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Within the framework of soft collinear effective theory, we present calculations of semi-inclusive jet

functions and fragmenting jet functions at next-to-leading order for both quark- and gluon-initiated jets, for

jetalgorithms of J gr) and J g:) where one maximizes a suitable jet function. We demonstrate the consistency

of the obtained results with the standard perturbative QCD calculations for the J g’ﬁ algorithm, while the

results for fragmenting jet functions with the Jgrl) algorithm are new. The renormalization-group (RG)

equations for both semi-inclusive jet functions and fragmenting jet functions are derived and shown to
follow the timelike Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations, independent of
specific jet algorithms. The RG equation can be used to resum single logarithms of the jet size parameter

p for highly collimated jets in these algorithms where > 1.

DOI: 10.1103/PhysRevD.103.054043

I. INTRODUCTION

In high-energy proton-proton and nucleus-nucleus col-
lisions, a tremendous number of collimated jets of hadrons
are produced and measured at the Large Hadron Collider
(LHC). The studies of the production rate of these jets and
their substructures emerged as essential tools to probe
the fundamental properties of quantum chromodynamics
(QCD) [1-6] and nucleon structure [7-10]. In addition,
they are also involved in searching for signals of new
physics beyond the standard model [11,12], as well as in
identifying the properties of the hot dense medium, quark-
gluon plasma, created in heavy ion collisions [13—17]. For
some recent review, see Refs. [18-20], and references
therein.

Because of the crucial roles of jets, significant theoretical
and experimental efforts have been devoted to the study of
jets in both the particle and nuclear physics communities.
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For example, within the framework of soft collinear
effective theory (SCET) [21-24], the cross section for
inclusive jet production in pp collisions can be factorized
into a convolution product of initial-state parton distribu-
tion functions f, hard-part coefficient H, and final-state
semi-inclusive jet functions (SIJFs) J [25-27]:

doP? X AN F @ f; @ HY @ Uy (1)

i.j.k

The semi-inclusive jet functions J; characterize the
probability density of a parton k that is transformed to
ajet. Similarly, one can also study the internal structure of
the jet by measuring, e.g., the distribution of identified
hadrons inside the jet, which is described by the so-called
semi-inclusive fragmenting jet functions (SIFJFs) G}
[28]. The relevant factorization formula is very similar
to that in Eq. (1) but replacing J; — G/ [26,28]. Based on
this factorization formula, significant extensions and
improvements are established including the study of jet
quenching physics for light flavors [29] and next-to-
leading order (NLO) calculations for heavy flavor jet
in vacuum [30,31] and in medium [32], as well as the
application to study heavy quarkonium production
mechanism [33,34].
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In all these works, typical algorithms, for example,
cone and/or anti-k7 algorithms, are used to match to the
experimental analysis. The final results at NLO show single
logarithmic structure @} In” R with R represents the size of
the identified jets. These logarithms spoil the convergence
of perturbative expansion and, thus, need to be resummed
to all orders. This can be realized through the renormaliza-
tion-group (RG) equations of the relevant semi-inclusive jet
functions. It has been shown that such RG equations are the
same as the timelike Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equations [25,26,35].

A while ago, another type of jet algorithm was proposed
initially by Georgi [36], where the idea is to cluster jets by
maximizing a fixed and suitable function of the total four-
momentum of jets. This algorithm was subsequently
improved by Bai, Han, and Lu [37] by using the total
transverse energy instead of the energy in the fixed function,
which is more appropriate for hadronic collisions such as
those at the LHC, because transverse energies are boost
invariant. This type of algorithm has been implemented into
the standard perturbative QCD (pQCD) calculations at NLO
for single-inclusive jet production [38] and jet fragmentation
functions [27] at hadron colliders, in which infrared safety of
the algorithms is established and comparisons to cone and
anti-k; algorithms are presented. Since these algorithms
maximize a suitable jet functions, we will refer to them as
“maximized jet algorithms” for simplicity.

Although no experimental studies are currently using
maximized jet algorithms, theoretical studies in under-
standing such jet algorithms and the associated jet observ-
ables based on such algorithms can be very beneficial. For
example, in Ref. [37], the maximized jet algorithm has been
studied in great detail, and a numerical code in implement-
ing such an algorithm at the LHC has been developed. The
authors found that jets constructed in this algorithm have a
cone shape in Cartesian coordinates. Moreover, the size of
the cone shrinks when going toward the beam direction,
which effectively cuts off the beam and, thus, avoids
clustering excessive particles into a single jet in the forward
region. In addition, the authors found that, although many
features of jets constructed in this algorithm are similar to
the widely used anti-k; algorithm, such a jet algorithm has
a larger efficiency than the anti-k; algorithm for identifying
objects with hard splitting such as a boosted W jet. In
another study performed in Ref. [39], the author found a
surprising connection between three seemingly unrelated
approaches to jet finding: the maximized jet algorithm,
the 1-jettiness minimization [40-43], and the stable cone
finding [44,45]. They correspond to the same meta opti-
mization problem, whose spirit is deeply rooted in the
maximized jet algorithm. Most recently, it has been shown
in Ref. [46] that the maximized jet algorithm can be
naturally written as a quadratic unconstrained binary
optimization problem, which can then be solved via
quantum annealing [47,48].

In the same spirit of theoretically exploring this jet
algorithm further, in this work, within the framework of
SCET, we perform explicit calculations at NLO to study

SIJFs and SIFJFs in maximized jet algorithms of J 1(511) and

JgTI) [37] as defined in the next section. Although there
have been calculations with the standard perturbative
QCD techniques for J,(EIZ algorithm [27,38], we demon-
strate that there are interesting advantages in performing
the calculations directly from the operator definitions of
SIJFs and SIFJFs within SCET, and we compare our
results with the standard perturbative QCD calculations.
We also perform the calculations in both light-cone gauge
and covariant gauge for cross-checking our results, while
the previous calculations are typically performed in
covariant gauge; see, e.g., [25,49]. For both SIJFs and
SIFJFs, we find exactly the same divergent behavior,
which leads to exactly the same RG equations, i.e.,
timelike DGLAP evolution equations, independent of
specific jet algorithms, while the remaining finite parts
exhibit the algorithm dependence. These RG equations
can be used to perform the resummation of single
logarithms of the jet size parameter f for maximized
jet algorithms, where > 1 corresponds to highly colli-
mated jets. In this sense, the situation is very similar to the
case in the anti-k; algorithm, where the RG equations are
used to resum single logarithms of the jet radius R for the
narrow jets with R <« 1 [25]. Note that we focus on fully
analytical calculations of the SIJFs and SIFJFs at NLO in
the current work, and we leave phenomenological imple-
mentations of these results in pp and AA collisions for
future publications.

