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ABSTRACT: We perform global fit to the quark Sivers function within the transverse mo-
mentum dependent (TMD) factorization formalism in QCD. We simultaneously fit Sivers
asymmetry data from Semi-Inclusive Deep Inelastic Scattering (SIDIS) at COMPASS,
HERMES, and JLab, from Drell-Yan lepton pair production at COMPASS, and from
W/Z boson at RHIC. This extraction is performed at next-to-leading order (NLO) and
next-to-next-to leading logarithmic (NNLL) accuracy. We find excellent agreement be-
tween our extracted asymmetry and the experimental data for SIDIS and Drell-Yan lepton
pair production, while tension arises when trying to describe the spin asymmetries of W/Z
bosons at RHIC. We carefully assess the situation, and we study in details the impact of
the RHIC data and their implications through different ways of performing the fit. In addi-
tion, we find that the quality of the description of W/Z vector boson asymmetry data could
be strongly sensitive to the DGLAP evolution of Qiu-Sterman function, besides the usual
TMD evolution. We present discussion on this and the implications for measurements of
the transverse-spin asymmetries at the future Electron Ion Collider.
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1 Introduction

One of the most important discoveries in hadronic physics over the past decades has been
the measurements of large spin asymmetries in hadronic interactions [1, 2]. These experi-
mental measurements eventually lead to the conclusions that not only are QCD dynamics
important for describing experimental data; but that these experimental measurements can
be used to probe the internal structure of hadrons. For the past forty years, a major focus
of the hadronic physics community has been precision extractions of the distribution func-
tions which describe this internal structure [3-6]. In particular, the Sivers function [7, §],
which provides the transverse momentum distribution of unpolarized quarks in a trans-
versely polarized proton via a correlation between the transverse momentum of the quark



and the transverse spin of the proton, has received considerable attention in recent years.
By studying the Sivers function, major advancements have been made in the understand-
ing of the spin-transverse momentum correlation and factorization theorems. For instance,
theoretical investigation of the Sivers function led to the discovery that this function ob-
serves modified universality between semi-inclusive deep inelastic scattering (SIDIS) and
Drell-Yan process [9-13]. Roughly speaking, this effect occurs because the phase which is
produced from the re-scattering of the unpolarized quark and the color remnant field of
the initial-state hadron is opposite between these two processes. A fundamental goal of
the future Electron Ion Collider (EIC) [4] will be high precision determination of these so-
called transverse momentum dependent distribution functions (TMDs) over a wide range
of energy scales, i.e. the so-called quantum three-dimensional (3D) imaging of the hadrons.

While the extraction of TMDs is an essential ingredient in describing transverse
momentum dependent observables, high precision determination of these distributions
functions has remained a challenge. The Sivers function and all other TMDs are non-
perturbative objects. These TMDs must then be either computed on a lattice [5, 14],
or fitted from spin asymmetry data with the use of TMD factorization theorems [15-18].
The TMD factorization theorems are valid in the region where ¢, /Q < 1 where ¢, is
the transverse momentum resolution scale and @ is the relevant hard scale of the colli-
sion. In this region, the cross section can be factorized in terms of transverse momentum
dependent parton distribution functions (TMDPDFs) and/or transverse momentum de-
pendent fragmentation functions (TMDFFs), and perturbatively calculable short distance
hard coefficients. In this paper, we rely on the TMD factorization theorems for SIDIS and
Drell-Yan processes.

Despite the challenges involved with fitting TMDs, tremendous progress has been made
in the field over the past few years. In particular, the focus of the field has been to increase
the perturbative accuracy of the extractions of the TMDs. In [19, 20] global extractions
of the unpolarized TMDPDFs and TMDFFs were performed from SIDIS and Drell-Yan
data at leading order (LO) and next-to-leading logarithmic (NLL) accuracy. In [21] the
unpolarized TMDPDFs were extracted at next-to-next-to leading order (NNLO) and next-
to-next-to leading logarithm (NNLL) accuracy. Recently in [22] the TMDPDFs were ex-
tracted at NNLO+N3LL accuracy from Drell-Yan data; while in [23] the TMDPDFs and
TMDFFs were extracted simultaneously from SIDIS and Drell-Yan data at NNLO+N3LL
in which the authors further include target mass corrections as well as ¢, /@) power cor-
rections. Progress has also been made in understanding the predictive power of the TMD
factorization formalism in different kinematic regions [24, 25], and in matching with the
collinear factorization [26-28].

In this paper, we perform the first fit at NLO+NNLL to the Sivers function, one of
the most known spin-dependent TMDs. Previously, the highest precision extraction of the
Sivers asymmetry has been at LO+NLL in [29, 30]. While the focus of phenomenology
for unpolarized TMDs is the effects of the TMD evolution, the DGLAP evolution of twist-
three function, the collinear counterpart that enters the TMD evolution for spin-dependent
TMDs, introduces additional complications for fits to transverse spin-asymmetry data. For
example, in the study of TMD Sivers functions with TMD evolution, the collinear twist-



three Qiu-Sterman functions arise. The evolution of Qiu-Sterman function has been studied
extensively in the literature [31-39], however a method of performing the full evolution of
this function has not been well established. Nevertheless in the extractions of the Sivers
functions in the literature, two approximate schemes for performing this evolution have
been used in the literature. For example, in [30], the DGLAP evolution of the Qiu-Sterman
function is treated to be the same as the unpolarized PDF. On the other hand, in [40],
the authors use a large-x approximation for the splitting kernel [34, 35] in the evolution
equation of the Qiu-Stermn function. In this paper, we carefully compare the impact of
these two schemes on the extraction of the Sivers function.

We perform the first global extraction of the Sivers function from all different processes,
including SIDIS at HERMES, COMPASS, and JLab, Drell-Yan lepton pair at COMPASS,
and W/Z production at RHIC. To perform the fit, we note that a large number of experi-
mental data are available. At HERMES, the Sivers function has been probed by measuring
both pion and kaon production in SIDIS on a proton target [41]. At COMPASS, the Sivers
asymmetries have been measured in [42] for unidentified charged hadron production from
the proton target, with a re-analysis of this data in [43]. The measurements with a deuteron
target are presented in [44]. The Sivers function has also been probed for a neutron target
at JLab for pion production in [45]. To test the modified universality prediction, Drell-Yan
Sivers asymmetries have been measured at COMPASS [46] for virtual photon (or lepton
pair) production at relatively small energy scales of @ ~ a few GeV, as well as RHIC [47]
for W and Z production at much large energy scales, @ ~ Myy,z.

