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ABSTRACT: We derive the transverse momentum dependent (TMD) factorization and re-
summation formula of the unpolarized transverse momentum distribution (jr) for the sin-
gle hadron production with the thrust axis in an electron-positron collision. Two different
kinematic regions are considered, including small transverse momentum limit jr < Q, and
joint transverse momentum and threshold limit jr < Q(1 — z;,) < @, where @ and zj are
the hard scattering energy and the observed hadron momentum fraction. Using effective
theory methods, we resum logarithms In(Q/jr) and In(1 — 2;) to all orders. In the end,
we present the differential cross sections and Gaussian widths calculated for the inclusive
charged pion production and find that our results are consistent with the measurements
reported by the Belle collaboration.
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1 Introduction

The transverse momentum dependent parton distribution functions (TMD PDFs) and frag-
mentation functions (TMD FFs) are the fundamental objects to understand the intrinsic
hadron structure, in particular, the three-dimensional (3D) imaging of the hadrons in the
momentum space [1-3]. A lot of progress has been made in understanding 3D imagining
of the nucleon via both unpolarized and polarized TMD PDFs, see some recent work in
refs. [4-15]. On the other hand, in comparison with the fruitful results in TMD PDFs, the
research on the TMD FFs of hadrons definitely needs more development. The current main
channels to probe TMD FFs are either semi-inclusive processes in deep inelastic scatter-
ing (SIDIS) and e'e™ collisions (hadron pair production) [16-19], or hadron distribution
inside jets [20-26]. For a recent review on fragmentation functions, see ref. [27]. It will be
interesting and instructive to find more observable to probe TMD FFs.

The extraction of TMD PDFs and/or TMD FFs relies on the so-called TMD factor-
ization in QCD. For example, transverse momentum distribution of the Drell-Yan type
processes has been developed in the seminal literature by Collins, Soper, and Sterman [28]
for a long time and is usually referred to as CSS formalism. For a modern reformulation
of the CSS formalism, see [29]. Similar formulas describe the TMD factorization for the
SIDIS process in electron-nucleon collisions, e~ p — e~ hX [16, 30-32], and for back-to-back
hadron pair production in e™e™ annihilation, ete™ — h1hoX [33-35]. The universality for
the non-perturbative parametrization has been investigated in [5, 6, 17, 36-40]. Recently,
the TMD factorization structure has been re-investigated using Soft-Collinear Effective
Theory (SCET) [41-44] and the renormalization group (RG) techniques [45-47].

The electron-positron collider provides a clean environment to study TMD FFs using
the inclusive hadron production since there is no hadronic contamination from the initial



states. The standard process to probe TMD FFs in eTe™ collisions is the aforementioned
back-to-back hadron pair production, eTe~™ — hihs X, which probes the same TMD FFs
as those in SIDIS process, e"p — e~hX.! Recently, the single-hadron differential cross
section for the process, e"e™ — hX, is reported by the Belle collaboration [48], where the
hadron cross section is studied as a function of the event-shape variable called thrust T,
fractional energy zp, and the transverse momentum jr with respect to the thrust axis. The
jr distribution shows the usual Gaussian shape and this gives the hope that through such
a new measurement, one would gain a better understanding of the same TMD FFs. With
such an assumption, some phenomenological work has been performed in [49, 50].

In this paper, we perform a detailed theoretical study for the Belle observable and
develop a TMD factorization formalism for describing such a jr distribution. The plane
perpendicular to the thrust axis splits the full phase space into two hemispheres. One
only measures the hadron j7 in one hemisphere, and the other hemisphere is unmeasured.
Such type of measurements is termed as non-global observables [51], which are sensitive to
radiation in only a part of phase space. The factorization and resummation formula for non-
global observables have a very different structure from the standard global observable [52].
For example, the leading-order evolution equation for non-global logarithms (NGLs), the
BMS equation [53], is a non-linear evolution equation. The TMD factorization formalism
for the non-global hemisphere event shape has been studied by one of the authors in [54],
where they find that the rapidity logarithms evolution does not constitute an essential
complicated structure, since it is tied with a universal transverse momentum dependent jet
function which also appears in the global observables. Besides, after comparing with the
data at the LEP, they also find that the leading non-perturbative effects are related to the
Collins-Soper kernel.?

We mainly consider the kinematic region with jr < @), where a TMD factorization
can be developed which resums In(Q/jr). Here @ is the virtuality of the intermediate
photon in eTe™ — ~*. In this region, Belle collaboration finds that the cross sections can
be well described by Gaussians in j7, and that the width of the Gaussians shows an initially
rising, then decreasing z,-dependence when z;, — 1. Because of this, we further consider
the threshold In(1 — z;) resummation in the 2z, — 1 limit. We apply SCET to develop
a TMD factorization formalism. Using renormalization group evolution techniques, we
resum logarithmic terms to next-to-leading logarithmic (NLL) accuracy, including NGLs.
The experimental data are shown as comparison and in good agreement with our theoretical
predictions.

The remainder of this paper is organized as follows. In section 2, we present a factorized
framework, which only resums the so-called global logarithms. This section would allow us
to develop intuition for our framework and understand connection to the standard TMD
FFs. In section 3, we present the full factorization formalism, which allows us to resum
both global and NGLs. In section 4, numerical results of differential cross sections for

Note that the modern formulation of so-called properly-defined TMD FFs combines the usual TMD
FFs and the soft function for the process. Here we are referring to the properly-defined TMD FFs. For
details, see [29].

%In [54] the Collins-Soper kernel is named as the collinear anomaly function.



pion production in ete”™ — 7% X are presented, as a function of energy fraction z, and
transverse momentum jr. We also present the Gaussian width for the jp distribution as
computed from our theoretical formalism, and compare them with the Belle experimental
data. Finally, conclusions are given in section 5.

