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Monte Carlo algorithm. We perform numerical calculations and find a very good agreement
with Pythia 8 simulations. We provide theoretical predictions for the LHC and RHIC.
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1 Introduction

At present day collider experiments such as the LHC and RHIC, highly energetic jets play
an important role as precision probes of the Standard Model and beyond. In the past
years, jet substructure techniques have become important tools in high energy particle and
nuclear physics. One of the important techniques that have been developed is jet grooming
which is designed to remove soft wide-angle radiation from the identified jets. Algorithms
that remove the soft contamination of jets allow for a more direct comparison of perturba-
tive QCD calculations and data due to the reduced sensitivity to nonperturbative effects.
Different grooming algorithms have been developed in the literature such as [1-4]. In this
work, we focus on the soft drop grooming algorithm of [4]. Both on the experimental [5-8]
and the theoretical side [9-24], significant progress has been made recently in improving
our understanding of soft drop groomed jet observables. In the heavy-ion community, soft
drop groomed jet substructure observables have also received increasing attention from



both experiment [25-28] and theory [29-39]. Jet grooming techniques can be used to iso-
late different aspects of jet quenching and may help to discriminate between different model
assumptions [40].

One of the interesting features of soft drop grooming is that the radius of the groomed
jet is adjusted dynamically, capturing only the hard collinear core of the jet [4] which
we study in this work within perturbative QCD. We consider inclusive jet production
pp — jet + X where jets are identified with the anti-kr algorithm [41] with a given radius
R. Following the soft drop algorithm, the identified jets are then reclustered with the
Cambridge/Aachen (C/A) algorithm [42, 43]. The obtained angular ordered clustering
tree is then declustered recursively where at each step the soft drop condition is checked

min[pri, pro] S Zcut< R12> ‘ (1.1)

pr1+ P12 R

Here p71,2 are the transverse momenta of the two branches obtained at each declustering
step and AR%, = An? + A¢? is their geometric distance. Soft branches that fail the
criterion are removed from the jet. The algorithm terminates when the criterion is met and
the particles in the remaining two branches constitute the groomed jet. The soft threshold
zeus and the angular exponent 3 are fixed parameters that determine how aggressively soft
radiation is removed. For 8 = 0, the soft drop algorithm reduces to the modified mass drop
tagger (mMDT) [3]. Two variables that characterize important features of the soft drop
groomed jet are the momentum sharing fraction z, and the groomed jet radius R,. Their
values are obtained from the kinematics of the two remaining branches when the soft drop
algorithm terminates

_ min[pr1, pr2)

- , R, = AR =R0,. 1.2
g pr1+ P12 7 2 g (1.2)

Often the variable 6, is used which corresponds to the geometric distance of the two
remaining branches normalized by the radius R of the ungroomed initial jet. Note that
unlike the external parameter R which is the radius of the initial jet, the groomed radius
R, is a distribution which is determined through the soft drop grooming procedure. Since
the C/A algorithm first clusters particles that are closer in angle, the groomed jet radius R,
defines the maximally allowed angle between two branches that can be clustered. Similar
to the radius R of the initial jet, the distance R, constitutes the radius of the soft drop
groomed jet. By analyzing the active area of recursive kp-type algorithms, it was found
in [44] that jets have an area of the order O(mR?). A similar analysis was performed for
the groomed radius R, in [4] verifying that the active area of a soft drop groomed jet is of
the order O(wR2).

In the phenomenologically relevant limit of Ry < 1 and zqy < 1, large logarithms
may spoil the convergence of the perturbative series expansion in terms of the QCD strong
coupling constant. In [4], the soft drop groomed radius was calculated within the modified
leading-logarithmic (MLL) approximation. In this work, we extend the calculation to next-
to-leading logarithmic (NLL) accuracy using a factorization formalism developed within
Soft Collinear Effective Theory (SCET) [45-49], which is suitable for the extension to



yet higher perturbative accuracy. Besides the resummation of logarithms of Ry, we also
take into account logarithms of R and the soft threshold parameter z..;. Based on the
equivalence of the R, measurement and a jet veto on emissions between the splitting that
satisfies the soft drop criterion and the boundary of the initial ungroomed jet, we establish
the all order factorization framework. Different than for example the groomed jet mass
distribution where non-global logarithms (NGLs) [50] only arise in the grooming parameter
Zeut, here NGLs directly contribute to the cross section starting at NLL accuracy. The use of
the C/A algorithm introduces clustering constraints that give rise to clustering logarithms
associated with both NGLs as well as global logarithms, which are referred to as Abelian
clustering logarithms [51-56]. We resum the NGLs including clustering constraints and the
Abelian clustering logarithms at leading logarithmic (LL) accuracy and leading color using
a suitable Monte Carlo algorithm which we introduce here following the work of [50, 57, 58].

The remainder of this paper is organized as follows. In section 2, we outline the fac-
torization formalism developed in this work based on the equivalence between the groomed
radius measurement and a jet veto when Ry < 1 and zc < 1. We identify the relevant
NGLs and Abelian clustering logarithms and perform the relevant fixed order calculations.
In section 3, we introduce the Monte Carlo setup that allows for the all order resummation
of NGLs and clustering logarithms at LL accuracy needed to achieve the overall accuracy
at NLL. Numerical studies and a comparison to Pythia 8 simulations are presented in
section 4. We draw our conclusions in section 5 and present an outlook.

2 Factorization and resummation

In this section, we develop the factorization theorem for the soft drop groomed jet radius
within SCET. We start from the cross section ¥(6,) differential in the transverse momen-
tum pr and rapidity 7 of the observed jet, but cumulative in the groomed jet radius where
any value below 6, contributes. The distribution differential in 6, can then be obtained as

do d dx(b,)
dndprdf, df,dndpr’

(2.1)

We work in the limit where the observed jet is sufficiently collimated R < 1 and we
drop power corrections of the form O(R?). This type of power corrections are generally
found to be small even for relatively large values of the jet radius [63]. In this limit, the
production of an energetic parton in a hard-scattering event factorizes from the formation
and evolution of the jet initiated by the produced parton. The hard-scattering process
ab — ¢ is described by hard functions H¢, which are known analytically to next-to-leading
order (NLO) [64, 65]. The subsequent formation and evolution of the jet is described by a
semi-inclusive jet function G. [66-70]. This separation is generally expected to hold to all
orders due to the universality of the collinear limit in QCD [71]. We can thus write the

'For other calculations of NGLs at fixed order with and without a jet veto, we refer the reader to
refs. [59-62].