The remainder of this paper is organized as follows. In
Sec. II, we recall the operator definition of SIJFs and
give an introduction to the maximized jet algorithms. In
Sec. III, we present explicit calculations of SIJFs for

quark and gluon jets at NLO by considering both Jg)

T
and J<EI;> maximized jet algorithms and compare them

with the standard pQCD results in the literature. In
Sec. IV, we extend the calculation to semi-inclusive
fragmenting jet functions at NLO. We conclude our
paper in Sec. V.

I1. DEFINITIONS AND MAXIMIZED
JET ALGORITHMS

In this section, we start by giving the definition of the
semi-inclusive quark and gluon jet functions in SCET,
which can be constructed from the corresponding gauge-
invariant quark and gluon fields. The SIJFs are interpreted
as the probability density of the parton to transform into a
jet. In light-cone coordinates, they are given by the
following operator definitions [25] for the quark and gluon
jets, respectively:
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J, (2. Ey) = 2;/ Tr [% (0]6(w — 7 - P)y,(0)

< |7X) <Jxm<o>|o>} , @)
To(2 ) = =35 (O13(@ = 7 P) B, 0)

X [JX) (JX|B", (0)]0), 3)

where Ej = zE is the jet energy, E is the energy of the
parton initiating the jet, P is the label momentum operator,
and the state |JX) represents the final-state observed jet J
and unobserved particles X. y, and B,,, are gauge-
invariant n-collinear quark and gluon fields, respectively.
Note that the light-cone vector n* is defined along the jet
axis, and its conjugate vector is 71*. In the frame where
the jet has no transverse momentum, we can write
n* =(1,0,0,1) and 7* = (1,0,0,—1), which satisfies
n?=n>=0 and n-7n=2. In such a frame, we define
w=i-P and wy = - P; as the large light-cone compo-
nents of the momenta for the parton initiating the jet (P)
and the jet itself (P;), respectively. For a collimated jet, we
have w ~ 2F and wj =~ 2Ej.

In this work, we neglect the nonperturbative hadroniza-
tion effect and consider only the perturbative aspect of the
jet functions; thus, one can calculate both quark- and gluon-
initiated jets perturbatively. At leading order (LO) in which
one parton forms the jet, the jet functions are independent
of specific jet algorithms and are simply delta functions:

I E) = TP (2. Ey) = 8(1 - 2), (4)

where the superscript (0) denotes the LO result.

At NLO, one has to consider the phase space constraints
for the radiated parton according to specific jet clustering
algorithms. It is this constraint that leads to the algorithm
dependence of the jet functions. There are so far two classes
of broadly defined algorithms: cone algorithms [44] and
successive recombination algorithms [50]. Cone algorithms
include the Snowmass and SIS cone algorithms [45], while
recombination algorithms include the Cambridge-Aachen,
kr, and anti-ky algorithms [51,52]. In Refs. [25,53], the
semi-inclusive jet functions in cone and anti-k; algorithms
have been calculated up to NLO. In the present paper, we
will extend the calculation to two other jet finding methods

Jgr) and J ,(EIT[) [36,37], in which the primary idea is based on

maximizing a fixed function of the total four-momentum of
the final-state particles. Following Ref. [36], one defines

one such function—the Jg[)_ function—as follows:

2
Mgy

- Eset |:1 _ﬂ

2
Miger
E2

set

JEEIT)(Pget) = Eset _ﬂ

}. (5)

set

Here, E. and P, are the total energy and four-momentum,
respectively of a given subset of the final-state particles,
and mg, is its invariant mass; i.e., Pl = m2,.
Reference [37] improves the above definition by using
the transverse energy defined as (Eg)? = P + m,
instead of the energy E, where P, is the magnitude
of the transverse momentum. Thus, we have the JI(FIT)

function as

(6)

msz'et :|
(Esa)?

Apparently, the definition in Eq. (5) is more suitable for jet
production in e e~ collisions where the energy of the jet is
relevant. On the other hand, the definition in Eq. (6) uses
transverse energies which are boost invariant and, hence,
more suitable for the application to hadronic scattering,
such as pp collisions at the LHC. Note that, for collimated
jets, the so-called narrow jet approximation (NJA) applies,
and one could replace the transverse energies E| by the
transverse momenta P . In our calculations below, we
choose a frame in which the jet has zero transverse
momentum, and, thus, we will follow Eq. (5) in most of
our calculations. However, once our calculations is done,
translating from Eq. (5) to Eq. (6) will correspond to simply
replacing the jet energy E; in our final expressions by the
jet transverse momentum Py for studying jet production in
pp collisions at the LHC.

For this new jet algorithm, the parameter § > 1 specifies
the algorithm and is introduced to determine the geometric
size of the jet. By maximizing the JgT) function in Eq. (6),
the final-state particles are forced into the collimated jets.
For example, if the invariant mass m; is large, the set will

fail to produce a global maximum of J gj This means only

a subset that has large transverse energy but small invariant

mass can form the jet. A reconstructed jet, thus, maximizes

the function Jgr) with the value

I
JY (P = B, [1 y

my

In other words, when the jet is formed, the corresponding
total four-momentum of the subset of the final-state
particles Py, gives the jet momentum Pj, and EJL and
my are the transverse energy and invariant mass of the jet,
respectively. The algorithm is iterative; i.e., once a jet has
been found, the algorithm proceeds by removing the subset
from the list of particles in the event and applying
iteratively to the remaining ones.

One may further vary the function JgT) by changing the
weighted functions [38]. For instance, one can define the

Jg;) algorithm as follows:
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e = sy ®

where n =1 and n = 2 correspond to the JEE) and Jp un

algonthms respectively. In the present paper, we w111

focus on JEST) and Jgrl) algorithms to explicitly show the
algorithm dependence of SIJFs. We will derive the NLO
SIJFs by considering highly collimated jets, i.e., > 1. In
this case, one can take the so-called narrow jet approxi-
mation and obtain fully analytical expressions.

III. THE SEMI-INCLUSIVE JET FUNCTIONS
IN MAXIMIZED ALGORITHM

In this section, we present the detailed calculations at
NLO for semi-inclusive jet functions for both quark and
gluon jets in the maximized jet algorithm. As we have
already mentioned, we perform the calculations in both
light-cone gauge and covariant gauge for cross-checking
our results, while the previous calculations are typically
performed in covariant gauge; see, e.g., [25,49]. We denote
the incoming parton with momentum ¢ = (¢~ =w,£",0)

Iy Ey) = ¢} <ﬂj;m> / 2ﬁ f1+ /
o —gt - B )o(e

In this case, g denotes the momentum for the radiated
gluon, and ©,, is determined by the jet algorithm and by
the kinematics of the radiated parton whether it is inside the
jet. As shown in Fig. 1, there are three situations that we
need to take into consideration. Diagram A is for the case
that both quark and gluon are inside the jet, and diagrams B
and C are for only the quark is inside the jet and only the
gluon is inside the jet, respectively. Each case has different
|

Jq—)qg(Z, E]) — 5(1 - Z)

where the subscript “g — gg” stands for the situation
that both the radiated quark and gluon are inside the jet,
x = (£~ —q7)/¢" is the momentum fraction of the initial

'Technically speaking, the above ng) corresponds only to a

special (one-prong) case of the origljnal definition given in
Ref. [54]. This is sufficient for our purpose, where we focus
on inclusive jet production and hadron distribution inside the jet
and one-prong or two-prong distinction of the jet substructure is
not needed.

