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Abstract

We reformulate the problem of bounding the total rank of the homology of perfect
chain complexes over the group ring I,,[G] of an elementary abelian p-group G in terms
of commutative algebra. This extends results of Carlsson for p = 2 to all primes. As an
intermediate step, we construct an embedding of the derived category of perfect chain
complexes over IF,[G] into the derived category of p-DG modules over a polynomial
ring.
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1 Introduction

Let p be a prime, G = (Z/p)" an elementary abelian p-group of rank n, and IF,[G] the
corresponding group ring over the field with p elements. The following basic problem has
a long and rich history, leading via the study of free G-actions on products of spheres back
to the topological spherical space form problem.

Problem 1.1. Determine a lower bound for the total rank of the homology of non-acyclic
perfect chain complexes of IF,[G]-modules.

Recall that a perfect chain complex is a bounded complex of finitely generated projectives.
Projective and free IFp[G]-modules coincide and so a perfect chain complex of IF,[G]-
modules is a bounded complex of finitely generated free modules.

The following was conjectured to be a general answer to Problem 1.1. Recently, Iyengar
and Walker [16] constructed counterexamples when p is odd and n > 8.

Conjecture 1.2. Let C be a non-acyclic perfect chain complex of I¥p[G]|-modules. Then
> dimp, H;(C) > 2"
i

This conjecture arises as an algebraic version of Carlsson’s conjecture in equivariant
topology: the mod-p homology of any non-empty, finite, free G-CW complex has total
IF,-dimension at least 2. Indeed, one of the original motivations for phrasing Conjecture
1.2 was to reduce the topological conjecture to a purely algebraic problem. Taking cellular
chains on a G-CW complex links these two conjectures. Although the algebraic conjecture
fails in general, Carlsson’s conjecture remains open.
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It bears mentioning that Conjecture 1.2 is known to hold for small rank n, namely for
n < 2 if p is odd and for n < 3 if p = 2. For general n, the weaker bounds

S dimg, Hy(C) > {’” btpes
; 2n ifp=2
hold. The best known bounds for general finite, free G-CW complexes in Carlsson’s
conjecture are the same.
In light of the counterexamples for odd primes and n > 8 to the bound 2" in Conjecture
1.2 and that the known bounds for the total dimension dimp, H,(C') are stronger for p = 2,
the motivating questions of this paper arise:

Question 1.3. Can the bound ), dimp, H;(C) > n + 1 for odd p be improved? Does
Conjecture 1.2 hold for 2 < n < 87

The results of this paper are a first step towards an improved bound for p odd.

To set the stage for our results we review what happens when p = 2. The bounds for
p = 2 have been established by Carlsson in a series of papers [9-11], with an additional
algebraic observation from [5, p. 147, discussion following the proof of Corollary 3.6], [2,
Corollary (1.4.21)]. We distinguish three main steps in Carlsson’s argument.

1. Conjecture 1.2 is reformulated as a problem in commutative algebra via a Koszul
duality argument. An equivalence is established between the derived categories of
perfect chain complexes over IF3[G] and of free, finitely generated DG modules over
the polynomial ring Fa[xy, ..., z,] with totally finite dimensional homology, where
G = (Z/)2)".

2. The reformulation is realized as a problem of bounding sizes of square-zero matrices
with entries in the polynomial ring Fo[zy, ..., xy,)].

3. Bounds for these reformulations are established.

Our first main result below extends the second step to all primes. It contains a num-
ber ¢, that arises as the lower bound on the size of certain p-nilpotent matrices. More
precisely, let ¢, be the minimum over all positive multiples ¢ of p for which there exist
integers cy, ..., c¢ and a p-nilpotent £ x {-matrix D = (f;;) whose entries are homogeneous
polynomials f;; € Fp[z1,...,xy] of degree ¢; + 1 — ¢; such that

i) D is strictly upper triangular,
i) (f5(0)?! =0, and
iii) rank(fi;j(x)) = (p—1)¢/p for all x € (F,)"™ \ {0}.

Theorem 1.4 (Theorem 6.14 for ;). Let G = (Z/p)"™ and ¢,, the integer defined above.
Then dimy, He(C) > 2£,,/p for any non-acyclic, perfect chain complex C over I,[G].

When p = 2, this is a rephrasing of results of Carlsson; it is the second step mentioned
above in the argument to establish bounds on dimp, He(C). A key element in the proof
of Theorem 1.4 is an extension of the first step above, the reformulation of the p = 2 case
of Conjecture 1.2 as a problem about DG modules over the polynomial ring, to all primes.
To do this, we need to replace the differential of a chain complex or a DG module (which
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is a square-zero map) with a p-nilpotent map d. Of course, since d? # 0, we are no longer
in the realm of DG modules. Instead, we are working with objects called p-DG modules.
Associated to a p-DG module M, are p — 1 different homology groups:

sHo(M) = ker(d®)/im(dP™?),
one for each 1 < s <p—1.

Theorem 1.5 (Theorem 5.9 for I)). Let G = (Z/p)". Let A denote the polynomial ring
F,lx1,...,x,] graded by deg(x;)=-1. Let b, be the minimum of

Z dimp, 1 H;(M ®4 F,),
i

where M ranges over the finitely generated, free p-DG A-modules with ;He(M ®@41F),) # 0
and dimy, sHe(M) < 00 for all 1 < s < p—1. Then

> " dimp, H;(C) > by

for all non-acyclic, perfect chain complexes C over IF,,[G].

Theorem 1.5 is based on a construction of independent interest. For G = (Z/p)", we
provide an embedding of the derived category of perfect chain complexes over IF)[G] to
the derived category of free, finitely generated p-DG modules over the polynomial ring in
n variables A with totally finite dimensional homology (see section 5.2 and Theorem 7.1).

Theorem 1.6. There is an embedding of derived categories
D(Perf (IF)[G])) — D(p-DG-4Mod).

The embedding to free, finitely generated p-DG modules with totally finite dimensional
homology extends Carlsson’s Koszul duality construction from p = 2 to all primes, but it
is not an equivalence for p > 2.

To pass from p-DG modules to our main result, Theorem 1.4, we pick a basis for a free,
finitely generated p-DG module M and express its p-differential by a p-nilpotent matrix.
We extend three additional results from p = 2 to all primes to specialize to the matrices
satisfying the three conditions in Theorem 1.4.

In Corollary 6.15 of our main result, we recover immediately the known low-dimensional
cases of Conjecture 1.2 for odd p. In future work, we intend to apply Theorem 1.4 to
investigate Conjecture 1.2 when n = 3, the first open case for odd p.

Related work

Let C be a non-acyclic, perfect chain complex over I,[G] for G = (Z/p)". The known
bound n + 1 for the total rank of its homology He(C') was obtained by bounding the sum
of Loewy lengths

Z ll]Fp[G]HZ‘(C) >n+1 (1.1)

together with the trivial observation dimp, H;(C) > llg, (g Hi(C). This is due to Carlsson
for p = 2, and to Allday, Baumgartner, Puppe (see [2, (1.4.14) Theorem]) for odd p
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when C'is the cellular cochain complex of a finite, free G-CW complex. In [4], Avramov,
Buchweitz, Iyengar and Miller established the bound (1.1) for any C' and independently of
the parity of p. They introduced a functor that sends C' to a DG module over a polynomial
ring and established the bound (1.1) using levels of corresponding triangulated categories.
Note that from the Loewy length alone it is not possible to improve the bound n + 1 for
the total rank of He(C).

For p = 2, Carlsson bounded the total rank of He(C) after reformulating to DG
modules over a polynomial ring. In [3], Avramov, Buchweitz, and Iyengar established
rank inequalities for differential modules over more general rings than the polynomial
ring, subsuming Carlsson’s bounds. It would be interesting to establish rank inequalities
for p-differential modules.

Adem and Swan established Conjecture 1.2 for perfect chain complexes concentrated
in two degrees in [1, Corollary 2.1].

