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1 Introduction

At present day collider experiments such as the LHC and RHIC, highly energetic jets play

an important role as precision probes of the Standard Model and beyond. In the past

years, jet substructure techniques have become important tools in high energy particle and

nuclear physics. One of the important techniques that have been developed is jet grooming

which is designed to remove soft wide-angle radiation from the identified jets. Algorithms

that remove the soft contamination of jets allow for a more direct comparison of perturba-

tive QCD calculations and data due to the reduced sensitivity to nonperturbative effects.

Different grooming algorithms have been developed in the literature such as [1–4]. In this

work, we focus on the soft drop grooming algorithm of [4]. Both on the experimental [5–8]

and the theoretical side [9–24], significant progress has been made recently in improving

our understanding of soft drop groomed jet observables. In the heavy-ion community, soft

drop groomed jet substructure observables have also received increasing attention from
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both experiment [25–28] and theory [29–39]. Jet grooming techniques can be used to iso-

late different aspects of jet quenching and may help to discriminate between different model

assumptions [40].

One of the interesting features of soft drop grooming is that the radius of the groomed

jet is adjusted dynamically, capturing only the hard collinear core of the jet [4] which

we study in this work within perturbative QCD. We consider inclusive jet production

pp→ jet +X where jets are identified with the anti-kT algorithm [41] with a given radius

R. Following the soft drop algorithm, the identified jets are then reclustered with the

Cambridge/Aachen (C/A) algorithm [42, 43]. The obtained angular ordered clustering

tree is then declustered recursively where at each step the soft drop condition is checked

min[pT1, pT2]

pT1 + pT2
> zcut

(
∆R12

R

)β
. (1.1)

Here pT1,2 are the transverse momenta of the two branches obtained at each declustering

step and ∆R2
12 = ∆η2 + ∆φ2 is their geometric distance. Soft branches that fail the

criterion are removed from the jet. The algorithm terminates when the criterion is met and

the particles in the remaining two branches constitute the groomed jet. The soft threshold

zcut and the angular exponent β are fixed parameters that determine how aggressively soft

radiation is removed. For β = 0, the soft drop algorithm reduces to the modified mass drop

tagger (mMDT) [3]. Two variables that characterize important features of the soft drop

groomed jet are the momentum sharing fraction zg and the groomed jet radius Rg. Their

values are obtained from the kinematics of the two remaining branches when the soft drop

algorithm terminates

zg =
min[pT1, pT2]

pT1 + pT2
, Rg = ∆R12 = Rθg . (1.2)

Often the variable θg is used which corresponds to the geometric distance of the two

remaining branches normalized by the radius R of the ungroomed initial jet. Note that

unlike the external parameter R which is the radius of the initial jet, the groomed radius

Rg is a distribution which is determined through the soft drop grooming procedure. Since

the C/A algorithm first clusters particles that are closer in angle, the groomed jet radius Rg
defines the maximally allowed angle between two branches that can be clustered. Similar

to the radius R of the initial jet, the distance Rg constitutes the radius of the soft drop

groomed jet. By analyzing the active area of recursive kT -type algorithms, it was found

in [44] that jets have an area of the order O(πR2). A similar analysis was performed for

the groomed radius Rg in [4] verifying that the active area of a soft drop groomed jet is of

the order O(πR2
g).

In the phenomenologically relevant limit of Rg � 1 and zcut � 1, large logarithms

may spoil the convergence of the perturbative series expansion in terms of the QCD strong

coupling constant. In [4], the soft drop groomed radius was calculated within the modified

leading-logarithmic (MLL) approximation. In this work, we extend the calculation to next-

to-leading logarithmic (NLL) accuracy using a factorization formalism developed within

Soft Collinear Effective Theory (SCET) [45–49], which is suitable for the extension to

– 2 –



J
H
E
P
0
2
(
2
0
2
0
)
0
5
4

yet higher perturbative accuracy. Besides the resummation of logarithms of Rg, we also

take into account logarithms of R and the soft threshold parameter zcut. Based on the

equivalence of the Rg measurement and a jet veto on emissions between the splitting that

satisfies the soft drop criterion and the boundary of the initial ungroomed jet, we establish

the all order factorization framework. Different than for example the groomed jet mass

distribution where non-global logarithms (NGLs) [50] only arise in the grooming parameter

zcut, here NGLs directly contribute to the cross section starting at NLL accuracy. The use of

the C/A algorithm introduces clustering constraints that give rise to clustering logarithms

associated with both NGLs as well as global logarithms, which are referred to as Abelian

clustering logarithms [51–56]. We resum the NGLs including clustering constraints and the

Abelian clustering logarithms at leading logarithmic (LL) accuracy and leading color using

a suitable Monte Carlo algorithm which we introduce here following the work of [50, 57, 58].

The remainder of this paper is organized as follows. In section 2, we outline the fac-

torization formalism developed in this work based on the equivalence between the groomed

radius measurement and a jet veto when Rg � 1 and zcut � 1. We identify the relevant

NGLs and Abelian clustering logarithms and perform the relevant fixed order calculations.1

In section 3, we introduce the Monte Carlo setup that allows for the all order resummation

of NGLs and clustering logarithms at LL accuracy needed to achieve the overall accuracy

at NLL. Numerical studies and a comparison to Pythia 8 simulations are presented in

section 4. We draw our conclusions in section 5 and present an outlook.

2 Factorization and resummation

In this section, we develop the factorization theorem for the soft drop groomed jet radius

within SCET. We start from the cross section Σ(θg) differential in the transverse momen-

tum pT and rapidity η of the observed jet, but cumulative in the groomed jet radius where

any value below θg contributes. The distribution differential in θg can then be obtained as

dσ

dη dpT dθg
=

d

dθg

dΣ(θg)

dη dpT
. (2.1)

We work in the limit where the observed jet is sufficiently collimated R � 1 and we

drop power corrections of the form O(R2). This type of power corrections are generally

found to be small even for relatively large values of the jet radius [63]. In this limit, the

production of an energetic parton in a hard-scattering event factorizes from the formation

and evolution of the jet initiated by the produced parton. The hard-scattering process

ab→ c is described by hard functions Hc
ab which are known analytically to next-to-leading

order (NLO) [64, 65]. The subsequent formation and evolution of the jet is described by a

semi-inclusive jet function Gc [66–70]. This separation is generally expected to hold to all

orders due to the universality of the collinear limit in QCD [71]. We can thus write the

1For other calculations of NGLs at fixed order with and without a jet veto, we refer the reader to

refs. [59–62].
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Fixed-order β γ NGLs

lnR LL tree 1-loop 1-loop –

NLL 1-loop 2-loop 2-loop –

NNLL 2-loop 3-loop 3-loop –

ln θg, ln zcut LL tree 1-loop 1-loop –

NLL tree 2-loop 2-loop LL

NLL′ 1-loop 2-loop 2-loop LL

NNLL 1-loop 3-loop 3-loop NLL

Table 1. The necessary perturbative ingredients for the resummation of logarithms of R, θg and

zcut. In the columns we list the relevant fixed order ingredients, the QCD beta function, the

anomalous dimensions and the non-global logarithms. The non-cusp part of anomalous dimension

only enters at one-loop order lower than what is shown here.

cumulative cross section in θg as

dΣ(θg)

dpT dη
=
∑
abc

fa(xa,µ)⊗fb(xb,µ)⊗Hc
ab(xa,xb,η,pT /z,µ)⊗Gc(z,θg,pTR,µ;zcut,β) , (2.2)

where fa,b denote the parton distribution functions (PDFs) for finding partons a, b in the

colliding protons. Here, ⊗ denote appropriate integrals over the longitudinal momentum

fractions xa,b of the initial partons and z which is the fraction of transverse momentum

contained in the observed jet relative to the scattered parton c. Note that the jet rapidity

η only appears in the hard functions Hc
ab when subleading terms ∼ O(R2) are ignored. On

the other hand, the entire dependence on θg and the grooming parameters is contained

in the jet function Gc. Single logarithms of the jet radius αns lnnR can be resummed by

solving the renormalization group (RG) evolution equation (DGLAP) associated with the

jet function Gc which is given by

µ
d

dµ
Gc =

αs
2π

∑
d

Pdc ⊗ Gd . (2.3)

Here, Pdc denote the Altarelli-Parisi splitting functions which can be computed order by

order in αs. In the kinematic region where zcut ∼ θg ∼ O(1), the factorization theorem in

eq. (2.2) is sufficient to carry out calculations at fixed order in perturbation theory. In the

phenomenologically relevant region where zcut � 1 and θg � 1 large logarithmic corrections

may spoil the perturbative convergence and an all-order resummation is required. The

perturbative order for the different logarithms is summarized in table 1. We note that for

β > 0, the leading logarithmic contribution is ∼ ln2 θg whereas for β = 0 it is ∼ ln θg ln zcut.