Fixed-order 153 o NGLs

InR LL tree 1-loop 1-loop -
NLL 1-loop 2-loop 2-loop —
NNLL 2-loop 3-loop  3-loop -

Infy,In 2z LL tree 1-loop 1-loop —
NLL tree 2-loop 2-loop LL
NLL/ 1-loop 2-loop 2-loop LL

NNLL 1-loop 3-loop 3-loop NLL

Table 1. The necessary perturbative ingredients for the resummation of logarithms of R, 6, and
Zeut- In the columns we list the relevant fixed order ingredients, the QCD beta function, the
anomalous dimensions and the non-global logarithms. The non-cusp part of anomalous dimension
only enters at one-loop order lower than what is shown here.

cumulative cross section in 99 as

dX(6y)
dprdn

= fal@a, 1)@ fo(p, 1) O H (T, X0, 0,07/ 2, 1) ®Ge (2,09, pr R 115 20t B) - (2:2)

abc

where f,, denote the parton distribution functions (PDFs) for finding partons a,b in the
colliding protons. Here, ® denote appropriate integrals over the longitudinal momentum
fractions x,y of the initial partons and z which is the fraction of transverse momentum
contained in the observed jet relative to the scattered parton c. Note that the jet rapidity
n only appears in the hard functions H{, when subleading terms ~ O(R?) are ignored. On
the other hand, the entire dependence on 6, and the grooming parameters is contained
in the jet function G.. Single logarithms of the jet radius o In" R can be resummed by
solving the renormalization group (RG) evolution equation (DGLAP) associated with the
jet function G. which is given by

d Ol
L. =N P .2g,. 2.
Md,ug 27T; e ® Gy (2.3)

Here, P;. denote the Altarelli-Parisi splitting functions which can be computed order by
order in ay. In the kinematic region where zeu; ~ 64 ~ O(1), the factorization theorem in
eq. (2.2) is sufficient to carry out calculations at fixed order in perturbation theory. In the
phenomenologically relevant region where z.,;y < 1 and 6, < 1 large logarithmic corrections
may spoil the perturbative convergence and an all-order resummation is required. The
perturbative order for the different logarithms is summarized in table 1. We note that for
B > 0, the leading logarithmic contribution is ~ In? 4 whereas for 8 = 0 it is ~ In 0y In zcys.
This can be achieved by a refactorization of the semi-inclusive jet function G, in order to
separate the physics at different scales in the relevant kinematic regime. The associated
RG evolution equations then allow for the resummation of all relevant large logarithms.



2.1 Refactorization of the semi-inclusive jet function

In this section we discuss the refactorization of the semi-inclusive jet function G, in the limit
when both 2.,y < 1 and , < 1. We make use of power counting arguments to establish the
refactorization. First, we consider energetic collinear radiation at the jet scale uy ~ prR.
To NLO, these are given by out-of-jet radiation diagrams, see for example [72, 73]. The
scaling of the associated collinear mode in terms of light-cone momentum components is
given by

pu=( .p",p") ~pr(1,R*R). (2.4)

Second, we consider soft modes that describe wide angle soft radiation? within the jet at
an angle § ~ R. If such radiation passes grooming with momentum fraction z > zyt,
then the scaling 0, < 1 would be violated. Therefore, this kind of soft radiation must fail
the grooming condition and it is thus independent of the 6, measurement. The associated

momentum scaling is
Zgr 2
Ds™ ZcutpT(la R 7R) . (25)

The superscript indicates that the soft radiation considered here fails the grooming condi-
tion. The radiation associated with the two modes identified so far are taken into account
by two functions, H? ., and Sffr. Both are independent of the measured groomed jet
radius and the same modes were obtained in other factorization theorems of groomed jet
substructure observables before, see for example [11, 13, 14]. At this point, we obtain the

following refactorized expression of the semi-inclusive jet function

Ge(2,0g, PTR, 115 Zents B) = Y Hii(2,pr R, 1)

1=¢,4,9g ™
®0 Sff’;r (zeutpr R, 13 B) Fi(0g, prR, 11; Zeut, B) - (2.6)

Here the additional summation over n and ®gq are introduced to account for NGLs [74, 75]
as discussed in more detail below. The remaining function F; contains the dependence
on the groomed radius 6,. Here we need to consider both collinear and collinear-soft
radiation [76, 77]. The collinear radiation with momentum fraction z ~ 1 always passes
the grooming condition at leading power. The collinear-soft radiation instead is sensitive to
the grooming condition and has z ~ zcuteg < 1. In both cases, the characteristic angular
scale is 0 ~ R, and the radiation described by F; is thus insensitive to the boundary of
the initial ungroomed jet. Note that this situation is different than for example the mode
decomposition when the jet mass is measured to be small m?] /p% < 1. In that case, the
angle of the collinear and collinear-soft radiation is set by 6 ~ 1/m3 / p2T /z which depends

on the scaling of the different momentum fractions. Because of this scaling that is imposed
by the small jet mass measurement, the collinear and the collinear-soft radiation can be

2 Although this mode is both collinear and soft, we just refer to it as soft since it would correspond to soft
radiation when boosted to a frame where the in-jet and out-of-jet region are complementary hemispheres.



treated as two independent sectors. For the soft drop groomed jet radius, we thus have
two additional modes with the following momentum scalings

pe ~ pr(L, R2, Ry) (2.7)
R,\" )
PE~ ZewtPT <Rg> (1, Rg,Rg) . (2.8)

The soft drop declustering algorithm makes a further separation of these two modes to
all orders highly non-trivial. However, as will be demonstrated in the next section 2.2,
there is a formal equivalence between the soft drop declustering algorithm and a jet veto
procedure when 6, is measured to be small. We can treat the groomed jet with radius R,
as the signal jet and the collinear-soft branches are subject to a veto condition where the
veto parameter is set to zcutﬂg pr. With this equivalence we can further refactorize F; in
eq. (2.6) using results from jet veto calculations, see for example [74, 78-81]. We find that
we can write F; in terms of a collinear function C; and a collinear-soft function Sie & as

Fi(0g, TR, 13 Zeuts B) = Y O (0 prR, 1) @ S; 5 (zeusfy P prR, 13 B) . (2.9)

NGLs are accounted for by the convolution integrals denoted by ®q and the additional
sum over the directions of collinear emissions m. Here we follow the notation introduced
in [74], see also eq. (2.6) above. Collinear final-state particles set the directions for a
multi-Wilson line structure. We sum over these directions n,m in egs. (2.6) and (2.9)
and ®q indicates that angular integrals cannot be carried out independently which gives
rise to correlations between the different functions resulting in NGLs. The NGLs in zcyt
associated with the functions H._,; and ngr in eq. (2.6) will affect the 6, distribution
only indirectly through the relative normalization of partonic channels. We note that
the contribution from the correlation between the 6, sensitive and insensitive modes are
power suppressed [4]. This can also be seen from eq. (2.6), where H.—,; and Siegr are fully
decoupled from F;. In addition, beyond NLO clustering logarithms need to be taken into
account due to the mismatch between the grooming operation acting on branches rather
than individual partons and the use of the C/A algorithm. These contributions appear
either in the soft function ngr and the combination of C; ®q Siegr. Due to the summation
over the collinear emission history and the angular convolution structure, the analytical
resummation using the refactorized cross section is usually difficult and the approaches
discussed in the literature typically resort to the Monte Carlo methods [50, 57, 58, 74, 78].
Up to NLL using the known jet veto results [50, 51, 53, 79, 80, 82], we can write F; as

}—i(egapTRa M5 Zeut ﬁ) = <Cz(eg prR, ,U)> <Si€gr(zcut0;+ﬁ prR, M ﬁ»
C/A C/A
X 5%JGGL(t799>“4@£beL(t799)- (2.10)

Here (...) indicates that we performed the solid angle integration, which thus allows us to
solve the RG evolution equations of the collinear and collinear-soft function analytically.
Here we define the variable ¢ as

1 [P dkr

=5 Loy (kr) . (2.11)

t
kr

Zcut eng



The NGLs due to the correlation of the radiation near the boundary of the groomed jet
in eq. (2.10) are taken into account by the function Sic 1(IéL(t,Hg) which has the following

perturbative expansion

C/A C/A n
Sz‘,l(IGL(t7 0g) =1+ ZSMC (6g) ", (2.12)
n=2

with coefficients Sg 7{A (64). The relevant configuration at NNLO is illustrated on the right
side of figure 1, which takes into account correlations between emissions inside and outside
the groomed jet but inside the initial ungroomed jet boundary. At NNLO, these NGLs are
of the form ~ a? In? (zcutﬁg ). As the phase space of the in-and-out configurations is affected
by the C/A algorithm, the numerical size of the NGLs are reduced due to clustering effects.
The C/A algorithm also introduces global Abelian logarithms. The function A?lﬁel.(t, by)
takes into account this contribution which can be calculated perturbatively as 7