Lastly, we mention that the functor § defined in section 5.2 is related to constructions of
Friedlander-Pevtsova [14] and Benson-Pevtsova [6], associating vector bundles on P"~! to
I, [G]-modules of constant Jordan type. If M is a finitely generated IF)[G]-module viewed
as a p-complex concentrated in degree zero, then the differential d of the p-differential
graded A-module B(M) identifies with the map ©j; used in the definition of the functors
Fi from F,[G]-modules of constant Jordan type to vector bundles on P"~1 in [6, Section
2], see also [7, Section 8.4]. More precisely, regrade 3(M) as a free, graded module over
the polynomial ring Fp[z1,...,2,] with its usual grading, deg(z;) = 1, so that the p-
differential d of 5(M) raises the degree. With these grading conventions, the associated
quasi-coherent module on P! is just M = M ®r, Opn-1 and the map M — M(l)
associated to d is exactly ©yy.

Outline

In the same way that a DG module has an underlying chain complex, a p-DG module has
an underlying p-complex. In sections 2 and 3, we primarily recall the basics of p-complexes.
Moreover, we show in Proposition 3.11 that tensoring with a p-complex preserves homo-
topies. In section 4, we extend the notion of Koszul complex to a p-complex. We use this
extension to connect perfect chain complexes over I)[G] to p-DG modules with totally
finite dimensional homology and to prove Theorem 1.5 in section 5. In section 6, we es-
tablish three results, Proposition 6.3, Proposition 6.5 and Theorem 6.12, corresponding
to the three conditions of the matrices in Theorem 1.4. We then prove our main result,
Theorem 1.4, and recover the known low-dimensional cases of Conjecture 1.2 for odd p
from it. In section 7, we prove that the construction from section 5.2 connecting perfect
chain complexes over I, [G] to p-DG modules induces an embedding on derived categories.
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2 N-complexes

We will work with p-complexes instead of chain complexes. Instead of having a differential
d such that d?> = 0, a p-complex is equipped with a map d such that @ = 0. They have
been introduced by Mayer in [21], who used them to define an alternative to the usual
homology groups associated to a simplicial complex. However, as shown by Spanier [23],
Mayer’s new homology groups are expressible in terms of singular homology. As a result,
it seems interest in p-complexes waned and they were forgotten about for the next fifty
years, reappearing in work of Kapranov [17] and more recently in work of Khovanov and
Qi [19,20] on the categorification of small quantum groups. Despite Spanier’s result, the
derived categories of chain complexes and of p-complexes are different, as can be seen for
example from Khovanov’s computation of K of the derived category of p-complexes [19,
Proposition 5.

We will be interested in the case when p is a prime, but the general theory works for any
integer N > 2. We recall the necessary basic definitions and properties following [13,17,18].
We point readers interested in structural properties to [15] in which the homotopy category
and derived category of N-complexes are equipped with triangulated structures.

Fix an integer N > 2 and a (unitary) ring R.

Definition 2.1. An N-complex of R-modules is a Z-graded R-module C' together with a
homomorphism d: C' — C of degree —1 such that d¥ = 0. We call d the (N-)differential
of C.

A morphism C — C' of N-complexes is a homomorphism of degree 0 that commutes
with the differentials. We denote the category of N-complexes by N-Ch(R).

Two morphisms f,g: (C,d) — (C’,d’) are homotopic if there exists a homomorphism
h: C — C' of degree N — 1 such that

N—
f —g= Z (dl)Nflfihdi.

=0

—_

Note that a 2-complex is just a chain complex and for N = 2 the definitions specialize
to the terminology used for chain complexes.

Definition 2.2. For 1 < s < N — 1, the homology functor ¢H, from the category of
N-complexes N-Ch(R) to the category of Z-graded modules is defined by

ker(d*: Cp, — Cp—s)
im(dN=5: Cpyn_s — Ch)

an(C) =

for an N-complex C' and integer n.
A morphism f of N-complexes is called a quasi-isomorphism if sHq(f) is an isomor-
phism for all 1 <s < N — 1.

As expected, homotopy equivalent N-complexes have isomorphic homology groups.

Lemma 2.3 ( [18, Lemme 1.3]). Homotopic maps between N-complexes induce the same
map on homology.
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Definition 2.4. An N-complex C'is acyclic if ;Ho(C) =0forall 1 <s <N —1.
Kapranov proved that it is enough to check acyclicity for one s.

Proposition 2.5 ( [17, Proposition 1.5]). An N-complex C' is acyclic if and only if
sHo(C) =0 for some1 <s <N —1.

Since a short exact sequence of chain complexes induces a long exact sequence in
homology, we obtain the following result.

Lemma 2.6 ( [18, Lemme 1.8]). Let 1 < s < N — 1. A short exact sequence
0C'"-C—-C"=0

of N-complexes induces a long exact sequence

sHo(C7) sHe(C) sHo(C")

T i

N—sHo(C//) I N—sHo (C) <~ N—sHo(C,)a

where the upward pointing arrow is of degree —(N — s), the downward pointing arrow is of
degree —s and the horizontal arrows are induced by the maps in the short exact sequence.

If N > 3, then the inclusion i: ker d® — ker A5t for 1 < s < N — 2 induces a natural
map ix: sHe(C) — s41H,(C) of degree 0, and the differential d: kerd® — kerd*~! for
2 < s < N —1 induces a natural map d: sHe(C) — s_1H,(C) of degree —1.

Lemma 2.7 ( [13, Lemme 1]). For any integers r,s > 1 withr+s < N — 1, the sequence

()" (d«)?

SH.(C) s+7"H0(C) TH-(O)
(d*)N’r‘sT i(i*)NsT
Nfrﬂo(c) W NfsfrHo(C) ~ Nszo(C)

(d«)
is exact.

Working over a field k, any chain complex is a direct sum of shifts of the contractible
chain complex
= 02k k—=0— ...

and of
.= 0—=k—>0—....

For N-complexes, there are more non-contractible building blocks.

Proposition 2.8 ( [24, Proof of Proposition 2|). Let k be a field. Any N-complex of
k-vector spaces is a direct sum of shifts of the contractible N-complex

o= 0=k S5 k—=>0— ...
consisting of N — 1 identity arrows idy and of shifts of the N-complexes
o= 0=k S k—=0— ...

with i identity arrows idg, 0 <7 < N — 2.
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The proof is similar to establishing the normal form

M =P kve ©kf(va) ® ... ® kf(va)
[0
with v, € M and i, > 0 of a nilpotent endomorphism f of a vector space M over k.

3 Primitive roots of unity and the tensor product for N-
complexes

Let N > 2 and suppose that R is a commutative ring with unit 1 # 0. The sign —1
that appears in the differential of the tensor product of two chain complexes gets replaced
by a primitive Nth root of unity ¢ in the tensor product of N-complexes. Working with
N-complexes, the combinatorics become more involved and require g-analogues of combi-
natorial identities. For the p-complexes we will consider, the ring R will be an algebra over
a field of characteristic p and ¢ = 1 so that the ordinary combinatorial identities suffice.

Here we recall the general definitions and structural properties following [8,12,17]. In
addition, we prove that tensoring with an N-complex preserves homotopies (see Proposi-
tion 3.11).

3.1 Primitive root of unity

Fix an element ¢ of R.

Definition 3.1. Let [-],: N — R denote the function [n], = 3.7~ ¢* with the convention
that [0}, = 0.
The g-factorial [n],! of n is defined by [0],! =1 and

[nlg! = [T *q

k=1

for integers n > 1.
For integers n > m > 0, the ¢-binomial coefficient ( )q € R is defined inductively by

{(G)f (g =1 m

(77:-;11)(1 _ (n)q 4 gl (mil)q forn—1>m>0.

Example 3.2. If R = Z and ¢ = 1, then the map [-];: N — Z is the inclusion, and the
g-factorial and the g-binomial coefficients agree with the ordinary factorial and binomial
coefficients, respectively.

Definition 3.3. A distinguished primitive Nth root of unity of R is an element ¢ € R
such that [N], = 0 and [n], is invertible for all 1 <n < N — 1.