The rest of the paper is organized as follows. In section 2, we summarize the rele-
vant TMD factorization formalism for SIDIS and Drell-Yan processes. In section 3, we
first discuss our non-perturbative parameterizations for the unpolarized TMDPDFs and
TMDFFs, and benchmark them with the SIDIS hadron multiplicity and Drell-Yan cross
section data. We then present our non-perturbative parametrization for the Sivers func-
tion, and discuss how we perform the DGLAP evolution of the Qiu-Sterman function. In
section 4, we present our fit results, where we explore several different ways for performing
the fit. In section 4.1 we present the results of a simultaneous fit to the low energy data
from SIDIS and the COMPASS Drell-Yan data. In section 4.2 we study the impact of the
high energy data from RHIC. In section 4.3 we study the impact of the DGLAP evolution
scheme for the Qiu-Sterm function on the fit. In section 4.4 we present the global fit where
we include Sivers asymmetry data from all processes. In section 5 we give predictions for
Sivers asymmetry at the EIC. We conclude our paper in section 6.

2 Formalism

In this section, we provide the TMD factorization formalism for the Sivers asymmetry. We
begin in section 2.1 with the SIDIS formalism, while in section 2.2 and 2.3 we present the
formalism for Drell-Yan lepton pair and W/Z boson production, respectively.

2.1 Sivers formalism in SIDIS

The differential cross section for SIDIS, e(¢) + p (P,S1) — e (¢') + h (Py) + X, where S|
is the transverse spin vector of the polarized nucleon, can be written as the following
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Figure 1. Illustration of azimuthal angles in Semi Inclusive Deep Inelastic Scattering process
(SIDIS).

form [16, 48]

do

g = 00" [Fuu +sin(én — ) Fyp ] (2.1)

where the phase space dPS = dxp dQ? dz;, d>Py | , the electron-proton center-of-mass (CM)
energy S = (P+/)? and the exchanged virtual photon momentum ¢ = ¢ —¢ with Q? = —¢?,
and the usual SIDIS kinematic variables are defined as

Q? o Q? PPy
2p = g

rg =

= = 2.2
2P'q’ y .:UBS’ ( )

As shown in figure 1, the plane which contains the initial and final lepton momentum vectors
is the lepton plane, while the momentum vectors of the photon and final state hadron form
the hadron plane. The azimuthal angle of the hadron plane with respect to the lepton
plane is denoted ¢j, while the azimuthal angle of the transversely polarized proton spin
with respect to the lepton plane is denoted ¢5. We follow the Trento conventions [49] for
the definition of the azimuthal angles. In this expression, op’™ is the leading order (LO)

electromagnetic scattering cross section given by

2
DIS EM 2
where agy is the electromagnetic fine structure constant.

Fyy and Fgljr}(qsh*%) in eq. (2.1) are the unpolarized and transversely polarized struc-
ture functions, respectively. The experimentally measured quantity, the Sivers asymmetry,
ASU'I;I (¢h_¢s), for this process is given in terms of the structure functions as follows

. Sin(¢n—gs)
sin(gn—¢.) _ fyr
At i — (2.4)
uu

The momentum space expression for these structure functions are given by

Fyu(zp, zn, Pri, Q) = HS(Q; n)CP [fD] , (2.5)

h-k,

Fg}_l{l((bhid)S)(fEBa Zhs PhJJ Q) = HDIS(Q; H)CDIS [—Mfﬁ“D‘| s (26)



where the hard factor, HPS(Q; i), is given in [50, 51] as follows

3 Q? 1 Q? 72
HPIS(0: ) =14 & ) P [ e - N I/ R 2.
(Q: ) +7TCF 211 2 211 .2 +12 (2.7)
In these expressions, we have used the short-hand notation
CP® wAB] Z /dszdQPMQ (znkyL +pL —Pri)w(ki,pL)
X Aq/p(xB7kL7,u7 CA) Bh/q(zhvpia,uv CB) (28)

for the convolution integrals. In these expressions e, is the fractional electric charge for
the quarks. k| represents the transverse momentum of the quark relative to the nucleon,
while p is the transverse momentum of the final state hadron relative to the fragmenting
quark. h = Py /Py, is the unit vector which points in the direction of the final-state
hadron transverse momentum and M is the mass of the struck nucleon. f,/,(zs, kf_; i, Q)
is the unpolarized TMDPDF, while flLT’q/p(:zB, k% u,¢) is the SIDIS Sivers function and
Dy, (21, p%; 1, ¢) is the unpolarized TMDFF. In these expressions p and ¢ are the renor-
malization and rapidity (Collins-Soper) scales [15], which are used to regulate ultraviolet
and rapidity divergences, respectively. Moreover, the rapidity scales obey the relation
CaCp = @Q* in the TMD region.

The expressions for the structure functions are simplified by going to the b-space,
the Fourier conjugate space to the transverse momentum space. In the b-space, these
expressions become

Fyu(zs, zh, Ph1, Q) (2.9)

bdb bP
= H"S(Q;n) Z / ( hL) fa/p(®B, b5 11, Ca) Dy g (20, b5 11, CB)
For =% (wp, 2h, Pa1, Q) (2.10)

_HDISQMZ /

o0 b db bP,
( hl) fqu/p(xBJ) My CA>Dh/q(Zhab K, CB)

Here the b-space TMDs are defined as

Fusbips Q) = [ dPkie™ 0P g 511 0), (2.11)

Dy q(z,b311,¢) = /dime‘im'b/zl?h/q(z,pi;u, ¢), (2.12)
PSS (b ) = 5 [ P K e SIS0 12 )

= () Hraplobin). (2.13)



At small b where 1/b > Aqcp, one can perform an operator product expansion (OPE) of
these functions in terms of their collinear counterparts:

Jayp(@, 030, C) = [Cqm ®fi/p} (z,b;11,C) (2.14)

1 (-
Dh/q(za b;,uaC) = ;{Czeq(gl)h/z} (z,b;,u, C) > (215)
Fitra o (:6311:€) = [Coes ® Triy | (2,b.1,C) (2.16)

where f;/,(z, 1), Dyji(z, 1) and Tp (21,72, 1) are the collinear PDF, FF and the Qiu-
Sterman function, respectively. The operator ® denotes the convolution over the parton
momentum fractions and are given by

Ldz

[Cq<—i ® f@-/p} (b5 1, C) =/ = Cai (;76;/17() firp @5 1) (2.17)

x

for f;/, and likewise for Dy /;. In these expressions, the sum over the index i = ¢, g is
implicit. The convolution in the case of the Sivers function is more complicated, since it
involves two kinematic variables Z; and Zs:

_ Ldzy dzg N . PN
[Cq<—i®TFi/p}($7b;M7C):/ ?;?;qu(x/wl,m/mb;u,C)TFi/p(a:hxz;u)- (2.18)

The C functions in the above equations are the Wilson coefficient functions, and their
expressions at NLO are given in appendix. A.