Ai(?z{&%el. (t.05) =1+ AT By £ (2.13)
n=2

2,n

with coefficients AST/lA(Gg). In sections 2.5 and 2.6, we compute the leading NGLs and

Abelian clustering logarithms at NNLO and determine the coefficients SS 2/ A and ASQ/A. In
order to achieve the resummation at LL and leading color, the Abelian clustering logarithms
and NGLs are captured simultaneously by a suitable Monte Carlo algorithm as discussed
in section 3. To leading logarithmic accuracy, the NGLs resulting due to the correlation of
radiation inside and outside of the initial ungroomed jet can be resummed using the Monte
Carlo results of [50]. Clustering corrections to this class of NGLs are power suppressed
as the ungroomed jet is identified with the anti-kr algorithm. The respective NNLO
configuration ~ o2 In? 2oyt is illustrated on the left side of figure 1. To NLL accuracy, we
can thus write the convolution structure in eq. (2.6) as

/H?_ﬂ'(za pTR, ,U) (29} Sfﬁr (ZcutpTRz 3 6) —
(Hewi(z,pT R, 1)) <S¢¢gr (zeutpr R, 113 8)) SincL(t, Zeut) - (2.14)

Here ¢’ is defined as t in eq. (2.11), but with the lower integration limit replaced by zeutpr-
Therefore, SngL(¥, zcut) can be obtained directly from the Monte Carlo result in [50] to
leading logarithmic accuracy and leading color.

In order to realize the resummation at NLL accuracy, all components of the refactorized
semi-inclusive jet function need to be calculated to NLO. The hard-collinear matching
coefficients H.,; at NLO can be found in [72, 73]. The operator definition of the soft
function ngr and its result at NLO can be found in [13]. Both functions do not directly
affect the shape of the 6, distribution, but they are important in order to determine the
fractions of quark and gluon jets. The operator definitions of the remaining functions
C; and Siegr that appear in eq. (2.9) can be readily obtained by including the soft drop
grooming operation in the relevant functions, see [74]. In this work, we calculate the
functions (C;) and (S;®") in the refactorized expression in eq. (2.10) to NLO in order to
achieve the resummation at NLL. The operator definitions and the results at NLO are
presented in sections 2.3 and 2.4 below.



Figure 1. Configurations that give rise to different NGL contributions at NNLO ~ o? In? Zeut
(left) and ~ o2 In? (zcut(?g ) (right). The inner ellipse denotes the area set by the groomed radius R,
inside the original ungroomed jet.

2.2 Equivalence between the soft drop groomed radius and the jet veto case

In this section, we show the equivalence between the soft drop declustering algorithm and
a jet veto on emissions outside the groomed jet for small values of the groomed radius
0y < 1 and z¢yy < 1, in which case the collinear and collinear-soft modes are well-defined.
Non-trivial examples of this equivalence at NNLO are presented in appendix A.

The measurement functions of the collinear and the soft sectors are identical for both
cases and we thus focus only on the collinear-soft radiation. We denote branches with
collinear-soft scaling in the C/A clustering tree by .J; which need to be tested against the
soft drop criterion. The energetic collinear branch is denoted by J which can also contain
further collinear-soft radiation and J by itself is not necessarily the final groomed jet. It is
sufficient to consider a single collinear branch as two collinear branches always pass the soft
drop condition. Due to angular ordering the collinear-soft branches J; are not clustered
together, i.e. 0, s, > HJZ.(J.)J for all 4 and j. Here we use the notation 92717 = 1727,, + ¢>37b
as the angular distance between the branches a and b. Let us first consider the case of
one collinear-soft branch J; for the cumulative distribution of R,. The corresponding
measurement function can be written as

Mi(J1) = 0(0;,,5 < Ry)O(J1p) + O(J1f)

= My (J1p) + Mi(J1f), (2.15)
where “p” (“f”) means that J; passes (fails) the soft drop criterion. More specifically,
0 B
O(Jip) = © (pT,Jl — Zeut (g) pT,J> ; (2.16)
and
0 B
O(J1f) = © (zwt (j;) pr.y - pT,J1> , (2.17)

where we have used the fact that pr ; + pr s, = pr,; at leading power. One can directly
see the equivalence between the soft drop procedure and the jet veto when there is only
one collinear-soft branch since the measurement function can be written as

Mi(J1) =0(01,,0 < Rg) +0O(04,,5 > Ry)O(J1 f). (2.18)



If the separation of the collinear-soft branch J; from the collinear one J is larger than R,,
i.e. outside the “signal jet”, the branch is required to be below the jet veto threshold, in
this case zcut9§1’ spr,7- On the other hand, if 0, ; is less than Ry, J; is within the energetic
signal jet and thus will always be kept. To proceed, we first note that

Mi=1-M;=06(0,5 > Ry)O(Jip), (2.19)

which requires 65, ;> R,. More generally for multiple branches, the measure 1 —HZN M (J;)
will require 05, ; > R, for at least one of the J; with ¢ = 1...N. For 2 collinear-soft
branches, the measurement function is given by

My =" O(J2) IM1(J1) Mi(Jaf) + Mi(Jap)]

perm

= D O(J2) [Mi(J1) Mi(J2) + Mi(Jop) M ]

perm

= My (J1) Ma(J2), (2.20)

where we introduce the short-hand notation ©(.J;) which denotes that 6, s is the largest
angle of the J; relative to the collinear branch. In the first line, when Js fails, we proceed
to test Ji against the soft drop criterion (first term) while if Jo passes, we stop (second
term). In addition, we sum over all possible permutations. In the case of two branches this
includes both configurations when 6, ; and 6, ; is larger. The second term in the second
line of eq. (2.20) vanishes due to the contradiction of the two conditions 6, ; > 6, ; and
07,7 < Ry as required by M (Jop) and 05, 7 > R,;. We note that the angular ordering of
the C/A algorithm is crucial here to generate the conflict. For the anti-k7 algorithm, the
overall ©(J;) is replaced by the anti-kr distance metric which reduces to ©(.J;) up to power
corrections since min(p}fj-oi‘, p;’?,a)e Jid ™~ p}f}lﬂ J,,7 and the contradiction is still obtained.
When other jet algorithms are used, the © here will be replaced by a different ordering,
and the conflicts could therefore be avoided which would lead to a non-vanishing second
term. This would eventually cause a difference between the jet veto and the soft drop
declustering procedure. After carrying out the sum over the two permutations, we obtain
the third line which is an independent veto of the branches 1 and 2 when their separation
from the collinear branch is larger than R,. Thus the equivalence holds for 2 collinear-soft
branches. Similarly, for 3 branches we have

Mz = Z O(J3) [Ma My (J3f) + Mi(J3p)]

perm.

= > O(Js) [Ma My(Js) + My(Jap)(1 — My)]

perm.