This can be achieved by a refactorization of the semi-inclusive jet function Gc in order to

separate the physics at different scales in the relevant kinematic regime. The associated

RG evolution equations then allow for the resummation of all relevant large logarithms.
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2.1 Refactorization of the semi-inclusive jet function

In this section we discuss the refactorization of the semi-inclusive jet function Gc in the limit

when both zcut � 1 and θg � 1. We make use of power counting arguments to establish the

refactorization. First, we consider energetic collinear radiation at the jet scale µH ∼ pTR.

To NLO, these are given by out-of-jet radiation diagrams, see for example [72, 73]. The

scaling of the associated collinear mode in terms of light-cone momentum components is

given by

pH = (p−, p+, p⊥) ∼ pT (1, R2, R) . (2.4)

Second, we consider soft modes that describe wide angle soft radiation2 within the jet at

an angle θ ∼ R. If such radiation passes grooming with momentum fraction z > zcut,

then the scaling θg � 1 would be violated. Therefore, this kind of soft radiation must fail

the grooming condition and it is thus independent of the θg measurement. The associated

momentum scaling is

p/∈gr
s ∼ zcutpT (1, R2, R) . (2.5)

The superscript indicates that the soft radiation considered here fails the grooming condi-

tion. The radiation associated with the two modes identified so far are taken into account

by two functions, Hnc→i and S /∈gr
i,n . Both are independent of the measured groomed jet

radius and the same modes were obtained in other factorization theorems of groomed jet

substructure observables before, see for example [11, 13, 14]. At this point, we obtain the

following refactorized expression of the semi-inclusive jet function

Gc(z, θg, pTR,µ; zcut, β) =
∑
i=q,q̄,g

∑
n

Hnc→i(z, pTR,µ)

⊗Ω S /∈gr
i,n (zcutpTR,µ;β) Fi(θg, pTR,µ; zcut, β) . (2.6)

Here the additional summation over n and ⊗Ω are introduced to account for NGLs [74, 75]

as discussed in more detail below. The remaining function Fi contains the dependence

on the groomed radius θg. Here we need to consider both collinear and collinear-soft

radiation [76, 77]. The collinear radiation with momentum fraction z ∼ 1 always passes

the grooming condition at leading power. The collinear-soft radiation instead is sensitive to

the grooming condition and has z ∼ zcutθ
β
g � 1. In both cases, the characteristic angular

scale is θ ∼ Rg and the radiation described by Fi is thus insensitive to the boundary of

the initial ungroomed jet. Note that this situation is different than for example the mode

decomposition when the jet mass is measured to be small m2
J/p

2
T � 1. In that case, the

angle of the collinear and collinear-soft radiation is set by θ ∼
√
m2
J/p

2
T /z which depends

on the scaling of the different momentum fractions. Because of this scaling that is imposed

by the small jet mass measurement, the collinear and the collinear-soft radiation can be

2Although this mode is both collinear and soft, we just refer to it as soft since it would correspond to soft

radiation when boosted to a frame where the in-jet and out-of-jet region are complementary hemispheres.
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treated as two independent sectors. For the soft drop groomed jet radius, we thus have

two additional modes with the following momentum scalings

pc ∼ pT (1, R2
g, Rg) , (2.7)

pgr
s ∼ zcutpT

(
Rg
R

)β
(1, R2

g, Rg) . (2.8)

The soft drop declustering algorithm makes a further separation of these two modes to

all orders highly non-trivial. However, as will be demonstrated in the next section 2.2,

there is a formal equivalence between the soft drop declustering algorithm and a jet veto

procedure when θg is measured to be small. We can treat the groomed jet with radius Rg
as the signal jet and the collinear-soft branches are subject to a veto condition where the

veto parameter is set to zcutθ
β
g pT . With this equivalence we can further refactorize Fi in

eq. (2.6) using results from jet veto calculations, see for example [74, 78–81]. We find that

we can write Fi in terms of a collinear function Ci and a collinear-soft function S∈gr
i as

Fi(θg, pTR,µ; zcut, β) =
∑
m

Cmi (θg pTR,µ)⊗Ω S
∈gr
i,m (zcutθ

1+β
g pTR,µ;β) . (2.9)

NGLs are accounted for by the convolution integrals denoted by ⊗Ω and the additional

sum over the directions of collinear emissions m. Here we follow the notation introduced

in [74], see also eq. (2.6) above. Collinear final-state particles set the directions for a

multi-Wilson line structure. We sum over these directions n,m in eqs. (2.6) and (2.9)

and ⊗Ω indicates that angular integrals cannot be carried out independently which gives

rise to correlations between the different functions resulting in NGLs. The NGLs in zcut

associated with the functions Hc→i and S /∈gr
i in eq. (2.6) will affect the θg distribution

only indirectly through the relative normalization of partonic channels. We note that

the contribution from the correlation between the θg sensitive and insensitive modes are

power suppressed [4]. This can also be seen from eq. (2.6), where Hc→i and S∈gr
i are fully

decoupled from Fi. In addition, beyond NLO clustering logarithms need to be taken into

account due to the mismatch between the grooming operation acting on branches rather

than individual partons and the use of the C/A algorithm. These contributions appear

either in the soft function S /∈gr
i and the combination of Ci⊗Ω S

∈gr
i . Due to the summation

over the collinear emission history and the angular convolution structure, the analytical

resummation using the refactorized cross section is usually difficult and the approaches

discussed in the literature typically resort to the Monte Carlo methods [50, 57, 58, 74, 78].

Up to NLL using the known jet veto results [50, 51, 53, 79, 80, 82], we can write Fi as

Fi(θg, pTR,µ; zcut, β) = 〈Ci(θg pTR,µ)〉 〈S∈gr
i (zcutθ

1+β
g pTR,µ;β)〉

× SC/A
i,NGL(t, θg)AC/A

i,Abel.(t, θg) . (2.10)

Here 〈. . . 〉 indicates that we performed the solid angle integration, which thus allows us to

solve the RG evolution equations of the collinear and collinear-soft function analytically.

Here we define the variable t as

t =
1

2π

∫ pT

zcutθ
β
g pT

dkT
kT

αs(kT ) . (2.11)
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The NGLs due to the correlation of the radiation near the boundary of the groomed jet

in eq. (2.10) are taken into account by the function SC/A
i,NGL(t, θg) which has the following

perturbative expansion

SC/A
i,NGL(t, θg) = 1 +

∑
n=2

S
C/A
i,n (θg) t

n , (2.12)

with coefficients S
C/A
i,n (θg). The relevant configuration at NNLO is illustrated on the right

side of figure 1, which takes into account correlations between emissions inside and outside

the groomed jet but inside the initial ungroomed jet boundary. At NNLO, these NGLs are

of the form ∼ α2
s ln2(zcutθ

β
g ). As the phase space of the in-and-out configurations is affected

by the C/A algorithm, the numerical size of the NGLs are reduced due to clustering effects.