Several comments are in order for the case of the Sivers function. First, although
the coefficient function for general scales 1 and ¢ are quite complicated, it becomes much
simpler when one chooses the canonical scales u = /( = up = co/b, with ¢y = 2e7E
and g the Euler constant. such scales are referred to as the natural scale of the TMDs.
Second, there are different conventions/normalization for the Qiu-Sterman function. In our
case, we first follow the Trento convention [49] for the quark Sivers function and then the
convention for the Qiu-Sterman function is such that the coefficient C' function at leading
order in eq. (2.16) is a simple delta function. Our convention is related to the so-called
first transverse moment of the Sivers function [11, 28]

1
Tt y(@3Q) = =577 Tr gl 2:Q) (2.19)

Third, in principle the convolution in eq. (2.16) receives contribution not only from the
Qiu-Sterman function which is a quark-gluon-quark twist-3 correlator, but also the so-
called twist-3 three-gluon correlator. Since the three-gluon correlator is not well-known at
the moment in phenomenology, we neglect all contributions from gluon to quark splitting
in the Sivers function [39, 52]. Finally, eq. (2.13) is only defined for the Sivers function
in SIDIS. Thus if one changes to the Sivers function in Drell-Yan, one should include an
additional minus sign in the last line of this expression.

The large logarithms present in Wilson coefficient functions are resummed in the renor-
malization group evolution of TMDs from the natural scale u? = ¢; = ,u% to the hard scale
ufc = (s = Q2. Such a TMD evolution is encoded in the exponential factor, exp [—S5], with



the so-called Sudakov form factor S. The perturbative part of the Sudakov form factor is
given by

Spert(b; Hi, Cia Ky, Cf) :/

Hi

[v" + Ceusp In <5/f2)] + D(b; pi)In <§f) . (2.20)

where I'cysp and vV are the cusp and non-cusp anomalous dimensions, respectively, and

medy!
o

D is the rapidity anomalous dimension (Collins-Soper kernel) [15, 53]. In this paper,
we perform the resummation of these logarithms up to NNLL. All information on the
anomalous dimensions up to NNLL are given in appendices B and C.

When b becomes large and thus i, < Aqep, the TMD evolution runs into the non-
perturbative region. We follow the usual b,-prescription [54] that introduces a cut-off value
bmax and allows for a smooth transition from perturbative to non-perturbative region,

by = b/\/1+b2/b2,, (2.21)

with bmax = 1.5 GeV~1. With the introduction of b, in the Sudakov form factor, the total
Sudakov form factor can be written as the sum of perturbatively calculable part and non-
perturbative contribution. The final expressions for the structure functions are given by

Fyu(zp, zn, Pri, Q)
> dbb
= HSQ:Q) [T R (b)Yl (222

q

X [Cqm ® fi/p] (OCB, b*;ub*,ui) Zl}zl[éjeq ® Dh/j] (Zm by :Ub*vﬂg*)
X exp {— 2Spert (b f1b, > 12, Q, Q%) — SLp (x5, b; Qo, Q) — SKp (21, b; Qo, Q)} ,

FSITH(%*%) (B, 2n, Pn1,Q)

oo 2
— 1P [T ) Y (2:23)

4 7
_ 114
X [Cq<—i ® TFi/p} (B, by; Mb*,uz%)? {Cﬁ—q ® Dh/j} (Zh7 by Mb*aﬂg*)
h
X eXp { - 2Spert(b*; Hb, 5 Hg*, Qv Q2) - SI%P (.%‘B, b; QOv Q) - SI{I)P(Z}M b; QOa Q)} )

where we have replaced py, by up, = co/bs, and Qo is the reference scale of the TMDs.
The functions SI{IP, SEp, and S§p are the corresponding non-perturbative Sudakov form
factors for the unpolarized TMDPDF, TMDFF, and the Sivers function, respectively, and
they will be given in the next section. Note that in these expressions we have introduced
the vector q; = —Pp, 1 /2p, while g, = |q, | denotes its magnitude.

2.2 Sivers formalism in Drell-Yan

For Drell-Yan scattering, p(Pa,S1) + p(Pg) — [v*(q) —=]¢{T¢~ + X, the differential cross
section with the relevant terms is given in [55-58] by the expression
do

ipg = 00" [Wow +sin(é, — o) Wpr “ | (2.24)
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Figure 2. Tllustration of Drell-Yan vector boson production in collisions of hadrons A and B. The
transversely polarized hadron A is moving in +z-direction, while the unpolarized hadron B is along
—z-direction. We denote the vector boson using a dotted line.

where dPS = dQ?dyd?q,, y is the rapidity of the lepton pair while q; and @ are the
transverse momentum and invariant mass of the virtual photon, respectively. Here, Wyu
and ngq{l((bq_(ﬁs) are the unpolarized and transversely polarized structure functions. Note
that we have deviated from the notation in [56] by writing the Drell-Yan structure functions
as W in order to differentiate them from the SIDIS structure function. The leading order
electro-magnetic scattering cross section is given by

Ak
DY EM
= __ &M 2.25
%0 3SQ2N¢g’ ( )

where S = (P4 + Pg)? is the center of mass energy squared and No = 3 is the number
of color.

As shown in figure 2, the plane which is perpendicular to the spin vector S| and which
also contains the initial hadrons forms the hadron plane. The plane which contains the
hadron momenta and which contains the vector boson (i.e. v* here) momentum generates
the wvector boson plane. We use the convention that the polarized hadron moves in the z
direction while S| moves in the y direction. We note that the convention for the x and z
axes must be reversed in order to compare with the COMPASS Drell-Yan data. For the
Drell-Yan production, ¢4, the azimuthal angle of the vector boson, and ¢, the azimuthal
angle of S| generate the sin(¢, — ¢5) modulation for this process.

Analogous to the asymmetry in SIDIS, the Drell-Yan Sivers asymmetry can be written

in terms of the structure function as’

] Sin(¢g—¢s)
Asinee—on) _ Wyr % 7 (2.26)
Wuu

In the TMD formalism, these structure functions are given by the following expressions

Wuu (Ta; 20,41, Q) = HPY(Q; )CPY [f f] (2.27)

a1 -kao

Wor ) @a 2y, a1, Q) = HPY(Qsp)CPY |7 fiy f

. (2.28)

Note that another single spin asymmetry denoted as Ay for Drell-Yan process has also been frequently
used in the literature, which is related to the Sivers asymmetry defined here by a minus sign: Ay =
—A?¥(¢q7¢5). For details, see [56].