[ +2(1—€)i)—qq_

FIG. 1. The three situations that contribute to the semi-inclusive
quark jet function: (A) both the quark and gluon are inside the jet,
(B) only the quark is inside the jet, and (C) only the gluon is
inside the jet.

splits into two partons with one of them carry momentum
q=1(q".q9".q1)

A. The semi-inclusive quark jet function

For the quark jet function, the total contributions from
the relevant diagrams, as shown in Fig. 1, have been written
down explicitly in d =4 — 2¢ dimensions in Ref. [25].
We rewrite it here for the completeness of showing the
calculation:

+ _ gt

) ()0(¢1)0(w— )0 — )0y ©)

|
0y, to be specified below; the combination of these three
cases gives the final result.

In the situation that both the quark and gluon are inside
the jet, the incoming quark energy E is all converted to the
jet energy Ej, which leads to z = Ej/E = 1. In this case,
we can perform the integration over quantities # and ¢* in
Eq. (9); thus, the quark jet function becomes

Ay (”2375)6 1 " —e dm2
;F(l _ 5)/0 dXqu(x’ 6)[)6(1 _x)] / (m2)1+€ ®algv (10)

quark carried by the final-state quark, and m?> = £ is the
invariant mass for the final-state parton pair, i.e., g + g. Of
course, since ¢ and g together form the jet, m> = m? is just
the jet invariant mass, and it is related tozthe radiated gluon
transverse momentum ¢, by m? = (= The functions

Isi.,-(x, €) are

lx)

054043-4



SEMI-INCLUSIVE JET FUNCTIONS AND JET SUBSTRUCTURE ...

PHYS. REV. D 103, 054043 (2021)

P, (x.€) =Cp _l—i—(lx;x)z_ ex}, (12)
Py(x.€) =T | —%} (13)
Py (x.€) =Cy -12_xx + 2(1x—x) +2x(1 —x)} (14)

In the channel ¢ — ¢g, to make sure that the final g and g
actually form one jet, one has to require that the value of the

Jg': function constructed from the two partons together is

larger than the Jg’r) value constructed for each parton

individually. When both ¢ and g form the jet, we have

2
Jfé’,)(q+g)=E"[1—ﬂ';], (15)

where we recall that E is the energy of the incoming quark
and is the same as the jet energy Ey = E when ¢ and g
together form the jet. On the other hand, for the case in
which either g or g forms the jet, we have

gy =(E). I =(E).  (16)
where we have used the fact that the invariant mass of the
final-state quark ¢ or g vanishes. Thus, the requirements

of the maximized jet algorithm Jg’r)( +9g) > ng>(q) and

T

Jg'r)(q +9) > Jg? (g) lead to the following constraint:

2

E [1 - ﬁ% > max [(E,)", (E,)"]. (17)

Realizing E, = xE and E, = (1 —x)E, we obtain the
following constraint for m?:

E2
mzﬁfmin[l—(l—x)",l—x”]. (18)

This leads to the following algorithm constraint:

E2
O = ©|Zrmin (1= (1=x)" 1=x") =i (19)

where O is the step function.

Let us first consider the J(EIT) algorithm; the calculation

of the J ng)

Applying the above constraint to the jet function with
n =1, we arrive at

algorithm will follow the same procedure.

C(uPere) (1 (E3\ "¢
ag (u-e
Jszgqg(z’EJ) =4(1 _Z)_( ) (“) ( J) Iélq)v

22T(1—¢e) \ e)\ p
(20)
where
= v x(1=(1-x))~° 1 x(1—x)~¢
= | [P as= s [ -]
x x7¢(1 = x)™P,,(x). (21)

Expanding [ Sllq) in €, we get the explicit expression

13 >3
I(qlq>:CF|:—E—§+€<—5+%—EIH2>:| (22)

Substituting the above expression to Eq. (20), we obtain the
quark jet function when both the quark and gluon are inside

the jet for the Jgr) algorithm:

I3 15 1s

(1) Ay 2
Jol JE) =0(1—2)—Cp| - +— L+—-L
g-aqg(2> Ey) (1-2) o F<€2+2€+€ +2

3. 3 7,

with . defined as

L=1n (ﬂ—”2> : (24)

For a highly collimated jet, i.e., > 1, the above loga-
rithmic term becomes very large and needs to be
resummed. This is similar to that in k;-type algorithms
[25], where large logarithmic terms of R need to be
resummed for small jet radius R.

Now let us consider the situation that only the final-state
quark forms the jet. The corresponding diagram is pre-
sented in Fig. 1(b). In this case, the final-state quark forms
the jet with jet energy Ey = zE; namely, only a fraction z of
the initial parton energy E falls inside the jet. Following the
same calculation as before, we obtain

Jg=q(9) (2. Ey)

a, (u>e’e)° . - dnr”
o WU o

®alg7
(25)

where the subscript ¢ — g(g) represents the situation that
only the quark ¢ is inside the jet while the gluon g is
radiated outside the jet. Here, m is again the invariant mass
for the final-state parton pair, i.e., ¢ + g. Since now only ¢
is inside the jet while the gluon g is outside, m is different
from the jet invariant mass.
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In this case, it is the single quark that forms the jet, rather
than the quark and gluon together forming a jet. Following
the algorithm constraint, we should have

max (/5 (¢).JE) (9)) 2 JE) (¢ + ). (26)
Note that this constraint is different from the original
published version of Ref. [38], but the mistake has been
corrected as an erratum to [38]. It turns out that only the
constraint in Eq. (26) leads to the correct results for

the SIJFs, which satisfy the momentum sum rule to be
discussed at the end of Sec. HI C The above constraint can

be understood as follows. If J (g) is the larger one among

J <Er> (q).J EET) (9)) and satisfies Eq. (26), then we would have

a single gluon form the jet. Since the jet algorithm is
iterative, the gluon jet will be removed from the event. As a
|

_a, (WPer)’
27 T(1—e)

€

p

result, we are left with only a single quark, which will

automatically form another jet. On the contrary, if J g? (q)is

the larger one among (Jg;)(q),Jg’T) (9)), the single quark
first forms the jet. In other words, for a two-parton
configuration, as long as the larger one among single-
parton J,_functions is greater than the J_ function for the
two-parton set, we will have the quark form the jet. With
Eq. (26) at hand and from Egs. (15) and (16), we thus have
the following constraint:

00 = 0[n - Eminf(1- .- 1= 21|, @7

where we have used E = E;/z for this configuration.
Implementing this constraint in Eq. (25) and considering
the case n = 1, we obtain

<l> <E_%) _Eﬁqq(Z, e)[(1-2)720(z — 1/2) + (1 - 2)70(1/2 - 2). (28)

Performing the ¢ expansion, we find that the bare jet function is given as follows:

) _ 9% IEVAR N P ST
Jq—»tz(g)(Z’EJ)_z;;CFé(l Z)< e? €L 2L +12

where

D) —i-g) e 0 (e -

<
(29)

L=L+Inz=1In <ﬁgzz>. (30)

J

We realize that Eq. (29) is the same as that in the anti-k7 algorithm, except for the slightly different definition of L. The
universality of this term is caused by the NJA, and the algorithm dependence is hidden in power-suppressed terms.
Likewise, for the case that only the gluon falls inside the jet, as illustrated in Fig. 1(c), the calculation is very similar to the

case of ¢ = ¢(g). For n = 1, it can be expressed as

(1) _
Jq*(q)g(z’ Ey) =

1 14+ (1=2) I+ (1=2)2 (1-
% (Ve ) - S [ o — gy o] 4 B L2 (125 01— ),
7w \e€ : 2r Z 2n Z 2z

(31)

Summing Eqs. (23), (29), and (31) together, one obtains the full expression for the semi-inclusive quark jet function in the

J (EIT) algorithm at NLO:

1 1 1 1
1@ E) = I gy B+ (@ E) + I (2 Ey)

=% (1+ L) [Pgq(2) + Py () —;‘—ﬂ{ [20

3In2 7’

—5(1 - z)cF<

ICEIRI

: +5—2>+P (2)2In(1 = 2) + Cpz = (Pgy(2) + Pgy(2)) In (T)@(l/z—z)},

(32)

054043-6



SEMI-INCLUSIVE JET FUNCTIONS AND JET SUBSTRUCTURE ... PHYS. REV. D 103, 054043 (2021)

where Pj;(z) are the standard Altarelli-Parisi splitting  with gy =4 C4 —3Tpn;, and the “plus” distributions are

functions, defined as usual:
1 1
1+22 3 = _

N Gsaool ey [ dr@el = [l - sl 67
(1-2), 2

Note that the double-pole term (cx 1/€?) as shown in

1+ (1—-2z)? g — qg channel cancel with that in ¢ — ¢(g), and at the

Pyy(2) = Cp L (34)  same time the q — (q)g channel is free of double-pole

terms; thus, we are left with only a single-pole term

P, (z) = Tr(22 + (1= 2)2), (35) (accordingly, single logarithm L) in the final result. The

single-pole term is universal and independent of the jet
algorithm, and it is this single-pole term that leads to the
P,(2) = Cs [ 2z n 2(1-2) +22(1 - Z)} DGLAP evolution of the semi-inclusive jet functions [25].

(1-2), Likewise, the jet function for the Jgp algorithm with
+@ 5(1-2) (36) n =2 can be derived by following exactly the same
2 ’ procedure as that for n = 1. The final result is

In(1 - z)
-z

I B = 5 (6 + L) [Pag(2) + Pyy(2)] = 5 {cF [2(1 +2%) ( >+ +(1- z)] + Pyy(2)21In(1 — 2) + Cyz

+ [Pyy(2) + Py (2)] [In(l +2)+In (Ziz__;)> o(1/2 - z)]
—5(1-2)Cp <—%2+ g - 15;12 —In?2 + 91;3 - L12(1/4)> } (38)

where Li,(1/4) = 0.267653... is the dilogarithm function. We find that all the terms in the last two rows are algorithm
dependent, while the rest of the terms are independent of the jet algorithm.

B. The semi-inclusive gluon jet function

The calculation of the semi-inclusive gluon jet function J,(z, Ey) is very similar to that for the quark jet case.
As illustrated in Fig. 2, the semi-inclusive gluon jet function receives four contributions, including both
g — gg and g — gqq splittings. For the case that both final-state partons are inside the jet, the semi-inclusive gluon jet
function can be written as

dm?

a 2erENE (1 . .
Iymagean(esB) = 801 =) S [ s o P00+ Pyl (1 =00 [ 0w (9

(@) (©

FIG. 2. The situations that contribute to the semi-inclusive gluon jet function when both final-state partons are inside the jet (A and B)
and when only one of the final-state partons is inside the jet (C and D).
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where 7 represents for the number of flavors of the final- ~ Expanding to O(e), we obtain

state quark and f’qg(x, €) and P, (x,€) are given by

Egs. (13) and (14), respectively. In the situation when both

the final-state partons are inside the jet, the constraint is )

shown in Eq. (19). Applying this constraint to Eq. (39), we | —2(C, {_1 _i te <_ 45 + T Eln 2)} , (42)
obtain the semi-inclusive gluon jet function » e 06 8 2 6

(1)
o2 gg+42(2 Ex)

SRS S 0

2 23 2
- qu_TF[3+e<12+§l 2)} (43)
1/2 1
I; = {A dx(1-(1-x))+ [/2 dx(1 —x)_e]x_e
s Inserting the above expressions into Eq. (40) and perform-
x (1 =x) Pij(xv €). (41) ing the ¢ expansion, we find

(1 _ a Po 2 Pos 45 T2 23
ngggm(z,EJ)é(l—z)%[ +5e +—L+7L+ L+ CA(8 €12 ) T 12+312

(44)

We also need to consider the situation that only one of the partons forms the jet, and the corresponding Feynman
diagrams are shown in Figs. 2(c) and 2(d). Summing these two diagrams together, we obtain

2 ,vE\€ d 2
a, (e m
J J) ( )

g—»g(g)-&-q(é)(z = Em [ng(zv €) + 2nqug(z’ 6)][Z(1 - Z)]_e / We)alg- (45)

With the constraint from the JgT) algorithm shown in Eq. (27), we can integrate over m? and then perform the € expansion.
The final results can be written as

(I) g Po 7 a, (1
J oo +a(a) (@ Erpt) = 5 6(1 = 2) <__2_Z__L__L2 ——L+—) +ﬂ< + L ) [Pyy(2) + 2n,Pyy (2)]

€ € 2 2 12
_%ST {4CA(1 —Zz +27) <lngl_—ZZ)>+ - 4ng Py () In(1 = 2) + Trz(1 = 2)
+ [Pyy(2) +2n,P,,(z)] In <1 ; Z’) o(1/2- Z)}. (46)

Finally, adding all contributions together, we obtain the following expression for the semi-inclusive gluon jet function:

(1) _ 4D )
Jy (2. Ey) = Iy 4472 E) +Jq—>y(y)+q<fl)( Ey)