The C/A algorithm also introduces global Abelian logarithms. The function AC/A
i,Abel.(t, θg)

takes into account this contribution which can be calculated perturbatively as

AC/A
i,Abel.(t, θg) = 1 +

∑
n=2

A
C/A
i,n (θg) t

n , (2.13)

with coefficients A
C/A
i,n (θg). In sections 2.5 and 2.6, we compute the leading NGLs and

Abelian clustering logarithms at NNLO and determine the coefficients S
C/A
i,2 and A

C/A
i,2 . In

order to achieve the resummation at LL and leading color, the Abelian clustering logarithms

and NGLs are captured simultaneously by a suitable Monte Carlo algorithm as discussed

in section 3. To leading logarithmic accuracy, the NGLs resulting due to the correlation of

radiation inside and outside of the initial ungroomed jet can be resummed using the Monte

Carlo results of [50]. Clustering corrections to this class of NGLs are power suppressed

as the ungroomed jet is identified with the anti-kT algorithm. The respective NNLO

configuration ∼ α2
s ln2 zcut is illustrated on the left side of figure 1. To NLL accuracy, we

can thus write the convolution structure in eq. (2.6) as

Hnc→i(z, pTR,µ)⊗Ω S /∈gr
i,n (zcutpTR,µ;β) →

〈Hc→i(z, pTR,µ)〉 〈S /∈gr
i (zcutpTR,µ;β)〉 Si,NGL(t′, zcut) . (2.14)

Here t′ is defined as t in eq. (2.11), but with the lower integration limit replaced by zcutpT .

Therefore, SNGL(t′, zcut) can be obtained directly from the Monte Carlo result in [50] to

leading logarithmic accuracy and leading color.

In order to realize the resummation at NLL accuracy, all components of the refactorized

semi-inclusive jet function need to be calculated to NLO. The hard-collinear matching

coefficients Hc→i at NLO can be found in [72, 73]. The operator definition of the soft

function S /∈gr
i and its result at NLO can be found in [13]. Both functions do not directly

affect the shape of the θg distribution, but they are important in order to determine the

fractions of quark and gluon jets. The operator definitions of the remaining functions

Ci and S∈gr
i that appear in eq. (2.9) can be readily obtained by including the soft drop

grooming operation in the relevant functions, see [74]. In this work, we calculate the

functions 〈Ci〉 and 〈S∈gr
i 〉 in the refactorized expression in eq. (2.10) to NLO in order to

achieve the resummation at NLL. The operator definitions and the results at NLO are

presented in sections 2.3 and 2.4 below.
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Figure 1. Configurations that give rise to different NGL contributions at NNLO ∼ α2
s ln2 zcut

(left) and ∼ α2
s ln2(zcutθ

β
g ) (right). The inner ellipse denotes the area set by the groomed radius Rg

inside the original ungroomed jet.

2.2 Equivalence between the soft drop groomed radius and the jet veto case

In this section, we show the equivalence between the soft drop declustering algorithm and

a jet veto on emissions outside the groomed jet for small values of the groomed radius

θg � 1 and zcut � 1, in which case the collinear and collinear-soft modes are well-defined.

Non-trivial examples of this equivalence at NNLO are presented in appendix A.

The measurement functions of the collinear and the soft sectors are identical for both

cases and we thus focus only on the collinear-soft radiation. We denote branches with

collinear-soft scaling in the C/A clustering tree by Ji which need to be tested against the

soft drop criterion. The energetic collinear branch is denoted by J which can also contain

further collinear-soft radiation and J by itself is not necessarily the final groomed jet. It is

sufficient to consider a single collinear branch as two collinear branches always pass the soft

drop condition. Due to angular ordering the collinear-soft branches Ji are not clustered

together, i.e. θJi,Jj > θJi(j),J for all i and j. Here we use the notation θ2
a,b = η2

a,b + φ2
a,b

as the angular distance between the branches a and b. Let us first consider the case of

one collinear-soft branch J1 for the cumulative distribution of Rg. The corresponding

measurement function can be written as

M1(J1) = Θ(θJ1,J < Rg)Θ(J1p) + Θ(J1f)

≡M1(J1p) +M1(J1f) , (2.15)

where “p” (“f”) means that J1 passes (fails) the soft drop criterion. More specifically,

Θ(J1p) = Θ

(
pT,J1 − zcut

(
θJ1J
R

)β
pT,J

)
, (2.16)

and

Θ(J1f) = Θ

(
zcut

(
θJ1J
R

)β
pT,J − pT,J1

)
, (2.17)

where we have used the fact that pT,J + pT,J1 ≈ pT,J at leading power. One can directly

see the equivalence between the soft drop procedure and the jet veto when there is only

one collinear-soft branch since the measurement function can be written as

M1(J1) = Θ(θJ1,J < Rg) + Θ(θJ1,J > Rg)Θ(J1f) . (2.18)

– 8 –
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If the separation of the collinear-soft branch J1 from the collinear one J is larger than Rg,

i.e. outside the “signal jet”, the branch is required to be below the jet veto threshold, in

this case zcutθ
β
J1,J

pT,J . On the other hand, if θJ1,J is less than Rg, J1 is within the energetic

signal jet and thus will always be kept. To proceed, we first note that

M1 ≡ 1−M1 = Θ(θJ1,J > Rg)Θ(J1p) , (2.19)

which requires θJ1,J>Rg. More generally for multiple branches, the measure 1−∏N
i M1(Ji)

will require θJi,J > Rg for at least one of the Ji with i = 1 . . . N . For 2 collinear-soft

branches, the measurement function is given by

M2 =
∑
perm

Θ(J2) [M1(J1)M1(J2f) + M1(J2p)]

=
∑
perm

Θ(J2)
[
M1(J1)M1(J2) + M1(J2p)M1

]
=M1(J1)M1(J2) , (2.20)

where we introduce the short-hand notation Θ(Ji) which denotes that θJi,J is the largest

angle of the Ji relative to the collinear branch. In the first line, when J2 fails, we proceed

to test J1 against the soft drop criterion (first term) while if J2 passes, we stop (second

term). In addition, we sum over all possible permutations. In the case of two branches this

includes both configurations when θJ2,J and θJ1,J is larger. The second term in the second

line of eq. (2.20) vanishes due to the contradiction of the two conditions θJ2,J > θJ1,J and

θJ2,J < Rg as required by M1(J2p) and θJ1,J > Rg. We note that the angular ordering of

the C/A algorithm is crucial here to generate the conflict. For the anti-kT algorithm, the

overall Θ(Ji) is replaced by the anti-kT distance metric which reduces to Θ(Ji) up to power

corrections since min(p−2α
T,Ji

, p−2α
T,J )θJi,J ∼ p−2α

T,J θJi,J and the contradiction is still obtained.

When other jet algorithms are used, the Θ here will be replaced by a different ordering,

and the conflicts could therefore be avoided which would lead to a non-vanishing second

term. This would eventually cause a difference between the jet veto and the soft drop

declustering procedure. After carrying out the sum over the two permutations, we obtain

the third line which is an independent veto of the branches 1 and 2 when their separation

from the collinear branch is larger than Rg. Thus the equivalence holds for 2 collinear-soft

branches. Similarly, for 3 branches we have

M3 =
∑

perm.

Θ(J3) [M2M1(J3f) +M1(J3p)]

=
∑

perm.

Θ(J3) [M2M1(J3) + M1(J3p)(1−M2)]

=M1(J1)M1(J2)M1(J3) . (2.21)

The first term in the first line states that if branch-3 fails the soft drop criterion, we proceed

to test the remaining 2 branches until the procedure stops. The second term corresponds

to the case where branch-3 passes the criterion and the algorithm terminates. Following a

similar argument as in the case of 2 branches, the second term in the second line vanishes
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and we get the last line which demonstrates the equivalence for 3 branches. For arbitrary

N , we find by induction that

MN =

N∏
i

M1(Ji) . (2.22)

This shows the equivalence between soft drop declustering and the jet veto procedure as

long as θg � 1 with small zcut � 1.

