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We study the single hadron inclusive production in the forward rapidity region in proton-nucleus
collisions. We find the longstanding negative cross section at next-to-leading-order (NLO) is driven by the
large negative threshold logarithmic contributions. We established a factorization theorem for resumming
these logarithms with systematically improvable accuracy within the color glass condensate formalism. We
demonstrate how the threshold leading logarithmic accuracy can be realized by a suitable scale choice in
the NLO results. The NLO spectrums with the threshold logarithms resummed remain positive and
impressive agreements with experimental data are observed.
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I. INTRODUCTION

Gluon saturation has attracted a lot of attention in recent
years in the nuclear physics community. This is particularly
true during the rapid development toward the realization
of the electron ion collider (EIC), where one of the scientific
goals is to search for gluon saturation and to explore the
properties of such a regime [1,2]. Gluon saturation plays the
key role in understanding proton and heavy nuclei collisions
in the high energy limit,where the gluonmomentum fraction
x is very small. In such a small-x region, the gluon density
grows dramatically and enters the nonlinear regime where
the gluon recombination becomes equally important to the
splitting, and the color glass condensate (CGC) effective
theory [3–5] is the proper framework to describe such a
regime. The nonlinear Balitsky–Jalilian-Marian–Iancu–
McLerran–Weigert–Leonidov–Kovner equation [6–11]
replaces the position of the linear Balitsky–Fadin–
Kuraev–Lipatov equation [12], which inevitably leads to
the gluon saturation [13,14] with a characteristic scale Qs.
The saturation scale Qs features the typical transverse
momentum of the gluons inside the proton or the nucleus
and grows as x decreases.
Experimental efforts have been made to identify the

saturation phenomenon. Earlier experimental hints on gluon
saturation include extensive measurements on structure

function in deep inelastic scattering at HERA [15], and
the strong suppression of both single hadron [16–18] and
dihadron production [19,20] cross sections at forward
rapidity in dþ Au collisions at the Relativistic Heavy Ion
Collider (RHIC). More recently the measurements at the
Large Hadron Collider [21–23] are also compatible with the
saturation-model predictions. In the future, the dedicated
measurements at the future EIC will provide further infor-
mation on gluon saturation.
In order to faithfully and unambiguously establish gluon

saturation and its onset, reliable theoretical predictions for
the small-x phenomena at colliders are crucial. WhenQs ≫
ΛQCD and thus the coupling constant αsðQsÞ ≪ 1, the
theoretical predictions can be built upon perturbative QCD
with a suitable factorization framework. However, for the
semihard saturation scale of a few GeVs, αsðQsÞ is
typically not small enough. As a consequence, calculations
beyond the leading order (LO) are generally required to
ensure the convergence of the perturbative results.
Recently, tremendous progress has been made in realizing
the next-to-leading order (NLO) calculations for the
small-x physics [24–36].
In the physical processes investigated so far, single

inclusive hadron production in proton-nucleus collisions,
pA → hX, is among the most studied ones. This will be the
main focus of our current paper. The seminal work [26]
confirms the CGC factorization for this observable at the
NLO. However, the exhibited negative cross section when
the hadron transverse momentum ph;⊥ becomes a bit larger
was quite a puzzle in the community [37]. Significant
efforts have been devoted to resolve this issue, see e.g.,
[34,38–43] and references therein. In one of the most recent
works [34], the approach introduced can maintain the
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positivity of the cross section to medium ph;⊥ region.
However, the cross section eventually becomes negative for
even larger ph;⊥, although such a transverse momentum is
perfectly allowed with ph;⊥ ≪

ffiffiffi
s

p
. It is thus widely

accepted that the practical phenomenological applications
of the NLO calculations for this process are by far
problematic [44,45].
In this work, we present solid evidence that the

threshold logarithm in the QCD perturbation series is the
source to the negative cross section. We are able to resum
these logarithms to all orders at the leading logarithmic
accuracy (LLthr). We find that after resummation, the NLO
predictions with the threshold logarithms resummed
(NLOþ LLthr) stay positive and agree well with the
experimental data. Early suggestion of such logarithms
as solutions to the negative spectrum problem can be found
in [43,46]. In the same spirit, it might be interesting
and instructive to notice that collinear logarithms in the
NLO BK equation is the main source responsible for the
unstable or even negative solutions and an improved
equation with these collinear logarithms resummed solves
this instability [47–52].