For Drell-Yan process, the above convolution in the structure functions is given by
CPY [wAB] = /d2 K1 d°ky1 6% (Kot + kot —q1) w(kayt, kpy)

X Ag/a(@as k1 3 10,Ca) Byyp(wy, ki 1, CB) (2.29)

where x, and x; are the momentum fractions of the hadrons carried by the quarks and are
given by
Q

xa:76y7 Tp = ——=¢€

& V'S

The usual Feynman-z is related to z, as follows xfp = x, — 23, which will be used in the

(2.30)

next section. On the other hand, k,, and k;; are the transverse momenta of the parton
relative to their corresponding nucleon. The hard function is given in [18] by

2 2
HPY(Q;p) = 1+ %CF [ In <32> - 71 2 (%) + 127r2 —41 : (2.31)

The expressions for the structure functions can once again be simplified by going to the
b-space. At this point, it might be important to emphasize again that the Sivers function
fit above for the Drell-Yan process differs by a sign from that in SIDIS in eq. (2.6):

i (@ k) = — i PP (e K s €) (2.32)
This will lead to slightly different definition for the Sivers function in the b-space:

a 1 o —ik,-
A C R Ry B SR G A REN N

= (-5) fraplobin). (233)

Note the additional minus sign in the second line of the equation, in comparison with
the corresponding SIDIS expression in eq. (2.13). The final expressions for the b-space
structure functions are given by

WUU(xan Tphy 41, Q)

= 1™(Q:Q) [ G hlban) Y (239

X [CqH’ ®fi/A} (iﬂa,b*;ub*#@ [quj ® fj/B} (xbabﬁﬂb*aﬂz*)
X exp | = 2Spert (bai o 15, Q5 Q%) — Skp (w0, b5 Qo, Q) — Skp (a1, 1: Q0. Q)|

ngjzl( $a=0) (maa Ty, 41, Q)

2
= H™Y(Q;Q) @h (bq.) Zeg (2.35)

X [éqei ® TFi/p] (Ta, bas b, 15, [Cm—j ® fj/B] (xb, by; Mbwﬂi)

X exp | = 2Spert (i o, 15, Q5 Q%) — Sip (70, b5 Qo, Q) — Sp (1, Q0. Q)|

Note that in the second expression, we have already taken into account the sign change in
the Sivers functions between DY and SIDIS processes in eq. (2.32).



2.3 Sivers formalism for W/Z production

The case for W/Z boson production in the proton-proton collisions is similar to the case
for virtual photon production. In this case, the hard scale @) is set equal to the mass of
the produced vector boson, ) = My, z. The expression for the differential cross section is
given by

doy

d%,—ao Wuuy + sin(ég — ¢S)W,§1Tn( —¢s)| (2.36)

where the phase space dPS = dyd?q, and V = W, Z. The leading-order scattering cross

sections are given by

where G is the Fermi weak coupling constant. On the other hand, the structure functions
are given by

Wou v (a, b, q1, Q)

= H(@:Q) [ T dh(bar) S (2:39)

X [Cq<—i ® fi/A} (%;b*;ﬂb*aﬂb*) [Cqu—j ® fj/B} (xbyb*§ﬂb*7ﬂg*)
X exp [ — 2Spert (b i, 113, Q. Q%) — SLip (ar b3 Qo, Q) — Stip (. b3 Qo Q)} :

WEOa=02) (3, 24,41, Q)
oy db b2
= HHQQ) | ——Ti(bar) Zeqqfv (2.40)

X [CqH ® TFi/p} (Ta» bs v, 115, [Cq’<—j ® fj/B} (xbab*§ﬂb*7ﬂg*>
X exp |: - zspert(b*; Hb, s ,LL%* ’ Qa QQ) - S]%P(:L‘aa b, QO? Q) - SI{IP(xb’ ba QOa Q)} )
where we have
o = Var?s by = (V4 A2) 0y . (2.41)

Here |V,y|? is the CKM matrix, while V; and A4, are the vector and axial couplings of the
Z boson to a quark of flavor ¢. Just like eq. (2.26) in the last section, the asymmetry can
be written as a ratio of these structure functions in the exactly same form.

3 Non-perturbative parameterization

Now that we have included all of the perturbative elements of the Sivers asymmetry, we
begin discussing the non-perturbative contributions to the Sivers function. As we have seen

~10 -
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Figure 3. The experimental data for Drell-Yan lepton pair production measured by the FE288
collaboration [59] plotted as a function of ¢, /@Q are compared with the normalized theoretical curve.
Different colors represent different invariant mass of the lepton pair from 4 < Q < 5, 5 < Q) < 6,
6<Q<7,7T<R<Y,8<Q<11<Q<12,12<Q < 13,13 < Q < 14GeV, respectively.
Three panels correspond to different energies for incident proton beams: 200 GeV (left), 300 GeV
(middle), and 400 GeV (right).
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Figure 4. Left panel: the HERMES multiplicity data in [60] for pion production from either a
proton (denoted as p — 7) or deuteron (denoted as d — m) target. For better presentation, the
data is offset by 0.0 for (zp) = 0.53, 0.1 for (z;,) = 0.42, 0.2 for (z;,) = 0.34, 0.3 for (z;) = 0.28,
0.4 for (z5) = 0.23, and 0.5 for (z;,) = 0.15. Right panel: the HERMES multiplicity data for kaon
production. The offsets are half of the offsets from the pions.

in the previous section, the Sivers asymmetry depends not only on the Sivers functions but
the unpolarized TMDs as well. Therefore, in order to isolate the fit to affect only the Sivers
function from these experimental data, it is first necessary to fix the non-perturbative
evolution of the unpolarized TMDs. In section 3.1, we choose a parameterization for the
unpolarized TMDPDF and TMDFF from a previous extraction and use this formalism to
describe unpolarized SIDIS and Drell-Yan data. In section 3.2 we provide the details of

our numerical scheme for the Sivers function.

3.1 Numerical scheme for unpolarized TMDs

The non-perturbative evolution functions for the unpolarized TMDs have been extracted
widely in the literature. Because we perform a simultaneous fit between SIDIS and Drell-
Yan data in this paper, the appropriate parameterizations for the unpolarized TMDs are
those that have also been obtained in simultaneous fits. Furthermore since we perform
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Figure 5. The COMPASS multiplicity in [61] for charged hadron production from a deuteron
target is compared with the normalized theory curve. The triangular points represent the h™ data
points while the circular data points represent the A~ data points. For better presentation, the h™
data is offset by a factor of 0.4.

our fit at NLO+NNLL, the optimal parameterization is one that has been obtained at the
same perturbative order.