4C4(1 =2+ 2%)? (In(1 - 2)
{ (

ag (1 a
& <E + L> 1Pyy(2) + 20, Py (2)] - & . l—z

> +4ng[P,y(2) In(1 - z)

45 11 n’ 23 2
+sz(1—z)]—5(1—z)[CA<§+gln2—?> —npr<12+3l 2)]

- [ng(z) —I—anqu(z)] ln<1 ;Z>®(l/2—z)}, (47)
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where P,,(z) and P, (z) are the standard Altarelli-Parisi
splitting functions defined in Eqgs. (35) and (36), respec-
tively. Similar to the case for the quark jet, the double pole
1/€* and the double logarithms L? cancel, and we are left
with only a single pole 1/¢ and a single logarithm L.

|

A

Using the same procedure, we can also derive the semi-

(I

inclusive gluon jet function for the Ji * algorithm. The final

expression is given by

I (2. Ey) = > (1 +L) [Py (2) +2npP 4 (2)] —g—”{

T ang[P () In(1 = 2) + Tpz(1 - 2)] - [c(

, (67 _34m2
18T T3

where the last two rows in the above equation are algorithm
dependent, while all the remaining terms are algorithm
independent.

C. The RG evolution for semi-inclusive jet functions

The bare quark and gluon jet functions J, ,(z, Ej) are
divergent, as they contain poles of 1/e, which need to be
renormalized. We follow the standard procedure and define
the renormalized semi-inclusive jet functions J, ,(z, Ej, i)
as follows:

Ld7 4 ,
Ji(z, Ey) = E = Zj ok Ji(Z Ep,pu),  (49)
TR :

where Z;; is the renormalization matrix. Taking the
derivative with respect to x on both sides of the above
equation, we can obtain the renormalization-group equa-
tion for the semi-inclusive jet function:

le
Z/ ' ﬂ/( ””)JJ(Z"EH‘)’

(50)

d
—J. '7E’
'ud/l z(z 1M

where y{]- is the anomalous dimension related to the
renormalization matrix

dz d
Z/ 1k1< /’”) Ezkj(zl’ﬂ)’

(51)

YUZM

with the inverse of the renormalization factor (Z);!
defined as

4C,(1 =7+ 2%) (In(1 —z)
2 ( l-z >+

289 22 79In2 15
TP 24 i3 - Lig(1/4
362 6 mM2tgyh3-Lh(l/ )>

+ 61n3>} ) 8(1 = 2) + [Py () + 21,P oy (2)]

x [111(1 +2)+In (Ziz__zj’)) O(1/2- z)} }

(48)

|
Zk: /zl dZ_Z/’ 27 (?’”)ij(z/,ﬂ) =6;6(1-z2).  (52)

At LO, the renormalization matrix Zl(-;))

1) = 5ij5(1 -

one-loop renormalization factors Z,(»ll.)

is purely 6 function,
7). At NLO, the

can be extracted from

which is given by Z\”(z,

the pole terms in the final result of the bare semi-inclusive
jet function shown in Eqgs. (47) and (48):

(1) ag (ﬂ) 1
VAS W) p.
Pen =22 (e 6
from which we obtain the anomalous dimension
a(p)
7,!,' P ji(Z) (54)

Thus, the renormalization-group equations for the renor-
malized SIJFs is just the timelike DGLAP evolution
equation for the usual fragmentation functions

Z/ (g)Jj(z',EJ,u).

(55)
()

The divergence of Z;;
gence in the bare semi-inclusive jet functions and even-
tually leads to finite renormalized semi-inclusive jet
functions. For the maximized algorithm with n =1, i.e.,

d
Ji(z,Ey p
du’ i(z, Ej

u—

cancels exactly with the diver-

Jgr) we have the following expressions for the renormal-
ized SIJFs at NLO:
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I (2 Eyot) = 6(1 = 2) + S LIP,,(2) + Py (2)] = 5 {cF {2(1 +2) (M>+ +(1- z>]

1-z

-8(1 -z2)Cp (3 1;2 +5 —%2> + Py, (2)2In(1 = z) 4+ Cpz — (Py,(2) + qu(z))ln<1 ;Z>®(1/2 - z)}

(56)
a a W1 =z +7%)? (In(1 -

J?@Jﬁu):5ﬂ—ﬂj+§iLwW@)+2me@ﬂ—Ei{ﬂjO ;+ﬂ) Ci{{©>+
2
+4ns[P,(z) In(1 = 2) + Tpz(1l —2)] = 6(1 = 2) {CA <%+%ln2 —?> —ngTp (%—Q—gan)]
—[Pyy(2) + 2nsP,y(2)] ln<1 ; Z>®(1/2 - z)} (57)

On the other hand, for the maximized algorithm with n = 2, i.e., J (EITI>, the SIJFs at NLO can be written as follows:

(11 a A In(1 - 7z2)
Jg (2. Eyp) =6(1-2z)+ ZL[qu(z) + P, (z)] =% {CF [2(1 +7%) (17—1 . +(l—2)
z2(2-72)
+ Py (2)2In(1 = 2) + Cpz + [Pyy(z) + Pyy(2)] |In(1 4 z) + In =2 0(1/2-2)
7 13 15In2 sn  9In3 )
—5(1—Z)CF<—7+7— 2 —In"2 + 2 —L12(1/4))}, (58)
JID (2 Eyp) = 8(1 %Lip 21, P
g 2 Jv/") - ( - Z) +E [ gg(Z) + nf qg(z)]
s [4C4(1 =z +22)? (In(1 -
- (G2 2 (U220 e, (2) In(1 - 2) + Te(1 - 2)
27[ Z 1 - Z + :
289 7 79In2 15 . 67 34In2
- |:CA<¥—7—T—1I122+71H3—Ll2(1/4)> —I’lfo<E— 3 +61113):| Xé(l—Z)
72(2-72)
+ [Pyy(z) +2n.P,(2)] |In(1 + z) + In - O(1/2-2)| ¢. (59)
It is important to point out that the natural scale y; for the SIJFs can be derived from Eq. (30):
E2
pi = ﬂ—; (60)

Thus, by solving the DGLAP evolution equation (55) and, thus, evolving the SIJFs from its natural scale y; to the hard
scattering scale 4 ~ Ej, we can resum large logarithms of the jet size parameter f. This is similar to the small jet radius In R
resummation developed in Ref. [25]. It might be worthwhile to point out that the momentum fraction z also plays some role
in this evolution, and it would be valuable to study numerically how important such an effect is. Finally, it is interesting to
point out that the above renormalized semi-inclusive jet functions satisfy the following momentum sum rule [26,53]:

1
/ dzzJ(z, Ey = zE, ) = 1. (61)
0

This momentum conservation rule provides us an alternative way to check our results. It is instructive to point out that the
correct jet algorithm constraint in Eq. (26) for the situation where a single parton forms the jet is crucial to derive the correct
SIJFs. Otherwise, the obtained results for the SIJFs will not satisfy the momentum sum rule. In this context, the momentum
sum rule derived from the operator definition of the SIJFs in SCET can play an important role. Thus, performing the
calculations directly from the operator definitions for the SIJFs as we have done in this section shows some advantages.
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Note that the above semi-inclusive jet functions were first
derived in Refs. [27,38] via standard pQCD techniques.
Our results are slightly different from those in the originally
published version of Refs. [27,38]. However, those results
are now corrected and updated as an erratum to [27,38].
Our results are consistent with those in the updated version.

