)),
db, b
=H(Q, Ze / = lJo(fhlu)
X fq/p(ij, by )Dnsq(z, b1 ), (5)
where b, = |b,| is the magnitude of the vector b,, J, is the

Bessel function of the first kind of order 0, and fy/,(xpj, b1),
Dysq(z, b)) are the Fourier transform of the TMD PDF and FF,
respectively. In going from the first to second line in Eq. (5), we
perform analytically the integration over the azimuthal angle ¢,

2 d )
f %e*“u"i ) = Jo(qub), (6)
0

and thus the two-dimensional Fourier transform reduces to a
one-dimensional Hankel transform.

For the polarized scattering, the generic structure of the cross
sections can be written as [10,44]

¢ W), 4l W, .. 7)
with W(q,, ...) representing a generic function of q;, = |q |
and “---” denoting the other kinematic variables. The Fourier

transform of such functions will lead to Bessel functions of order
1 and 2. In fact, as shown in [53], all the spin-dependent struc-
ture functions at leading-power can be expressed in terms of an
integration over b, multiplied by the Bessel functions of Jo, J;, or
J-. Generically the integrals become

%) db bu+1 -
fo P @b b, (8)

where the function W(b 1) contains the b, space TMD physics.

Without loss of generality the integration form stemming from
the Fourier transform encountered in TMD observables can be
written as

/ ) 9)
0

where x = b, q,, Ju(x) is the Bessel function of order n, and f(x)
is usually a smooth function of x that slowly decays as x — oc.
Such an integration can be extremely computationally intensive
and time consuming with standard integration routines based
on adaptive Gaussian quadratures or Monte Carlo integration
methods due to the oscillatory nature of the Bessel functions. In
the context of TMD global analysis, one has to compute the above
integration many times, and for different kinematic regions, in
order to find the best fit for the non-perturbative TMDs. This has
become a huge hurdle for TMD phenomenology in the past for
carrying out the global QCD analysis on TMDs using the data from
HERMES, COMPASS, JLAB 6 GeV, Relativistic Heavy lon Collider
(RHIC) and BELLE experiments and it will become even more chal-
lenging for the large amount data that is expected from the JLab
12 GeV program and the future Electron Ion Collider (EIC). For this
reason, as well as the complexity of the TMD evolution, improving
the efficiency and the speed of the numerical integration of Eq. (9)
is extremely desirable.

Ogata has introduced a quadrature formula in Ref. [54] that
is optimized for integrands with Bessel functions for exactly the
same integral as in Eq. (9). As will be discussed in Section 2,
this quadrature method has two parameters, h and N, which
control the node spacing and the truncation of the quadrature
sum, respectively. While this formalism has been previously used
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Fig. 1. Illustration of the schematic difference between the optimized and fixed
h Ogata methods. The arrows indicate the flow of the parameters h and N as
q, is increased for each scheme.

in TMD analysis in Ref. [55]; the scheme used in this refer-
ence suffers from large numerical inefficiencies. Namely Ref. [55]
method takes the parameter h to be held fixed for the entire
global analysis, while increasing N to reach convergence of the
integration. We will therefore refer to this method as a ‘fixed
h Ogata scheme’. In this paper, we propose a new numerical
algorithm by which the parameter h is optimized for an input
number of nodes N, referred to as ‘optimized h Ogata scheme’.
Fig. 1 illustrates the difference between these two schemes. We
note that while the fixed h Ogata method used in Ref. [55] is
sufficient for the extraction of TMDs from several hundred data
points, future high precision global extraction of TMDs will utilize
tens of thousands data points. Moreover, the reliable estimation
of errors of parameters may warrant Monte Carlo fitting methods,
such as ones used in JAM15 extraction from Ref. [56].

As the Fourier transforms are a huge bottleneck in these ex-
tractions, the numerical inefficiencies of fixed h Ogata methods
will be massively amplified to the point where precision extrac-
tions may no longer be feasible. We demonstrate in this paper
that the optimized Ogata quadrature is more efficient than the
traditional adaptive Gaussian quadrature method, Monte Carlo
method, as well as fixed h Ogata quadrature method. The rest of
this paper is organized as follows. In Section 2, we summarize the
relevant formalism for the Ogata quadrature method and describe
our optimized numerical algorithm in detail. In Section 3, we give
a demonstration of the optimized Ogata quadrature and bench-
mark the algorithm against adaptive Gaussian quadrature using
an exponential function which has an analytic Fourier transform.
In Section 4, we apply our numerical method to an example of
a phenomenological form of TMDs. We conclude our paper in
Section 5.