2 TMD formalism: global structure

We consider the process, e™ + e~ — h(zp, jr) + X, in ete™ annihilation. The center-of-
mass (CM) energy of the ete™ collisions is given by s = Q? = (pe+ + p.— )?, and the hadron
momentum fraction z, = 2py, - ¢/Q? = 2E;,/Q is measured. In addition, the hadron’s
transverse momentum jr is measured with respect to the so-called thrust axis 7, which

maximizes the event-shape variable thrust 7' [55]:

2 |Pi - 7
Xilml

T = maxy (2.1)
with the momenta p; of the particles measured in the e™e™ CM frame. For convenience, we
align the thrust axis to be along +z-direction, and define light-like vectors n* = (1,7) =
(1,0,0,1) and n* = (1,—n) = (1,0,0,—1). We expand any momentum p* in the light
cone frame as p* = (pT,p~,pr) withp™ =n-p=py—p, and p~ =n-p=py + p.. It is
important to emphasize that even though we measure the hadron transverse momentum jr
with respect to the thrust axis, our cross section is not differential in the thrust variable T'.
In other words, we consider the cross section for the hadron production, which is differential
only in zp and jp:

do

—_— 2.2
dzp d?jr (22)

That is to say, the only purpose of the thrust measurement is to provide the thrust axis 7
and we sum over the entire thrust region 0.5 < T' < 1. For the cross section that is further
differential in the thrust variable T', see e.g. refs. [56]. We find that such an observable in
eq. (2.2) has a better connection to the standard TMD FFs.

The plane perpendicular to the thrust axis divides the full space into two hemispheres:
the one on the right (along +z-side) is referred to as the right hemisphere, while the one on
the left is the left hemisphere. Note that the observed hadrons are always measured in the
right hemisphere, while no measurement is performed for the left hemisphere. Because of
this, the kinematics in the left hemisphere are unconstrained, our observable in eq. (2.2) is
a non-global observable [57]. Such observables will involve non-global structures which can
not be captured by the traditional exponential formula [52]. In this paper we will apply
the jet effective theory [58, 59] to derive the factorization and resummation formula. Since
the full factorization structure is quite complicated which we save for the next section,
in this section, we will for the moment ignore the NGLs that arise from the non-global
structure, and write down a factorized formalism to resum the global logarithms and build
our intuition.
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Figure 1. Hadron transverse momentum fT with the thrust axis 7 in two different regions. The
black lines represent the energetic partons in the unmeasured left hemisphere, while the hadron is
measured in the right hemisphere. The vertical dashed line represents a plane that is perpendicular
to the thrust axis and that divides the space to the left and right hemisphere. The red curves
denote soft radiations from the energetic partons with the virtuality of jo. The blue lines in the left
panel describe collinear radiations along the thrust axis, while the purple ones in the right panel
give collinear-soft (c-soft) radiations.

2.1 TMD factorization formalism

We consider the kinematic region where the transverse momentum is small jr < @ and
thus is sensitive to TMD physics. Setting the usual power expansion parameter A\ = jr/Q,
we find that the relevant momentum modes in this region are given by

e hard: pr~Q(1,1,1)
e collinear: p.~ Q()\2,1,))
e soft: ps ~ QA A N)

The different modes are illustrated in figure 1 (left). The hard modes encode energetic
radiations in the left hemisphere: since the hadron is observed in the right hemisphere and
has jr < @, any energetic radiation in the right hemisphere will lead to a large transverse
momentum for the hadron and thus move the hadron out of the kinematic jr < @ region;
consequently such radiation is not allowed in the right hemisphere. On the other hand, soft
and collinear modes have the same transverse momentum of jr, and thus both contribute
to our observable. The difference is that collinear modes encode energetic radiations along
the thrust axis, while soft modes describe large-angle long wave radiations. Based on the
mode analysis, the factorization formalism is given as

do 2/ 27 2y <) (7. T T
— = =00 € dde )\T(S() jT—kT—Zh)\T
dzhd2jT i=%(:1_,g e ( )
x HZ(Q? M)Dh/i(zha kr, g, V)Si(/\Ta Ky V) > (23)



Figure 2. Three configurations that contribute to the NLO hard function: (a) virtual correction;
(b) quark ¢ is on the right hemisphere, while both anti-quark ¢ and gluon g are on the left hemi-
sphere; (¢) gluon g is on the right hemisphere, while both quark ¢ and anti-quark ¢ are on the left
hemisphere. Note that the observed hadron is on the right hemisphere.

where the summation »_,_, - eg -+ on the right hand side is interpreted as
Z eg /dQET d*Xp 5@ (;T —kp — ZhXT)
g=u,d,s,
X {Hq(Qv /-L)Dh/q(zha kT, My V)Sq()\Ta Hy V) + ,Hq(Qv /’L)Dh/(j(zha kT? H, V)Sli()‘Tv M, V)
+ H(Q, 18) Diyg (2, s 1, v)Sy (A, 1, )] (2.4)

Here Dy, /i(2zn, kr, p,v) is the usual TMD FF with kr the transverse momentum of the
hadron h with respect to the fragmenting parton i. On the other hand, S;(Ar, i, v) is the
soft function, with p and v renormalization and rapidity scales, respectively, and we have
Sq(Ar, 1, v) = Sy(Ar, p, v). The leading-order (LO) cross section is given by

_ ArNea?,
"= 50

with aen, the fine structure constant. Note that the factorization in eq. (2.3) neglects the

(2.5)

power corrections from the ratios j% /Q?, which is small in the kinematic jr < Q region
we consider. Nevertheless, in the region of jr ~ @ one can include such power corrections
from the fixed-order calculations [60]. This is usually referred to as the Y-term in the CSS
formalism [28, 29].