IV. THE SEMI-INCLUSIVE FRAGMENTING
JET FUNCTIONS

We now turn to the evaluation of jet substructure with
maximized jet algorithms. In this section, we focus on the
so-called SIFJFs as initially introduced in Ref. [28]. The
SIFJFs describe the longitudinal momentum distribution of
hadrons inside the jet. Comparing to the SIJFs, we need one

|

h _
Gy(z. 2. Ey) =N

Wi B) ==

where (d —2) is the number of polarizations for initial
gluons in d dimension. The state |(Jh)X) represents the
final-state identified hadron (%) inside the jet J as denoted
by (Jh), and X stands for unobserved particles. On the
other hand, w, Ej, and z have exactly the same meaning as
those in SIJFs.

Different from the semi-inclusive jet functions as dis-
cussed in the previous section, the SIFJFs involve the
hadronic scale, thus contain nonperturbative information,
and are, in principle, not calculable in pQCD. However, the
matching coefficients between SIFJFs and standard frag-
mentation functions can be determined perturbatively; thus,
one can simply replace the hadronic states in Eq. (62) by
the corresponding partonic states, which allows us to use
the methodology of pQCD. In the following, we will show
explicitly the calculation of G/ with i the initial parton and j
the fragmenting parton. Similar to SIJFs, the SIFJFs at LO
involve only delta functions:

Gz 2 Ey) = 5,61 —2)8(1—z4).  (63)

The last two delta functions correspond to the case that the
total energy of the initiating parton is transferred to the jet,
and the fragmenting parton carries the whole energy of
the jet.

A. Fragmenting jet functions at NLO

At NLO, the initiating parton splits into two partons,
which leads to two contributions for SIFJFs: One is for the
case when both partons are inside the jet, and another case
is when only one parton is inside the jet. In the situation that

S a(zh - E—) (0]8(e — 7t - P)B, 1, (0)| (JA)X) (1) X|BL, (0)[0).

more variable, w;, =~ 2E,, to represent for the light-cone
momentum of the observed hadron. Accordingly, z;, =
E,/E; denotes the fraction of the jet energy carried by the
observed hadron. In this section, we will first introduce the

definition of SIFJFs in SCET, and we then present their

NLO calculations for both the J gr) and J grl) algorithms. We

will present the detailed steps of our calculations for the J gj

algorithm. At the end of the section, we will write down the
results for the Jg;) algorithm, as the procedure is very

similar.

Similar to the SIJFs, one can define the SIFJFs for quark
and gluon jets in terms of gauge-invariant quark and gluon
fields in SCET [28]:

- o(z = g ) o| S 01600 = - Pl 0 (UmXLE 0)10) |

(62)

[
both partons are inside the jet, the corresponding Feynman
diagrams for quark- and gluon-initiated jet are shown in
Figs. 1(a) and 2(a), respectively. In this case, all the initial
parton energy E stays inside the jet; thus, z = Ej/E = 1.
Different with the semi-inclusive jet functions, we now
observe a particular fragmenting parton inside the jet,
where the fragmenting parton carries only part of the jet
energy as characterized by z, = E,/Ey < 1. In the MS
scheme, the one-loop bare SIFJFs can be written as [28]

j a, (erep?)e [1
o (2.2 Ey) = 8(1 Z)an(“(l — Z)A dxd(x — z;)

dm?

X Isjl-(x, €)[x(1 —x)]_E/WQﬂg.
(64)

In comparison with the SIJFs in Eq. (10), the above
expression is different only by a factor §(x — z;,), since
we now measure the momentum fraction carried by the
final-state parton. Similar to that in semi-inclusive jet
functions, “jk” indicates the situation that both split partons
j and k remain inside the jet. The functions P ji(x,€) are
given by Egs. (11)—(14).

To proceed with the NLO calculation, we implement the
jet algorithm constraint, given already in Eq. (19), at the
same time integrate x with the help of the §(x —z,)
function in Eq. (64), and can derive the final result. It
turns out that the result depends on the value of z;,. When
zp < 1/2, we have
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dm? (/B (1=(1=24)) 1\ (Ef\~
o= [ (- (&) a-a-a- (63

For z;, > 1/2, we have the following expression:

dm® (E3/8)(1-21) 1\ /E2\ <
[ e [ (L)) 0

Substituting these two integrals into Eq. (64), we obtain the following result for the case when both partons are inside the jet:

Q, S (220 Ey) = 8(1 - 2) ;—;Ige(zEﬁzi; Pii(zp.€) <—é> <E§) - |:(Zh)_2e(1 ) ‘9(1 - zh>

(a1 - )02 5) | (@)

Now we turn to the case that only one parton is inside the jet. The corresponding diagrams are shown in Figs. 1(b)
and 1(c) for the quark-initiated jet and Figs. 2(c) and 2(d) for the gluon-initiated jet. In this case, the final-state fragmenting
parton forms the jet; thus, we have z < 1. On the other hand, within the jet, there is only one parton at NLO which is
eventually converted to the fragmenting parton. This leads to an overall delta function ensuring z;, = 1; i.e., all the jet
energy is translated into the fragmenting parton energy. Performing the evaluation of diagrams in Figs. 1(b), 1(c), 2(c),
and 2(d), we obtain the bare SIFJFs when only parton j forms the jet:

ay (e'Eu?)e . dm?

i(k), s —€ —€
i ),(1)(Z,Zh, EJ) = 5(1 — Zh)Z_ﬂF(l — €) Pj,-<Z,€)Z (1 - Z) /We)alg, (68)

i,bare

where the superscript j(k) indicates that parton j is inside the jet while k exits the jet. We can now implement the jet

algorithm constraint Eq. (27) in the m? integration, and we obtain for the JgT) algorithm

/(mdzin)ilz”@alg N /("" dz_”)ie N (l> (%?) Cl-o 0k -1/2)+¢0(1/2-2)].  (69)

E2/224) min[l—-z.2] (m €

With the above result at hand, we can write the second contribution of the bare SIFJFs as follows:

100 B = o1 -2 22 e 3) (%) (1= 00— 1/2) + (1= 2)~0(1/2- ). (70)

Summing the two contributions shown in Egs. (67) and (70), we obtain the following results for the bare SIFJFs at NLO:

g{,bare(z’zh’EJ) = gl t(yage(z 2, Ey, :u) +gz bare (Z Zh’EJ) +gz bare (Z Zh’EJ)

= 5,01 —2)8(1 - 2,) + ;—ﬂﬁe(yl’i Z) <— é) (%>_
X {8(1 = 2)Pji(z. €)[(z5) (1 = 24)™O(1/2 = 24) + (2) (1 — 24) %O (25, — 1/2)]

—5(1 = 2,)Pji(z. )[(1 = 2)2°0(z = 1/2) + (1 = 2)™O(1/2 = 2)]}. (71)

Performing e expansion, we obtain the explicit expression of the SIFJFs for the JgT) algorithm:
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(a2 B = 801 = 0301 = 23) 4 5 (== L) Pyg(a)d(1 =) 4 52 (142 P21 - 2

g.bare
roll-a5 2o+ () +6ri-a)

4 (1_Z);‘ [ go(zn) Inz; +O(1/2 = z,)P qq(zh)ln<1ihzh>:|

~5(1- )5 [2cp(1 )<ln<1_z)>++Cp(1—z)—qu(z)ln<lz_z>®(1/2—z)}, (72)

1-z2

9:(1) (z,zp, Ey) = 6(1 = 2)8(1 — z5,) —l—;—; (—é— L)ng(zh)é(l -2) +;—; <é+ L>ng(z)5(1 )

g.bare
|:4CA (1 =z, +2,) <ln (1- Zh)) ]
Zp 1 -z, +

+6(1 —z)2

+5(1- Z)%Sr [ng(zh) Inz, +O(1/2 = z,)Py(z1) ln<1 ihZ] ﬂ

s {4CA (L-z+2) <ln(1 - Z)> - P, (z)In (1 ; Z>®(1/2 - Z)] : (73)

a
—5(1 = 7,) =%
( Zh)2ir Z 1—-z

q.bare o0 €

+6(1 - Z) [2qu(zh) In (1 -z,) + Crzy
15(1-2)2 ﬂ {qu(zh) Inz, +0(1/2 = 2,)P,,(z1) ln<1 ihZhﬂ

5(1—zh)2 [ZP (z2)In(1 —=z)+ Cpz—P ()ln<1gz)®(1/2—z)}, (74)

-1 (z,21, Ey) = & <—1— L)qu(zh)é(l -2) —I—%ST <i+ L>qu(z)5(1 -22)

ez B = 5 (= L) Pl =2) 55 (14 1) (o301 =20

g,bare €

A
+ 5(1 - Z) ﬂ [2qu(Zh) In (1 - Zh) + ZTFZh(l - Zh)]

+6(1 - Z);_;r [qu(zh) Inz, +0(1/2 - Zh)qu(Zh) ln(1 ihzh)]

—5(1-z,) ;‘_ﬂ {zpqg(z) In(1 = 2) +2Tpz(1 = 2) = Pyy(2) 1n<] - Z) 0(1/2 - z)} , (75)

where the logarithm L is defined in Eq. (30) and the Altarelli-Parisi splitting functions are defined in Egs. (33)—(36).
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The results for the bare SIFJFs at NLO for the JgT[) algorithm can be obtained similarly, and they are given by

o 1 a, (1
ez B) = 801 = 2)3(1 =) 4 55 (== L) Pug(a)d(1 =) 4 52 (142 ) P01 - 2

27
+6(1— z)2 [ZCF(I +z K%L + Cp(1 —zh)]

> [ﬁqti(zh> In (2, (1 + 25)) + O(1/2 = 2,) Pyy(z;) In <Zh(27_§h)ﬂ

o(1 —

-5(1 - Zh);x_; {2CF(1 +7%) <%>+ + Cp(1 + )% +Cr(1-72)
+ Pyy(z)In (Zgz__zj’)) 0(1/2 - z)} , (76)
Zélalri(z i Ey) =6(1—2)8(1 —z;,) + ;—; <—é— L) Py (z,)8(1 —2) + g—; <£ + L) P, (2)6(1 —z,)
_ 22 /In (1 —
1= fac, Ut (=) |

a1 =0)5 | Pyfen)n 1+ 50) + 00172 = )Py o) in 22

51— Zh) a |:4CA (1- z;— z°) <ln(11__;))+ 1 ac, (1—-z+42%) 1;11(1_42—)1)
+P,y(z)In (Ziz__;)) a(1/2 - z)] , (77)

e B) =5 (= 1= L) Pu(en)a1 =2) 4 52 (4 L) (1o - )

€

a,
+6(1— 1)2—” 2P, (z;) In (1 = z;,) + Crzy]

+6(1 = Z);x_;, [qu(zh)ln (za(1 +2,)) +6(1/2 = 2) gq(zh)ln(%(zi_ih)ﬂ

1 -z,

-5(1 - zh) {2qu(z) In(1 = 2z) + Py,(z) In(1 + 2) + Cpz + Pyy(z) In (Z? — ?)@(1/2 - Z)] ,

2 —
(78)
(2 Ey) = g—ﬂ (—é— L> Py (z)8(1 - 2) + g—” (é n L) P, (2)8(1 - z,)
+8(1 = 2) 52 [2Pyy () In (1 = 23) + 2Tz (1 = 2)
o N _ I 7n(2 = zp)
#00=2) 52 [Pz n o1 +30)) +001/2 2Py (e n (21732 = )|
-5(1 - zh) > [ZP (z)In(1 = z) + Pyy(z) In(1 + z) + 2Tpz(1 — z)
+P,y(z)In <Z§2—_z§)>®(l /2 - z)], (79)

where qu (z) and P,,(z) are the Altarelli-Parisi splitting functions defined in Egs. (33) and (36), but with the 5(1 — z) term
removed. For later convenience, we also define P, (z) = P,,(z) and P,,(z) = P,,(z). Notice that the pole terms are
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universal for different jet algorithms. This is why all these
semi-inclusive jet functions follow the same timelike
DGLAP evolution equations [28].

B. Renormalization and matching

of the bare SIFJFs
g{f (z, zp, Ey), single-pole terms still remain, which include
both infrared (IR) poles as identified in association with
Pji(z,)6(1 — z) and the ultraviolet (UV) poles that multi-
plied by P;;(z)6(1 — z,). The standard procedure to sub-
tract the UV poles is realized by the definition of
renormalized SIFJFs. After the renormalization, we find
the following renormalization group equations for the
renormalized SIFJFs G"(z, z;,, Ey, p):

From the final expressions

d h
24 E
Md/lgl (Z’le J’ﬂ)

a,(u) /ldz' <Z> J (o
= E —P;( = ,Zns Ey, 1), 80
e - i Z/ J Z/ gk<z Zh J ﬂ) ( )

which is the same as the usual timelike DGLAP evolution
equation, just like that for the SIJFs in Eq. (55). From the
perturbative calculations of g{? (z, zp, Ey, i), we find that the
natural scale for the SIFIFs is again u} ~ Ej/pz. Thus,
solving the above evolution equations and evolving the
SIFJFs from pg to the typical hard scale yu ~ E;, one again
achieves the resummation of Ing. This could be very
important for highly collimated jets where > 1.