2. Optimized Ogata quadrature formalism

In this section we first review the original Ogata quadra-
ture formalism and then discuss our optimization scheme for
performing high efficiency numerical integrals relevant to TMD
analysis. The Ogata method is based on a quadrature formalism
that was first introduced in Ref. [57] by Frappier and Olivier.
The quadrature formula for the integrand of the form |x|>"*1f(x)
reads:

o0

[P = g )+ 0 ()

0 J=—00,j#0
(10)

where the function f(x) must be an integrable function for the
sum to be finite. The nodes x,; and the weights wy; of the quadra-
ture are given by

2
Wnj = 5 (11)

nj = h nj »
Aoy = el (TE)

Computer Physics Communications 258 (2021) 107611

with j = £1,%2, ..., and &; the zeros of the Bessel function
Ju(rx) of order n, i.e. Jo(7&,) = O, and the parameter 1/h repre-
sents the node density. The term O (e*‘/ “) accounts for the error
of the quadrature sum approximation at a finite h as described
in equation (2.2) of Ref. [54], and c is a positive constant, whose
precise value depends on the functional form of f(x). For the time
being, we will be interested in the case of f(x) being an even
function of x which results in the following quadrature formula

fm dxx2n+1f —h Z Wi X 2n+1f(x ( *C/h) . (-12)
0

In practice the sum in Eq. (12)is truncated at a given j = N which
introduces an error of

Inn+1 =h Z Wnj X, + fxn]) (13)
j=N+1

and the quadrature formula becomes

/ dxx™f(x) = Z Wy X n] f(X"J) [I”N“ +0 (e%/h)] :
0

(14)

The following change of variables, see Ref. [54], optimizes the
convergence of integrals of the typical TMD functional form from
Eq. (9):

T
= ﬁ‘ﬁ(f)

so that Eq. (9) becomes

/Oooctxf(xz/n(x)=z /O dtw(t)f( ue ) (— ©)
v

t2n+l

with ¥(t) = t tanh (% sinht) , (15)

())

(16)
where ¥/(t) = dy(t)/dt. At this point, it is important to realize
that the part of the integrand besides the factor [t|?"*! is an even

function of t. Thus we can apply Eq. (12) and obtain the following
quadrature formula

/0 dxf(x —nan]f(

+[ e +0 ()] (17)

where T, ; are the same truncation errors defined in Eq. (13)
but with the transformed integrand,

nN+1 =7 Z wmf(

Eq. (17) is the aforementioned Ogata quadrature formula, which
we advocate in our current paper. The variable substitution has
the useful asymptotic behavior

%W(an) A Ty [1 —2exp (—%e"”f)] , (19)

such that the asymptotic behavior for the Bessel function be-
comes

o (T W) ~ 2y exp (—2e) (20)

This variable substitution then enforces the double exponential
convergence of the quadrature sum in j.

The quadrature sum has two parameters, h and N, which
control the efficiency and the magnitude of the error terms. To

V) Jn (T 0w)) ¥/ )

V) o (T00) ¥, (18)
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generate a high efficiency algorithm, the numerical integration
must be performed with a small N while at the same time the
error terms must also be small, to ensure reliable results. By
inspecting Egs. (18) and (20) one notes that for a small number of
function calls the truncation errors will be large if h is too small.
To compensate for this, the numerical algorithm would need to
sum a large number of nodes N to minimize truncation errors.
Small values of h will then tend to generate numerical inefficien-
cies. This has been the leading cause of numerical inefficiencies
in previous implementations of the Ogata quadrature method. At
the same time for larger values of h the quadrature error grows as
~ e~¢/" see Eq. (10). These observations indicate the need to find
optimal values for h and N that keep the error term in Eq. (17)
as small as possible. We found that such optimal values can be
obtained by enforcing the largest contribution to the quadrature
to be the first term in the truncated sum of Eq. (12) which can be
achieved by maximizing the contribution of the first node, i.e.

a
3 (h(h&m)*'f (h&a)) = 0. (21)

By solving numerically Eq. (21) for h one finds the optimal value
of h for the quadrature method in Eq. (12). We will refer to this
optimal value as hy,.