It is important to emphasize that the above TMD formalism is already different from
the earlier conjectures used in [49, 50]. In particular, at leading power, our formalism
depends on both quark and gluon TMD FFs, while the previous conjecture contains only
quark TMD FFs. To convince that this has to be the case, the easiest way is to look at the
Feynman diagram configurations that contribute to our observable at the next-to-leading
order (NLO), from which we also derive the hard functions H® with i = ¢(q), g. At LO,
we produce back-to-back quark g and anti-quark ¢, each in their corresponding left or right
hemisphere, and our hard function is normalized to be H = 1 at this order. At NLO, we
receive three contributions as shown in figure 2. Here, figure 2(a) is the virtual correction
to the LO process ete™ — ¢q and ¢ (or q) later on fragments into the observed hadron
h, and thus this contribution is associated with the quark TMD FF¥s Dy, (24, k7, i1, v) in



eq. (2.3). Figure 2(b) and 2(c) describe the hard scattering with three partons in the final
state, where two hard partons are emitted in the left hemisphere and one parton ¢ in the
right hemisphere. Here, for three-particle final states, the thrust axis n is determined by
the direction of the most energetic parton. For (b), it is ¢ and g on the left hemisphere,
while g on the right hemisphere, which fragments into the hadron A and thus we have
quark TMD FF Dy,/,. For (c), it is ¢ and g on the left hemisphere, while g on the right
hemisphere which fragments into the hadron h and thus we have gluon TMD FF D,/ in
eq. (2.3). We emphasize again that no hard radiation is allowed in the right hemisphere to
maintain j7r < Q.

Direct calculations give us the following expressions for the corresponding bare hard
functions at NLO [58],

HI=HI= H{y Q) =1+ Z‘—;CF (é‘;) {—;42 — g —16 + gﬁ : (2.6a)
HI=HI= Hiy(Q,€) = Z‘—;CF (5;)6 [622 + % + % - 37; —21n?(2)

+5IT3) —4Liy (—i)] , (2.6b)
HY = 1Y) (Q.0) = 2Cr lé + 7;2 4212 (2) - 511(3) 4Ly <;)] L (260)

where we use the notation H!, with index m = 2,3 at NLO representing the number of
final-state partons, while the subscripts (a), (b), (¢) correspond to the configurations in
figure 2. We include the LO result into H%, and we note that H§ starts at O(as) order,
which is free of any divergence. Note that the function H4 is the standard dijet hard
function, that arises in e.g. back-to-back hadron pair production [17]. If one ignores the
non-global structure, the renormalization group (RG) equation for the hard function can
be easily obtained from the above expressions. However, the structure for the full RG
equations is much more complicated and will be shown in the next section.

2.2 TMD formalism in coordinate space

TMD formalism in eq. (2.3) involves convolution over the transverse momentum kr and Xp.
We apply the Fourier transform to go into the coordinate b-space and thus the convolution
becomes a simple product. To get started, realizing

N N A T
52 (]T —kp — Zh)\T) = ?/ (277)26 b-(jr/2n—kr/2n—AT) , (2.7)
h

and we thus can write eq. (2.3) in the following form

do

b ib-jr/znayi
m = 00 Z 6?1/(2#)261)”/ "H (QaM)Dh/i(zhvbnu’a v)Si(b, i, v) (2.8)

1=¢,q,9



where the b-space TMD FF and soft function are defined as

1 - e
Dh/i(zh7 b7 M, V) = 3 / koTeilb.kT/ZhDh/i(Zha kT) M, V) ) (29)
Zh
Sl(b7 K, V) = /dQXTeiig.XTSZ'(ATa Ky V) : (210)

Both TMD FFs and the soft function suffer from rapidity divergence, which was regularized
via the rapidity regulator in [46, 61]. As a consequence we have rapidity poles in 1/ and
the associated rapidity scale v, besides the usual poles in 1/¢ in dimensional regularization
and the associated renormalization scale u. In order to resum relevant logarithms, one
can use transitional CSS formalism [28], or effective theory approaches [45, 46, 61].> The
NLO perturbative expressions for TMD FFs are well-known [23], and we list here for
completeness:

1
Dq/q(Z}“b,,u,I/) = 3 {6(1 - Zh)

1 fas| 1 p? s
D buv)=—=4¢—|——In|—<5—=5 || P, —C ) 2.11b
g/q(zha NR% Z}QL {27T [ c n (4%#%)] gq(zh) + o th} ( )
where the splitting functions are given by
142 3 14 (1—2)?
qu(zh) =Cp —— ' th + =0 (1 - Zh) , qu(zh) = CFM . (2.12)
(I—2zp)y 2 zn

The NLO soft function Sg(b, 1, v) can also be computed easily. Since at NLO, only the
soft radiation that is emitted in the right hemisphere contributes to the hadron transverse
momentum jr, this will put a constraint for the soft gluon momentum £ in the soft function,
ie,k,>0o0r k= >kT.

asCp  eE / dktdk~

272 T'(1—¢) 2
12\ 2n -7 -
X <_. ) D KTk~ — \3) Y

n o(1 k‘+
ktk— 2%k, ok
Qg 2 (1 p? 11 v?
=14+ = l—=—m |5 — (=
Fon ln< € n<u§>>+62 € n<M2>
2 2 2 2
H v Loofp T
—In|{—=|In|l—=]+=In|—= | —-—]1. 2.13
<M%> <u3> 2 <M§> 12] (219

$We recommend [62] for the comparison for different TMD factorization frameworks.