Note that ¢V =1 as ¢V — 1 = (¢ — 1)[N], = 0 for any distinguished primitive Nth
root of unity ¢. In particular distinguished primitive Nth roots of unity are invertible.
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Example 3.4. If R = C, then g € C is a distinguished primitive Nth root of unity if and
only if g is a primitive Nth root of unity in the ordinary sense.

If k is a field of characteristic p > 0 and N = p, then ¢ = 1 is a distinguished primitive
pth root of unity of the field k.

If R is any commutative ring and N = 2, then ¢ = —1 is the unique distinguished
primitive Nth root of unity of R.

The following identity holds by induction.

Lemma 3.5. Let q be a distinguished primitive Nth root of unity of R. Then

(), = =y

[Vlg! _ 1.

for all N > n > m > 0 with the convention that Nl =

The case ¢ = 1, R = Z of the following identity is well-known to combinatorialists.
We will need it to show that tensoring with an N-complex preserves homotopies.

Lemma 3.6. Let q be a distinguished primitive Nth root of unity of R. For all 0 < s <
t < m the identity

t

(s+1)t m—1—i D\ —i(s1) _ m
1 Z(m—l—t>q<s qq m+s—t/,

=S
holds.
Proof. If s = t, then the identity holds since

m
gD+ < > '
m q

In particular, the identity holds for m = 1. For m > 1, the identity is established by
double induction on m and ¢. O
3.2 Tensor product

Suppose that R is equipped with a distinguished primitive Nth root of unity q.

Definition 3.7. The tensor product C' ® D of two N-complexes C, D is the N-complex
given by the graded R-module {®,1p—,Cq @ Dp}nez with differential induced by

dz@y)=dr®@y+q “zdy
for z € C, and y € Dy,
The map d satisfies dV = 0 as
Froy) = 3 gt (1) @ @) (3.1)
=0 M/

by induction on k£ and (%)q =0for 1 <m < N —1 by Lemma 3.5.
For any N-complex C, the functor — ® C' has a right adjoint Hom(C, —).
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Definition 3.8. The Hom-complex Hom(C, D) of two N-complexes C, D is the N-
complex with Hom(C, D),, = [ [;c, Homg(C;, D;i1y) for n € Z and differential d: Hom(C, D), —
Hom(C, D),,—1 defined by

d((fi)iez) = (dfi — ¢ " fi-1d)icz.
The map d satisfies dV = 0 as

k

—-m, (k—m)(k—m— —(k—m)n k m —m
& (f) = (Z(_l)k =) (b=m 1) /2 (k) <m> 0 fo o dt )
q

m=0 i

by induction on k£ and since (%)q =0forl1<m<N —1.

The structural properties of the tensor product and the Hom-complex are summarized
in the following result.

Proposition 3.9 ( [8,12,17]). The category of N-complexes together with the tensor
product and the N-complex given by R concentrated in degree zero is a monoidal category.
When N > 3, this monoidal structure does not admit a braiding in general. For any N-
complex C, the functor — ® C' is left adjoint to the functor Hom(C, —).

Remark 3.10. If ¢ = 1, then the monoidal structure is symmetric with symmetry induced
by
CRDEDRC, zQy—yu.

This holds in particular in our cases of interest, namely p-complexes in characteristic p.
We prove that tensoring with an N-complex preserves homotopies.

Proposition 3.11. Let h be a homotopy between two maps of N-complexes f,qg: C — C".
Then h@ D: C® D — C'® D is a homotopy between f ® D and g® D for any N-complex
D. Similarly, D ® f and D ® g are homotopic via

xRy q ‘x®h(y)
for homogeneous elements x € D, and y € Cy,.

Proof. To establish the first statement, we have to show that

N—-1
S AN (h@ D)dbgp(z @ y) = f(o) @y — g(a) @y
1=0

for any homogeneous elements * € C, and y € D;,. While here we used subscripts to
distinguish the differentials, we will henceforth denote most differentials by d.

Writing out dg,gﬁi, di0® p using (3.1), and simplifying ¢ = 1, the left-hand side
becomes

S gemeDin)gaiom) <N— 1 - Z) <Z> (@ hd™z) @ (AN 1=y,
q m q

0<i<N-1 J
0<G<N-—1—i
0<m<i
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Simplifying and changing the order of summation yields

Y gl by <N_.1 _i) <Z) (hd™a) @ (dV~1 7).
q m q

0<m<N-1 J
0<j<N—1-m
m<i<N—1—j

The sum over 0 < m < N — 1 of the terms with j = N — 1 — m and thus ¢ = m is

N-1
Y AV A s @y = (f —g) (@) @ y.

m=0

We conclude showing that for j # N — 1 — m, the sum

q(a—m—l)(i+j+1)+a(m—i) (N —-1- Z) ( i >
j q m q

is zero. Indeed, setting s =m,t = N — 1 — j and applying Lemma 3.6, the sum becomes

qa(s—t) N )
N+s—-t/,

This is zero by Lemma 3.5 as s < t by assumption on j.
The proof of the second statement is similar. O

N J

)

1—
=m

4 An extension of Koszul complexes

Recall that the Koszul complex Ko(z1,...,x,) of the polynomial ring over a field k with
respect to the variables x1,...,x, is a minimal free resolution of the field. We extend
the notion of Koszul complex to an N-complex K (x1,...,x,). In general, the resulting
N-complex will no longer be quasi-isomorphic to the N-complex given by the field &
concentrated in degree 0, but the total k-dimension of its homology groups s He will still be
finite. This result is precisely what we will need in our extension of Carlsson’s reformulation
of Conjecture 1.2 to all primes.

Let N > 2 and let R be a commutative ring with a distinguished primitive Nth root
of unity gq.

Definition 4.1. For an element = € R, let K2 (x) denote the N-complex
.5 0->R5RS5 ... 5R—-0— ...,

where the first R lies in degree N — 1 and the last R lies in degree 0.
For a sequence z = (21, ...,2,) of elements in R, define the N-complex K2 (x) by

EN@)=KN@)®...0 KN (x,).

For N = 2, the chain complex KZ(z) is the Koszul complex K,(z) of the sequence .
In particular, if = is a regular sequence in R, then K2(z) is quasi-isomorphic to R/(x)
concentrated in degree 0. This is not the case when N > 2 as the following example shows
already in one element x.
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Example 4.2. Let R = k[z] be the polynomial ring in one variable z over a field k. Then
K (x) is quasi-isomorphic to

where k[z]/(z) is in degree N — 2 and thus k[z]/(zV 1) is in degree 0.

We calculate the homology groups of KN (x) for a sequence of more than one element
in an example.

Example 4.3. Let N = p = 3 and let R = IF},[z, y| be the polynomial ring in two variables
over I, with ¢ = 1. Then the non-zero part of KJ(x,y) is

y 0

Yy T Yy z y 0
x 0 = 0z y <=T y)
Roo — Ro1 ®R12 —  Ropg® R @ Rop — Rio® Rop —" Royp
where R; j = K (z) @ KN (y).
We calculate the homology groups (H; := (H;(K3(z,y)), s = 1,2 and i € N, as

IF-vector spaces.
For s = 1, we obtain

1Hy=F,oF,x®IFpy
1Hy = Fy(y, —)
1H; =0 fori>2.
For s = 2, we obtain
{2H0 =T,
oH;, =0 fori>2
by direct calculation, and oH; = ), ® IF, ® IF, from the long exact sequence of Lemma

2.7.

While we will not use the following result, we record it because for N = 2 it is a starting
point for showing that the Koszul complex of a regular sequence is a free resolution. For
an integer [, let C[l] denote the shifted N-complex with C[l|; = C;_;.

Lemma 4.4. Let C be an N-complex and x € R. For any 2 < m < N, there is a short
exact sequence of N-complexes

0—C—CoK"z)— C® (K" (z)1]) — 0,
where the m-complex K™ (x) is considered as an N-complex and K}(z) = R.

Proof. The desired short exact sequence is given in degree i by

m—1 m—1
0— C; — @C’H — @CH —0
1=0 =1
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Our extension of Carlsson’s reformulation of Conjecture 1.2 to all primes relies on the
following proposition.