It is now worth noting that h, will tend to be a large value. This
makes intuitive sense since minimizing truncation errors can be
achieved by using a large spacing parameter. However, taking a
large value of h introduces quadrature errors which behave like
e~/I and tend to be large for h = h,. This issues can be mitigated
by using the following scheme. We first use the condition in
Eq. (21) to minimize truncation errors in Eq. (12). We then impose
the condition that the final nodes of Eqs. (12) and (17) are placed
at the same location by enforcing that

huéay = %w(hsnm . (22)

This ensures that the quadrature in Eq. (17) has the same trun-
cation errors as Eq. (12) with hy. The solution for h in the above
equality is given by

1 2 u
h = — sinh™! (— tanh™! (h—>) , (23)
Enn s T

when h, < m. This value, labeled as h; is the optimal value for
h to be used in Eq. (17). Note that h; is suppressed by a large
factor of &,y so that hy < hy. In Fig. 2 we plot the ratio h/h,
as a function of h, for N = 10, 20, and 40. We find that in all

cases ,’11—:‘ <« 1 which avoids large errors in Eq. (21). We note that

Eq. (22) only has a real solution when h, < =. It turns out that
when the variance of the input function is very large, the value
of the parameter h, which was determined from Eq. (21) may be
larger than 7. To ensure that there is a real solution to Eq. (22) as
well as to ensure that h; < h, for all values of N, we must set an
upper boundary on the parameter h,, which we set to be hyg =
2. When this occurs, the value of h, that we use is smaller than
the optimal value. This issue could lead to truncation errors if
the variance of the input function is sufficiently large. Beyond the
range, the user needs to rely on the number of sampling points
N in order to decrease the errors stemming from the truncation
errors.

In summary, for a given choice of number of integrand evalu-
ations N, our procedure minimizes the error contribution in h as
well as truncation errors by applying the conditions Eqs. (21) and
(22). The application of these conditions determines an optimal
choice for h in implementing the quadrature formula of Eq. (17).
We shall refer to this procedure as “the optimized Ogata quadra-
ture formula”. We will demonstrate below the efficiency of our
formalism, first through the use of toy TMDs, and then through
QCD based TMDs.

Computer Physics Communications 258 (2021) 107611
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Fig. 2. The solution of Eq. (23) as a function of h, at several values of N. The
solution is written as h./h, to demonstrate that h, < hy for h, < 7.

3. Benchmarking the numerical precision

In this section, we demonstrate the efficiency of the optimized
Ogata quadrature method using toy TMDs for which the exact
Fourier-Bessel transform is known. We will compare the numeri-
cal efficiency of the optimized Ogata quadrature against adaptive
Gaussian quadrature, which is available in QUADPACK integration
routine in Ref. [58]. It is important to emphasize that even though
we mainly demonstrate the method for the integration involving
Bessel function Jy(x), we have checked that it works equally well
for integration involving either Ji(x) or J,(x), relevant for TMD
studies in polarized scattering.

To assess the efficacy of our quadrature method we will map
the error of the integration relative to the exact known result as
a function of number of integrand calls. As discussed before we
are interested in performing integrals of the form

*®db,b, ~
W(g.) = / L0 (b utbias) (24)
0

where the function W(b 1) contains the b, space TMD physics.
Therefore we will use a toy W (b, ) which mimics the b, space
behavior of realistic unpolarized TMDs that has an exact analytic
Fourier-Bessel transform. Specifically we choose the gamma dis-
tributions which are given in terms of the distribution’s mean, 8,
and variance, o, as

Bby

- 1 ﬂbJ_ B2 /o? e o2

Wb,,B,0)= — | — —_— 25

(bi.B.0) m(ﬁ) (&) (25)
(72

This function has an exponential b, -dependence, and has been

used in the literature for TMD studies [59]. Its exact Fourier—
Bessel transform is given by

1 2 r fg +1 5 1 2
w1 (2) TG 0y,

2\ B F(g) 2

1B ). g
5<§+2>,1,— ;32)’ (26)

where »F; (a, b; c; d) is the regularized Gaussian hyper-geometric
function. The function W(b_, B, o) has a single peak in b, space,
which is given in terms of 8 and o as

ﬂZ _ 0.2

We further introduce a parameter Q to our toy TMD model, which
is the inverse of the b"* i.e.