= My () Mi(Jo) M (J3) .- (2.21)

The first term in the first line states that if branch-3 fails the soft drop criterion, we proceed
to test the remaining 2 branches until the procedure stops. The second term corresponds
to the case where branch-3 passes the criterion and the algorithm terminates. Following a
similar argument as in the case of 2 branches, the second term in the second line vanishes



and we get the last line which demonstrates the equivalence for 3 branches. For arbitrary
N, we find by induction that

N
My = [[ M) (2.22)

This shows the equivalence between soft drop declustering and the jet veto procedure as
long as 0, < 1 with small z¢,; < 1.

2.3 The collinear function

The operator definition of the collinear function as it appears in eq. (2.9) can be written as

K Comlbpr) = 311 / P P ([ )

spins j=1

x 2(2m)4" 15(2EJ—ﬁ-k:Xc)5(d_2)(k:)l(C)@(Rg—f‘g|C/A), (2.23)

for quark jets and a similar expression can be obtained for gluon jets, see [74]. Here
the null four-vector is taken as n = (1,7), where n is pointing in the jet direction and
|P;({kx.}))(Pj({kx.})| is the matrix for producing the collinear state X.. The measure-
ment © (Ry — 74|c / ) represents the C/A jet algorithm which acts on the final collinear
state X, requiring that the separation between the last two branches in the clustering
history is less than R,. At NLO, after performing the angular integration, the collinear
function as it appears in eq. (2.10) is found to be

s L2
(Cilbgpr R, p)) = 1+ o~ |:Ci - T ul+di| (2.24)

where C; on the right-hand side corresponds to Cr 4 for quarks and gluons, respectively.
The other constants are given by

13 372 3CFr
dq = CFr (2 e ) , Vg = —5 (2.25)
67 3n2 23 Bo

and the logarithm L is defined as

12
L=In wae) (2.27)

see also [80, 83]. The natural collinear scale choice used to minimize the logarithmic con-
tribution is given by uc ~ 0, prR, and the anomalous dimensions 7¢, are found to be

Qg
¢ (Ogpr R, 1) = — [7i + GiL] . (2.28)

~10 -



2.4 The collinear-soft function

The collinear-soft function as it appears in eq. (2.9) is defined at the operator level as

SEE a0 PR, B) = 3 O (Ry — Folsomiarop) |OWIWE, W (x|, (229)
Xes

with the null vector n; = (1,7;), where n; is oriented along the propagation direction of the
collinear radiation ¢ and W,, is a Wilson line in the n-direction. Here © (Ry — 74|softdrop)
encodes the soft drop grooming algorithm operating on the collinear-soft final state X s with
the knowledge of the eikonal directions nq ...n,,. In order to achieve the resummation at
NLL accuracy, see eq. (2.10), we need the collinear-soft function at NLO. After performing
again the angular integration, we find

OéSCZ‘ 1
2r 1+ 8

<Sz‘egr(zcut6;+ﬁpTR7 5 ﬁ» =1-

1 2 72
~In? S e
2 " (Zz 93(1+B)p%32> 12] (2.30)

cut

The natural scale of the collinear-soft mode is indeed found to be M%r ~ zcut9;+6 prR, and
the anomalous dimensions are given by

2
148 L asCi 1 M
’YSiegr(Zcuteg prR, 1 ﬁ) - - = 1+Bln <22 92(1+’8)p2 R2> : (2‘31)
cut”g T

2.5 Leading NGLs including C/A clustering effects
The leading NGLs of the 6, distribution can be readily inferred from the equivalence with

the jet veto case. The leading NGLs originate from correlated strongly ordered emissions
when the harder emission is inside the groomed jet while the softer one is outside and
vetoed. We adopt the notation of [50]. At next-to-next-to-leading order (NNLO), when
clustering effects due to the C/A algorithm are ignored, we thus have

s\ 2 dx1 d d d
Sivar(L,0,) =1-C,Ca (52) / dridry [, 991 /¢ de, 322
2¢.J

1 2
1 22 Jieg 2T 2T

_ 6P Cos 9
. @(xl x2) e(xQ Fout g) (1 — C1C2 — 5152 COS ¢>2) 5152
as\2 w2
~1-C, (7> T2 2.32
C;Cy o 3 (2.32)
Where we introduced the notation L = — ln(zcutﬁg ) and the polar angles ¢; = cos#; and

s; = sin#; of the two emissions at NNLO measured with respect to the groomed jet axis
and their respective transverse momentum fractions relative to the total momentum of the
jet x; = kp;/pr. Here, we also replaced the veto condition

O(z3 — zeut(02/R)%) — O(xy — zcutﬁg) , (2.33)

which is valid for the leading NGLs. Comparing with the structure in eq. (2.12), we would
obtain the first coefficient S; 2 as

7T2
51*72 = _CiCAg- (2.34)
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When clustering effects are included, this coefficient will be reduced since any soft emission
outside R, that is clustered into the groomed jet will not be subject to the veto condition.
At NNLO, the clustering happens when the distance between the emissions inside and
outside R, is smaller than the distance between the groomed jet axis and the radiation
inside R,. Therefore, to we need to insert the constraint

Ods — dy), (2.35)
with
di =n? + ¢7, dij = (mi — ;)% + (¢i — ;)% (2.36)

and the phase space which generates the NGLs will thus be reduced. We thus have the
following modified expression compared to eq. (2.34) above

g ac o [ cos 6 )
Sz (0g) = —4CiCa /1€J der 21 Jog s dez 21 (1 — crca — 5152COS 2) 5152 Oldiz = ).
(2.37)

In principle, the integral in eq. (2.37) can be evaluated numerically. Using the small angle
approximation, we can approximate the distances d; and d;; as

k; - .
di =+ @2 ~ 22— 9(1 —¢;) ~ 62 R (2.38)
kripr
dij = (i —1j)* + (¢ — ¢5)* = 2——L
sz ij
= 2(1 — cicj — 8455 cos ¢a)
~] (é% + é% — 2@1@2 Ccos ¢2)R§ . (2.39)

The relevant integral can then be approximated as

1 . 1/99 R 27 d¢ 2COS¢ N N
SCA 0, ~ —4C;C /d9 / de/ e O(fy — 201 cos ¢s)
w2 ( g) 4 0 ' 1 ? 0 27 H% +9% —2(91(92 COS ¢2 ( 2 ! ¢2)

(2.40)

where we introduced the variable §; = 6; cosh(ns)/Ry. Note that the variable change
removes the dependence on 7;. Following the definition of the collinear-soft mode, the
upper bound for the , integral should be co. Here we use instead 1 /8y = R/R, keeping in
mind that the radiation outside the groomed jet is within the original ungroomed jet with
radius R, see figure 1. In addition, in the limit 6, — 1 the associated NGLs in J; vanish,
as the NGLs are proportional to the area of the veto region. The integral in eq. (2.40)
can be performed analytically for 6, < 1 and we find that the coefficient of the non-global
logarithm is significantly reduced due to the additional constraint. In the limit 6, < 1, the
64 dependence of SS 2/ As power suppressed and we find
2

4
Si4M0y) = _CiCA% x5+ 00). (2.41)
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Thus the size of the NGL is reduced due to clustering by a factor of 4/9. A similar reduction
due to clustering effects was observed in the context of inter-jet energy flow [57] and the
jet mass [53]. For general R, < R, we find that the coefficient in eq. (2.40) evaluates to

4 1
SYM0,) = —4CiCs §% + F(03)0 (0, — 5 ) + (1 = 0) In(0,)
VAN 16,
v (—) -1 (-5 )] | (2.42)
with
cos~ly/2 d 111((92 2)6
/ dy/ de s el SO (2.43)
1/6, O 2 yc¢

which reduces to eq. (2.41) in the limit §; < 1. The ¢ integral here can be done analytically
but the result is rather lengthy. The remaining y integral can be evaluated numerically.