2.3 The collinear function

The operator definition of the collinear function as it appears in eq. (2.9) can be written as

n/

2
Cq,m(θgpTR,µ) =

∑
spins

m∏
j=1

∫
dEjE

d−3
j

(2π)d−2
|Pj({kXc})〉〈Pj({kXc})|

× 2(2π)d−1 δ(2EJ − n̄ · kXc) δ(d−2)(k⊥Xc) Θ
(
Rg − r̂g|C/A

)
, (2.23)

for quark jets and a similar expression can be obtained for gluon jets, see [74]. Here

the null four-vector is taken as n̄ = (1, n̂), where n̂ is pointing in the jet direction and

|Pj({kXc})〉〈Pj({kXc})| is the matrix for producing the collinear state Xc. The measure-

ment Θ
(
Rg − r̂g|C/A

)
represents the C/A jet algorithm which acts on the final collinear

state Xc requiring that the separation between the last two branches in the clustering

history is less than Rg. At NLO, after performing the angular integration, the collinear

function as it appears in eq. (2.10) is found to be

〈Ci(θgpTR,µ)〉 = 1 +
αs
2π

[
Ci
L2

2
+ γiL+ di

]
, (2.24)

where Ci on the right-hand side corresponds to CF,A for quarks and gluons, respectively.

The other constants are given by

dq = CF

(
13

2
− 3π2

4

)
, γq =

3CF
2

, (2.25)

dg = CA

(
67

9
− 3π2

4

)
− TFnf

23

9
, γg =

β0

2
, (2.26)

and the logarithm L is defined as

L = ln

(
µ2

θ2
g p

2
TR

2

)
, (2.27)

see also [80, 83]. The natural collinear scale choice used to minimize the logarithmic con-

tribution is given by µC ∼ θg pTR, and the anomalous dimensions γCi are found to be

γCi(θgpTR,µ) =
αs
π

[γi + CiL] . (2.28)
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2.4 The collinear-soft function

The collinear-soft function as it appears in eq. (2.9) is defined at the operator level as

S∈gr
i,m (zcutθ

1+β
g pTR,µ;β) =

∑
Xcs

Θ (Rg − r̂g|softdrop)
∣∣∣〈0|W †n̄W †n1

. . .W †nm |Xcs〉
∣∣∣2 , (2.29)

with the null vector ni = (1, n̂i), where n̂i is oriented along the propagation direction of the

collinear radiation i and Wn is a Wilson line in the n-direction. Here Θ (Rg − r̂g|softdrop)

encodes the soft drop grooming algorithm operating on the collinear-soft final state Xcs with

the knowledge of the eikonal directions n1 . . . nm. In order to achieve the resummation at

NLL accuracy, see eq. (2.10), we need the collinear-soft function at NLO. After performing

again the angular integration, we find

〈S∈gr
i (zcutθ

1+β
g pTR,µ;β)〉 = 1− αsCi

2π

1

1 + β

[
1

2
ln2

(
µ2

z2
cutθ

2(1+β)
g p2

TR
2

)
− π2

12

]
. (2.30)

The natural scale of the collinear-soft mode is indeed found to be µgr
S ∼ zcutθ

1+β
g pTR, and

the anomalous dimensions are given by

γS∈gri
(zcutθ

1+β
g pTR,µ;β) = −αsCi

π

1

1 + β
ln

(
µ2

z2
cutθ

2(1+β)
g p2

TR
2

)
. (2.31)

2.5 Leading NGLs including C/A clustering effects

The leading NGLs of the θg distribution can be readily inferred from the equivalence with

the jet veto case. The leading NGLs originate from correlated strongly ordered emissions

when the harder emission is inside the groomed jet while the softer one is outside and

vetoed. We adopt the notation of [50]. At next-to-next-to-leading order (NNLO), when

clustering effects due to the C/A algorithm are ignored, we thus have

Si,NGL(L, θg) = 1− CiCA
(αs

2π

)2
∫
dx1

x1

dx2

x2

∫
1∈J

dc1
dφ1

2π

∫
2/∈J

dc2
dφ2

2π

×Θ(x1 − x2) Θ(x2 − zcutθ
β
g )

cosφ2

(1− c1c2 − s1s2 cosφ2) s1s2

≈ 1− CiCA
(αs

2π

)2 π2

3
L2 . (2.32)

Where we introduced the notation L = − ln(zcutθ
β
g ) and the polar angles ci = cos θi and

si = sin θi of the two emissions at NNLO measured with respect to the groomed jet axis

and their respective transverse momentum fractions relative to the total momentum of the

jet xi = kT i/pT . Here, we also replaced the veto condition

Θ(x2 − zcut(θ2/R)β) → Θ(x2 − zcutθ
β
g ) , (2.33)

which is valid for the leading NGLs. Comparing with the structure in eq. (2.12), we would

obtain the first coefficient Si,2 as

Si,2 = −CiCA
π2

3
. (2.34)
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When clustering effects are included, this coefficient will be reduced since any soft emission

outside Rg that is clustered into the groomed jet will not be subject to the veto condition.

At NNLO, the clustering happens when the distance between the emissions inside and

outside Rg is smaller than the distance between the groomed jet axis and the radiation

inside Rg. Therefore, to we need to insert the constraint

Θ(d12 − d1) , (2.35)

with

di = η2
i + φ2

i , dij = (ηi − ηj)2 + (φi − φj)2 , (2.36)

and the phase space which generates the NGLs will thus be reduced. We thus have the

following modified expression compared to eq. (2.34) above

S
C/A
i,2 (θg) = −4CiCA

∫
1∈J

dc1
dφ1

2π

∫
2/∈J

dc2
dφ2

2π

cosφ2

(1− c1c2 − s1s2 cosφ2) s1s2
Θ(d12 − d1) .

(2.37)

In principle, the integral in eq. (2.37) can be evaluated numerically. Using the small angle

approximation, we can approximate the distances di and dij as

di = η2
i + φ2

i ≈ 2
ki · p
kT i pT

= 2(1− ci) ≈ θ̂2
iR

2
g (2.38)

dij = (ηi − ηj)2 + (φi − φj)2 ≈ 2
ki · kj
kT i kTj

= 2(1− cicj − sisj cosφ2)

≈ (θ̂2
1 + θ̂2

2 − 2θ̂1θ̂2 cosφ2)R2
g . (2.39)

The relevant integral can then be approximated as

S
C/A
i,2 (θg) ≈ −4CiCA

∫ 1

0
dθ̂1

∫ 1/θg

1
dθ̂2

∫ 2π

0

dφ2

2π

2 cosφ2

θ̂2
1 + θ̂2

2 − 2θ̂1θ̂2 cosφ2

Θ(θ̂2 − 2θ̂1 cosφ2) ,

(2.40)

where we introduced the variable θ̂i = θi cosh(ηJ)/Rg. Note that the variable change

removes the dependence on ηJ . Following the definition of the collinear-soft mode, the

upper bound for the θ̂2 integral should be ∞. Here we use instead 1/θg = R/Rg keeping in

mind that the radiation outside the groomed jet is within the original ungroomed jet with

radius R, see figure 1. In addition, in the limit θg → 1 the associated NGLs in Fi vanish,

as the NGLs are proportional to the area of the veto region. The integral in eq. (2.40)

can be performed analytically for θg � 1 and we find that the coefficient of the non-global

logarithm is significantly reduced due to the additional constraint. In the limit θg � 1, the

θg dependence of S
C/A
i,2 is power suppressed and we find

S
C/A
i,2 (θg) = −CiCA

π2

3
× 4

9
+O(θg) . (2.41)
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Thus the size of the NGL is reduced due to clustering by a factor of 4/9. A similar reduction

due to clustering effects was observed in the context of inter-jet energy flow [57] and the

jet mass [53]. For general Rg < R, we find that the coefficient in eq. (2.40) evaluates to

S
C/A
i,2 (θg) = −4CiCA

[
4

9

π2

12
+ F (θg) Θ

(
θg −

1

2

)
+ ln(1− θg) ln(θg)

+ Li2

(
− 1

θg

)
− Li2

(
−1− θg

θg

)]
, (2.42)

with

F (θg) =

∫ 2

1/θg

dy

∫ cos−1y/2

0

dφ

π

ln(θ2
gy

2)cφ

1 + y2 − 2ycφ
, (2.43)

which reduces to eq. (2.41) in the limit θg � 1. The φ integral here can be done analytically

but the result is rather lengthy. The remaining y integral can be evaluated numerically.