1 B
Q = blieak = m (28)

bieak — (27)
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Fig. 3. Left panel: The integrand of Eq. (24) with W from Eq. (25) as a function of b, for small, moderate and large transverse momenta q; = 0.2, 2, and 4 GeV.

We choose Q = 2 GeV in Eq. (28

). Right panel: The relative percent error Eq. (30) of the Ogata quadrature is plotted as a function of h for small, moderate and

large transverse momentum q, with N = 4,7, 10, the number of nodes used in the integration. The stars indicate the value of h which is determined from the

optimization conditions Egs. (21) and (22).

Such a Q-dependence mimics the hard scale Q encountered in
QCD based TMDs such as the photon virtuality in SIDIS reac-
tions [50,60]. Notice that it is the quantity g, /Q that controls how
oscillating the toy TMD is. The larger q, /Q is, the more oscillating
the integrand is in b, space and the more numerically intensive
the integration becomes.

For our demonstration, we take Q = 2 (GeV) and o0 = 1
(GeV~1) similar to the usual JLab kinematics. We choose q, =
0.2,2, and 4 (GeV), and plot the integrands on the left hand
side of Fig. 3. As one can see clearly, the integrands do become
more oscillating as g, /Q increases. To test the precision of our
formalism, we take as an example in our optimized Ogata formula

in Eq. (17).

N
Wogata(ql, B, G) =7 Z wnjf (%W(hgnj)>
j=1

n /
In (T then)) v/ (héy) (29)
The relative percent error is defined as
Wexact , B, _ WOgata , B,
rel. error (%) = (@.. p.0) 0., 8.0) x 100,
wead(qy, B, o)
(30)

where the exact result W®(q, , B8, o) is given in Eq. (26). For
this analysis, we increase the number of nodes at g, = 0.2, 2,4
GeV until the best relative error for the numerical inversion is
of the order of one percent. This requires 4,7 and 10 nodes at
q. = 0.2, 2,4 GeV, respectively. On the right panel of Fig. 3, we
plot the relative percent error of the numerical integration as a
function of the parameter h for g; = 0.2, 2, and 4 GeV. One can
see that in each case, there is an optimal value of the parameter
h, which minimizes the measured error.

Intuitively having a small node spacing h should result in a
small error, since the error in h is of the order ©(e~¢/")in Eq. (17).
However, the truncation errors 7., in Eq. (17) will generate
large errors in the numerical integration, due to the factors of
f (E¥(h&wy)) Jn (F(h&y)), unless one increases N significantly.
Therefore, for a small and fixed number of nodes N, there is an
optimized h that minimizes the errors as argued in Section 2. On
the right panel of Fig. 3, we indicate with stars the values of h
which are determined by the optimization conditions Eqs. (21)
and (22). We find that within this range of kinematics, our opti-
mization conditions indeed determine suitable values of h for our
quadrature method which is key to achieve high efficiency in the
numerical integration.

We now compare the efficiency of the optimized Ogata
quadrature against adaptive Gaussian quadrature. Note that the
optimized Ogata quadrature first samples the integrand to deter-
mine the optimal value of h using Eq. (21). The integration routine

then samples the integrand at N nodes to perform the sum. This
results in a total number of integrand calls Ny. To control N
for adaptive Gaussian quadrature, we change the relative error
tolerance of the integrator. Likewise, we measure the total num-
ber of function calls of adaptive Gaussian quadrature requested
by the numerical routine. In Fig. 4 we plot the relative error as a
function of Ny, for small, intermediate and large values of q, /Q.
As is evident, the optimized Ogata quadrature method is more
efficient than adaptive Gaussian quadrature, for all three probed
regions of q; /Q with relative errors that go below 0.1%.

4. Application to TMDs

In this section we use the optimized Ogata quadrature to
calculate the SIDIS q, -differential cross sections in QCD TMD fac-
torization framework. We then use these calculations to describe
COMPASS charged hadron multiplicity data [14]. In addition, we
use adaptive Gaussian quadrature and Vegas Monte Carlo algo-
rithm for the same calculations to benchmark the performance.