2.6 Leading Abelian C/A clustering logarithms

To study the Abelian C/A clustering effects [57], we start with two independent collinear-
soft emissions with momenta ki 2. In order to extract the leading Abelian logarithm, it
suffices to consider the strongly ordered limit in which pr > ki > ks or pr > ko > k.
The leading logarithms come from the configuration where the harder gluon is initially
inside the groomed jet and the softer gluon is outside but within the initial ungroomed
jet. The C/A clustering pulls the softer gluon into the jet and generates a mismatch with
the real-virtual correction. In the small 6, approximation, the NNLO contribution to the
Abelian clustering reads

s (1)2 1 /1 daydzy (% db; db, /27r dey d¢2 O/,

C/A
A L,0y) =1+ < 51 T .0
iAbel, (L:0g) = T 20 Joowe? T1 22 Jo 01 02 T

(2.44)

where we use the same notation conventions as in eq. (2.32) above. Terms that are power
suppressed by 6, are omitted and can be found in [53]. We have

Oc/a = O(di — R2) O(R? — d3) ©(da — d12)
~ 007 —1)O(1 — 02) O(—6? + 20,6 cos ¢») , (2.45)

where as before 6; = 6; cosh(n)/ R,. Performing the integral, we find the first Abelian
corrections due to the C/A clustering

C/A 4C?
Ai,2/ ( g) 2|

@(99 - %) /OCOS Rz @ln 2(20,c0)| . (2.46)

54

The remaining integral can be worked out analytically but it is rather lengthy. In the small
64 limit, we find

401'2 2

C/A ™
Ay (0, < 1) = 51 B4

(2.47)
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Higher order coefficients AS?{A and beyond can be computed following the method de-
veloped in [53]. The authors further proposed an exponentiation of Abelian clustering
logarithms by calculating higher order corrections and analyzing the structure of the per-
turbative series. In this work, we instead resum the Abelian clustering logarithms at LL
and leading color using the Monte Carlo method discussed in section 3, where we compare

to the fixed order result derived here.

2.7 Comment on subleading NGLs and clustering logarithms

Here we comment on the potential impact of subleading NGLs and Abelian clustering
logarithms beyond single logarithmic accuracy. Due to the soft drop criterion, the cor-
responding jet veto parameter is zcutdf /2 / RﬁpT = zcutﬁg éf pr with éz as defined in the
previous sections. Therefore, for instance the z;-integration bound in eq. (2.44) should be
replaced by zcuté?g éf instead of zcut0§ . The latter is sufficient to get the leading logarithms
as derived in the previous section. The additional 0; dependence gives rise to part of the
subleading logarithms. Similar reasonings apply to the NGL case. In the 6, — 0 limit, we
find at NNLO

2 2
SLST(L,0,) = —4C,Ca (;‘—W) (—0.474ﬁL + 1.01454) , (2.48)

for the NGLs and

O\ 2 2
AN (L, 0y) = % (O‘W > (—0.0736L + 0.045i> : (2.49)
for the Abelian clustering logarithms. In figure 2, we show a comparison of the leading
NGL (blue) and clustering logarithms (red) at NNLO (dashed) and when the subleading
terms in egs. (2.48) and (2.49) are included (solid). We result is plotted as a function of 6,
for exemplary values of the soft drop grooming parameters § =1, zq,t = 0.1. We observe
a moderate reduction of the NGL contribution when the subleading terms in eq. (2.48) are
included. The subleading contribution of the Abelian clustering logarithms turns out to
be almost negligible.

Though not yet conclusive, the results in this section suggest that the impact of sub-
leading NGLs and clustering logarithms may be moderate. The results here suggest that
the numerical results for the soft drop groomed jet radius presented in section 4, which
only include the leading NGLs and Abelian clustering logarithms to all orders, capture the
dominant perturbative effects and that the presented QCD uncertainty bands are a reliable
estimate of missing higher order corrections.

2.8 Comparison to results in the literature

In this section, we compare the calculation presented in this work to results available in the
literature. In [4], the resummation of the cumulative 6, distribution was realized at MLL
accuracy. We show that our results reduce to [4] when only the leading logarithms are
taken into account. The resummation in [4] is based on the coherent branching formalism
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Figure 2. Comparison of the numerical size of the NGLs (blue) and the clustering logarithms
(red) at NNLO with (solid) and without (dashed) subleading contributions as a function of §,. The
results are normalized to (s /7)2C;Ca and (s /7)2C? for the NGLs and the clustering logarithms,
respectively. We choose the parameters z.,t = 0.1, 8 = 1 as a representative example.

and the result can be expressed as

Uilmm = fq Bq(0g) + fg Tg(0y) - (2.50)
Here ojyq denotes the inclusive jet cross section, f; are the leading-order quark/gluon
fractions and ¥;(6,) denote the respective resummed exponents that depend on 6. On the
right hand side we leave the dependence on other variables besides 6, implicit. At MLL

accuracy for a fixed coupling constant, the resummed exponent can be written as

%i(0,) = exp [— %C’ (5 In% 0, + 21n zey; In 0, + % In egﬂ : (2.51)
7

where the constants 7; are defined in egs. (2.25) and (2.26). At MLL accuracy also running
coupling effects are taken into account.

The improvements achieved in this work concern both the quark/gluon fractions f; and
the resummed exponents 3;(6,). Here, the resummation is carried out at full NLL accuracy,
including both global and non-global logarithms. In addition, clustering effects due to the
C/A algorithm are taken into account. In order to recast the formalism developed here
into the form of eq. (2.50), we separate the production of the jet from the jet substructure
measurement as discussed in [68, 84, 85]. We start by rewriting the jet function G. in
eq. (2.2) at fixed order as

Ge(2,0g,pr R, 15 2eut, B) = Y _ Jea (2,07 R, 1) (2.52)
d

X/dZ |:gd(2799,pTR7,U/;Zcumﬁ)—Jél)(Z,pTR,,u) +O(CM§)
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Here J él) is the O(ay) contribution of the semi-inclusive jet function as it appears in the
inclusive jet cross section [68-70]. The functions J.4 are related to the semi-inclusive jet
functions except that we keep track also of the jet flavor d such that

chd(zypTRau) = Jc(zapTRhU’) . (253)
d

We would like to stress that only at leading-order the jet flavor d is the same as the final
state parton ¢ from the hard-scattering event. Note that the separation in eq. (2.52) is
multiplicative and the functions J.4 contain the complete z-dependence. The z-dependence
is associated with out-of-jet radiation diagrams at NLO and it is the same for different jet
substructure observables. We can now calculate the cross section for a jet of flavor d as

doy
dndpr

= fa® O HY® Jea. (2.54)

abc

Here we use a more compact notation compared to the factorization in eq. (2.2) above. After
summing over d in eq. (2.54), the inclusive jet cross section oy, is obtained. Therefore, in
our calculation the quark/gluon fractions f;, see eq. (2.50), can be obtained systematically
beyond leading-order as

1

Oincl

Y fa® fr®@ HY® Jogqg) s (2.55)
abc

fatg) =

where also the In R resummation is included. The resummed exponents beyond MLL
accuracy are now obtained from the refactorized expression of the jet function G, , after
subtracting the NLO semi-inclusive jet function at fixed order, see eq. (2.52). Following
the discussion in the sections above, we thus have