2.6 Leading Abelian C/A clustering logarithms

To study the Abelian C/A clustering effects [57], we start with two independent collinear-

soft emissions with momenta k1,2. In order to extract the leading Abelian logarithm, it

suffices to consider the strongly ordered limit in which pT � k1 � k2 or pT � k2 � k1.

The leading logarithms come from the configuration where the harder gluon is initially

inside the groomed jet and the softer gluon is outside but within the initial ungroomed

jet. The C/A clustering pulls the softer gluon into the jet and generates a mismatch with

the real-virtual correction. In the small θg approximation, the NNLO contribution to the

Abelian clustering reads

AC/A
i,Abel.(L, θg) = 1 +

(αs
π
Ci

)2 1

2!

∫ 1

zcutθ
β
g

dx1

x1

dx2

x2

∫ 1/θg

0

dθ̂1

θ̂1

dθ̂2

θ̂2

∫ 2π

0

dφ1

π

dφ2

π
ΘC/A ,

(2.44)

where we use the same notation conventions as in eq. (2.32) above. Terms that are power

suppressed by θg are omitted and can be found in [53]. We have

ΘC/A = Θ(d1 −R2
g) Θ(R2

g − d2) Θ(d2 − d12)

≈ Θ(θ̂2
1 − 1) Θ(1− θ̂2

2) Θ(−θ̂2
1 + 2θ̂1θ̂2 cosφ2) , (2.45)

where as before θ̂i = θi cosh(ηJ)/Rg. Performing the integral, we find the first Abelian

corrections due to the C/A clustering

A
C/A
i,2 (θg) =

4C2
i

2!

[
π2

54
− 2 Θ

(
θg −

1

2

)∫ cos−1 1
2θg

0

dφ

π
ln2(2θgcφ)

]
. (2.46)

The remaining integral can be worked out analytically but it is rather lengthy. In the small

θg limit, we find

A
C/A
i,2 (θg � 1) =

4C2
i

2!

π2

54
. (2.47)
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Higher order coefficients A
C/A
i,3 and beyond can be computed following the method de-

veloped in [53]. The authors further proposed an exponentiation of Abelian clustering

logarithms by calculating higher order corrections and analyzing the structure of the per-

turbative series. In this work, we instead resum the Abelian clustering logarithms at LL

and leading color using the Monte Carlo method discussed in section 3, where we compare

to the fixed order result derived here.

2.7 Comment on subleading NGLs and clustering logarithms

Here we comment on the potential impact of subleading NGLs and Abelian clustering

logarithms beyond single logarithmic accuracy. Due to the soft drop criterion, the cor-

responding jet veto parameter is zcutd
β/2
i /RβpT = zcutθ

β
g θ̂

β
i pT with θ̂i as defined in the

previous sections. Therefore, for instance the xi-integration bound in eq. (2.44) should be

replaced by zcutθ
β
g θ̂

β
1 instead of zcutθ

β
g . The latter is sufficient to get the leading logarithms

as derived in the previous section. The additional θ̂i dependence gives rise to part of the

subleading logarithms. Similar reasonings apply to the NGL case. In the θg → 0 limit, we

find at NNLO

SC/A,sub
i,NGL (L, θg) = −4CiCA

(αs
2π

)2
(
−0.474β L+ 1.0145

β2

4

)
, (2.48)

for the NGLs and

AC/A,sub
i,Abel. (L, θg) =

1

2

(
αsCi
π

)2(
−0.073β L+ 0.045

β2

4

)
, (2.49)

for the Abelian clustering logarithms. In figure 2, we show a comparison of the leading

NGL (blue) and clustering logarithms (red) at NNLO (dashed) and when the subleading

terms in eqs. (2.48) and (2.49) are included (solid). We result is plotted as a function of θg,

for exemplary values of the soft drop grooming parameters β = 1, zcut = 0.1. We observe

a moderate reduction of the NGL contribution when the subleading terms in eq. (2.48) are

included. The subleading contribution of the Abelian clustering logarithms turns out to

be almost negligible.

Though not yet conclusive, the results in this section suggest that the impact of sub-

leading NGLs and clustering logarithms may be moderate. The results here suggest that

the numerical results for the soft drop groomed jet radius presented in section 4, which

only include the leading NGLs and Abelian clustering logarithms to all orders, capture the

dominant perturbative effects and that the presented QCD uncertainty bands are a reliable

estimate of missing higher order corrections.

2.8 Comparison to results in the literature

In this section, we compare the calculation presented in this work to results available in the

literature. In [4], the resummation of the cumulative θg distribution was realized at MLL

accuracy. We show that our results reduce to [4] when only the leading logarithms are

taken into account. The resummation in [4] is based on the coherent branching formalism
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Figure 2. Comparison of the numerical size of the NGLs (blue) and the clustering logarithms

(red) at NNLO with (solid) and without (dashed) subleading contributions as a function of θg. The

results are normalized to (αs/π)2CiCA and (αs/π)2C2
i for the NGLs and the clustering logarithms,

respectively. We choose the parameters zcut = 0.1, β = 1 as a representative example.

and the result can be expressed as

1

σincl

dΣ(θg)

dpT dη
= fq Σq(θg) + fg Σg(θg) . (2.50)

Here σincl denotes the inclusive jet cross section, fi are the leading-order quark/gluon

fractions and Σi(θg) denote the respective resummed exponents that depend on θg. On the

right hand side we leave the dependence on other variables besides θg implicit. At MLL

accuracy for a fixed coupling constant, the resummed exponent can be written as

Σi(θg)
f.c.
= exp

[
− αs

π
Ci

(
β ln2 θg + 2 ln zcut ln θg +

γi
Ci

ln θg

)]
, (2.51)

where the constants γi are defined in eqs. (2.25) and (2.26). At MLL accuracy also running

coupling effects are taken into account.

The improvements achieved in this work concern both the quark/gluon fractions fi and

the resummed exponents Σi(θg). Here, the resummation is carried out at full NLL accuracy,

including both global and non-global logarithms. In addition, clustering effects due to the

C/A algorithm are taken into account. In order to recast the formalism developed here

into the form of eq. (2.50), we separate the production of the jet from the jet substructure

measurement as discussed in [68, 84, 85]. We start by rewriting the jet function Gc in

eq. (2.2) at fixed order as

Gc(z,θg,pTR,µ;zcut,β) =
∑
d

Jcd(z,pTR,µ) (2.52)

×
∫

dz
[
Gd(z,θg,pTR,µ;zcut,β)−J (1)

d (z,pTR,µ)
]
+O(α2

s) .
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Here J
(1)
d is the O(αs) contribution of the semi-inclusive jet function as it appears in the

inclusive jet cross section [68–70]. The functions Jcd are related to the semi-inclusive jet

functions except that we keep track also of the jet flavor d such that∑
d

Jcd(z, pTR,µ) = Jc(z, pTR,µ) . (2.53)

We would like to stress that only at leading-order the jet flavor d is the same as the final

state parton c from the hard-scattering event. Note that the separation in eq. (2.52) is

multiplicative and the functions Jcd contain the complete z-dependence. The z-dependence

is associated with out-of-jet radiation diagrams at NLO and it is the same for different jet

substructure observables. We can now calculate the cross section for a jet of flavor d as

dσd
dη dpT

=
∑
abc

fa ⊗ fb ⊗Hc
ab ⊗ Jcd . (2.54)

Here we use a more compact notation compared to the factorization in eq. (2.2) above. After

summing over d in eq. (2.54), the inclusive jet cross section σincl is obtained. Therefore, in

our calculation the quark/gluon fractions fi, see eq. (2.50), can be obtained systematically

beyond leading-order as

fq(g) =
1

σincl

∑
abc

fa ⊗ fb ⊗Hc
ab ⊗ Jcq(g) , (2.55)

where also the lnR resummation is included. The resummed exponents beyond MLL

accuracy are now obtained from the refactorized expression of the jet function Gq,g after

subtracting the NLO semi-inclusive jet function at fixed order, see eq. (2.52). Following

the discussion in the sections above, we thus have

Σi(θg) = 〈H̃i(pTR,µ)〉 〈S /∈gr
i (zcutpTR,µ;β)〉 〈Ci(θg pTR,µ)〉 〈Sgr

i (zcutθ
1+β
g pTR,µ;β)〉 .