Proposition 4.5. Let N = p be a prime number, let k be a field of characteristic p, and
let (R,q) be the polynomial ring k[x1,...,x,] in n variables with distinguished primitive
root of unity 1. Then

dimy, JH (KN (x1,...,2,)) < 00

foralll <s< N —1.

Proof. We will show the equivalent statement that each x; acts nilpotently on the ho-
mology sHo(KY (z1,...,2,)). In fact, we will show that the multiplication by (2;)?~! on
K (xq,...,2,) is homotopic to the zero map. A nullhomotopy h for (z;)P~': KN (z;) —
KY(z;) is given by h(z) = z for z in degree zero and h(z) = 0 otherwise. Tensoring h
together with the identity maps on K (z;) for j # i yields the desired nullhomotopy for
()P~ KN (21,...,20) = KN (21,...,25). O

5 From chain complexes of (Z/p)"-modules to p-DG modules

In this section, we prove our first main result, Theorem 1.5 from the introduction, connect-
ing chain complexes with a (Z/p)"-action and p-DG modules over a polynomial ring via
a functor . We introduce terminology and basic properties of p-DG modules in section
5.1. We construct 8 and establish Theorem 1.5 in section 5.2.

5.1 Definitions and basic properties of p-DG modules

Let p be a prime number and let k be a field of characteristic p. We fix ¢ = 1 as a
distinguished primitive pth root of unity. We write A = k[z1,...,x,] for the polynomial
ring in n variables graded by deg(z;) = —1, 1 < i < n. Equipped with a trivial differential,
we consider A as a monoid in the category of p-complexes. The graded ring A is not graded
commutative in the ordinary sense, but it is a commutative monoid with the symmetry
from Remark 3.10.

Definition 5.1. A p-differential graded A-module M is a graded A-module M together
with an A-module map d: M — M (thus d(am) = ad(m) for all a € A and m € M) of
degree —1 such that dP = 0.

The category of p-differential graded A-modules is denoted by p-DG-4Mod.

Any p-DG module has an underlying p-complex, i.e. N-complex with N = p, of
k-modules. As for DG modules, a homotopy between two maps of p-DG modules is a
homotopy between the maps on underlying p-complexes that commutes with the A-action.

The category p-DG-,Mod fits into the Hopfological algebra framework of Khovanov
[19] and Qi [22]. We will need it for the characterization of homotopy equivalences between
p-DG modules via contractibility of mapping cones in Proposition 5.2. A reader willing
to take this result for granted, may skip to the explicit description (5.1) of the mapping
cone.

The category p-DG-2Mod can be understood as the category of graded modules over
a certain comodule algebra Ay over a Hopf algebra, as follows. We write H = k[d]/(dP).
This is a graded Hopf algebra, with deg(d) = —1, comultiplication A(d) =d® 1+ 1®d,
antipode S(d) = —d and counit £(d) = 0. As for p-complexes, we use the symmetry
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rT®y — y®z instead of z R y — (—l)deg(x) deg(W)y © 2 on the category of graded k-
vector spaces. Thus H is commutative and cocommutative. The category of graded (left)
H-modules yMod is isomorphic to the category of p-complexes considered in section 2.

Now consider the algebra Ay = A ®y H. This is a graded (right) H-comodule algebra
with coaction Ag: Ay — Ap @ H defined by Ay = id ® A. The category 4,Mod of
graded left Ag-modules is isomorphic to p-DG-4Mod. The H-comodule structure of Ay
plays no role in defining the category 4,Mod, but it is used to define the functor

®: a,Mod x yMod — 4,Mod
by (M,C) — M ®; C with As-action

Ap®id

Ag R M @, C ™= Ay R H Q) M ®, C = AgQ M @ H R C — M ®y, C.

A morphism f: M — M’ of Ag-modules is said to be null-homotopic if it factors as
a composite of the form M — N ®;, H — M’ for some Ag-module N. In fact it suffices

that f factors as

m® dP1 M @ H[p

where H[p — 1] is the shift of H with H[p — 1]; = H;_p41, see [19, Lemma 1].

A map g: M ®y H[p—1] — M’ is equivalent to A-module maps ¢g;: M[p—1—i] — M’
from shifts M[p — 1 — 4] of M such that g;41 + giod = dog; for 0 < i < p—1 and
gp—10d=dog,_1. Thus g is completely determined by go. Moreover

p—1 p—1
Gp—1 :ZO( 1)10 1+1( . )d’g dP~ 1—4 ;dzgodp—l—z

so that giving the map g which factors the map f: M — M’ through M — M @, H[p—1],
is equivalent to specifying a homotopy from f to the zero map.

The associated stable module category 4,Mod is defined as the quotient of 4,Mod by
the ideal of null-homotopic maps. It agrees with the homotopy category of p-DG-4Mod,
i.e., the localization of p-DG-4Mod with respect to the homotopy equivalences.

By [19, Theorem 1], the stable module category a4,Mod is triangulated. The shift
functor 7" sends a p-DG module M to the quotient in the short exact sequence

0—>M—M®,Hp—1 —TM — 0.

A triangle
X—=>Y>72-TX

in 4,Mod is distinguished if it is isomorphic to a triangle of the form

ML N Cone(f) — T M,

where Cone(f) denotes the pushout of

N M Mo, Hp-1]



14 5.1 Definitions and basic properties of p-DG modules

in p-DG-4Mod.
We call Cone( f) the mapping cone of f. Explicitly, it is given by the graded A-module

Cone(f)=M[p—1|eoMp—-2]®...o M[1]®& N (5.1)
with p-differential represented by

O =
—_

o O
o O

0 1 d
0 ... 0 f

U

By definition of Cone(f), we have a map of short exact sequences

0—>M—> M, Hjp—1] ™ 0 (5.2)
ok
0 N Cone(f) T™ 0.

From the resulting map between the induced long exact sequences in Lemma 2.6 and
the five lemma, it follows that f: M — N is a quasi-isomorphism if and only if Cone(f)
is acyclic. The analogous characterization of homotopy equivalences holds as well. It is a
direct consequence of the triangulated structure.

Proposition 5.2. A morphism f of p-DG A-modules is a homotopy equivalence if and
only if its mapping cone Cone( f) is contractible, i.e., chain homotopy equivalent to 0.

We say that a p-differential graded A-module M is free if the underlying graded A-
module is free, i.e., if the underlying A-module is a direct sum of shifts of A. Similarly M
is said to be finitely generated if the underlying graded A-module is so.

We identify k with the quotient field A/(z1,...,2,). We will use repeatedly that for
free, finitely generated graded A-modules, the functor —® 4 k reflects isomorphisms. More
generally, finitely generated can be replaced by the condition that the graded modules are
zero in large enough degrees. The point is that the graded version of Nakayama’s lemma
holds for such modules.

Lemma 5.3. [9, see e.g. §(I) Proposition 1] Let f: M — N be a morphism of free graded
A-modules such that M, = N, = 0 for all large enough n. If f ® s k is surjective, then f
is a retraction. If f ® 4 k is injective, then f is a section.

The next two results extend [9, §(I) Lemma 7] and [9, §(I) Corollary 8] from DG
modules to p-DG modules.

Lemma 5.4. Let M be a free p-DG A-module such that M, = 0 for all large enough n.
If sHe(M ®4 k) =0 for some 1 < s < p— 1, then M is contractible, i.e., chain homotopy
equivalent to 0.
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Proof. Proposition 2.8 provides a decomposition of any p-complex of vector spaces. Since
sHo(M ®4 k) = 0, the decomposition of the p-complex M ® 4 k is of the following form.
There exist homogeneous elements v, € M ® 4 k such that

M@k kv ®kd(va) ® ... @ kd” (va).