Sfl(b7 K, V) = /dQXT e_iXT.g léQ(XT) +




It might be instructive to point out that the above soft function is exactly half of the
standard soft function for the back-to-back hadron pair production in e*e™ collisions, as
well as those in SIDIS and Drell-Yan processes. This difference is precisely introduced by
the constraint k, > 0 for the radiated soft gluon. This situation is similar to the case
where one measures the transverse momentum of hadrons inside a jet with a jet radius R,
as studied in [23], where soft functions in these two situations are related to each other by
a boost along the z-direction.

With the explicit expressions for TMD FFs and soft function at NLO given above, one
can easily obtain their corresponding i and v evolution equations:

D
dln In Dh/q(zhv by p,v) = Yu (as) (2.14a)
D
d In S, (b, i1, v) =73 (as) (2.14c)
dlnu q 7,“’7 _7/1, s/ .

Here the relevant anomalous dimensions are given by

2
'yf(as) = Icusp(as) In (Q2> + 27P1(a) (2.15)
1/2
75(043) = —Leusp(@s) In (H ) + ( s) s (2.16)
2
’VVD(QS) = _’YVS(QS) = 11<:usp(as) In <M2> > (2.17)
Hy

Dfla

where the cusp anomalous dimensions I'c,sp and the non-cusp « S have their usual ex-

pansion

« D..S (s \"
cusp Cts Zrn 1( 5) ’ ,.YDQ7S: Z’Ynfql (4;> . (2.18)

n=1

We have the first few coefficients given by

268  4r2 40
To=4Cp, Tj= <9 - g) CrCa — 5 Ciny.

%' =3Cp, a5 =0, (2.19)

where Cp = (N? — 1)/(2N,) with N. = 3, C4 = 3, and ny represents the quark flavor
number.

It is important to realize that the rapidity divergences between TMD FF Dy, ,(zp, b, 1, v)
and soft function Sy(b, i, ) cancel between them. This is to be compared with the stan-
dard case, e.g., back-to-back hadron pair production in e*e™ collisions, where the rapidity



divergences cancel between one TMD FF D), /q(zh, b, i, v) and the square-root of the stan-

dard soft function /Sq(b, u,v), see e.g. [17, 29, 61, 62]. Following the modern formulation
of TMD FFs, we combine them as the so-called properly-defined TMD FFs [29, 62] as
follows:

Dy (210, 18) = D (20, b, 1) Sq(b, 1, v) - (2.20)

Using the evolution equations in eq. (2.14), one can obtain the evolved TMD FFs DTMP
to be at the hard scale yj, ~ @ and thus resum the relevant logarithms ~ In(Q?/j2). For
example, the standard exercise is to evolve S, from its characteristic scales pus ~ pp, and
Vs ~ iy, and Dy, from its natural scales pup ~ pp and vp ~ @, to the hard scale pup ~ Q
and a common rapidity scale v, from which one obtains

v _K(bvub)
Dh/q<2h7 b, Kh, l/) == Dh/q(zhv b7 Mo, VD) (V[))

Hh V2
X exp { /M CZ‘ lrcusp(as) In <Q2> + 24P (as)] } L (221)

v K(bvub)
Sq(b7 Mh; V) = Sq(b7 ,U’b7 I/S) ()

Vs

Hh V2
X exp {/m) ‘if l—rwsp(as)ln <u2> +75(a5)1 } (2.22)

where K (b, i) = V5 (cts)| y—p, is the rapidity anomalous dimension [46, 61] or Collins-Soper
kernel [29, 62]. Combine the above evolution equations, we thus obtain

TMD TMD _ (upin) (VD K(b,pp)
Dpjg (znybspn) = Dy g (2, by pp) € 7pereiiiektn <V> , (2.23)
where we have
D;}\(/IID(Zh,b,Mh) = Dy q(21, b, pin; v)Sq (b, pin, v) (2.24)
Dhjq (2h b 1) = Dy g2, b, po, vD) Sy (b, o, vs) - (2.25)

On the other hand, the exponent of the evolution factor, i.e. the perturbative Sudakov
factor Spert (4, pin) resums all the global logarithms and is given by

N 2
Spert(,uba Mh) = /‘u CZL [Fcusp(as) In (%) — 27Dq (Oés) - ’}/S(Oés)‘| . (226)

Ho

Finally when the scale i, > Aqcp, one can further match the TMD FFs DE}\gD(zh, b, )

onto the collinear FFs Dy, (2, p1p):

1 Ldz AZ
Dg/l\(/;m(zh,ba#b) = P Z/ ?Cieq(z,baﬂb)Dh/i(zh/z,Mb) + 0O ( 3§D> : (2.27)
i Zh



where Cjq(z, tp) = 0iqd(1 — z) at LO and the higher-order expressions can be found
n [17, 29, 63, 64].

On the other hand, when p;, ~ Aqcp, one has to introduce non-perturbative contri-
butions, for which we apply the usual b,-prescription to include the TMD evolution in the
large b region. Here we have b, defined as

b

by = ———re
VI+0 /bR

where b,y is chosen [17] to be 1.5GeV L. At the same time we include non-perturbative
function Snp (b, Qo, @), which is given by [23, 36]

Sk (6,00, @) = 2 In (bb) In (30) z: B, (2.29)

with Q% = 2.4 GeV?, go = 0.84 and g, = 0.042. We choose to work at the next-to-
leading logarithmic (NLL) level, we thus include two-loop cusp and one-loop normal anoma-

(2.28)

lous dimension, and tree-level matching coefficients. Then plugging in the above results
for Dg}\gD(zh,b,uh) in egs. (2.23) and (2.27), along with the non-perturbative function
Sne(b, Qo, Q) in eq. (2.29), into the differential cross section in eq. (2.8), we obtain the
all-order resummation formula

bdb 1
= 0o Z / 7{]0 bJT/Zh) Pert(ub*vﬂh) SNP(b’QO’Q)?Dh/i(ZhJ /’Lb*) y (230)

thdZJT Py h

where the Bessel function Jy arises after integrating the angle between b and jT. The
numerical integration over b is performed using the algorithm in [65]. We have chosen the
canonical scales for pp and py, as follows

pn = Q, Lps = 2~ F /b, . (2.31)
Such a formalism in eq. (2.30) resums all the global logarithms in In(Q?/j2).