(2.56)

The constants H̃i were calculated in [85]. After solving the evolution equations of the

different functions and including NGLs and Abelian clustering logarithms, the resummation

at NLL accuracy can be achieved which includes logarithms of θg, R and zcut. The result

for fixed scales at leading logarithmic accuracy is given by

〈H̃i(pTR,µ)〉exp

[
−αsCi

π

(
1

1+β

(
ln2 µH

µS/∈gr
−ln2 µH

µS∈gr

)
+ln2 µH

µC

)
+
αsγi
π

ln
µH
µC

]
. (2.57)

After making the canonical scale choices, which we list here for convenience

µcan
H = pTR , (2.58)

µcan
S/∈gr = zcut pTR , (2.59)

µcan
C = θg pTR , (2.60)

µcan
S∈gr = zcutθ

1+β
g pTR , (2.61)
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we recover the result for Σi(θg) in eq. (2.51) up to the constants H̃i, which is 1 at leading

order. As can be seen from eq. (2.57), the terms containing double logarithms of zcut

in the exponent of Σi(θg) can generally induce contributions to the QCD scale variations

considered in the next section. Only for the central scale choice or when the scales µS/∈gr

and µS∈gr are varied simultaneously, the contribution of these logarithms cancel completely.

Of course we further include NGLs and Abelian clustering logarithms to achieve full NLL.

Furthermore, we would like to stress again that an important feature of our approach is

that it can be systematically extended beyond NLL accuracy.

3 The soft drop groomed radius in Monte Carlo

In this section, we present an algorithm for the large-Nc leading log resummation of the

NGL distribution, including clustering effects. We also perform a numerical comparison

to the resummed distributions to gauge power corrections in factorizing the NGLs of the

soft function of eq. (2.6) from those of the collinear-soft function of eq. (2.9), as well as

the range of validity approximating the all orders resummation with the two-loop leading

NGLs and Abelian clustering logarithms calculated previously.

3.1 The Monte Carlo setup

As explained in section 2.2, the soft drop declustering angle operates as a jet veto algorithm.

However, the jet being vetoed is simply the last branch to be declustered in the C/A

algorithm once that branch is at an angular scale larger than Rg. The ungroomed jet is

defined by the anti-kt algorithm, so the jet has a hard angular boundary at R, whereas Rg
is the soft drop declustering angle. Then the Monte Carlo resummation in the large-Nc

limit follows the general procedure found in [50, 57, 58]. We define:

• t as the MC time

t =
CA
2π

Q∫
ω

dµ

µ
αs(µ) , (3.1)

where ω is the energy of the emission established at the shower time t. In our case,

the scale Q is set by pTR.

• A histogram Ht indexed by t.

• Rg as the subjet radius, R as the fat jet radius.

• D as the list of dipoles.

• k is the current number of emissions.

• nP is the direction of the first branch in the declustering procedure that passes soft

drop. n · nP sets the current angular scale of the shower.

• EJ is the list of emitted eikonal lines that cluster into either the jet direction n or nP .
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All eikonal lines are of the form ni = (1, n̂i), so the Lorentz product ni · nj = 1 − cos θij
simply measures the angle between the lines. Strong energy ordering implies the following

clustering rule, ignoring recoil:

{ωi, ni}+ {ωj , nj} →
{
{ωi, ni} if ωi > ωj

{ωj , nj} if ωj > ωi
(3.2)

where ωi,j are the energies and ni,j are the null directions of the two emissions to be

clustered. Since the shower is energy ordered, we only need to keep track of the order of

emissions to know the relative energy scales. We initialize the shower as follows:

• t = 0.

• EJ = {n}.

• D =
{
{n, n̄}

}
for a quark jet, D =

{
{n, n̄}, {n̄, n}

}
for a gluon jet.

The algorithm then proceeds as:

1. Take an MC time step t→ t+∆t and create a new emission with energy and direction

{ωk+1, nk+1}. For details, see appendix 3.4.

2. Check if nk+1 · n > 2 sin2(R/2), if this is true, the emission is outside the jet, goto

step 1.

3. Check if nk+1 · nj > nP · n, ∀nj ∈ EJ .

• If at least one of these conditions fail, add nk+1 to EJ . Goto step 1.

• If all these conditions are true, the emission is a new candidate for the declus-

tering branch.

– If nk+1 · n < 2 sin2(Rg/2), set nP to nk+1, add nk+1 to EJ . Goto step 1.

– If nk+1 ·n > 2 sin2(Rg/2). Add 1 to appropriate bin of Ht, and re-initialize

shower for a new event.

Finally, normalize the histogram by the number of events.

3.2 Vetoing the declustered branches

We construct EJ such that all lines within will cluster into either nP or n before nP and n

themselves cluster at each step in the shower. Thus if we are given a new emission nk+1

such that nk+1 · nj > nP · n, ∀nj ∈ EJ , then n and nP will cluster before nk+1 clusters

into any of the established eikonal lines. Thus nk+1 and EJ now define the two branches

that are the first to be declustered under C/A, and the branch formed from EJ will have

direction n according to the clustering rule eq. (3.2). We then check whether the angle

between these two branches is less than the desired Rg. If it is, we redefine the branch nP
to be nk+1, this is the new branch that sets the current declustering angle. If nk+1 is at too

wide an angle from n, then the emission nk+1 sets the energy scale zcutpTRg. If we were
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Figure 3. The NGL+clustering distribution at large-Nc at LL (overall accuracy NLL) for an

initial fundamental (quark) dipole at various soft drop angles, compared to the small Rg limit of

the NNLO leading NGL of eq. (2.41) and large-Nc limit of the clustering effects in eq. (2.46).

to create subsequent emissions in the shower, they would have energy below zcutpTRg, and

so if they created new branches, they would fail soft drop, and if they are clustered into

the branches which pass soft drop, they cannot change the directions of those branches

according to the clustering rule eq. (3.2). Thus nP cannot change, and the shower is over.

If nk+1 ·nj < nP ·n, for at least one nj ∈ EJ , this emission in the shower will cluster into

an emission that will eventually cluster into either n or nP before n and np themselves clus-

ter. Thus this emission will not change the direction of the two branches that pass soft drop.

3.3 Numerical results

Formally, the Monte Carlo algorithm described above resums the NGLs from both the

collinear-soft function defined in eq. (2.9), and the soft function of eq. (2.6). However,

in the small Rg limit, these two functions factorize from each other. Thus to isolate the

NGLs from the collinear-soft function alone, we divide out from the histogram produced

by the LL MC (overall accuracy NLL) described above both the hemisphere jet-mass NGL

distribution of ref. [50] (which corresponds to the NGLs of the soft function of eq. (2.6)), as

well as dividing out the exponentiation of the one-emission contribution to the distribution

to remove any global contributions. These one-emission contributions are included in the

anomalous dimension calculated in eq. (2.31). For an initial quark dipole the distributions

for Rg = 0.25, 0.15, 0.1, 0.05 are shown in figure 3, with the ungroomed jet radius of R =

0.8, and the small-t region is highlighted in figure 4. We have check numerically that

the gluon distribution with an adjoint dipole is well approximated by the square of the

quark distribution, despite clustering effects which would spoil this relation at large-Nc.