Let F be the free graded A-module on generators {w?, ..., wh '}, with w!, in the same
degree as d'v,. The differential

i+1 .
. < — 17
d(w}) = Ya l P
0 t=p—1,

equips F' with the structure of a p-DG A-module. For each «, choose a lift v, € M of v,.
Then F — M, w!, — d'D,, defines a map of free p-DG A-modules. Moreover, the induced
map FF®4k — M ®4 k is an isomorphism. Thus F — M is itself an isomorphism by
Lemma 5.3. Finally, the identity map on F' is nullhomotopic via

Mw):{ i=p—1

Thus M is contractible as well. O

Corollary 5.5. Let f: M — N be a map of free p-DG A-modules such that M, = N, =0
for all large enough n. If f ® 4 k is a quasi-isomorphism, then f is a chain homotopy
equivalence.

Proof. By Proposition 5.2, it suffices to show that the mapping cone Cone( f) of the map
f: M — N is contractible. If M and N are free, then so is Cone(f). Moreover the
assumption that M, = N, = 0 for large enough n implies that Cone(f), = 0 for large
enough n. As Cone(f)®4k = Cone(f®4k), it follows that if f® 4k is a quasi-isomorphism,
then Cone(f ®4 k), and hence Cone(f) ®4 k is acyclic. Thus Cone(f) is contractible by
Lemma 5.4 as desired. O

5.2 The functor

Let p be a prime number and let k be a field of characteristic p. Let G = (Z/p)" be
an elementary abelian p-group of rank n. We establish Theorem 1.5 connecting chain
complexes over k[G] to p-DG modules over the polynomial ring A. First, we associate to
a chain complex C' a p-complex ¢C with the same homology groups, up to grading shifts
and deletion of trivial groups. Thereafter, we construct a p-DG module 5(.C), and prove
Theorem 1.5.

For a chain complex C| let «C' denote the p-complex obtained by adding p — 2 identity
morphisms to the modules in even degrees as follows (displayed below the module is the
degree of that term of ()

LS ab o bHo S SobobHo S S0-5
2p 2p—1 2p—2 p p—1 p—2 0
So the modules of odd degrees 2i—1 of C' now lie in degree pi—1, that is, (¢C)pi—1 = Ca;i_1.
The p — 1 modules between (:C')p;—1 and (¢C)p(i41)—1 are given by Cy;.
A straightforward calculation shows that up to regrading and deletion of trivial homol-
ogy groups, the homology sH,e(tC') agrees with the homology He(C') for any 1 < s < p—1.
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Lemma 5.6. Let C be a chain complex and let 1 < s < p — 1. The homology groups
sHeo(1C) are given by

sHpi—1(tC) = Ha—1(C)
sHpi—14s(tC) = Ho;(C)

for i € Z and are zero in the remaining degrees. Moreover, the induced maps i, (see
section 2) are isomorphisms

1H(1C) =2 oH (1C) = ... gplel(LC)

whenever [ is congruent to p — 1 mod p, and the induced maps d. (see section 2) are

isomorphisms
p_lHl(LC) =, ..= 2H17p+3(LC) = 1Hl,p+2(LC)

for | congruent to p — 2 mod p.

Remark 5.7. The choice of (C fits well into the history of p-complexes. Namely, work-
ing with a coefficient group whose elements are of order p, Mayer associated to a finite
simplicial complex K a p-complex C(K) and introduced the groups sHe(C(K)) in [21].
Spanier proved in [23] that these groups are not new invariants, but agree with the ordi-
nary homology groups of K in that the non-trivial ones are (Hp;—1(C(K)) = Hai—1(K)
and sHpi—1+s(C(K)) = HQZ(K) for i € Z.

In defining the functor 3, we will use that the group ring k[G] is isomorphic to a
truncated polynomial ring via

Elyr,---,
H gkj[G], yi —e; — 1, (53)
where e; = (0,...,1,...,0) € (Z/p)"™.

We continue writing A = k[x1,...,x,] for the graded polynomial ring with deg(x;) =
—1. Since k is of characteristic p, we can fix ¢ = 1 as a distinguished primitive root of
unity of A.

We define a functor from the category p-Ch(k[G]) of (unbounded) p-complexes of
k[G]-modules to p-DG-sMod. Let

B: p-Ch(k[G]) — p-DG-41Mod

be the functor that sends a p-complex C to C ®; A as a graded k-vector space. The
A-module structure is defined by right multiplication and the differential d: 3(C) — 5(C)
is induced by

d(c@y f) = d(c) @k f+ ) _ yic @ wif
1=1

for homogeneous elements ¢ € C' and f € A. To verify that dP = 0, use that

by induction on [ > 1.
As for p-DG modules, we define freeness and finite generation for C' € p-Ch(k[G]) via
the corresponding notions for the underlying graded k[G]-modules.
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Lemma 5.8. Let C € p-Ch(k[G]). If C is free and finitely generated, then
dimg, sHe(B(C)) < 00
foralll1 <s<p-—1.

Proof. First, suppose that C'is given by k[G] concentrated in degree 0. Let N = p. Ignor-
ing the grading, we can identify 3(C) = k[G] ®) A with the N-complex KX (z1,...,2,)
introduced in Definition 4.1 for the variables x; € A, 1 < ¢ < n. Indeed, this follows
immediately using the identification (5.3) of the group ring with the truncated polynomial
ring and denoting the generators in KN (x;) by

e 0 Ay) B Ay B B AT S0

Thus in this case, the k-vector space sHq(5(C)) is finite dimensional by Proposition 4.5.
The general case follows by induction on the number of generators using the long exact
sequence from Lemma 2.6. O

The composite Gt induces an embedding on derived categories from perfect chain com-
plexes to p-DG A-modules with totally finite dimensional homologies. We postpone the
proof of this structural result to section 7 as it requires Theorem 6.12 from section 6.

We establish our first main result. The case £ = I, is Theorem 1.5 stated in the
introduction.

Theorem 5.9. Let G = (Z/p)". Let k be a field of characteristic p and let A =
k[xi,...,zy] be the polynomial ring graded by deg(x;) = —1. Let b, be the minimum of

Zdlmk 1HZ(M XA k‘),

7

where M ranges over the finitely generated, free p-DG A-modules with sHe(M @4 k) # 0
and dimy, sHe(M) < 00 for all 1 < s <p—1. Then

> dimy H;(C) > by

for all non-acyclic, perfect chain complexes C over k[G].

Proof. Let C be a non-acyclic, perfect chain complex over k[G]|. Then (C is a free and
finitely generated p-complex over k[G]. Set M = B(.C). By construction M is free and
finitely generated. We have dimy, sHe(M) < 00 for all 1 < s < p — 1 by Lemma 5.8. Note
that 5(1C) ®4 k = 1C as p-complexes. Thus

dimy, 1H.(M ®A k) = dimy, 1H.(LC) = dimy, H.(C),

where the last equality holds by Lemma 5.6. In particular 1 H(M ®4 k) # 0 and hence
sH(M ®4 k) # 0 for all 1 < s < p—1 by Proposition 2.5. It follows that dimy He(C) =
dimy 1H.<M ®A k) > by,. O

In particular for £ = IF),, bounding b, > 2" would establish Conjecture 1.2 on the
total rank of the homology of perfect complexes over I,[G]. For p = 2, Carlsson showed
in [10, Proof of Proposition I1.9] that Conjecture 1.2 implies b, > 2™ as well.
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Remark 5.10. We can reduce to algebraically closed fields in the following sense. If b,, is
defined as in Theorem 5.9 for k and b}, is the analogous minimum for the algebraic closure
k, then b, > b/,. Indeed, let M be a finitely generated, free p-DG A-module. Denote
A" = k[x1,...,2,]. Then M’ = M ®4 A’ is a finitely generated, free p-DG A’-module.
Moreover dimy, sHe(M) = dimy ;He(M') and

dlmk SH.(M XA k) = dlmESH.(M/ X A E)

forany 1 <s< N —1.

Alternatively, we can first replace the non-acyclic, perfect chain complex C' over k[G]
with C" = C ®y) k[G] to obtain a perfect chain complex over k[G]. Then dimy, Ho(C) =
dimy He(C") and thus dimy, He(C) > 1},.