Ay

27

+6(1-2z) {2@(1 +z§)<

T gz 2 Eyop) = 6(1 = 2)6(1 = z,) +

—4(1 —zh)[ZCF(l +z2)(

It is important to emphasize that the renormalization
equations for SIFJFs are universal and independent of
specific jet algorithms. Different to the SIJFs shown in
Sec. 111, there is explicit flavor dependence for SIFJFs due
to the involved fragmentation functions. This leads to more
complicated flavor separation in solving the renormaliza-
tion equations for SIFJFs than that for SIJFs. For details,
see Ref. [28]. After renormalization, the remaining IR
poles are removed by matching the renormalized SIFJFs

G!(z, zj, Ey, u) onto the fragmentation functions D’ (z;,, u)
at a scale u > Agcp as follows:

L dz, Z
h _ h h h
Gi(z, 25, Ey p) = E /Zh ZJU(Z’ZZ,EL/‘)DJ- (Zﬂ>
J
(81)

To derive the matching coefficients J;;, we again replace
the hadron /4 by a parton state in the above equation. Note
that the renormalized fragmentation functions D{ (zp, ) at
NLO in the MS scheme are given by

Dl(an ) = 03001 = ) + - Pu(a)(=1). (82

With these results at hand and using the expressions for

G!(z, zj, Ey, p) from the previous section, one can obtain
the matching coefficient functions J; i which are free of
any divergences. For the maximized jet algorithm, they can
be expressed as follows:

{L[qu<z>5<1 ) = Pyy(a)s(1 = 2)

M) + Cp(1 = z,) +IZqu<zh)}

) -0+ 70|, (83)

jgg(Z, Zh,EJ,ﬂ) = 5(1 - Z)5(1 - Zh) + & {L[ng(z)é(l - Zh) - ng<Zh)5(1 - Z)]

2r

Zh

+6(1-2) [4CA A-z+4) (ln -~ Zh))+ +1219g(zh)}

—5(1-2z;) [4CA

qu(Z, Zhs EJ, /4) = o

(=2t 2 (il =) ) | (84

SLIP(2)(1 = 23) = Pyyl24)8(1 = 2)] + 8(1 = 2)[2Pyy(24) In (1 = 23) + Cray + T3 (23)

= 06(1 = 2,)[2Pyy(z) In(1 = 2) + Cpz + Tt (2)]}, (85)
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T (2.2, Ey.p) = Z—;{L[qu(Z)fS(l —23) = Py (21)8(1 = 2)] +8(1 = 2) 2Py (24) In (1 = 23,) + 2T 2, (1 — 24) + Tt (2]
—8(1=24)[2Pgy(z) In(1 = 2) + 2T pz(1 = 2) + Zyet (2)]}, (86)

where I?]l.g(zh) and If]‘.lg(zh) are algorithm-dependent

functions with the following expressions for the Jgr) and

J <E[TI) algorithms:

II(JI')(Zh) = Pji(zy) Inzy +0(1/2 = 2,) Pji(z)) 1n<1 ith )
(87)
T (z4) = Pji(za) In (2 (1 + 23))

+0(1/2 = z,)Pji(z;) In <%) (88)
h

7\0(z) = -©(1/2 - 2)P;(z) In <1 ; Z’) , (89)
T (z) = Pji(z) In(1 + 2)

+0(1/2-2)P;i(z) ln<z(2_§)). (90)

1-z2

Similar to the standard collinear fragmentation functions,
the SIFJFs satisfy the momentum sum rules [55,56]. These
can be represented by the relations between the SIJFs and
the SIFJFs:

1
/0 2 24(GY 22 Eyott) + G (.20 Eyot)) =7 o (2. Es.p).

(91)

1
/0 dzy231G9 (2. 20 Eyo ) +2n,G (2. 20, Eyo )| = J (2. Ey o).
(92)

Equivalently, we have

1
[) thZh [jqq(z’zh’EJ’lu) +qu(Z,Zh,E],ﬂ)] :Jq(Z’EJ’:u)’

(93)

1
AthZh (T 4o @2 Eva )+ 20T 3y (2.2, Eyo )| =J o (2. Ey. ).
(94)

The above two equations provide us a good way to double

check our final results. We have checked for both J<EIT>

and Jgrl) algorithms that our results satisfy the above
momentum sum rules. It is instructive to emphasize again
the important role of these momentum sum rules in
obtaining the correct results for SIFJFs. The correct jet
algorithm constraint in Eq. (26) is again crucial. Note that

the result for the J gj algorithm has first been derived from

the standard pQCD method in Ref. [27]. Again, our results
are slightly different from those in the originally published
version of Ref. [27] but are consistent with its updated
version. On the other hand, the results of the SIFJFs for the
JgTU algorithm are written down here for the first time as far
as we know.

V. CONCLUSION

In this paper, we evaluated the semi-inclusive jet
functions and semi-inclusive fragmenting jet functions at

next-to-leading order, for both quark and gluon jets in the

so-called maximized jet algorithms J gj and J gTI) within the

framework of soft-collinear effective theory. We started
from the operator definitions for both SIJFs and SIFJFs
within SCET, and we checked our results using the
corresponding momentum sum rules satisfied by these
functions. We compared our fixed-order results with the
NLO results using standard pQCD techniques when avail-
able, in which we emphasized the important role played
by the momentum sum rules. While there were previous
calculations for the JgT) algorithm, our results for semi-

inclusive fragmenting jet functions for the J<EIT1) algorithm

are new. We further derived the renormalization group
equations for both the SIJFs and SIFJFs and found that they
follow the timelike DGLAP evolution equations, just like
the usual collinear fragmentation functions. These maxi-
mized jet algorithms contain a parameter 5, which controls
the geometric size of the reconstructed jet. > 1 corre-
sponds to a highly collimated jet, very similar to the
situation for jets with a very small jet radius R. By solving
the renormalization equations and evolving those jet
functions from their natural scale to the typical hard scale,
one can then achieve the resummation of the single
logarithms of the jet parameter $. In addition, we find that
the evolution equations can further resum In z, where z is
the momentum fraction of the parton that initiates the jet
carried by the jet itself. Phenomenological implementations
of our results to hadronic collisions will be left for future
publications. We expect important impact of our results in
probing fundamental properties of nuclear medium and
hadron fragmentation functions, as pointed out already
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from other fixed-order calculations; see, for exam-

ple, Ref. [27].
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