In comparison to the fixed order results, we include in the large-Nc (CF → CA/2) limit
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Figure 4. The NGL+clustering distribution at large-Nc at LL (overall accuracy NLL) for an

initial fundamental (quark) dipole, comparing the two-loop results of eq. (2.42) and eq. (2.46), with

CF → CA/2, to the all orders resummation at groomed angles Rg = 0.25 and 0.1.

both the contributions from eq. (2.42) and eq. (2.46), since the MC covers the whole soft

phase space at large-Nc and leading log. Thus the MC algorithm accounts for clustering

effects off the primary emission, but only in the large-Nc limit. Using the methods of [86],

we could resum the Abelian clustering effects with the correct color structure, accounting

for some of the subleading Nc effects.

Since the MC includes the multiple emissions evolution in the out-of-jet region as

well as the evolution in the groomed region, we can test this collinear factorization of the

two soft functions. We can see that for multiple emissions at Rg = 0.25, R = 0.8 the

power corrections to the small Rg limit of the collinear function are sizeable. However, for

Rg ≤ 0.15, R = 0.8, the small Rg limit of the fixed order NGL at two-loops distribution

describes well the NGL distribution for phenomenological values of t. Moreover, we have

checked that the LL distribution for the collinear-soft function is independent of R once we

are in the regime Rg � R. For example, the distribution for Rg = 0.1 and R = 1.5708 is

almost identical up to statistical noise as Rg = 0.1 and R = 0.8. We use a shower angular

cutoff scale of δ = 0.001, and checked the independence of the distributions.

3.4 Evolving dipoles

We start with a list of dipoles D, where an element is given by {x, y}. x, y are the null

directions forming eikonal lines of the dipole. We let:

W δ
xy(j) = Θ (θxj − δ) Θ (θyj − δ)

x · y
(x · j) (j · y)

, (3.3)

P δxy =

∫
dΩj

4π
W δ
xy(j) ≈ ln

(
4

sin2 θxy
2

δ2

)
+O(δ2) . (3.4)
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Figure 5. A comparison between the LL and NLL′ predictions for the θg distribution. Significant

reductions in the theoretical uncertainties are observed for all β choices for the NLL′ results as

compared with the LL calculations.

Then

1. Calculate P δD by summing over the P δxy’s calculated from each dipole in D. Uniformly

generate a random number rnd ∈ [0, 1], and then ∆t is determined by

∆t = − ln(rnd)

CAP δD
. (3.5)

Increase t by ∆t.

2. Choose the dipole {x, y} ∈ D with probability P δxy/P
δ
D.

3. Create an emission j with distribution W δ
xy(j), such that the angles are θxj , θyj > δ.

This is equivalent to uniformily randomly creating in the rest frame of x, y a direction

j in rapidity and azimuth, then boosting back to the lab frame and checking the

angular constraint.

4. To split the dipoles again: delete {x, y} from D, add {x, j} and {j, y} to D, then

repeat splitting process according to phase space constraints.

4 Phenomenology

In this section we present numerical results for the soft drop groomed jet radius θg = Rg/R

at NLL accuracy. We start with proton-proton collisions at
√
s = 13 TeV collision and

we consider inclusive jets pp → jet + X with transverse momentum pT > 600 GeV in the

central rapidity region of |η| < 1.5. Jets are reconstructed with the anti-kT algorithm and

R = 0.8. For all numerical results presented in this section we choose the soft threshold

parameter zcut = 0.1 and we present results for different values of the angular exponent β.

We choose the NLO CT14 PDF set of [87] as default for all our numerical calculations.

We first present a comparison between the LL (as defined in table 1) and NLL′ pre-

dictions for the θg distribution for different choice of β, as shown in figure 5. Here the

red and yellow bands are predictions from the NLL′ and LL, respectively, with the bands
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Figure 6. The normalized soft drop groomed jet radius θg at NLL (dashed black, yellow band)

in proton-proton collisions at
√
s = 13 TeV. The jet kinematics are specified in the figure. We

compare to Pythia 8 simulations [88] (purple) at the parton level, without hadronization and the

underlying event contribution, for three different values of β = 0, 1, 2 (left to right).

corresponding to the theoretical uncertainties obtained by varying all scales up-and-down

by factors of 2 around their central values while maintaining the relations

1

2
≤ µi
µcan
i

/ µj
µcan
j

≤ 2 (4.1)

and

µS/∈gr = zcut µH , (4.2)

µS∈gr = zcut θ
β
g µC . (4.3)

From figure 5, we can see that when going from LL to NLL′, the theoretical error get

substantially reduced by almost a factor of 2 in the entire θg regime for all choices of β,

and the central value gets shifted. The overlap between the LL and NLL′ error bands

implies the validity of the error estimations done in this work.

In figure 6, we present the numerical results (dashed black, yellow band) for the nor-

malized θg differential distribution θg/σincl dσ/dθg which is obtained by differentiating the

cumulative cross section Σ(θg), see eq. (2.1). Before taking the derivative with respect to

θg, we choose the canonical scales as listed in eqs. (2.58)–(2.61) and we evolve all relevant

functions that appear in the refactorization theorem to a common scale. The three panels

show the result for different values of β = 0, 1, 2 (left to right). The QCD scale uncer-

tainties as shown by the yellow band in figure 6 are again obtained by variying the scales

involved by factors of 2, as described before. As expected, we find that aggressive soft

drop grooming (β = 0) yields a relatively flat distribution (multiplied by θg) of the soft

drop groomed jet radius. Less aggressive grooming (β = 1, 2) instead gives a distribution

that peaks at intermediate to relatively large values of θg which means that the groomed

jet does not shrink as much in size compared to the initial ungroomed jet. Eventually, in

the limit β →∞, the groomer is removed and the distribution approaches a delta function

at θg = 1. For comparison, we also show Pythia 8.230 results using the default tune [88]

(purple) in figure 6. Here we do not include the nonperturbative hadronization and the
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Figure 7. Pythia 8 results [88] for the normalized soft drop groomed jet radius θg for the same

kinematics as in figure 6 above. We separately show the purely partonic result (black), including

initial-state radiation (red), multi-parton interactions (green) and hadronization corrections (blue).

contribution from underlying event (UE). Below we study these effects in more detail. In

general, we find very good agreement between the Pythia 8 simulation and our perturbative

results at NLL accuracy concerning both the shape and the overall magnitude. We note

that in the region θg ∼ 1 perturbative power corrections play a role which is not captured

by our factorization theorem. In principle, they could be included at fixed order by per-

forming a matching calculation. In addition, we note that the perturbative resummation

region ends when the lowest scale in the factorization theorem runs into the nonperturba-

tive regime µS∈gr ∼ zcutθ
1+β
g pTR ∼ ΛQCD ∼ 1 GeV. This corresponds to values of the soft

drop groomed jet radius of θg . (ΛQCD/(zcutpTR))1/(1+β). Numerical results in this region

are obtained by smoothly freezing the running of the QCD coupling constant above the

Landau pole. We choose to freeze the running of αs at the scale 0.4 GeV for the numerical

results presented here.

In figure 7, we study different perturbative and nonperturbative effects for the same

kinematics as in figure 6. First, the purely partonic results are shown by the black line.

We then include the contribution of Initial State Radiation (ISR) as shown by the blue

line. In general, ISR leads to a shift of the distribution toward larger values of θg. We note

that there is no exact one-to-one correspondence between the different parton and hadron

level contributions in Pythia and the QCD factorization theorem we develop in this work.

ISR is power suppressed and not included in our factorization theorem. However, since

ISR is a perturbative initial state contribution, we include it in the comparison in figure 6

above. Next, we include the underlying event contribution or multi-parton interactions

(MPI), as shown by the green line in figure 7. As it turns out, MPI does not play a

significant role for the jet kinematics and soft drop parameters considered here. Finally,

we include hadronization effects for the θg distribution as shown by the blue line in figure 7.

Interestingly, hadronization leads to a shift of the distribution to lower values of θg for soft

drop grooming with β = 0, whereas it shifts the distribution to higher values for β = 1, 2.

It will be interesting to study such effects in more detail in the future following the work
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Figure 8. The normalized soft drop groomed jet radius Rg at NLL in proton-proton collisions for

STAR kinematics at
√
s = 200 GeV. The jet kinematics and soft drop parameters are indicated in

the figure.

of [89]. We conclude that the impact of different effects that are not captured by the

factorization theorem presented in this work are relatively small and that the soft drop

groomed radius θg is under good control within perturbative QCD.