Simultaneous extractions from SIDIS and Drell-Yan data have been performed in [19,
20, 23, 62].2 In [62] the extraction was performed at NLO+NLL. Similarly in [19, 20]
the extraction was performed at LO4+NLL. In [23], the authors performed the fit of the
unpolarized data at NNLO+N3LL level, where they further included both m/Q and ¢, /Q
power corrections. This could introduce additional complications when performing the
fit to the Sivers asymmetry, since those power corrections are likely to be different for
spin-dependent cross sections.

In view of the current status, we choose the non-perturbative parametrization in [62]
for the unpolarized TMDs in our study at NLO+NNLL accuracy. We will first verify that
such a parametrization describes the unpolarized experimental data well. From [62], the
non-perturbative factors in eqgs. (2.14) and (2.15) have the following form

Q. b
Shp(4: Q0, Q) = %1“?20 In. + gfb?, (3.1)
g2, Q. b b?
SR (20 Q0, Q) = Flngs g+ 97 =5 (3.2)

*We note that the fits [19, 20, 62] all introduced normalization corrections in the fitting procedure so that
the shape of the asymmetry is described but the size is not. Currently a systematic way of addressing these
normalization issues has not been addressed. While this issue has remained a challenge for unpolarized fit,
this issue is not present in asymmetry data. For example in [29, 30] LO+NLL fits were performed to the
Sivers asymmetry without issues while in [28] the Sivers function have been extracted using a Gaussian.
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The factors which contain g{ and g contain information on the Gaussian width of the
TMDs in momentum space at the initial scale QQg, while the factor which involves go controls
how the TMDs evolve from Qg to the scale (). The latter is universal to all TMDs [15] and
will enter into our discussion in the Sivers non-perturbative parameterization. The values
of the parameters that were obtained in this reference are given by

gl =0.106, gP=0042, gy =084. (3.3)

Note that in the expression of eq. (3.1), the non-perturbative parameterization is indepen-
dent of z. Thus we have dropped explicit dependence on the variable x. At this point, it is
important to note that for the COMPASS Drell-Yan data in [61], the asymmetry was mea-
sured for 7+ p scattering. In [63] the pion TMDPDF was extracted from the experimental
data in [64] and it was found that g7 = 0.082 for pions.

To perform numerical calculations, we choose to use HERA_NLO_as_118 parametrization
in [65] for the collinear parton distribution functions. For the collinear pion fragmentation
function, Dy /q(2n, i, ), we use the DSS14 parameterization [66]. While for the collinear
kaon fragmentation function D, (2n, pp,), we use the DSS17 parameterization in [67].
For unidentified charged hadrons, we follow the work in [23] to use the approximation
Dh/q(zv Hb,) = Dw/q(zv fb,.) + DK/q(Z’ Mo, )-

To demonstrate that this parameterization describes the unpolarized TMDs, we now
compare this numerical scheme with the unpolarized TMD data. We start this comparison
by examining a sample of Drell-Yan data in order to check the validity of the scheme for
the TMDPDEF. We note that the Drell-Yan Sivers asymmetry data which enters into our
fit from COMPASS and RHIC do not contain so-called fiducial cuts. In order to avoid
complications associated with these cuts on Drell-Yan data, we choose to benchmark our
expression for the unpolarized cross section against the E288 data [59], which also does
not contain fiducial cuts, see table 2 of [22]. For E288, the target nucleus is Copper. In
order to describe the Copper TMDPDF, we use nuclear modification prescription in [68].
In figure 3, we plot the theoretical curve against the experimental data [59], as a function
of ¢ /Q. For each bin, we have normalized the theory such that the theory and data are
equal at the first point. Different colors represent different invariant mass of the lepton pair
fromd<@Q<5,5<Q<6,6<Q<T7,7<Q<88<Q<I1l<QR<12,12<Q <13,
13 < @ < 14 GeV, respectively. Three panels correspond to different energies for incident
proton beams: 200 GeV (left), 300 GeV (middle), and 400 GeV (right). We find that the
parameterization of [62] is well-suited at describing the shape of the Drell-Yan data.

To check the validity of our scheme for the unpolarized TMDFFs, we now examine the
HERMES multiplicity defined as

(do/dxpdz,dQ*dPy) )
(dopis/drpd@?)
where the superscript h denotes the species of the final state observed hadron, and the

subscript “H” represents the HERMES data. We also study the COMPASS multiplicity
data, which has a slightly different convention and is given by

M (xp, 2n, Phy, Q%) = (3.4)

M = 2Py, Mf; (3.5)
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where the subscript “C” denotes the COMPASS data and M} is defined in eq. (3.4). On the
other hand, the denominator in eq. (3.4) is the inclusive DIS cross section and is given by

doprs op’s 2 y? 2
= F: - F 3.6
depd ~ g 2(7rp, Q%) T+ 1=y L(zB, Q%) , (3.6)

where F5 is the usual DIS structure function while F, is the longitudinal structure function.
For their precise definitions see [69]. We compute the denominator at the NLO by using
the APFEL library [70].

In the left panel of figure 4 we plot the HERMES pion multiplicity data [60] as a
function of ¢, /Q along with the numerical results for the theory. In the right panel of
this figure we plot kaon multiplicity data and theory. As shown in the figure, different col-
ors represent different average zj values from (z,) = 0.15, 0.23, 0.28, 0.34, 0.34, 0.42, 0.53,
respectively. In these plots, we have normalized the theory so that data is equal to the
theory at the second point of each data set.® In figure 5, we plot the COMPASS mul-
tiplicity data [61] for charged hadron production from a deuteron target along with the
numerical results of our scheme. The triangular points represent the h* data points while
the circular data points represent the h~ data points. Here again, different colors represent
different z;, = 0.2, 0.3, 0.4, 0.6, respectively. From these plots, we find that the presented
parameterization work very well at describing the shape of the multiplicity data for both
HERMES and COMPASS data, indicating that the scheme for the TMDFFs are valid.