Zi(ag) = <ﬁi(pTR7 N)> <Sz‘¢gr(zcutpTRa M3 5)> <Cz(eg prR, /~L)> <Sigr(zcut9;+ﬁ prR, 1; B» .
(2.56)

The constants H; were calculated in [85]. After solving the evolution equations of the
different functions and including NGLs and Abelian clustering logarithms, the resummation
at NLL accuracy can be achieved which includes logarithms of 6,;, R and zcu;. The result
for fixed scales at leading logarithmic accuracy is given by

et s 1 s')1
(Hi(prR, ) exp [—a ¢ < (ln2 PH g2 EH )+1n2“”)+a g ln'uH]. (2.57)
T \1+p KS¢gr HSegr pe T pe

After making the canonical scale choices, which we list here for convenience

can

Py =prR,
lu’(,:s'aéngr = Zcut pTR7
/’Lg'ln = gg pTR7

1
:u%'aéngr = Zcutag—i_ﬁpTRa
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we recover the result for ¥;(6,) in eq. (2.51) up to the constants H;, which is 1 at leading
order. As can be seen from eq. (2.57), the terms containing double logarithms of zcut
in the exponent of ¥;(6,) can generally induce contributions to the QCD scale variations
considered in the next section. Only for the central scale choice or when the scales pgg,,
and psegr are varied simultaneously, the contribution of these logarithms cancel completely.
Of course we further include NGLs and Abelian clustering logarithms to achieve full NLL.
Furthermore, we would like to stress again that an important feature of our approach is
that it can be systematically extended beyond NLL accuracy.

3 The soft drop groomed radius in Monte Carlo

In this section, we present an algorithm for the large- N, leading log resummation of the
NGL distribution, including clustering effects. We also perform a numerical comparison
to the resummed distributions to gauge power corrections in factorizing the NGLs of the
soft function of eq. (2.6) from those of the collinear-soft function of eq. (2.9), as well as
the range of validity approximating the all orders resummation with the two-loop leading
NGLs and Abelian clustering logarithms calculated previously.

3.1 The Monte Carlo setup

As explained in section 2.2, the soft drop declustering angle operates as a jet veto algorithm.
However, the jet being vetoed is simply the last branch to be declustered in the C/A
algorithm once that branch is at an angular scale larger than R,. The ungroomed jet is
defined by the anti-k; algorithm, so the jet has a hard angular boundary at R, whereas R,
is the soft drop declustering angle. Then the Monte Carlo resummation in the large- N,
limit follows the general procedure found in [50, 57, 58]. We define:

e ¢ as the MC time

=1 / ), (3.1)

where w is the energy of the emission established at the shower time ¢. In our case,
the scale @ is set by prR.

A histogram H; indexed by t.

R, as the subjet radius, R as the fat jet radius.

D as the list of dipoles.

k is the current number of emissions.

np is the direction of the first branch in the declustering procedure that passes soft
drop. n - np sets the current angular scale of the shower.

& is the list of emitted eikonal lines that cluster into either the jet direction n or np.
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All eikonal lines are of the form n; = (1,7;), so the Lorentz product n; - nj = 1 — cos 0;;
simply measures the angle between the lines. Strong energy ordering implies the following
clustering rule, ignoring recoil:

{wi,ni} if w; > Wi

{wi,ni} +{wj, nj} — { (3.2)

{Wj, nj} if wj > Wi

where w; ; are the energies and n;; are the null directions of the two emissions to be
clustered. Since the shower is energy ordered, we only need to keep track of the order of
emissions to know the relative energy scales. We initialize the shower as follows:

o t=0.

o &5 ={n}.

e D= {{n, ﬁ}} for a quark jet, D = {{n, n}, {ﬁ,n}} for a gluon jet.
The algorithm then proceeds as:

1. Take an MC time step t — t+ At and create a new emission with energy and direction
{wkt1,ng+1}. For details, see appendix 3.4.

2. Check if ngy1 - n > 2 sin?(R/2), if this is true, the emission is outside the jet, goto
step 1.

3. Check if ng1-n; >np-n, ¥n; € &;.

e If at least one of these conditions fail, add ngy1 to £7. Goto step 1.

e If all these conditions are true, the emission is a new candidate for the declus-
tering branch.

— Ifng-n<2 sin2(Rg/2), set np to ngy1, add ngiq to €. Goto step 1.

— If ngyq-n > 2 sin?(R,/2). Add 1 to appropriate bin of Hy, and re-initialize
shower for a new event.

Finally, normalize the histogram by the number of events.

3.2 Vetoing the declustered branches

We construct £ such that all lines within will cluster into either np or n before np and n
themselves cluster at each step in the shower. Thus if we are given a new emission njy;
such that ngy1-n; > np-n, Vn; € &;, then n and np will cluster before nj; clusters
into any of the established eikonal lines. Thus niy; and £; now define the two branches
that are the first to be declustered under C/A, and the branch formed from &; will have
direction n according to the clustering rule eq. (3.2). We then check whether the angle
between these two branches is less than the desired R,. If it is, we redefine the branch np
to be nyy1, this is the new branch that sets the current declustering angle. If ng,1 is at too
wide an angle from n, then the emission ny41 sets the energy scale zcuiprfy. If we were
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Figure 3. The NGL+clustering distribution at large-N,. at LL (overall accuracy NLL) for an
initial fundamental (quark) dipole at various soft drop angles, compared to the small R, limit of
the NNLO leading NGL of eq. (2.41) and large-N,. limit of the clustering effects in eq. (2.46).

to create subsequent emissions in the shower, they would have energy below z..tprRy, and
so if they created new branches, they would fail soft drop, and if they are clustered into
the branches which pass soft drop, they cannot change the directions of those branches
according to the clustering rule eq. (3.2). Thus np cannot change, and the shower is over.

If ngy1-n; <np-n, for at least one n; € &7, this emission in the shower will cluster into
an emission that will eventually cluster into either n or np before n and n, themselves clus-
ter. Thus this emission will not change the direction of the two branches that pass soft drop.

3.3 Numerical results

Formally, the Monte Carlo algorithm described above resums the NGLs from both the
collinear-soft function defined in eq. (2.9), and the soft function of eq. (2.6). However,
in the small R, limit, these two functions factorize from each other. Thus to isolate the
NGLs from the collinear-soft function alone, we divide out from the histogram produced
by the LL MC (overall accuracy NLL) described above both the hemisphere jet-mass NGL
distribution of ref. [50] (which corresponds to the NGLs of the soft function of eq. (2.6)), as
well as dividing out the exponentiation of the one-emission contribution to the distribution
to remove any global contributions. These one-emission contributions are included in the
anomalous dimension calculated in eq. (2.31). For an initial quark dipole the distributions
for Ry, = 0.25,0.15,0.1,0.05 are shown in figure 3, with the ungroomed jet radius of R =
0.8, and the small-t region is highlighted in figure 4. We have check numerically that
the gluon distribution with an adjoint dipole is well approximated by the square of the
quark distribution, despite clustering effects which would spoil this relation at large-N..
In comparison to the fixed order results, we include in the large-N. (Cr — C4/2) limit
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Figure 4. The NGL+clustering distribution at large-N. at LL (overall accuracy NLL) for an
initial fundamental (quark) dipole, comparing the two-loop results of eq. (2.42) and eq. (2.46), with
Cr — C4/2, to the all orders resummation at groomed angles R, = 0.25 and 0.1.

both the contributions from eq. (2.42) and eq. (2.46), since the MC covers the whole soft
phase space at large-N,. and leading log. Thus the MC algorithm accounts for clustering
effects off the primary emission, but only in the large- N, limit. Using the methods of [86],
we could resum the Abelian clustering effects with the correct color structure, accounting
for some of the subleading NN, effects.