6 From p-DG modules over a polynomial ring to p-nilpotent
matrices

Let p be a prime and let k be a field of characteristic p. Let A = k[xy,...,z,] denote
the polynomial ring in n variables graded by deg(z;) = —1. If M is a finitely generated,
free p-DG A-module and we choose a basis, then the p-differential can be expressed by a
p-nilpotent matrix D = (f;;) with entries homogeneous polynomials. By p-nilpotent we
mean that DP = (. So for p = 2 we obtain square-zero matrices. In this case, Carlsson
proved three results reducing Theorem 5.9 to matrices of a particular form. The particular
form of the matrices is expressed through conditions i), ii), iii) in the following theorem.

Theorem 6.1 (Carlsson). Let k be the algebraic closure of Fy and let G = (Z/2)". Let
£, be the minimum over all even integers £ > 0 for which there exist integers ci,...,cp
and a square-zero { x {-matrix D = (f;;) with entries homogeneous polynomials f;; €
klx1,... 2] of degree' ¢; +1 — ¢; such that

i) D is strictly upper triangular,
ii) (fi;(0)) =0, and
iii) the matrix (f;;(x)) has rank £/2 for all x € k™ \ {0}.
Then dimp, He(C) > ¢,, for all non-acyclic, perfect chain complexes C' over IF3[G].

Carlsson established Conjecture 1.2 for p = 2 and n = 3 by bounding f3 > 23 in
Theorem 6.1 above.

Example 6.2. Conjecture 1.2 for p = 2 and n = 2 follows easily from Theorem 6.1.
Indeed, to bound ¢ > 2%, we have to exclude the existence of 2 x 2-matrices D = (f;;)
satisfying the conditions above. Since D is supposed to be strictly upper triangular, this
matrix has only one potentially non-zero entry fis. A non-constant polynomial in two
variables over an infinite field has infinitely many zeros. Thus condition iii) implies that
f12 is constant and different from zero. This contradicts condition ii).

In this section, we will extend Theorem 6.1 from p = 2 to all primes.

'Here the degree is taken with respect to the standard grading degx; = 1.



19 6.1 Minimality

6.1 Minimality

The reason for condition ii) in Theorem 6.1 is that any free, finitely generated DG A-
module M can be replaced by a chain homotopy equivalent one M which is minimal in
the sense that the differential of M ® 4 k is zero. We extend this result, [11, §1 Proposition
7], to p-DG A-modules.

Proposition 6.3. For any free, finitely generated p-DG A-module M, there exists a free,
finitely generated p-DG A-module M and a homotopy equivalence f: M — M such that
the differential of M ®4 k is (p — 1)-nilpotent.

Proof. By Proposition 2.8, the p-complex M ® 4 k decomposes as

M®ask= P kva®kd(va) ® ... & kd"™ (va).

for some homogeneous elements v, of M ®4 k with i, = max{; dvg # 0}.

Let D4 € M denote a lift of v,. Then M is free on {Uy, d(Ty), - - ., d(Vs) }o by Lemma
5.3. The graded submodule of M generated by all the elements {U4,d(7s), ..., d"=(Vs)}
with i, = p — 1 is a p-DG submodule. Let M denote the quotient of M by this p-DG
submodule and let f: M — M denote the quotient map. By construction f ®4 k is a
quasi-isomorphism and the differential of M ®4 k is (p — 1)-nilpotent. We are left to show
that f is a homotopy equivalence. This follows immediately from Corollary 5.5. O

6.2 Maximal rank

For any = € k™, the image of the matrix (f;;(x)) of Theorem 6.1 is contained in its kernel
since ( fi;) squares to zero. Thus the rank of (fj;()) is at most 1/2 by the rank-nullity the-
orem. Condition iii) states that (f;j(x)) has maximal rank for z € £\ {0}, or equivalently,
that its image equals its kernel. This condition results from [11, §1 Proposition 8]. We
extend [11, §1 Proposition 8] to p-DG modules in Proposition 6.5 below. There we work
with N-differential modules, i.e., modules M together with an N-nilpotent endomorphism
d for some N > 2. For such a module M and 1 < s < N — 1 we write

SH(M) =kerd®/imd™~*.

We say that M is contractible if M is isomorphic to an N-differential module of the form
C@®...P C consisting of N identical summands C with differential

01 0 ... 0
0 1

0 1

0 0

Before stating Proposition 6.5, we extend [3, Remark 1.6] to N-complexes.

Lemma 6.4. Let R be a unitary ring and P an N-differential R-module such that
sH(P) =0 for all 1 < s < N — 1. If every R-module has finite projective dimension
and P is a projective R-module, then P is contractible.
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Proof. Note that kerd C P is projective since kerd has finite projective dimension by
assumption and we can build an exact sequence

N—1
0—kerd — P-4 Pty  Ap_yimd¥l 0

of arbitrarily high length. We choose a splitting s: kerd — P of the short exact sequence

00— kerd¥! — P Y5 kerd —s 0.

For any 1 < i < N, the submodule ker d* decomposes as the internal direct sum ker &1 &
dV~is(kerd). Thus P = ker d" is the internal direct sum

P =d" ts(kerd) ® d¥ ?s(kerd) @ ... ® s(kerd),
and d maps d’s(ker d) isomorphically onto d"*'s(kerd) for 0 <i < N — 2 as desired. [

Proposition 6.5. Let M be a finitely generated free p-DG A-module. Let m # (x1,...,%y)
be a maximal ideal in the ungraded polynomial ring A. If dimy sHe(M) < oo for all
1<s< N —1, then

JH(M @4 Afm) =0

for all s.

Proof. Let A,, denote A localized at the maximal ideal m. First, we will prove that
sH(M®pA,,) = 0forall s. Since localization is exact, we have sH(M® 4 Ay;,) = dH(M)® 4
Ap,. Any non-zero, homogeneous polynomial f € A acts nilpotently on sHe(M) as sHe(M)
is finite dimensional over k by assumption. Thus for any such f, the localization of ;H (M)
with respect to the powers of f is zero: (H(M) ®4 Ay = 0. Choose a homogeneous
polynomial f that does not belong to m. Then

SH(M) ®4 Apy = H(M) @4 Ay @4 Ay

We conclude that sH(M ®4 Ap,) = 0.
The ring A,, has finite global dimension. Thus we can apply Lemma 6.4 to conclude
that M ®4 A, is a contractible N-differential A,,-module. Since

M®g Ay @4, A/m=M @4 A/m,

it follows that M ® 4 A/m is contractible as well and in particular that its homology groups
sH(M ®4 A/m) are zero for all s. O

6.3 Composition series

The triangular shape, condition i) in Theorem 6.1, comes from the existence of composition
series [9, §(I) Proposition 11]. A composition series of a DG module M is defined as a
finite filtration of M in which each successive quotient is free and has trivial differential.
We extend this notion to p-DG modules as follows.

Definition 6.6. Let M be a p-DG A-module. A composition series of M of length [ is a
filtration
0o=M'cM'c...cM'=M

such that each successive quotient M*/M*~! is a direct sum of shifts of A or of shifts of
AV Adv @ ... ® AdP~ 2.
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We do not include more general quotients Av® Adv@...® Ad/v for 0 < j < p—2 as they
do not appear in our application.

By [9, §(I) Proposition 11] any finitely generated, free DG A-module M is chain homo-
topy equivalent to one that admits a composition series. To establish this result, Carlsson
needed to pull back homology classes from He(M ®4 k) to He(M). For that, he consid-
ered the spectral sequence coming from the filtration {I*M}; of M for the augmentation
ideal I = (x1,...,2,). The first differential in this spectral sequence is expressed with
operations

0j: H(M @4 k) = Ho(M ®a k), 0<j<n.

In the case of interest, M = B(C) for a perfect chain complex C', these operations recover
the action of the group ring k[G] on

Ho(B(C) ®@a k) = Ho(C),

in that 6; is multiplication by the element y; of the group ring under the identification
(5.3).

For p > 2, we do not know how to extend these operations to an arbitrary finitely
generated, free p-DG A-module, but it will be enough to establish them for the p-DG
A-modules of interest.