3.2 Numerical scheme for Sivers function

Now that the non-perturbative evolution for the unpolarized TMDs have been fixed, we
present the numerical scheme for the Sivers function in our fit. Analogous to the unpolar-
ized TMDPDF, we take the polarized non-perturbative parameterization

St (53 Q0, Q) = Lin L 4 712 (3.7)
2 Qo b
As we have emphasized in the previous section, the parameter gs is spin-independent and
thus we take the same value as in the unpolarized TMDs in eq. (3.3). On the other hand,
we introduce the parameter gf, which describes the Gaussian width of the momentum
space distribution for the Sivers function and will be a fit parameter. We once again note
that since this parameterization is independent of x, we will drop its explicit dependence
in future notation.
For the Qiu-Sterman function T/, we find that the parameterization in [29] is still
the most economical choice, which sets T, /p(x, x, o) to be proportional to the unpolarized
PDF f,/p(x, po) at some initial scale fio:

TFq/p(x>$7M0) :Nq(x)fq/p(xmu(])v (38)

3Without normalizing to the second point of the data, we find that the overall normalization factor is
around 2 for each data set, which is consistent with the results of [62].
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with N, (z) given by

(ag+Bq)
Ny(z) = Ny (2 + B) z% (1 — x)Pa (3.9)

a?q Bq’

Note that Ny (z) characterizes the non-perturbative collinear physics of the Qiu-Sterman

function and is to be fit from the experimental data. In this expression, the parameters
a, and N, are used to fit the up quarks. oy and Ny are the fit parameters for the down
quarks and Ny, Nj, N,, N5, seq are for sea quarks and 3, = 8 is the same for all flavors.
This parameterization enforces that the form of the sea quarks is the same while the
normalization of each sea quark can vary. Overall we use 11 parameters in total to perform
the fit, including g7 .

In order to obtain a numerical result for the Sivers function in eq. (2.16), DGLAP
evolution of the Qiu-Sterman function must be performed from pg to the natural scale,
Uy, - As we have emphasized, the DGLAP evolution of the Sivers function has been studied
extensively in the literature, see for instance [31-39]. However, to perform the full evolution
of the Qiu-Sterman function is highly nontrivial due to its dependence on two momentum
fractions x1, zo in general [31, 71]. Thus in the TMD global analysis, the evolution of
the Qiu-Sterman function has been implemented under certain approximations. There are
two schemes that are used to perform this evolution in the literature. For both schemes
that we discuss in this paper, the relevant DGLAP evolution equation for the Qiu-Sterman
function is given by the expression

P<;r<—q ® TFq/p} (l’; M) : (3'10)

8TFq/p(x7x;M) as(N2) {
Olnp? 27

In the first scheme that we consider, from [35], the authors show that at large z, the
transverse spin dynamics leads to a modification to the quark to quark splitting kernel,
PT  with

a—q’

T
PQ<—Q

(2) = Py (@) — Nod(1 - ), (3.11)
where Py, 4(z) is the standard quark to quark splitting kernel for unpolarized PDFs,

1+ 22 3

P, =Cp|—————+=6(1— . 3.12
q<—q(£) F (1 — "r)+ + 92 ( ‘T) ( )
This scheme has been used for instance in [40]. In the second scheme, for phenomenological
purposes, the evolution of the Qiu-Sterman function has often been treated to be the same

as the unpolarized collinear PDF, with P\ (z) = Pjq(z). See e.g. ref. [30].

Apparently, for both cases, we can write the relevant spitting kernel as

PL, (2) = Py (2) —nd(1 — ), (3.13)
where 7 is a parameter that controls the numerical scheme used to perform the DGLAP
evolution. When n = N¢, the evolution matches the result of [35]. On the other hand,
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for the second scheme that we consider, we set 7 = 0 so that the evolution models the
standard DGLAP evolution of the unpolarized PDF.

To solve this evolution equation, it is useful to take the Mellin transform of this ex-
pression; for details on Mellin-space evolution, see section 3 in [72]. After performing the
Mellin transform of this expression, the evolution equation becomes

9 a, (4
Ay PN 1) = 2(7r> V(N) T g/p(N, 1) - (3.14)

In this expression, Tx, /p(N , i) is the Mellin transforms of the Qiu-Sterman function, i.e.

1
TrqpNo) = [ dwa™ Ty, (3.15)
Similarly () is the Mellin transform of P, (x) which can be written as
Y(N) =7u(N) =7 (3.16)
Here 7,(N) is the Mellin transform of the unpolarized splitting function Py, (z) and is
given by
(N) = C (3 +o L g (N)) (3.17)
=R T Ny ) '

with S1(V) the harmonic sum function.
In the region where pp,, < myp, the mass of the b quark, the solution of the evolution
equation is given by

9 —v(N)/Bo (ko)
as (@
( ”)) . (3.18)

Trqsp (Ny ) = Trqpp (N, o) | — -
a/p a/p as (12)
Here fo(po) = 11 —2/3ns(po), where ny(uo) is the number of active flavors at the scale
to- In the region where up, > my, the solution of the evolution equation is given by

2 \\ YN/ Bo(ks.)
as (1,
(b)> , (3.19)

Trq/p (N po,) = Trgpp (N, m3) (a (m2)
s\,

where T/, (N, my) is given by
2

as (my)
as (1)

—y(N)/Bo(ro)
> , (3.20)

TFQ/P (N7 mb) = TFq/p (Na ,UO) (

and ny(pp, ) is the number of active flavors at the scale i, .

In order to construct the Sivers function in eq. (2.16) at NLO, there is an additional
convolution of the coefficient C' function and the Qiu-Sterman function. We find that it
is useful to first take its Mellin transform and thus the convolution over the momentum
fraction becomes a simple product in Mellin space:

Fid g (N5 1) = Cowi(Ns 1, Q) T (N 1) (3.21)
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Figure 6. Histogram of the SIDIS data in ¢, and Q. To obtain this plot, we bin the SIDIS data
sets in ¢, and @. The dark spots indicate a large number of experimental data while the white
spots indicate that there are no experimental data. We also plot the line ¢; = 0.75@Q in red, 0.5Q
in green, and 0.25 @ in black.

where C_'q<_q/ (N, b; 1, ¢) is the Mellin transform of the Sivers Wilson coefficient function.
The NLO Sivers function can then be obtained by numerically taking the inverse Mellin

transform of this function,

1 o i¢p, ,—c—ze'® %
Fiyp@ b, €)= [~ detm [0l (en s b g)] 322)

where the parameter ¢ must be taken such that all of the singularities in the function
Lq
1T,q/p

we use ¢ = 2 which satisfies this criteria. We also take ¢ = 7/4 to optimize the numerical

(c + 2" b; 1, ¢ ) lie to the left of the line x = ¢ in the imaginary plane. In our code,

integration.