II. THRESHOLD LOGARITHMS

Threshold logarithms are common features of the
partonic cross sections for hadronic processes [53–55].
They are expected to be large and therefore invalidate the
truncations in the perturbative expansion in αs, when a
massive final state is produced or kinematic constrains
are implemented to force the system reaching its max-
imally allowed energy. Even in cases where all the
kinematics are away from the machine threshold, such
as the 125 GeV Higgs production at the 13 TeV LHC, the
threshold logarithms are still found to be sizable [56], due
to the steep falling shape of the parton distribution
functions (PDFs) [54], which effectively restricts the
maximally allowed energy and enhances the effects.
Conventional wisdom to rescue the perturbative predictive
power is to resum the threshold logarithms L [53–55],
which formatively turns the fixed order (FO) seriesP

FO
n αns ð

P
k L

kþcnÞ→ egðLÞ
P

FO
n αnscn, where

P
FO
n αnscn

is free of large corrections and a fixed order truncation is
therefore justified.
The same story happens to pA → hX. The nth order

corrections to the partonic cross section possess the
logarithmic structure in the large Nc limit

σ̂ðnÞ ⊃
Xn−1

k¼0

αns

�
lnkð1 − zÞ
1 − z

�

þ
; ð1Þ

where 1 − z ¼ 1 − τ=xξ with x and ξ the momentum
fraction in the PDF and the fragmentation function (FF),
respectively, as illustrated in Fig. 1. Note that 1 − z is the
energy fraction carried by the bremsstrahlung radiations.

We have τ ¼ ph;⊥eyh=
ffiffiffi
s

p
, with yh the hadron rapidity and

ph;⊥ the transverse momentum. In the forward region, yh is
very large and thus z quickly approaches 1. The system is
reaching the threshold and the radiations can only be soft
and the logarithms are large.
To make it more specific, we consider the pA → hX at

NLO. In the largeNc limit, the partonic cross section can be
written as [26,34,46,57]

d2σ̂ð1Þ

dzd2p0⊥
∝−

αs
2π

T2
i Pi→iðzÞ ln

r2⊥μ2
c20

�
1þ 1

z2
ei

1−z
z p0⊥·r⊥

�

−
αs
π
Ta
i T

a0
j

Z
dx⊥
π

�
1

z
P̃i→iðzÞei1−zz p0⊥·r0⊥

r0⊥ ·r00⊥
r0⊥2r00⊥2

þδð1−zÞlnXf

XA

�
r2⊥

r0⊥2r00⊥2

�

þ

�
Waa0 ðx⊥Þþ���; ð2Þ

where we have factorized out the LO terms. At the same
time, c0 ¼ 2e−γE with γE the Euler constant, and p0⊥ ¼
ph;⊥=ξ is the transverse momentum of the fragmenting
parton. We have only written out those (1 − z) singular
terms relevant for discussion, but suppress all the (1 − z)
non-singular terms for simplicity. Here, XA is the momen-
tum fraction carried by the gluon from the nucleus and Xf is
the scale due to the rapidity divergence [34,46,58,59].
Pi→iðzÞ is the splitting function and P̃i→iðzÞ is Pi→iðzÞ
without the δð1 − zÞ term, r⊥ ¼ b0⊥ − b⊥, r0⊥ ¼ b⊥ − x⊥
and r00⊥ ¼ x⊥ − b0⊥. The þ-prescription is defined in [60]
which subtracts the singularities at x⊥ → b⊥ðb0⊥Þ and Waa0