Let us first summarize the basic ingredients for the implemen-
tation of the unpolarized SIDIS structure function W in Eq. (5) in
the CSS TMD framework [9,47]. In such context the TMD PDFs
and TMD FFs can be expressed as

Sap(oj, b1, p, 8) = Zf Cf;z (%bj/%, b, v, ) fisp (R b
(31)

X exp (spert - gA(xbja bL’ bmax)
1
X —==8c(b.. b In (g)) ,

/ - j/q (2/2., by, v, ) dnjj (2. pbs)

(32)

Dyjg(z, by, i, &) =

X exp <spert - gB(Z, bi» bmwc)

1
X _Egl((bj_’bmax)ln (g)) ,

where w 15 the renormalization scale, ¢ is the rapidity scale,
C” and C are perturbatively calculable coefficient functions
(see Ref. [47]) and fj/p (X, pp«) and dpy; (2, 1) are the standard
collinear PDFs and FFs, respectively. We will use the initial scale
Q02 = 2.4 GeV2. We follow the usual b,-prescription [9] to avoid
the Landau pole of «g, with

by

J1+b2 /bmax

b, = (33)
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Fig. 4. From left to right, the relative percent error of optimized Ogata and adaptive Gaussian quadrature as a function of total number of calls N, to the integrand
at small, moderator and large transverse momentum: q; /Q = 0.1 (left), g, /Q = 1 (middle), and q, /Q = 2 (right).
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Fig. 5. SIDIS b, space integrand from Eq. (5) for the differential cross section at
NLO+NLL for 7+ production for three different values of transverse momenta:
q./Q = 0.1, 1, and 2, respectively. For the rest of the external kinematics we
select Sy, = 52.7 (GeV?), xy; = 0.25, z = 0.5, and Q2 = 2.5 (GeV?) within the
coverage of the HERMES experiment [13].

The perturbative Sudakov factor Spe¢ is given by

®od
Spert = 2/ : |:2V( )—In (: )VK(/'L )]
Mby

+K(by, tp,)In (*/E) ,

Mb,

i.e., the evolution is done from the auxiliary scale u, = 2e7 /b,
to the scale w. In the actual phenomenology, we set the rapidity
scale ¢ = Q2 and set the renormalization scale 4 = Q. We
will implement the TMD evolution at next-to-leading-logarithmic
(NLL) accuracy, and use the coefficient functions C at next-to-
leading order (NLO). All the relevant NLO coefficients and NLL
anomalous dimensions can be found in Refs. [9,47]. In addition,
we use NLO expression for hard function H(Q, w) in Eq. (5) from
Ref. [47] reads

2 2
H(Q,,u)=1+0;:Cp|: In (32)—;1#(32)—4], (35)

and we set u = Q so that the logarithmic terms vanish. Finally,
we choose the parametrizations for the non-perturbative factors
used in Refs. [61,62] which are given by

(34)

&h

=gl 8s(z b1, bma) = b1,

b
gk(b1. bmax) = g2 In (f) :
(36)

with g; = 0.106 GeV?, g, = 0.84, and g, = 0.042 GeV?. The
expression for the W term in Eq. (5) is given by

(bJ_sxbyZ Q)=H(Q, u Zeq a/i ®f}/p Xb_]aﬂb*)

gA(ij B bJ_ i bmax)

x @ dh/i(l, Mebs)

X exp |:25pert - (gq +gh/22) b2

o (5)m(3)

where ® is the convolution operator given in Eqs. (38) and (39)
in [61].

Having established the QCD based TMD setups, let us examine
the behavior of the SIDIS cross section in b, space. In Fig. 5 the
b, space integrand given in Eq. (5) for the SIDIS differential cross
section is plotted, for three different values of g, /Q = 0.1, 1.0
and 2.0, respectively. We take the lepton-proton center-of-mass
energy square Sy, = 52.7 (GeV?), xp = 0.25,z = 0.5, and
Q? = 2.5 (GeV?). These kinematics are within the coverage of
the pion production in unpolarized lepton-proton SIDIS data at
the HERMES experiment [13]. Just like in the case of the toy
TMDs in Section 3, the integrand becomes more oscillating as
q./Q increases. As a consequence, the numerical estimation of
the Fourier-Bessel transform from b -space to q, -space becomes
increasingly more challenging for larger values of q, /Q.