4 Fit results

In this section, we present the results of three separate extractions of the Sivers function. In
section 4.1, we present the result of fit 1, where we consider only the low energy data from
SIDIS as well as the COMPASS Drell-Yan data using 7 = N¢. In section 4.3, we present
the results of fit 2a, where a global extraction is performed using n = N¢. Furthermore,
we perform an extensive study of the impact of the RHIC data. Finally in section 4.4, we
present the results of fit 2b, where we perform a global extraction of the Sivers function
with n = 0. The extracted parameter values, as well as comparisons with experimental
data, are presented for fit 1 and fit 2b in section 4.1 and section 4.4, respectively.

4.1 Simultaneous fit to SIDIS and Drell-Yan

In this section we present a simultaneous fit to measurements of the Sivers asymmetry
from SIDIS data sets from JLAB in [45], HERMES in [41], COMPASS in [43, 44] and the
COMPASS Drell-Yan data in [46]. We note that we do not include the COMPASS data set
in [42] since the data set in [43] is a re-binning of this set. Furthermore the data set in [43]
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fit scheme | SIDIS | Drell-Yan | W/Z | Ngata | 1 in evolution
fit 1 V4 Vv X 226 N¢
fit 2a Vv Vv vV 243 N¢
fit 2b N4 vV vV 243 0

Table 1. Description of each of the fits that we present. Fit 1 is presented in section 4.1, fit 2a is
presented in section 4.3, and fit 2b is presented in section 4.4.

0.06
— OXTW — 5 X3S
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—0.06—F51 02 03 05 01 02 03 05 01 02 03 05
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Figure 7. The extracted transverse moment of the Sivers function from fit 1 at pug = v/1.9 GeV.
The black curve is the fit to the experimental data with no Gaussian noise.

was projected into two sets of data z, > 0.1 and z, > 0.2. To avoid fitting correlated data
sets, we choose to fit only the z; > 0.1 data set. We then compare our prediction for the
RHIC asymmetry against the RHIC data.

While typical kinematic cuts from unpolarized SIDIS fits for instance in [23] select
only data which has ¢; /@ < 0.25, we find that this selection process leaves very few data
points for the available Sivers data. In figure 6 we plot a histogram of the selected data
SIDIS data as a function of ¢; and . We find that the cut ¢, /Q < 0.25 leaves only 12
SIDIS data points, while the cut ¢; /Q < 0.5 leaves 97 data points. In fact, we find that the
majority of the data has ¢, /@ > 0.5. In order to retain a large enough data set to perform
a meaningful fit we perform the cut ¢, /Q < 0.75. Furthermore to restrict the selected
data set to the TMD region, we also enforce that the SIDIS data must have P, < 1GeV.
At the same time in order to avoid the threshold resummation region, we also enforce that
zp < 0.7.

In order to perform the fit, we use the MINUIT package [73, 74] to minimize the x2. In
this section, we define the x? as

N
({a}) =) % , (4.1)

=1

where F; are the central values of the experimental measurements, AF; are the total
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x?/d.o.f. = 1.032
Ny = 007715555 GeV au=  0.9677598
No= —01527001§GeV  aq=  1.188%((33
Ny= 01677331 GV g = 0.9367505%
Ng = —0.033%55% GeV B = 5.12970:017
Ng= —0.069*7 055 GeV gl = 0.18015:03) GeV?
Ny = —0.002700% Gev

Table 2. Fit parameters for fit 1 in table 1. The presented values is the parameter value of the fit
with no Gaussian noise. The uncertainties for the replicas are generated from the parameter values
which lie on the boundary of 68% confidence.

experimental errors, T; ({a}) is the theoretical value at the experimental kinematics, and
{a} is a vector containing the fit parameters.

For this section, we take n = N¢ to perform the DGLAP evolution of the Qiu-Sterman
function, referred to as fit 1 in table 1. In order to optimize the minimization process, the
denominator of our asymmetry is pre-calculated at the beginning of the fit. We also perform
pre-calculations for the unpolarized TMDs and use grid interpolation in the numerator of
the asymmetry. For the NLO Sivers function, we find that the Mellin space prescription
leads to a massive speeds compared to performing the convolution integrals. Furthermore
we use the numerical method in [75] to perform all Bessel integrals.

In order to generate an uncertainty band, we follow the work in refs. [20, 76] to use the
replica method. To generate one replica, we shift each of the data points by a Gaussian
noise with standard deviation corresponding to the experimental error. The fit is performed
on the noisy data 200 times as well as the no noise data. This result in 201 sets of stored fit
parameters. Using each of the 201 sets of stored parameters, we calculate the asymmetry
for each of the included data as well as calculate the first transverse moment of the Sivers
function in eq. (2.19) for each of the quark flavors. The uncertainty band is generated at
each point by retaining all contribution within the 68% region.

In table. 2, we present the results for the parameter values along with the y?/d.o.f.
and the parameter uncertainties. The central point that we present for each parameter are
the parameter values from the fit with no noise. The parameter uncertainties presented in
this fit are obtained by considering only the middle 68% of the 201 sets of parameters. In
terms of the quality of the fit, we find an excellent agreement between our fitted theoretical
result and the experimental data with a global x?/d.o.f. = 1.032. In table 3, we give the
value of the x?/d.o.f. for each of the sets of data.

In figure 7, we plot the extracted first transverse moment of the proton SIDIS Sivers
function at the initial PDF scale, flLT(l)(w, po) with g = v/1.9 GeV as defined in eq. (2.19).
In this figure, we have plotted all 200 replicas for each of the extracted quark flavors. We
again use the middle 68% of the data points in the plot to generate the grey uncertainty
band for each of the Sivers moments. For the u, s and s-quarks, the Sivers moment have
been multiplied by a factor of 5 while for d, we have multiplied by a factor of —5. We find
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Figure 8. Left: the COMPASS deuteron target measurement [44] for 7+, 7=, K+, K=, and K°
from top to bottom, and as a function of zp (left), zp, (middle), and Pp,, (right). Right: HERMES
proton target measurement [41] 7+, 7% 7=, K, K=, and (#* —7~) from top to bottom, and as a
function of xp (left), z, (middle), and Py (right). The data is plotted in red along with the total
experimental error. The central curve in blue as well as the uncertainty band in gray are generated
using the result from fit 1 in table 1.
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Figure 9. Left: the COMPASS proton target measurement for h~ for 1GeV? < Q? < 4GeV?,
4GeV? < Q? < 6.25GeV?, 6.25GeV? < Q% < 16GeV?, 16GeV? < Q? < 81GeV? from top to
bottom [43]. Right: same as the left except for h* production. The central curve as well as the
uncertainty band are generated using the result from fit 1 in table 1.
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Collab. Ref. Process Qave | Naata | X°/Ndata
ld = IK°X 2.52 7 0.770
ld—=1K-X 2.80 11 1.325
[44] ld—IKtX 1.73 13 0.749
ld—In~X 2.50 11 0.719
COMPASS
ld = IrtX 1.69 12 0.578
3] Ip—=1h X 4.02 31 1.055
Ip—IhtX 3.93 34 0.898
[46] Tp =X 5.34 15 0.658
Ip—=IK—X 1.70 14 0.376
Ip—IKTX 1.73 14 1.339
Ip = 1r°X 1.76 13 0.997
HERMES | [41]
Ip—=l(rt —7)X | 1.73 15 1.252
Ip—=ir X 1.67 14 1.498
Ip—IntX 1.69 14 1.697
IN = It X 1.41 4 0.508
JLAB [45]
IN - In~ X 1.69 4 1.048
pp — WHX My, 8 2.189
RHIC [47] pp— W—X My, 8 1.684
pp — Z9X Mz 1 3.270
Total 226 0.989