is the CGC Wilson line in the adjoint representation. We
find it convenient to use the color operator Ta

i introduced
by Catani et al. [61], acting on the ith parton with color
cðc0Þ in the color space as

hic; jb…jTa
i jic0 ; jb0 ;…i ¼ Ta

c;c0δbb0…; ð3Þ

where Ta
c;b ¼ ifcab if the particle i is a gluon and Ta

c;b ¼
tac;b for a final state quark while T

a
c;b ¼ −tab;c for a final state

antiquark.
As z → 1, the splitting function P̃i→iðzÞ → 2

ð1−zÞþ and we
see explicitly in Eq. (2) that the NLO results reduce to the
threshold structure in Eq. (1) with n ¼ 1 and k ¼ 0. After
integrating over z, the logarithmic form will be more
explicit [53–55].

FIG. 1. Illustration of pA → hX.
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When 1 − z ∼Oð1Þ, these ð1 − zÞ−1þ terms are small
and do no harm to the perturbative calculation. In this
away-from-threshold case, the typical energy scales
involved are the longitudinal momentum n̄ · p of the
incoming parton moving along n direction where
n ¼ ð1; 0; 0; 1Þ and n̄ ¼ ð1; 0; 0;−1Þ, and p0⊥ of the out-
going parton. The hierarchy p0⊥ ≪ n̄ · p gives rise to large
logarithms ln n̄·p

p0⊥
, which we will see, can be resummed by

the BK evolution, if the CGC rapidity scale choice Xf ∼ XA

is made.
However when we increase ph;⊥, especially in the

forward region where yh is large, z quickly approaches
its threshold and the threshold terms can become extraor-
dinarily large. To demonstrate this point, we plot explicitly
this near-threshold situation in Fig. 2, using dAu collision
at RHIC with

ffiffiffi
s

p ¼ 200 GeV and yh ¼ 2.2 as an example.
In the upper panel, the solid curve is the full NLO cross
section including the kinematic constraint [26,34,46], while
the dashed curve is the NLO result with the threshold
ð1 − zÞ−1þ terms (setting z ¼ 1 in the numerator) in Eq. (2)
subtracted. From this comparison, we see clearly that, when
the threshold singular terms are absent, the remaining
contribution stays positive for the entire ph;⊥ spectrum,
while the full NLO prediction quickly drops below zero. In
the lower panel of Fig. 2, we show the ratio R between
the NLO threshold contribution and the full NLO result.
To make the plot more evident, we take out the common
δð1 − zÞ term from both the full NLO and the threshold
contributions. We see that for low ph;⊥, nonthreshold terms
are comparable with the threshold contributions. As
ph;⊥ > 5 GeV, the threshold logarithms soon become
overwhelmingly dominant and the ratio R approaches
one. Same behaviors are observed in all other forward
kinematic settings.

This exercise clearly indicates that (1) the threshold
logarithm is the source to the negative cross sections;
(2) the threshold logarithm is enormous ≳100% of LO in
magnitude and thus requires resummation.

III. AWAY FROM THRESHOLD

We start with the away-from-threshold case to introduce
our formalism and notations and to highlight how large
logarithms are resummed. At LO, the differential cross
section within the CGC framework can be written as

dσ
dyhd2ph;⊥

¼
X

i;j¼g;q

1

4π2

Z
dξ
ξ2

xpfi=Pðxp; μÞDh=jðξ; μÞ

×
Z

d2b⊥d2b0⊥eip
0⊥·r⊥⟪M0ðb0⊥ÞjM0ðb⊥Þ⟫ν;