2.3 TMD formalism at threshold z; — 1

Belle collaboration finds that the hadron cross sections can be well described by Gaussians
Distribution as a function of j7 in the small jr region and that the width of the Gaussian
shows an initially rising for small to intermediate zj, while a decreasing zj-dependence for
large z, < 1. In the region z, — 1 region, the threshold logarithms In(1— z;) would become
important and thus has to be resummed. In our phenomenological section, we find that the
joint threshold and TMD resummation will be able to describe well such a zj,-dependence
for the Gaussian width. We develop theoretical formalism in this section for this purpose.
As we will show below, in the threshold region, an additional mode, so-called collinear-soft
(c-soft) mode [66—69] is relevant. Such a mode is shown as the purple curves in figure 1
(right), and the corresponding momentum scaling is given by

e c-soft: Dy ~ (j%/(@(l —2p)),Q(1 — Zh)va)~

~10 -



Let us start our discussion with the fixed-order result of the perturbative TMD FFs D, /,
and D/, in eq. (2.11) in the threshold limit. By taking the limit z; — 1, we find at NLO

1
Dq/q(zh,b,,u, V) = ? {5(1 - Zh)
h

+2 “Cp [m <52> <1 (52) + 3) (1 — zh)” (2.32)

where we keep the overall factor of 1/z7 as a convention. Note that in this limit, one
can drop the mixing term D

S N 5
(1—zn)+ a/a
limit, we can refactorize the TMD FF Dy, , as

4/q in comparison with the more singular terms 6(1 — zp,) and

i.e. only the flavor diagonal ¢ — ¢ channel contributes. In the threshold

Ldz
Dijqlensbopsv) = [ 4o 0) Digolenf 2110 (2.33)
Zp,

where .7 is a collinear-soft (c-soft) function [66-69] that takes into account the soft radia-
tion along the direction of the thrust axis, i.e. the c-soft mode mentioned above. At NLO,
it can be computed as follows

B aCr e rditdk” [ - i, 2
Folesbyv) = (1= 2) + 2 m_e)/ /d - (2.34)
2 1+e _
o 2n-n .o _ v |7
___ I - 1_
x (@) CET I (K — (1= 2)Q) |5

1 2 2 v? 2
() [Gom (@)oo

Note that the c-soft function .7(z,b, u,v) has the same rapidity anomalous dimension

as the TMD FF Dy, 4(2h,b, pt,v), which is cancelled after combining soft function S; in
eq. (2.13) and the c-soft function in eq. (2.34). On the other hand, we also have the
collinear FFs at the threshold limit, whose perturbative expression is given by

2

Dy /g(zns 1) = 6(1 — 2) + ;i;cp (1) [(1—% + ga (1- )] . (2.35)

To perform the resummation in the threshold limit, one can perform the Mellin trans-
form or Laplace transformation [70], whose purpose is to convert the above convolution in
z-space into a simple product in the corresponding transformed space. Here we choose to
perform the Laplace transformation [71],

[)h/q(/{,b,,u, V) = /O dghei":#hEDh/q(l - Zh,b,/t, V) ) (2'36)
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where Z, = 1 — 2. Using the following relation in the threshold limit

1—zh:1—[1—(1—%>][1—(1—z)]%(1—zh>+(1—z), (2.37)

z z

one can express eq. (2.33) as a product in the Laplace space

Dh/q(ﬁ, ba Ky V) = jQ(K’v bnu’a V)ﬁh/q(/iau) : (238)

Note that we have also extended the integration from 0 < zZ < 1 to 0 < z < oo in the
threshold limit approximation. The NLO expressions for LSZq(/f, b, u,v) and Dy, Jq(Ky 1) in

1 2 2 2

- +In (M%) p +1In <N2Q2>‘| , (2.39)
. s 1 3

Dyjglrspr) =1+ %CF <—€> {m GE 2} . (2.40)

From the above results, one can derive the RG equations for both 5’7,1 and D/, in the

the Laplace space are given by

Qs
b = 1 e
r5ﬂq(/€7 7,“‘7V) + 27_‘_CF

Laplace space,

LN v? 7
g In .7 (K, b, p,v) = lfcusp(as)ln <52Q2> + q(ozs)] , (2.41)
d 7 _ D
Ty B Ta(w b, ) = (as) (2.42)
. B ) P
T s ™ D (1) = [Pewsp(as) I (K2) + 299 (a)] (2.43)

where the normal anomalous dimensions 7¢ expanded as 7' = >, _; v, _; (as/4m)" with
i = Ly, fy, and
%' =3CF, W =0. (2.44)

The above RG equations allow us to evolve c-soft function jq(/i, b, u, v) from its natural
scale o ~ up and v ~ k@, and the FF Dh/q</€, p) from initial scale g, up to the hard
scale uy and a rapidity scale v, we obtain

B ~ v 7K(b7,u'b)
yq(li, b“uh,]/) = yq(/{'a b, :U’bvyy) <VV)