We next analyze the performance of our optimized Ogata
quadrature to get the g, -space cross sections against the fixed h
Ogata, adaptive Gaussian quadrature, and the Vegas Monte Carlo
integration routines. For that we consider a related experimental
observable, the hadron multiplicity which has been measured by
both HERMES [13] and COMPASS [14] experiments. The COMPASS
hadron multiplicity is defined as [14]

(37)

Mh(qL,ij,Z,Q): (38)

T d h dO.DIS
22 dxpjdydzd®q, / dxpdy
where the numerator is the SIDIS cross section for the production
of a hadron h that we have been discussing so far, and the de-
nominator is the inclusive DIS cross section. In Fig. 6, we plot the
absolute value of the theoretical prediction for the hadron multi-
plicity, |M“+(qL, Xbj, Z, Q)|, as a function of q; /Q, using the above
mentioned integration algorithms. For illustration, we choose the
kinematics to be consistent with hadron multiplicity data from
COMPASS experiment: four panels correspond to optimized Ogata
in the top left 0.02 < x,; < 0.032,z = 0.2, and 1.7 GeV? < Q2 <
3 GeV2. The (labeled as ‘Opt. Ogata’), standard Ogata in the top
right (labeled as ‘Fixed h Ogata’), adaptive Gaussian quadrature
in the bottom left (labeled as Quad), and Vegas Monte Carlo in
the bottom right (labeled as Vegas), respectively. We also plot the
COMPASS experimental data in Fig. 6 for comparison.?

Note that at relatively large hadron transverse momentum
q./Q = 2, the theoretical calculations in TMD factorization
formalism would become negative. There, one has to include the
so-called Y-term [9], or switch/match onto the usual collinear
factorization formalism [50,64]. For very large values of Q, such a

2 In order to describe the data, the normalization issue with the COMPASS
data must be resolved. We follow the work done in [63] to normalize the
COMPASS multiplicities such that the data and theory are equal at the lowest
values of the transverse momentum in each z bin.
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Fig. 6. The theoretical prediction for the hadron multiplicity, |M"+(qL, Xpj, Z, Q)|, as a function of q, /Q, using four different integration algorithms: the optimized
Ogata quadrature (“Opt. Ogata”, top left panel), the standard Ogata method (“Fixed h Ogata”, top right panel), the adaptive Gaussian quadrature (“Quad”, bottom
left panel), and the Vegas Monte Carlo algorithm (“Vegas”, bottom right panel). For illustration, we choose the kinematics to be consistent with the COMPASS
experiment: 0.02 < xy; < 0.032, z =0.2, and 1.7 GeV? < Q2% < 3 GeV2. The experimental data from COMPASS [14] are also shown for comparison (red solid points).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

switching/matching from TMD factorization to simply a collinear
factorization is straightforward and usually happens when q;
becomes very large g, ~ Q. It turns out that for small values
of Q (order of several GeV) which are most relevant for data at
HERMES, COMPASS, and JLab, the matching is very tricky and
does not occur as a sharp transition in the usual W +Y prescrip-
tion. Due to this, it is very important that in phenomenological
applications the matching can be implemented without large
numerical errors stemming from the Bessel transform using an
efficient algorithm such as the one we are proposing. In the
vicinity of g, ~ Q the calculation should be specifically precise
in order to allow for the transition to happen. Moreover since
the precise location of where the transition occurs can only be
confronted phenomenologically, it is important that the ability to
transform the W term into g, space is as precise as possible to
avoid any biases for the TMD extraction. See, e.g. Refs. [65,66] for
more details. It is because of this reason that our demonstration
in Fig. 6 covers the broad region of q,, from the small ¢, « Q
to much larger q; > Q.