ð4Þ

where hM0ðb0⊥ÞjM0ðb⊥Þi ¼ 1
CTr½W†ðb0⊥ÞWðb⊥Þ�, with

C ¼ Nc the number of colors for quark and N2
c for gluon

initial state in large Nc limit. We used the LO color space
notation jM0ðb⊥Þi [61] which includes the CGC (Glauber)
Wilson line Wicjcðb⊥Þ with ic and jc the color indices for
the incoming and the outgoing partons, fundamental for
quark and adjoint for gluon. fi=P is the PDF, xp ¼
ph;⊥eyh=ξ

ffiffiffi
s

p
and Dh=j is the FF. Here, ν is the rapidity

scale [46,58,59] in our regularization method for the
rapidity divergence in the NLO calculations, and will be
related later to the gluon rapidity YA ∼ lnð1=XAÞ in the
nucleus.
Beyond LO, an all-order factorization theorem can be

derived using the machinery of the soft-collinear-effective
theory [59,60,62–65] with additional interactions between
quarks/gluons and the Wilson lineWðx⊥Þ adding to it [57],
which reads

dσ
dyhd2ph⊥

¼
X

i;j¼g;q

1

4π2

Z
dξ
ξ2

dx
x
zxfi=Pðx; μÞDh=jðξ; μÞ

×
Z

d2b⊥d2b0⊥eip
0⊥·r⊥

× ⟪M0ðb0⊥ÞjJ ðz; μ; ν; b⊥; b0⊥Þ
× Sðμ; ν; b⊥; b0⊥ÞjM0ðb⊥Þ⟫ν: ð5Þ

Here the collinear function J involves the leading power
SCET collinear fields [59] and encodes the corrections from
radiations with the momentum scaling as ðn̄·p;n·p;p⊥Þ∼ffiffiffi
s

p ð1;λ2;λÞ, while the soft function S is made up of the soft
Wilson lines of the soft gluons with the momentum scaling
k ∼

ffiffiffi
s

p ðλ; λ; λÞ. To reach the factorization, the standard field
redefinition following [63] is performed to factorize the soft
and collinear contributions. The derivation is a bit similar to
[65] which deals with the nonglobal logarithms and will be
presented in [57]. The collinear and soft sectors are classified
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FIG. 2. Size and the negative contribution of the threshold
logarithms.
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using the observable power counting in [46] and can be
calculated perturbatively. At the LO,J ðzÞ ¼ 1δð1 − zÞ and
S ¼ 1 and we reproduce Eq. (4). Beyond LO, dimensional
regularization and additional rapidity regularization are
required to regulate the divergences in the collinear and
the soft function, which generates the ϵ and η poles and the
collinear scale μ and the rapidity scale ν dependence [34,46].

With the scale choice μ ∼ ph;⊥, all logarithms involving
the scale μ are minimized and absorbed into the evolutions
of PDFs/FFs. Hence we only focus on the logarithms
associated with the scale ν. To all orders, J and S satisfy
the rapidity renormalization group equations

ν
d
dν

F ðνÞ ¼ κγνF ðνÞ; ð6Þ

whereF ¼ J orS. The rapidity anomalous dimension κγν
can be read off from the η-poles in the soft and the collinear
functions, which is calculated at NLO in [46,57] to find

γν ¼ −
αs
π

Z
dx⊥
π

�
r⊥2

r0⊥2r00⊥2

�

þ
Ta
i T

a0
j Waa0 ðx⊥Þ; ð7Þ

with κ ¼ −1ð2Þ for J ðSÞ. Here ½…�þ is the BK evolution
kernel, denoted as IBK below. We can solve Eq. (6) to find
F ðνÞ ¼ UF ðν; νF ÞF ðνF Þ, and the evolution kernel UF
evolves both functions from their natural scale νF to a
common scale ν to evaluate the cross section meanwhile
resums large logarithms ln ν

νF
. The νF is determined by

minimizing the logarithms in F and leads to νJ ¼ n̄ · p;
νS ¼ p0⊥ for the collinear and the soft sectors [46]. At LL,
we find