Since the MC includes the multiple emissions evolution in the out-of-jet region as
well as the evolution in the groomed region, we can test this collinear factorization of the
two soft functions. We can see that for multiple emissions at B, = 0.25, R = 0.8 the
power corrections to the small R, limit of the collinear function are sizeable. However, for
R, < 0.15, R = 0.8, the small R, limit of the fixed order NGL at two-loops distribution
describes well the NGL distribution for phenomenological values of t. Moreover, we have
checked that the LL distribution for the collinear-soft function is independent of R once we
are in the regime Ry < R. For example, the distribution for R, = 0.1 and R = 1.5708 is
almost identical up to statistical noise as Ry = 0.1 and R = 0.8. We use a shower angular
cutoff scale of § = 0.001, and checked the independence of the distributions.

3.4 Evolving dipoles

We start with a list of dipoles D, where an element is given by {z,y}. x,y are the null
directions forming eikonal lines of the dipole. We let:

8 (5 — _ N LA
; sin2 fzv
P, = / %ny(]‘) ~ ln(4 5 2 ) +0(8%). (3.4)
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Figure 5. A comparison between the LL and NLL’ predictions for the 8, distribution. Significant
reductions in the theoretical uncertainties are observed for all 8 choices for the NLL’ results as
compared with the LL calculations.

Then

1. Calculate P% by summing over the ng’s calculated from each dipole in D. Uniformly
generate a random number rnd € [0, 1], and then At is determined by

_In(rnd)

CaPp

(3.5)

Increase t by At.
2. Choose the dipole {z,y} € D with probability Pfy /P

3. Create an emission j with distribution ngy( J), such that the angles are 6,;,6,; > ¢.
This is equivalent to uniformily randomly creating in the rest frame of x,y a direction
j in rapidity and azimuth, then boosting back to the lab frame and checking the
angular constraint.

4. To split the dipoles again: delete {z,y} from D, add {z,;j} and {j,y} to D, then
repeat splitting process according to phase space constraints.

4 Phenomenology

In this section we present numerical results for the soft drop groomed jet radius 6, = Ry/R
at NLL accuracy. We start with proton-proton collisions at /s = 13TeV collision and
we consider inclusive jets pp — jet + X with transverse momentum pp > 600 GeV in the
central rapidity region of |n| < 1.5. Jets are reconstructed with the anti-kp algorithm and
R = 0.8. For all numerical results presented in this section we choose the soft threshold
parameter zq,t = 0.1 and we present results for different values of the angular exponent .
We choose the NLO CT14 PDF set of [87] as default for all our numerical calculations.
We first present a comparison between the LL (as defined in table 1) and NLL’ pre-
dictions for the 6, distribution for different choice of 3, as shown in figure 5. Here the
red and yellow bands are predictions from the NLL’ and LL, respectively, with the bands
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Figure 6. The normalized soft drop groomed jet radius 6, at NLL (dashed black, yellow band)
in proton-proton collisions at /s = 13TeV. The jet kinematics are specified in the figure. We
compare to Pythia 8 simulations [88] (purple) at the parton level, without hadronization and the
underlying event contribution, for three different values of 8 =0, 1, 2 (left to right).

corresponding to the theoretical uncertainties obtained by varying all scales up-and-down
by factors of 2 around their central values while maintaining the relations

L iy
5 - uqan/ﬂqan S 2 (4'1)
i j
and
lu’Sgégr = Zcut U » (42)
Hsegr = Zcut 95 Ko - (4'3)

From figure 5, we can see that when going from LL to NLL’, the theoretical error get
substantially reduced by almost a factor of 2 in the entire 6, regime for all choices of £,
and the central value gets shifted. The overlap between the LL and NLL’ error bands
implies the validity of the error estimations done in this work.

In figure 6, we present the numerical results (dashed black, yellow band) for the nor-
malized 60, differential distribution 6,/cine do/df, which is obtained by differentiating the
cumulative cross section 3(6,), see eq. (2.1). Before taking the derivative with respect to
64, we choose the canonical scales as listed in egs. (2.58)-(2.61) and we evolve all relevant
functions that appear in the refactorization theorem to a common scale. The three panels
show the result for different values of g = 0, 1, 2 (left to right). The QCD scale uncer-
tainties as shown by the yellow band in figure 6 are again obtained by variying the scales
involved by factors of 2, as described before. As expected, we find that aggressive soft
drop grooming ( = 0) yields a relatively flat distribution (multiplied by 64) of the soft
drop groomed jet radius. Less aggressive grooming (/3 = 1, 2) instead gives a distribution
that peaks at intermediate to relatively large values of 6, which means that the groomed
jet does not shrink as much in size compared to the initial ungroomed jet. Eventually, in
the limit 5 — oo, the groomer is removed and the distribution approaches a delta function
at §; = 1. For comparison, we also show Pythia 8.230 results using the default tune [88]
(purple) in figure 6. Here we do not include the nonperturbative hadronization and the
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Figure 7. Pythia 8 results [88] for the normalized soft drop groomed jet radius 6, for the same
kinematics as in figure 6 above. We separately show the purely partonic result (black), including
initial-state radiation (red), multi-parton interactions (green) and hadronization corrections (blue).

contribution from underlying event (UE). Below we study these effects in more detail. In
general, we find very good agreement between the Pythia 8 simulation and our perturbative
results at NLL accuracy concerning both the shape and the overall magnitude. We note
that in the region 6, ~ 1 perturbative power corrections play a role which is not captured
by our factorization theorem. In principle, they could be included at fixed order by per-
forming a matching calculation. In addition, we note that the perturbative resummation
region ends when the lowest scale in the factorization theorem runs into the nonperturba-
tive regime pigegr ~ zcut9;+ﬁ prR ~ Agcp ~ 1 GeV. This corresponds to values of the soft
drop groomed jet radius of 0, < (Aqep/ (ZeutprR))Y 1), Numerical results in this region
are obtained by smoothly freezing the running of the QCD coupling constant above the
Landau pole. We choose to freeze the running of « at the scale 0.4 GeV for the numerical
results presented here.

In figure 7, we study different perturbative and nonperturbative effects for the same
kinematics as in figure 6. First, the purely partonic results are shown by the black line.
We then include the contribution of Initial State Radiation (ISR) as shown by the blue
line. In general, ISR leads to a shift of the distribution toward larger values of 6,. We note
that there is no exact one-to-one correspondence between the different parton and hadron
level contributions in Pythia and the QCD factorization theorem we develop in this work.
ISR is power suppressed and not included in our factorization theorem. However, since
ISR is a perturbative initial state contribution, we include it in the comparison in figure 6
above. Next, we include the underlying event contribution or multi-parton interactions
(MPI), as shown by the green line in figure 7. As it turns out, MPI does not play a
significant role for the jet kinematics and soft drop parameters considered here. Finally,
we include hadronization effects for the 6, distribution as shown by the blue line in figure 7.
Interestingly, hadronization leads to a shift of the distribution to lower values of 6, for soft
drop grooming with 5 = 0, whereas it shifts the distribution to higher values for g =1, 2.
It will be interesting to study such effects in more detail in the future following the work
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25 GeV < pr < 30 GeV

Figure 8. The normalized soft drop groomed jet radius R, at NLL in proton-proton collisions for
STAR kinematics at /s = 200 GeV. The jet kinematics and soft drop parameters are indicated in
the figure.

of [89]. We conclude that the impact of different effects that are not captured by the
factorization theorem presented in this work are relatively small and that the soft drop
groomed radius 6, is under good control within perturbative QCD.