Finally, in figure 8 we present results for jet kinematics relevant for the STAR ex-

periment at RHIC at
√
s = 200 GeV. For the setup of the analysis presented in [90], we

show numerical results for three jet transverse momentum intervals 25 < pT < 30 GeV,

30 < pT < 40 GeV and 40 < pT < 60 GeV (left to right) with R = 0.4, zcut = 0.1 and

β = 0. We show the theoretical result 1/σincldσ/dRg as a function of Rg. As expected, the

QCD scale uncertainty is relatively large for the lower jet transverse momentum intervals

considered here.

5 Conclusions

In this work, we considered the soft drop groomed jet radius θg = Rg/R at next-to-leading

logarithmic accuracy. The radius of a soft drop groomed jet is one of the key observables

characterizing the impact of grooming on a jet and is calculable in perturbative QCD.

It is defined as the opening angle of the splitting that satisfies the soft drop grooming

condition and is related to the active area of the groomed jet. The extension of the

calculation beyond leading-logarithmic accuracy required us to study the nontrivial all

order structure of non-global logarithms which are affected by clustering constraints due to

the use of the C/A algorithm. In addition, Abelian clustering logarithms need to be taken

into account. An important ingredient to understand the factorization structure is the

equivalence between the soft drop groomed radius measurement and a jet veto between the

boundaries of the groomed and ungroomed jet. Within SCET we established a factorization

theorem which allows for the resummation of logarithms of θg, the jet radius R and the

soft drop parameter zcut at NLL. We performed an explicit calculation of the non-global

and Abelian clustering logarithms at fixed order. The all order resummation at leading

logarithmic accuracy within the large-Nc approximation was achieved by making use of
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a suitably designed Monte Carlo algorithm. We performed numerical calculations and

compared our results to Pythia 8 simulations for LHC kinematics and found very good

agreement. From these findings, we concluded that the soft drop groomed radius is under

good perturbative control as the overall impact of nonperturbative effects, mainly due to

hadronization, appears to be relatively small for LHC kinematics. Numerical predictions

for the STAR experiments at RHIC are also provided.

Our results allow for precision comparisons to data from the LHC and RHIC which will

further improve our understanding of soft drop groomed jet substructure observables. The

formalism developed in this work can be systematically extended beyond NLL accuracy

and matched to fixed order calculations. In addition, it will be interesting to systematically

investigate nonperturbative effects. Applications in heavy-ion collisions will further extend

the use of the calculations performed in this work.
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A Collinear-soft emissions at NNLO

Here we consider the phase space for collinear-soft emissions at NNLO as a non-trivial

example to check and illustrate the equivalence between the soft drop groomed Rg mea-

surement and the jet veto constraint. We first introduce the notation for two collinear-soft

partons i and j with momenta ki and kj as

θij ≡ ∆Rij , kij ≡ ki + kj ,

Θi,p ≡ Θ

(
pT i
pTJ

> zcut

(
∆Ri,J
R

)β)
, (A.1)

Θi,f ≡ Θ

(
pT i
pTJ

< zcut

(
∆Ri,J
R

)β)
= 1−Θi,p ,

where J denotes the eikonal direction set by the collinear mode. We further write the soft

drop groomed radius Rg phase space for 1 collinear-soft emission as

M1(ki) ≡ Θ(Rg − θiJ)Θi,p + Θi,f , (A.2)
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Figure 9. Configurations of collinear-soft emissions at NNLO. Either emissions 1 or 2 are closest

to the eikonal direction J (a, b) or 1 & 2 get clustered into one branch first and are then combined

with J (c).

which is equivalent to

M1(ki) ≡ Θ(Rg − θiJ) + Θ(θiJ −Rg)Θi,f . (A.3)

The first term indicates that an emission i is kept as long as it is within the cone set by

Rg, whereas it is vetoed if it is outside. This is the usual veto operation and manifests the

equivalence at NLO. For future use, we also note that

1−M1(ki) = Θ(θiJ −Rg)Θi,p . (A.4)

At NNLO, we need to consider the three configurations shown in figure 9. We start with

configuration a. In this case we can write the phase space measure as

Ma
2 = Θ(θ2J − θ1J) Θ(θ12 − θ1J)

[
Θ2,pΘ(Rg − θ2J) + Θ2,f

(
Θ(Rg − θ1J)Θ1,p + Θ1,f

) ]
= Θ(θ2J − θ1J) Θ(θ12 − θ1J) [ Θ2,pΘ(Rg − θ2J) + Θ2,fM1(k1) ] , (A.5)

where the overall factor indicates that θ1J is the smallest distance. When declustering the

jet, we thus first check emission 2 against the soft drop criterion. If 2 passes, it has to be

within Rg by construction and the algorithm terminates (first term in square brackets).

If emission 2 fails, we continue to check whether emission 1 passes the soft drop criterion

(second term in square brackets). To proceed, we write Ma
2 as follows

Ma
2 = Θ(θ2J − θ1J)Θ(θ12 − θ1J)

[
Θ2,pΘ(Rg − θ2J) +M1(k2)M1(k1)

−Θ(Rg − θ2J)Θ2,pM1(k1)

]
(A.6)

where we used the definition of M1(k2) in eq. (A.2). Now we combine the first and the

third term and use eq. (A.4) to obtain

Ma
2 = Θ(θ2J−θ1J)Θ(θ12−θ1J) [Θ(Rg−θ2J)Θ(θ1J−Rg)Θ1,pΘ2,p+M1(k1)M1(k2)] . (A.7)
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The first term vanishes since there is a contradiction between the different conditions

requiring θ1J to be the smallest distance as well as θ1J > Rg and Rg > θ2J . Therefore, we

find for the configuration a the result

Ma
2 = Θ(θ2J − θ1J) Θ(θ12 − θ1J)M1(k1)M1(k2) . (A.8)

For configuration b the same arguments apply. We can thus write the measurement func-

tions for a+ b as

Ma
2 +Mb

2 = [ 1−Θ(θ1J − θ12) Θ(θ2J − θ12) ] M1(k1)M1(k2) . (A.9)

This states that we separately veto emissions 1 and 2 as long as θ12 is not the smallest

overall distance in which case they will be combined into a single branch first. Lastly, we

consider the configuration c in figure 9 which can be written as

Mc
2 = Θ(θ1J − θ12) Θ(θ2J − θ12)M1(k12) . (A.10)

If the distance θ12 is the smallest distance, the emissions 1 and 2 will be combined first. In

the declustering procedure, the branch containing both emissions will be checked againnst

the soft drop criterion. Adding up all three configurations, we find

Ma
2 +Mb

2 +Mc
2 = [ 1−Θ(θ1J − θ12) Θ(θ2J − θ12) ] M1(k1)M1(k2)

+ Θ(θ1J − θ12) Θ(θ2J − θ12)M1(k12) , (A.11)

which shows the equivalence discussed in the main text at NNLO. The extension beyond

NNLO can be achieved in a similar way. For instance, in the case of 3 emissions, the only

extra configuration one needs to consider is when neither 2 nor 3 emissions out of the 3

are clustered first. Otherwise, up to clustering, it is equivalent to the 1- or 2-emission

case discussed here in detail. Following similar steps and arguments as we showed for

configuration a of the 2-emission case, one reaches again the equivalence.

At NNLO, we can also have 2 collinear emissions J1 and J2 along with 1 collinear-soft

parton k1. The measurement function is readily found to be given by

MJ1J2 =M1(k1) + [ Θ(θ1J2 − θ1J1) Θ(θJ1J2 − θ1J1) + J1 ↔ J2 ] [ 1−M1(k1) ] , (A.12)

which again is equivalent to the jet veto operation using the C/A algorithm. That is to

say, when the soft parton is combined with the collinear radiation J1 or J2, it will be kept.

Otherwise, it will be vetoed when it is outside of the region set by Rg.
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