UJUS ¼ exp

�
γν ln

ννJ
ν2S

�
¼ exp

�
γν ln

Xf

XA

�
; ð8Þ

which resums large logarithms of the form ln ν
n̄·p and ln

ν
p0⊥

in

J and S, respectively. Here we have used ν=ðν2S=νJÞ ¼
ν=ðp0⊥2=n̄ · pÞ ¼ Xf=XA, where Xf ¼ ν=n · PA and XA ¼
p0⊥2

n̄·pn·PA
with PA the momentum of the nucleus, to get the

second equation.
The ν-independence of the cross section implies the

evolution for the dipole W†ðb0⊥Þ ⊗ Wðb⊥Þ

ν
d
dν

W†
j0c;i0c

ðb0⊥ÞWicjcðb⊥Þ

¼ αs
π

Z
dx⊥
π

�
r⊥2

r0⊥2r00⊥2

�

þ
× ½TaW†ðb0⊥Þ�j0c;i0c ½Ta0Wðb⊥Þ�icjcWaa0 ðx⊥Þ; ð9Þ

which when traced over, is nothing but the BK equation.
With the evolution in Eq. (8), the choice of the rapidity

scale Xf (or equivalently ν) could in principle be arbitrary,

since all large logarithms are resummed. One natural choice
is to set Xf ¼ XA which is nothing but the conventional
CGC scale choice. In such a way, one only needs to evolve
the CGC dipoles W† ⊗ W since the evolution UJUS ¼ 1.

In other words, all large logarithms ln p0⊥
n̄·p are effectively

absorbed into the dipole evolution, if Xf ∼ XA, when away
from threshold.

IV. NEAR THRESHOLD

When near the threshold, real energetic collinear radi-
ations are forbidden, since the longitudinal momentum of
the radiation n̄ · pð1 − zÞ is restricted to be soft as z → 1,
while virtual collinear corrections are still allowed [46].
Therefore, in the threshold limit, the collinear function
J thr. only contains the collinear virtual corrections. All real
radiations are now soft and encoded in Sthr. In the large Nc
limit, it is found that still only the soft and collinear modes
contribute at the leading power [46] and the form of the
factorization theorem remains the same as Eq. (5) but with
the replacement J ðzÞ → J thr and S → SthrðzÞ.
The NLO J thr is exactly the NLO virtual corrections of

J , which gives the evolution

UJthr ¼ exp

�
αs
π
ln

ν

νJ

Z
dx⊥
π

IBK;vTa
iT

a0
j Waa0 ðx⊥Þ

�
;

where IBK;vðr0⊥Þ ¼ ½eip
0⊥ ·r0⊥
r0⊥2 �

þ
e−ip

0⊥·r0⊥ , is the NLO virtual

correction to the BK kernel and νJ ∼ n̄ · p to avoid the
occurrence of the large logarithms within J thr.
The calculation of the NLO threshold soft function is

depicted in [46], which gives

SthrðνSÞ¼ δð1−zÞ½1þSð1Þ�−αsT2
i

π

2

ð1− zÞþ
ln

μ2

p0⊥2

þαs
π
Ta
iT

a0
j

�
νS

n̄ ·pð1− zÞ
�

þ

Z
dx⊥
π

IBK;rWaa0 ðx⊥Þ;

ð10Þ

where IBK;r ¼ IBK − IBK;v is the real contribution to the BK
evolution kernel. Here Sð1Þ is the NLO soft function for the
away-from-threshold case [46,57], which contains the
kinematic constraints. The second term got its contribution
from the initial and final parton splitting, which will be
absorbed into the threshold evolution of the PDF/FFs and
this contribution has been considered in [43]. However, we
note that this term alone is not responsible for the negative
contribution and therefore its resummation can not resolve
the negative cross section problem. We can perform the
Mellin transformation

R
dzzN−1SthrðzÞ to the soft function

to find νS ∼ p0⊥ ∼ n̄·p
Ne−γE which minimizes the logarithms in

Sthr. We find the associated evolution gives
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USthr ¼ exp