Bh
xexp{/ du
wy M

Mhdu

Dh g (ks 1) = Di gk, i) exp { /M ' (Fcusp(as)]n(/ﬁ)+2fyfq(a5)>}. (2.46)

Teusp(es) In (Q) +77 <as>] } : (2.45)

F

Combining the evolution for the global soft function S, (b, i1, ) in eq. (2.22), we obtain the
following evolution for the properly-defined TMD FFs in the Laplace space,

@E}\(/IID(H) b7 :uh) = Sq(ba b, Vs)jq(lﬂ, b7 Hb, VES”)Dh/q(K‘a ,UF)

s« ¢ Svert (1 1) (’/f (2.47)

Vs

) K (bup)
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Here the perturbative Sudakov factor S’pert(ub, ir) is given by

~ hod 22
Spert(ﬂbyﬂh) - /lu 7:“’ lrcusp(as) In <I€M§>‘|

Hy

_ /jh GZL [Fcusp(as) In (/12> + 2’yfq(a8)] , (2.48)

F

where the first integral represents the evolution of c-soft function and the global part of
the soft function from up to pp, and the second one is the collinear fragmentation function
from factorization scale pup to py in the threshold limit. Performing the inverse Laplace
transform, we obtain the following expression for TMD FFs in the threshold limit

TM 1 dz B_Q’YE’,] 1

h/q (21, b, pn) = zh P e Spere(b-iin) L(2n) 1—

Dh/q(zh/z7ﬂh) : (2'49)

Here we derive the above formula using the first line of Sudakov factor in eq. (2.48) and
setting up = up, and the parameter 7 is defined as

Bh
n=— / P cusp (ts) (2.50)
wy M

b

On the other hand, S’pert (t4p, pp) in the momentum space in the threshold limit is given by

. _ 202
Spert(,U/b7,u'h) = /# CZL lrcusp(as) In (W)] , (251)

Kb ©

where the argument in the logarithm is given by (1 — 2)@ in the threshold limit.

Finally using the above result, one can obtain the resummed formalism for the differ-
ential cross section at the NLL level

o0 Y /Oo @Jo (bjr/zn)

e
dzhd ir Py

1 —2
dz —Spert(,ub* p1r)—Snp (6,Q0,Q) € el

————Dy s 2.52
><Zh . T2n) 1 nyi(zn/zspm) s (2.52)

where we choose the non-perturbative Sudakov factor ng(b, Qo, Q) to have the follow-
ing form

SNP(b,Qo,Q):%ln (:) In {Q(lQ_O )] ZZbQ (2.53)

Here motivated by the argument in the perturbative Sudakov function in eq. (2.51), we
replace @ by (1 — z;)Q in the usual non-perturbative function Sxp(b, Qo, Q) in eq. (2.29)
to obtain Sxp (b, Qo, Q) in the threshold limit.
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3 Factorization and resummation: full story

The plane perpendicular to the thrust axis divides the full space into two hemispheres.
One measures the transverse momentum of hadron h in the right hemisphere, and the left
hemisphere is inclusive. As we have emphasized above, hadron transverse momentum with
respect to the thrust axis is a non-global observable, since the left hemisphere is unobserved.
Such type of observables will involve non-global structures that can not be captured by
the traditional exponential formula [52]. In this section, we apply formalism developed
in [58, 59] to derive the factorization and resummation formula. Such a formalism will
enable us to resum both global and non-global logarithms. The global logarithmic structure
has been discussed in the previous section. Here in this section, we pay more attention to
the NGLs [57]. Very recently, a similar structure is also mentioned in [72].

In the standard TMD region where jr < @, following the development in [58, 59], we
can write the factorization formalism as follows

d 5 oo o - =
70? = Z Plrd*Xr 6P (57 — kr — 27
thd2]T iz[Lq’g

« ZQ;CTQ [#i, ({0}, Qo 1) © S ({2}, Ar, 1,9) | Dyja(on, bors o), (3.1)

where H, S, and Dj/; correspond to hard, soft and TMD FFs, respectively. Besides,
different from the formalism in the previous section that resums only global logarithms,
the hard and soft functions are now matrices in the color space, so we take color averaging as
Tr.[- - - ]/N. after multiplying them and integrating out the solid angles {n} = {n1,na, -}
of the hard partons, where the angular integration is expressed by the symbol ®. The
index m denotes the number of energetic partons inside the hard function that is defined
in [54]. The index m in soft function then represents the number of Wilson lines, and the
momentum space soft function is defined as

Sm({n}, Ar) = /25(2) (ﬁ)L(R - XT) (3.2)
Xr
x (0|85 (n)S] (n1) ... 85, (nm) | XR) (XR|S0(n)S) (n1) ... S (nn)] 0).

Here X denotes soft states in the right hemisphere, and one only measures the contribu-
tions from soft radiations in the right hemisphere. It is precise because of such a multi-
Wilson line structure that makes the hard and soft function matrices in the color space.
After performing Fourier transformation for the observed jT, the factorization formula is

given as

2r .
dg _ / d b eib'jT/Zh

27 2
dzpdjT 274 (2m)

x i NiTrC [Hin({n},Q,u) ® Sm({n}, b, 1, VﬂDh/z’(zh’bv pv).  (33)

m=2""¢
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For the NGLs resummation, we use the same methods in [58] to perform renormalization
for the multi-Wilson-line operators. The renormalization constants of the hard and soft
function are matrices in the color space, which are given as

Hon (). Qs ) = S0 (I}, Qu ) ZEL ({0} 1) (3.4)
=2

S (nhbv) = 3 Z5, (I} by povsern) & S ({n} brern) (3.5)
m=l

separately. The symbol & denotes the integration of the angular vectors {n;1,n,.12, -}
defined in [59]. The factor Z and Z° are connected through the renormalization factor
(ZP) of the TMD FF as Z° = ZPZH". The above relations have been verified at the
two-loop order in [54, 58]. For convenience, we define the global renormalization constant
Z% for the soft function as [11]