Let I C A be the graded ideal (x1,...,x,). Let M be a free, finitely generated p-DG
A-module. Filter M as

o= MM S T'M — ... = IM — M.
Note that , ,
I M  I'M
7 AT~ TR
is an isomorphism of p-DG A-modules. As [ annihilates both arguments in the tensor

product above, the tensor product can be taken over the field A/I instead and we obtain
an isomorphism on homology

I’ M I'M
Tt ®A sHeyi (W) = H, (I"‘"UW) . (6.1)

Fix | € Z and 1 < s < p— 1. The filtration of M above yields a filtration of chain
complexes

[fl1©a[m] = [fm]

o (IYM) —— (I'M), . M,
ds ds d’
o (IIM)_y — (IPM)j_y — ... — M;_,
dP—s dr—s ar—s

L— (I”lM)l,p — (IiM)l,p — ... — M,
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The corresponding spectral sequence has E'-page

s Hi f(PM/ M) <& H,(IM/I2M) ~—%— | Hy\ e o(M/IM)

1 1
H_p(IPM)I3M) <—*— , (H,_(IM/12M) <2

1 1
pesHi_p o(I2M/I3M) <—— (Hy_,(IM/I?M) <—*— ,_ H,_(M/IM).

For all integers j, there exists i such that (I'M); = 0 since M is finitely generated and
bounded above. Thus this spectral sequence converges to the homology of

—)Ml ﬂMl,SEMZ,p—)
Note that the page E>° at the spot of sH;(M/IM) is isomorphic to the image of
JH(M) — JHy(M/IM).

The quotient M/IM is just M ®4 k. We will need to pull back homology classes along
the map sH;(M) — sHj(M ®4 k). Therefore, we study the differential

d': JH(M/IM) — , o H;_(IM/I*M)
[m + IM] — [d®m + I>M].

Under the identification (6.1), this differential becomes a map
d': sHy(MJIM) — I)I? @4 psHy_oy1(M/IM).

The finitely generated, free p-DG modules M we are interested in, will satisfy the
following assumption.

Assumption 6.7. The induced maps i, (see section 2) are isomorphisms
VHy(MJIM) = oH(M/IM) = ..., 1H(M/IM)

whenever [ is congruent to p — 1 mod p, and the induced maps d, (see section 2) are
isomorphisms

p 1 H (MJIM) 2 ... = g Hy_ s(M/IM) 2 Hy_yo(M/IM)

for I congruent to p — 2 mod p. In addition, k[G] acts on H;(M/IM) foralll <s<p-—1
and all [ € Z such that i, and d, are equivariant, and

1
VHY(MJTIM) S T)1% @4 py Hy(MJIM) 2 T/T2 ® 4 1 Hy(M/IM)
is [m] — >, x; ®4 y;[m] for [ congruent to p — 1 mod p and
dl
ot H(MJIM) S T/T? @4 1Hy_pyo(M/IM) 2 T/I? ® 4 1 H(M/IM)

is [m] — >, 2; ®a (p — 1)y;[m] for | congruent to p — 2 mod p.
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Lemma 6.8. Let C' be a perfect complex over k[G|. Then the p-DG A-module B(.C')
satisfies Assumption 6.7.

Proof. As B(1C) ®4 k = 1C, we find that k[G] acts on sH;(8(:C) ®4 k). Moreover i, and
dy are equivariant isomorphisms in the desired degrees by Lemma 5.6. A straightforward
calculation shows that

db: 1 H)(1C) = I/ @4 1H)(1O)

sends a homology class [c] to >, x; ®4 [yic] for | congruent to p — 1 mod p. Using (5.4),
one calculates that
dl : p_lHl(LC) — I/Ig XA p_lHl(LC)

sends a homology class [c] to >, x; ®4 [(p — 1)ysc] for I congruent to p — 2 mod p. O
The following result allows us to pull back homology classes.

Lemma 6.9. Let M be a free, finitely generated p-DG A-module satisfying Assumption
6.7. Suppose sHe(M ®4 k) # 0 for all 1 < s < p—1 and let L be the largest dimension
for which there exists an s with Hyp (M @4 k) #0. If £ € Hp (M ®4 k) such that y;§ = 0
for all 1 < ¢ < n, then £ lies in the image of

SHL(M) — SHL(M XA /{7)

Proof. From our assumptions on i, and d,, it follows that L is either congruent to p — 1
mod p and we can take s = 1 or L is congruent to p — 2 mod p and s = p— 1. It is
enough to show that £ is an infinite cycle in the spectral sequence above. In either case
d*(¢) = 0 by assumption and the higher differentials of ¢ vanish since the targets of these
differentials are zero by the choice of L. O

We will use the lemma above and the following lemma to construct composition series.

Lemma 6.10. Let ‘
0—M-"NLP—0

be a short exact sequence of free, finitely generated p-DG A-modules. Suppose that M is
a sum of shifts of A or a sum of shifts of Av @ Adv & ...& AdP~2v, and that P is chain
equivalent to some finitely generated, free p-DG A-module that admits a composition
series of length I. Then N is chain equivalent to a finitely generated, free p-DG A-module
N that admits a composition series of length [ + 1.

Proof. Let P — P be a chain equivalence from a finitely generated, free p-DG A-module
that admits a composition series

0=P'cP'c..cP =P

Let N be the pullback
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We will write N = M®P to indicate that N is just the direct sum of M and P as
graded A-modules when forgetting the differential. Similarly, we write N = M@®P. By
construction, we have a map of short exact sequences

0O—M—>MHPP—>P—>0

-

0O— M —>MP ——= P ——=0.

Note that N is finitely generated, free and chain equivalent to N. Taking further pullbacks,
we obtain maps of short exact sequences with middle row

0— M&P' — M&P — ... — M&P.
This is a compositions series of N of length [ + 1. O

Remark 6.11. Let N, N and P be as in the proof of Lemma 6.10. If the differentials of
N®ak and of P® 4k are (p—1)-nilpotent, then the differential of N® 4k is (p—1)-nilpotent
as well.

The following theorem allows us to replace the p-DG module 8(:C') coming from a perfect
chain complex C' over k[G] with a chain equivalent one that admits a composition series.
The length of the composition series will be the sum of the Loewy lengths of the homology
modules of C. Recall that the Loewy length Il M of a k[G]-module M is

M = inf{l > 0].J'M = 0},
where J denotes the augmentation ideal J = (y1,...,y,) of k[G].

Theorem 6.12. Let M be a free, finitely generated p-DG A-module. If M satisfies
Assumption 6.7, then M is chain equivalent to a free, finitely generated p-DG A-module
that admits a composition series of length

Z llk[G]lHi(M XA k)

Proof. Denote L(M) = »_; llygnHi(M ®a k). If L(M) = 0, then M is chain equivalent
to 0. Suppose that L(M) = j+ 1 and the assertion of Theorem 6.12 holds for all M’ with
L(M") < j. Let L be the largest dimension for which there exists an s with sH, (M ®4k) #
0 and set A = g s HL(M ®4 k). Let (1,...,¢ be a basis for JA HE (M @4 k), where
J=(y1,...,yn). By Lemma 6.9, there exist representatives (;,...,(, € M of homology
classes in ¢Hp (M) such that the class [;] is sent to ¢; € sHp(M ®4 k). If L is congruent
to p — 1 mod p, we can assume that s = 1. Define the map of p-DG A-modules

T
p: @Avi - M, v~
=1

Since ¢ ® 4 k is injective, the map ¢ is an injection on a direct summand as a map of
graded A-modules. Let M = M/im . Then (H;(M ®4 k) = ;H;(M ®4 k) for i # L and
all ¢, and

HL(M @4 k)= H (M ®@ak)/ T HL (M @4 k)
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for all t. So L(M) = L(M) —1 = j. Moreover M satisfies Assumption 6.7 as well and
therefore M is chain equivalent to a p-DG A-module that admits a composition series. We
conclude this case by applying Lemma 6.10.

If L is congruent to p — 2 mod p and thus s = p — 1, define

©: @Avi ®Ad(v) ® ... D AdP 2 (v;) = M, v —C,
i=1

and proceed analogously to the above. O

Remark 6.13. It follows from Remark 6.11 that if for M in Theorem 6.12 the differential
of M ®4 k is (p — 1)-nilpotent, then the differential of M ®4 k for the constructed chain
homotopy equivalent p-DG A-module M admitting a composition series is (p—1)-nilpotent
as well.