For each integration method in this Fig. 6, the number of nodes
is increased until the relative error of the inversion associated
with doubling the number of nodes is smaller than the total
experimental uncertainty for all data points in the set.? This curve
is plotted in orange, while in green and blue we plot the inver-
sions with roughly half and double the number of nodes as the
orange curve. For the optimized and fixed h Ogata methods, we
provide the total number of calls to the integrand N:,. We note
that the total number of calls to the integrand for the optimized
Ogata contains two contributions. The algorithm first uses the

3 In other applications of our optimized Ogata quadrature algorithm, the same
method can be used to estimate the values for N for a given integrand and
desired precision.

gradient of the h-space function h(h$"1)2"+1W(xbj, z, h&n/q., Q)
to determine hgy; in Eqs. (21) and (22). The numerical algorithm
then samples the nodes to perform the quadrature sum. The
first contribution tends to require more sampling points than the
second contribution. However, the perturbative factors as well as
the collinear distribution functions in this expression vary much
more slowly in h-space than the non-perturbative factors. We
find that this tends to be true in general for processes with small
Q, where non-perturbative TMD structure is more sensitive. One
can then sample only the expression h(h&;;)*"+'(h&qy/qLe W)
to determine the value of ho,. Since sampling this expression
requires little computational power, we do not count this contri-
bution to N¢,;. We also note that in principle in an actual fit where
a x? minimization is performed, one does not need to estimate
the h values for every step of x? evaluation. Instead these values
can be updated every certain number of steps during the mini-
mization. This will further enhance the efficiency of our method
compared to the other approaches. In the adaptive quadrature
and Vegas Monte Carlo methods, we indicate the average number
of calls to the integrand (N¢).

As one can note, in the limit of large sampling, all the nu-
merical integrators converge to the same result. However, the
optimized Ogata quadrature converges to this result nearly an
order of magnitude faster than the fixed h method, nearly two or-
ders of magnitude faster than adaptive Gaussian quadrature, and
nearly three orders of magnitude faster than Vegas Monte Carlo
integration. This result demonstrates that our optimized Ogata
algorithm can improve significantly the numerical efficiency of
the Fourier-Bessel integration encountered in the TMD analysis.

Finally in Fig. 7, we plot four multiplicity distributions at
different values of (z) = 0.2,0.3,0.4, 0.6, respectively for the
bins 0.02 < xp < 0.032 and 1.7 GeV? < Q? <3 GeV? using
the optimized Ogata algorithm with the number of nodes N = 6.
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Fig. 7. Comparison of COMPASS hadron multiplicity data [14] and absolute
value of the theoretical calculations using the optimized Ogata algorithm with
a number of nodes N = 6. N = 6 was chosen as it gave reliable results over the
entire region in Fig. 6. The computations are performed for 0.02 < xp; < 0.032,
1.7 GeV? < Q? < 3 GeV?, and for 4 different (z) values as shown in the figure.
The black solid curves are the absolute values of the theoretical results.

N = 6 was chosen as it gave reliable results over the entire
region in Fig. 6. It is worthwhile to emphasize again that the
theory predictions* become extremely efficient, thanks to the
optimized Ogata quadrature. This gives us a great confidence that
the optimized Ogata method would be ideal in the future for
performing efficient numerical calculations and/or for the global
analysis of TMDs.?

5. Conclusions

In this paper we have developed a high performance nu-
merical algorithm for Hankel transforms for TMD factorization
formalism from position b, space to transverse momentum ¢
space using the optimized Ogata quadrature method, which uses
the zeros of Bessel functions as nodes. For a relatively small and
fixed number N of functional calls to the integrand, we derived
conditions to find the optimal parameter h, which controls the
node density. Such an optimized Ogata quadrature ensures a
small number of calls while achieving a high accuracy at the same
time, and thus becomes extremely efficient in TMD studies. We
use both toy TMDs, and parametrizations of QCD based TMDs
to demonstrate the efficiency of our integration algorithm. We
found that the optimized Ogata quadrature performs nearly an
order of magnitude faster than standard Ogata methods, nearly
two orders of magnitude faster than adaptive Gaussian quadra-
ture, and nearly three orders of magnitude faster than Vegas
Monte Carlo integration for all regions of transverse momentum
in semi-inclusive deep inelastic scattering. Our algorithm thus can
have wide application in the future TMD computations and/or
TMD global analysis. The code which illustrates the optimized
Ogata quadrature is available for download in Python2, Python3,
C++ with Boost dependency, C++ with GSL dependency, and a
standalone Fortran 77 with an open source license at https://
github.com/UCLA-TMD/Ogata. For information on installation and
usage visit https://ucla-tmd.github.io/Ogata/.
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used to perform efficient numerical calculations for describing TMD data.
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