So ({n},b,e,m) = Sa ({n}, b, u,v) VAN (3.6)

Then the global hard renormalization constant Z7 is given as Z# = (ZPZ%)~1, and the

non-global renormalization constant Zim, 8 given as
Zim =23, 72°,  Z = 2,21 (3.7)

Based on the above definitions, the RG equations of each ingredients are given as

d

m 2
Z%l ({ﬂ}a Q, /~L) { [Fcusp(as) In 222 - 2'7Dq (as) - ’Ys(as)‘| Om1 — f‘lm({ﬂ}7 N)} ,

=2

d
msl ({ﬂ}7ba,u’ V) - (39)
o'} 2
Z { [_Fcusp(as) In % + 75(a5)1 Oim1 + Flm({ﬂ}v N)} ® Sm ({Q}a b, 11, V) )
m=l K
d 2 D
mDh/i('Z?baMa v) = [Fcusp(as)anQ + 2y q(as)] Dyyi(2,b, p, v), (3.10)

where the anomalous dimensions are derived via

d

r=-z1
dlnp

Z. (3.11)

Besides, both soft and TMD FF are suffering from the rapidity divergence, and the corre-
sponding Rapidity-RG equations for them are

d _ S

danSl ({E}a b, 12 V) =T (aS)Sl ({ﬂ}a ba L, V) . (312)
d D

danDh/i(Zv bvﬂ? V) =M (as)Dh/i(z7 b,,U,, V)‘ (313)

~15 —



Similarly, the rapidity anomalous dimension is defined as

4, d
dlnv

The expressions for the one-loop global anomalous dimensions have been given in the

Y =—2 Z. (3.14)

previous section. After solving the RG equations, we can obtain an all-order resummation
formula. At the NLL accuracy, it has the form as

bdb
—op Y e / 20 (b 2 ) Spert e i) ~Sxp (Q0.Q)

2
dzhd Jr i=q,q

X ;Dh/z’(zh, Lo ) UNG (Fse 1) - (3.15)
h

In comparison with the resummed formalism in eq. (2.30), we have the non-global evolution
function Unq, which is given as

Una (feos, o) ZTrc
Ne 1=2

H, ({n} Q, ,Uh ® Z Uim {n} Mhaub*)®s ({@}>ba :ub*)] )

m>1

(3.16)

where Ung is the evolution function for the non-global parts. At the LL accuracy and
the large- N, limit, one can calculate it using the parton shower algorithms in [51, 73] or
the numerical solution of the BMS equations [53]. For the convenience of our numerical
calculations in the next section, however, we choose the parametrization given in [51]

2 2
™ 51+ (au)
o [h) = - D2n 1
UNG (Hbx, 1th) = exp l Calrou' g (bu)C] (3.17)
with a = 0.85C4, b = 0.86 C4, ¢ = 1.33, and
Hn d:u as |: (Mb*):|
u= l ——, 3.18
/b* H 277 /BO Us (Mh) ( )

where By = %CA — %Tpnf, with Tp = 1/2.

For the differential cross section in the threshold limit, we find that the same non-
global evolution function Ung arises. We thus write the resummed formalism at the NLL
in the threshold limit 2z, — 1 as

bdb Ld 5 5
=09 Z / 71]0 b]T/Zh) Lh ge_spert(ﬂb*7.U‘h)_SNP(b7Q07Q)

2
dzhd JT i=q,q

1 e~ 2VEN 1

2 T(2n) 1 - Dnyi(an/z un)Unc (Hoes i) - (3.19)

4 Numerical results

In this section, we will study the differential cross sections and Gaussian widths of the
transverse momentum distribution for the single inclusive charged pion production (sum
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Figure 3. Differential cross sections for the charged pion as a function of jr and different z
bins with Az, = 0.05 interval in the region 0.15 < z;, < 0.6. In each plot, TMD resummation is
applied and data points (black dots and histogram with error bars) from Belle collaboration [48]
are shown for comparison. The red bands indicate theoretical uncertainties from the hard scale and
FF variations as illustrated in the text.

of 77 and 77) in electron-positron annihilation process, ete™ — 7% + X, based on the
factorization and NLL resummation formula given in section 3. For parton-to-pion frag-
mentation functions, we use the 2014 DSS analysis [74], where the uncertainties were
determined based on the standard iterative Hessian method. Note that Belle data [48] was
originally presented in different thrust bins, in 0.5 < T < 0.7,0.7 < T < 0.8, 0.8 < T < 0.9,
0.9 < T < 0.95 and 0.95 < T < 1.0. Since the theoretical formalism we have developed
in this paper is inclusive in the thrust variable, we thus combine the experimental data to
obtain the results for the entire region 0.5 < T" < 1.0. The data shown in this section are
all the ones obtained via such a combination procedure. The errors of the data sets are
also combined weighted by corresponding thrust bins.
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Figure 4. Transverse momentum jr distribution given by TMD resummation (red band) and the
joint TMD and threshold resummation (blue band) for the charged pion production with zj, bins
0.65 < zp < 0.7, 0.7 < z, < 0.75, 0.75 < z, < 0.8 and 0.8 < z, < 0.85 from left to right. Results
are shown in comparison with Belle data [48] in each pad.