�
αs
π
ln

ν

νS

Z
dx⊥
π

�
IBK;r − 2

�
r⊥2

r0⊥2r00⊥2

�

þ

�

× Ta
i T

a0
j Waa0 ðx⊥Þ

�
: ð11Þ

We merge both the evolutions to find

UJthrUSthr ¼ exp

�
−
αs
π

Z
dx⊥
π

�
ln
νS
νJ

IBK;r

þ ln
Xf

XA
IBK

�
Ta
i T

a0
j Waa0 ðx⊥Þ

�
; ð12Þ

where we notice that the second term is identical to the
away-from-threshold evolution while the additional first
term arises to resum the threshold logarithms. The prob-
ability for emitting a soft parton (real correction) is sup-
pressed after resummation.
From the result, we see that, when near threshold, suppose

we still stick to the scale choiceXf ¼ XA, then there requires
an additional evolution factor to account for the threshold
impacts not covered by simply evolving the CGC dipole.
Given that a different rapidity scale choice Xf in the

nuclear target will be compensated by the corresponding
evolution factor in Eq. (12), the result is ignorant of the Xf
choice. Therefore, instead, we can dynamically determine
Xf by demanding it minimizing the exponent in Eq. (12)
following the similar procedure in [66,67], and hence
eliminate the complicated evolution but still maintain the
threshold resummation to all orders. The idea is similar to
set Xf ∼ XA in the away-from-threshold case. We will use
this approach for phenomenology studies.

V. PHENOMENOLOGY

Now we illustrate the numerical NLOþ LLthr predic-
tions for the kinematics relevant to both the RHIC and LHC
experiments. We include all partonic channels. We used
MSTW2008 PDF sets [68] and DSS parametrizations
[69,70] for the FFs. The CGC dipoles are obtained by
solving the LL BK equation with the running coupling
correction [71–73], with the parameters used in [74]. We set
the collinear factorization scale μ ¼ ph;⊥. For fixed kin-
ematics, we determine the central rapidity scale by scan-
ning through Xf (or equivalently ν) numerically to find the
value that minimizes the exponent in Eq. (12).
We present the predictions in Fig. 3, where we compare

the theoretical results with the data in the forward rapidity
region from the charged hadron production in pþ Pb
collisions at LHC and the hadron productions in dþ Au
collisions at RHIC [16,75]. From Fig. 3, we see that the
NLOþ LLthr results stay positive and show no signs of
turning negative. The uncertainty bands are obtained by
varying Xf around its central value up and down by a factor
of 2 and taking the maximum deviations. We see that the
uncertainties are substantially reduced when we go from
LO (orange bands) to NLOþ LLthr (red bands). The
NLOþ LLthr calculation impressively describes all the

experimental data. The central values of the predictions
slightly overshoot the LHC data for small ph;⊥ but still
within errors. The situation is expected to be further
improved if a global fit beyond LO is performed to
determine the CGC dipole initial condition.

VI. CONCLUSIONS

In this paper, through thorough studies, we identify the
threshold logarithms responsible for the negative cross
section problem that are missing in previous discussions
[43] in the forward pA → hX, within the small-x formal-
ism. We develop an all-order factorization theorem with
systematically improvable accuracy. We present detailed
derivation and numerical study for the first complete
threshold resummation at LL in the CGC formalism. We
find that the LLthr resummation can be realized simply by a
suitable rapidity scale choice in the NLO calculation. After
resummation, all predicted ph;⊥ spectrums are found to be
positive all the way to the kinematic boundaries. We
compared our predictions with the available data and
observed excellent agreements with greatly reduced scale
uncertainties, in comparison with the LO results. Our
results are ready for more phenomenological applications
at the LHC and RHIC, such as global fitting studies of the
CGC models beyond LO. Given the universality of the
LLthr structure in hadronic processes, we expect our
approach is applicable to many other practical applications
of high order CGC predictions for the small-x collider
phenomenology.
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