Finally, in figure 8 we present results for jet kinematics relevant for the STAR ex-
periment at RHIC at /s = 200 GeV. For the setup of the analysis presented in [90], we
show numerical results for three jet transverse momentum intervals 25 < pr < 30GeV,
30 < pr < 40GeV and 40 < pr < 60GeV (left to right) with R = 0.4, z¢yy = 0.1 and
B = 0. We show the theoretical result 1/oipqdo/dR, as a function of R,. As expected, the
QCD scale uncertainty is relatively large for the lower jet transverse momentum intervals
considered here.

5 Conclusions

In this work, we considered the soft drop groomed jet radius 6, = R;/R at next-to-leading
logarithmic accuracy. The radius of a soft drop groomed jet is one of the key observables
characterizing the impact of grooming on a jet and is calculable in perturbative QCD.
It is defined as the opening angle of the splitting that satisfies the soft drop grooming
condition and is related to the active area of the groomed jet. The extension of the
calculation beyond leading-logarithmic accuracy required us to study the nontrivial all
order structure of non-global logarithms which are affected by clustering constraints due to
the use of the C/A algorithm. In addition, Abelian clustering logarithms need to be taken
into account. An important ingredient to understand the factorization structure is the
equivalence between the soft drop groomed radius measurement and a jet veto between the
boundaries of the groomed and ungroomed jet. Within SCET we established a factorization
theorem which allows for the resummation of logarithms of 6,, the jet radius R and the
soft drop parameter z.yt at NLL. We performed an explicit calculation of the non-global
and Abelian clustering logarithms at fixed order. The all order resummation at leading
logarithmic accuracy within the large-N, approximation was achieved by making use of
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a suitably designed Monte Carlo algorithm. We performed numerical calculations and
compared our results to Pythia 8 simulations for LHC kinematics and found very good
agreement. From these findings, we concluded that the soft drop groomed radius is under
good perturbative control as the overall impact of nonperturbative effects, mainly due to
hadronization, appears to be relatively small for LHC kinematics. Numerical predictions
for the STAR experiments at RHIC are also provided.

Our results allow for precision comparisons to data from the LHC and RHIC which will
further improve our understanding of soft drop groomed jet substructure observables. The
formalism developed in this work can be systematically extended beyond NLL accuracy
and matched to fixed order calculations. In addition, it will be interesting to systematically
investigate nonperturbative effects. Applications in heavy-ion collisions will further extend
the use of the calculations performed in this work.
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A Collinear-soft emissions at NNLO

Here we consider the phase space for collinear-soft emissions at NNLO as a non-trivial
example to check and illustrate the equivalence between the soft drop groomed R, mea-
surement and the jet veto constraint. We first introduce the notation for two collinear-soft
partons ¢ and j with momenta k; and k; as

OQEARU, k‘ijEki—l-k‘j,

DPTi AR; J>B
O;p, =0 > Zeu : s Al
B
DPTi AR; 5
if = cu : =1-0ip,
Oi,r @(pTJ<Z t( R > ) Oip

where J denotes the eikonal direction set by the collinear mode. We further write the soft
drop groomed radius R, phase space for 1 collinear-soft emission as

M (ki) = ©(Rg — 0i7)Oip + Oif (A.2)
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Figure 9. Configurations of collinear-soft emissions at NNLO. Either emissions 1 or 2 are closest
to the eikonal direction J (a, b) or 1 & 2 get clustered into one branch first and are then combined
with J ().

which is equivalent to

My (ki) = O(Ry — 0;) + O(0;5 — Ry)O; - (A.3)

The first term indicates that an emission i is kept as long as it is within the cone set by
R, whereas it is vetoed if it is outside. This is the usual veto operation and manifests the
equivalence at NLO. For future use, we also note that

1— My(k;) = ©(0;7 — Ry)O; . (A.4)

At NNLO, we need to consider the three configurations shown in figure 9. We start with
configuration a. In this case we can write the phase space measure as

ME =0 (02 — 017) O(612 — 01)) | ©2,,0(Ry — 027) + O s (@(Rg — 01,)01, + @Lf) }
= @(02] — 91J) @(912 — 91J) [@ij@(Rg — (92J) + eg’f./\/ll(kl)} , (A.5)

where the overall factor indicates that 6 ; is the smallest distance. When declustering the
jet, we thus first check emission 2 against the soft drop criterion. If 2 passes, it has to be
within R, by construction and the algorithm terminates (first term in square brackets).
If emission 2 fails, we continue to check whether emission 1 passes the soft drop criterion
(second term in square brackets). To proceed, we write M$ as follows

MG =0(025 —017)0(012 — 017) @2,p@(R9 —O25) + My (k2) M (k1)
— O(Ry — 027)O2, M1 (k1) (A.6)

where we used the definition of M;(k2) in eq. (A.2). Now we combine the first and the
third term and use eq. (A.4) to obtain

MG =0(027—01,)0(012—017) [O(Ry—02,)0(01 5 — Rg)O1 O3 p+ My (k1) M (k2)]. (A7)
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The first term vanishes since there is a contradiction between the different conditions
requiring 617 to be the smallest distance as well as 017 > R, and R, > ;. Therefore, we
find for the configuration a the result

Mg = @(HQJ — Hlj) @(912 — 91J) Ml(kl) M1(k2) . (A.S)

For configuration b the same arguments apply. We can thus write the measurement func-
tions for a + b as

84 M5 =[1—-0(01y —012) O(02) — b012)] My(k1) My (k). (A.9)

This states that we separately veto emissions 1 and 2 as long as 612 is not the smallest
overall distance in which case they will be combined into a single branch first. Lastly, we
consider the configuration ¢ in figure 9 which can be written as

M5 =0(015 — 012) O(025 — 012) Mi(ki2) . (A.10)

If the distance 615 is the smallest distance, the emissions 1 and 2 will be combined first. In
the declustering procedure, the branch containing both emissions will be checked againnst
the soft drop criterion. Adding up all three configurations, we find

MG+ ME+MS§ =[1—0(017 — 012) O(027 — 612) ] My (k1) M (ka)
+ O(017 — 612) ©(b27 — 612) M1 (k12), (A.11)

which shows the equivalence discussed in the main text at NNLO. The extension beyond
NNLO can be achieved in a similar way. For instance, in the case of 3 emissions, the only
extra configuration one needs to consider is when neither 2 nor 3 emissions out of the 3
are clustered first. Otherwise, up to clustering, it is equivalent to the 1- or 2-emission
case discussed here in detail. Following similar steps and arguments as we showed for
configuration a of the 2-emission case, one reaches again the equivalence.

At NNLO, we can also have 2 collinear emissions J; and J2 along with 1 collinear-soft
parton k1. The measurement function is readily found to be given by

Mgy = Mi(k1) + 10017, — 010,) OO1,0, — O15y) + J1 < J2] [1 = Ma(k1)], (A.12)

which again is equivalent to the jet veto operation using the C/A algorithm. That is to
say, when the soft parton is combined with the collinear radiation J; or Jo, it will be kept.
Otherwise, it will be vetoed when it is outside of the region set by R,.
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