We assemble the results of this section to establish our main result. That is Theorem
1.4 from the introduction extending Theorem 6.1 from p = 2 to all primes.

Theorem 6.14. Let G = (Z/p)". Let k be a field of characteristic p with algebraic
closure k. Let ¢, be the minimum over all multiples ¢ > 0 of p for which there exist
integers ci,...,c¢ and a p-nilpotent ¢ x {-matrix D = (f;;) with entries homogeneous
polynomials f;j € k[z1,...,x,] of degree’ ¢; + 1 — ¢; such that

i) D is strictly upper triangular,
i) (f5(0))P~ =0, and
iii) the matrix (fi;(x)) has rank (p — 1)I/p for all z € k" \ {0}.
Then dimy, He(C') > 2¢,,/p for all non-acyclic, perfect chain complexes C over k[G].

Proof. Let C be a non-acyclic, perfect chain complex C over k[G]. Replacing C' by C'®yq)
k[G] as in Remark 5.10, we may assume that k is already algebraically closed. Let M =
B(LC). As established in the proof of Theorem 5.9, the p-DG A-module M is free and
finitely generated with dimy sHe(M) < 0o for 1 < s <p—1 and

dimy, 1H.(M XA k) = dimy, H.(C)

By Proposition 6.3, we may assume that the p-differential of M ®4 k is (p — 1)-
nilpotent. Lemma 6.8 ensures that Theorem 6.12 applies to M. By Theorem 6.12 and
Remark 6.13 we can thus assume additionally that M admits a composition series. As a
graded A-module, M is a direct sum of the successive quotients of the composition series.
Let {v1,...,v} be a basis of M consisting of bases for the successive quotients. For the
quotients consisting of terms of the form Av®Adv®. ..®AdP~2v, we pick {dP~%v, ..., dv,v}
to compose the basis. With respect to the so chosen basis {v1,..., v/}, the differential of
the p-DG A-module M can be expressed by a strictly upper triangular £ x {-matrix (f; ;)i ;
consisting of homogeneous polynomials f; ;. Denoting ¢; = deg(v;), the degree of f; ; in
the standard grading of k[x1,...,xy] is ¢; +1 — ¢;. The assumption that the p-differential
of M ®4 k is (p — 1)-nilpotent implies condition ii) (f;;(0))?~! = 0. By Proposition 6.5,

2Here the degree is taken with respect to the standard grading deg z; = 1.
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the p-differential k-module represented by (f;j(x)) has trivial homology for all « # 0. This
property is equivalent to condition iii) rank( f;;(z)) = (¢/p)(p—1). In particular, p divides
L.

To establish dimy He(C) > 2¢,,/p, we will relate dimy He(C) to £. Since (f;;(0)) is
(p — 1)-nilpotent,

dimg H.(C) = dimy, IH.(M XA k‘) = dimy, ker(fZ](O))

The Jordan normal form of the nilpotent matrix (f;;(0)) is obtained from the Jordan
normal form of the p-differential of +C by eliminating the Jordan blocks of size p. That
is, it consists of ), dimy, H9;(C') Jordan blocks

01 0 ... 0
1

0 1

0 0

of size (p — 1) and of Y, dimy Ha;11(C) Jordan blocks (0) of size 1. In particular, ¢ =
(p—1)(>2, dimy Ho(C)) + >, dimy, Ha;41(C). Let x(C) denote the Euler characteristic of
C. If x(C) =0, then ¢ = (dimy He(C))p/2 and thus dimy He(C') > 24, /p as desired.
Since C' is a perfect complex, the order of the group G divides the Euler characteristic
x(C). Thus if x(C) # 0, then dimy He(C') > p". We conclude by showing that p™ > 24, /p.
Considering (Z/p)™ as a subgroup of the n-torus (S')", the n-torus becomes a free G-CW
complex. Its cellular chain complex has Euler characteristic zero and the total rank of its
homology is 2". Therefore, the matrix (f;;) associated as above to this chain complex has
size | = 2" 1p. Tt follows that p" > 2" > 24, /p as desired. O

As in Example 6.2 for p = 2, we immediately recover the known result that Conjecture
1.2 holds for n < 2.

Corollary 6.15. Let G = (Z/p)™ be an elementary abelian p-group of rank n < 2. Let
C be a perfect chain complex over IF,[G]. If C' is not acyclic, then

dim]pp H.(C) 2 2",

Proof. We apply Theorem 6.14. Since dimp, He(C) > 2{,/p, it suffices to show that
¢, > 2" p. By definition of ¢,, in Theorem 6.14, we know that ¢, is a positive multiple
of p. In particular for n = 1, we have £1 > p as desired. If n = 2, we want to exclude
matrices D = (fi;) as in Theorem 6.14 of size £ = p. Since D is supposed to be strictly
upper triangular, the matrix DP~! has one potentially non-zero entry. Namely the entry
in the top right corner

(DP 1)1y, = frafos - fo1p-

For any x # 0, condition iii) implies that the Jordan type of the matrix ( f;;(x)) consists
of one Jordan block of length p. Therefore fia2(x)... fp—1,(2) is non-zero for any z # 0.
It follows that fia... fp—1, is constant and different from zero. This contradicts condition
ii). O

It will be interesting to see if Conjecture 1.2 can be established in the first open case,
n = 3 for odd primes, using Theorem 6.14.



27 7. Embedding of derived categories

7 Embedding of derived categories

Let k be a field of characteristic p > 0. Let G = (Z/p)", A = k[z1,...,x,] with
deg(xz;) = —1. Let Perf(k[G]) denote the category of perfect k[G]-chain complexes. If
p = 2, the composite B¢ from section 5.2 induces an equivalence from the derived category
D(Perf(k[G])) to the derived category of finitely generated, free DG A-modules with finite
dimensional total homology. For arbitrary p, we prove the postponed structural result that
B¢ induces an embedding. The proof uses a hopfological algebra result, [22, Corollary 6.10]
of Qi, which identifies the hom-set in the derived category from a p-DG module satisfy-
ing property (P) as introduced in [22, Definition 6.3] with the hom-set in the homotopy
category.

Theorem 7.1. The composite Bt induces an embedding of derived categories
Bi: D(Perf(k[G])) — D(p-DG-4Mod).

Proof. The functor ¢ preserves quasi-isomorphisms by Lemma 5.6. The functor 5 preserves
quasi-isomorphisms f between finitely generated p-complexes by Corollary 5.5 as 5(f) ®4
k = f. Thus the composite Sv: Perf(k[G]) — p-DG-4Mod preserves quasi-isomorphisms
as well and therefore induces a functor on derived categories.

To show that the induced functor S¢ is an embedding, we identify the hom-sets as
follows. For perfect chain complexes C' and D the set of morphisms D(Perf(k[G]))(C, D)
agrees with the set of morphisms in the homotopy category from C' to D. The analogous
result holds for the hom-set between S:C and B¢D:

D(p-DG-aMod)(B.C, D) = 4,Mod(5.C, D)

Indeed, the p-DG A-module 5:C admits a composition series by Theorem 6.12 and Lemma
6.8. In particular S.C satisfies property (P) from [22, Definition 6.3], and therefore the
identification of hom-sets above holds by [22, Corollary 6.10].

We show that ¢ is faithful. Let f: C' — D be a map in Perf(k[G]). If Suf is null-
homotopic, then fif ®4 k is null-homotopic as well. Since fSuf ®4 k =2 of, it suffices to
show that ¢ reflects null-homotopic maps. If {h;}; is a null-homotopy for ¢f, then

d(hpiyp—2 + - hpi1) + hpr: Cop — Coqq
hpr—1: Cor—1 — Cy

for [ € Z is a null-homotopy for f.
By construction St is injective on objects. Thus f¢: D(Perf(k[G])) — D(p-DG-4Mod)
is an embedding. O
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