Figure 3 shows the differential cross sections for pion production in e*e™ collision as
a function of the pion transverse momentum jp, in different z;, bins at the center-of-mass
energy /s = 10.58 GeV. To estimate the theoretical uncertainties, we vary the hard scale
up by a factor of two around its default value independently for each replica of parton-
to-pion FFs at 90% confidence level determined in [74], and then the total uncertainties
are given by the envelope of all the variations. One could also vary the scale pp,, which
would shift value of b,.x and thus generate a larger uncertainty band. In particular the
scale pip, is connected with non-perturbative Sudakov factor (2.29) that is only fitted at the
canonical scale pp, = 2e772 /b,. We therefore do not include theoretical uncertainties from
U variations. The hadron transverse momentum with respected to the thrust axis is given
in 0 < jr < 1.0GeV for each plot. The energy fraction region 0.1 < z, < 0.65 is divided
into eleven sub-regions with Az, = 0.05 for each panel. As seen clearly in the figure, for the
intermediate zj, region (z;, < 0.5), the evaluations based on TMD resummation in eq. (3.15)
are in good agreement with the data.* On the other hand, as z;, becomes relatively large
(zn, 2 0.5) and thus approaches the threshold limit, the agreement becomes worse, which
indicates the potential importance of the threshold resummation effect.

In figure 4 we compare the differential cross sections obtained by using two resum-
mations schemes: transverse momentum resummation (shown in red bands) and joint
transverse momentum and threshold resummation (shown in blue bands), where the band
sizes indicate theoretical uncertainties from the hard scale and FF variations as discussed
in the figure 3. The hadron transverse momentum with respect to the thrust axis is given in
0 < jr < 1.0 GeV region. The energy fraction regions are 0.65 < z;, < 0.7, 0.7 < z, < 0.75,
0.75 < zp < 0.8 and 0.8 < zp, < 0.85 from left to right. In figure 4, z;, bins are larger than
those in figure 3 where the threshold logarithms are making some difference, thus compared
to TMD resummation, we see that joint resummation has a better performance in these
zp, bins, especially in the small jr region. As zj gets larger, the consistency between joint

4We have included an overall normalization of 0.25 in our theory to match the experimental data. Such
a normalization is consistent with what is fitted in [50], after taking into account a difference of N, factor
in the overall normalization.
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Figure 5. Gaussian widths for pion using TMD resummation (red band) and joint resummation
(blue band) as a function of zj, in the thrust bin 0.5 < T' < 1.0. Data points are constructed by
charged pion differential cross sections measured at Belle detector.

resummation results and data gets better with decreasing Gaussian width. The jointly
resummed differential cross section decreases faster, indicating a smaller Gaussian width
value, which is more consistent with experimental data compared to the results with only
transverse momentum resummed, where shapes are almost the same for the four z; bins
in such a large zj region.

To see the change of jr width as a function of zp, we fit the cross section do/ dzhdij
as a function of j%,

do 1 .

thdij X WU?T exp (—j%/ajo) , (4.1)
and reconstruct the Gaussian width UJZT for both theory and experimental data. We com-
pute Gaussian width as a function of fractional energy z; using both TMD resummation
(red curve) and joint resummation (blue curve). In figure 5, for small 2, region (2, < 0.5),
the logarithmically enhanced contribution origins from In(Q/jr), thus transverse momen-
tum resummed cross section JJQ-T fits the data well. As the value of zj, is increased, for the
TMD factorization theorem in eq. (3.15), dependence on z, becomes weak, leading to a
plateau at the tail region. On the other hand, for the factorization theorem with joint re-
summation in eq. (3.19), where transverse momentum and threshold logarithms are jointly
resummed, the cross section sharply decreases as zp increases, indicating a better fit for
this region. Generally speaking, for kinematic regions distinguished by zj, bins, adopting
TMD resummation in intermediate zj regions while making use of joint resummation for
large zj, bins can lead to excellent agreement with measurement for e™e™ — 7X process,
suggesting our factorization and resummation formula results in a reasonable approach for

describing single inclusive hadron production at the electron-positron colliders.
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5 Conclusion

Single inclusive hadron production at the eTe™ colliders provide a new opportunity to study
transverse momentum dependent fragmentation functions (TMD FFs), which are important
to understand the 3D structure for the hadrons and the non-perturbative QCD. Belle
collaboration has performed the first measurement for this observable, eTe™ — h(zp, j7) +
X, where zj, is the energy fraction for the hadron, while the hadron’s transverse momentum
Jr is measured with respect to the thrust axis determined by the hadronic event shape. We
develop a TMD factorization formalism for such an observable, which resums logarithms
In(Q/jr). Realizing the non-global nature of the observable, our factorization formalism
involves a multi-Wilson line structure, which allows us to resum both global and non-
global logarithms. Besides, as the increasing of the energy fraction zp of the hadron, the
threshold soft gluon enhancement effects become more and more important, which require
us to perform joint TMD (~ In(Q/jr)) and threshold (~ In(1—zy,)) resummation. We apply
the formalism proposed in [68, 69] based on SCET+ framework [66] to obtain factorization
and resummation formula in the joint limit.

In the end, we find that the TMD resummation formula gives a good description
of the jr distribution as z; < 0.65. For large z, > 0.65 region, to describe the data
we need to include threshold resummation effects. Especially, we find that the Gaussian
width of the jr distribution given by the TMD formalism freeze to a certain value which
is not consistent with the measurement. While after including joint threshold and TMD
resummation effects, the theoretical predictions are consistent with the data very well.

In the present work, we obtained the perturbative resummed cross section at the
next-to-leading logarithmic (NLL) accuracy. In future work, we will include higher-order
resummation effects using method developed in [75]. Especially, in this case beyond the
NLL level, the gluon TMD FF will also contribute to the cross section as shown in (3.3),
it will be interesting to study its effects.
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