Table 3. The distribution of experimental after taking the kinematic cuts ¢, /Q < 0.75, Py, <
1GeV, and z < 0.7. The column Q. gives the average hard scale for the measured data set. On
the right column, we have included the x2/Ngata for each set of data from the extraction in fit 1.
The RHIC data was not included into the fit. Here we give the x? /Ndata for the prediction.

JLAB
0.15; [ f}
o VOOl
T —0.15"
r
i? 0.15F —
0.00 [ T
—0.15=
0.16 0.24 0.32
XB

Figure 10. JLab measurement of the Sivers asymmetry for a neutron target [45] as a function of
zp. The central curve as well as the uncertainty band are generated using the result from fit 1.
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Figure 11. COMPASS Drell-Yan measurement for 7~ -p collision [46] as a function of ¢, , @, zp,
xn, and z, from left to right. The central curve as well as the uncertainty band are generated
using the result from fit 1 in table 1.
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Figure 12. Prediction for the Sivers asymmetry for p + p — W/Z at v/S = 500 GeV [47] using
the result of fit 1 in table 1. We plot only the central curve from fit 1 here since the size of the
uncertainty band is small for this prediction. Left: the y dependent data integrated in ¢; from 0.5
to 10 GeV. Right: the ¢, dependent data integrated in y from —1 to 1.

that the Sivers d function is the largest in magnitude and is positive; while the Sivers u
function is nearly as large but is negative. Furthermore we find that the % and d-quark
functions are nearly equal to one another in magnitude, both are more than 5 times smaller
in magnitude than the valence quarks, and are both positive. For the s-quark, we find that
the magnitude is approximately 5 times smaller than the valence quarks in magnitude and
is negative. Finally for the s-quark, we find that the magnitude is very small and that the
sign is not well determined in this fit.

In figures 8, 9, and 10, we plot our theoretical curves against the SIDIS data. Figure 8
is for COMPASS deuteron target (left panel) and for HERMES proton target (right panel),
and for both pions and kaons. Figure 9 is for charged hadrons from COMPASS proton
target. Figure 10 is for pion production on a neutron target from JLab. Finally in figure 11
we plot theoretical curves against the COMPASS Drell-Yan lepton pair data in 7~ + p
collisions. We plot the asymmetry ASUl¥(¢q_¢S) as a function of transverse momentum ¢ ,
invariant mass @, Feynman zp = z, — ), momentum fraction xy in the proton target,
and momentum fraction z, in the pion target, respectively. The experimental data along
with the total experimental uncertainties are plotted in red. The blue curves are the theory
curves from the fit with no noise. The uncertainty band in grey is generated from the stored

values of the asymmetry for each of the replicas. For each data point, the maximum and
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minimum value of the asymmetry within the middles 68% are used to generate these error
bars. As it is indicated already in table 3 and as it is evident from the figures, the agreement
between our theory and SIDIS and Drell-Yan data is very good, although to a less degree
with the Drell-Yan data because of the much larger experimental uncertainty. We note
that very recently in [77], the HERMES collaboration provided additional experimental
data for the Sivers asymmetry. Since the HERMES paper has not yet been published,
we cannot implement this data into our fit. However, we find that there is very strong
agreement between our extracted asymmetry and this new data.

In figure 12, we plot the prediction for the RHIC data in p + p collisions at v/S =
500 GeV using the extracted Sivers function from this fit. In the left panel, we plot the
Sivers asymmetry Ay as a function of rapidity for W~ (left), W+ (middle), and Z° (right),
respectively. We integrate vector boson transverse momentum over 0.5 < ¢; < 10 GeV.
On the right panel, we plot Ax as a function of ¢; while we integrate over the rapidity
ly| < 1. We find that the asymmetry for W/Z for the central fit is at most 2%, which is
more than an order of magnitude smaller than the central values recorded at RHIC. This
leads to a x2/Ngata of 2.015 for the prediction for RHIC, as shown in table 3. Even if one
considers the very large error bars in the RHIC data, this comparison seems to indicate
some tension between our theory and the RHIC data.

4.2 Impact of the RHIC data

In this section, we study the impact of the RHIC data to the fit. One possible issue which
may be arising in the description of the RHIC data is that while there are a large number
of experimental data at small @), there are much less data at RHIC energies. In order to
access the impact of the RHIC data, it is therefore convenient to follow the work in [78]
to introduce a weighting factor to the calculation of the x2. Thus in this section, the
expression for the y? is given by

& (T; ({a}) — E;) .

N
2 _ v (Li({a}) - EY) (
e =X T e T R (42)
We also define the Ny, for this weighted fit as
Nyata = N + wNg . (4.3)

For the first term of eq. (4.2), the sum is performed over all data in the previous section,
i.e., all the SIDIS data plus COMPASS Drell-Yan data. In the second term, the sum is
performed only over the RHIC data. In this second expression, w is the weighting factor.
In order to emphasize the contributions of the RHIC data, we choose w = N/Np = 226/17
so that the RHIC data and the rest of the experimental data sets are equally weighed in
the calculation of the x?. Furthermore, in order to perform the DGLAP evolution of the
Qiu-Sterman function, we take n = N¢.

Using this definition of the x?, we perform a fit to the selected data. In Table 4, we
provide the distribution of the y? for this fit. With the addition of the weighting factor, we
find that the x?/Ngata = 1.888 for the RHIC is quite large while for the low energy data
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Collab. Ref. Process Qave | Naata | X°/Naata | AT (%)
ld— IK°X 2.52 7 0.755 2.09
ld—IK~X 2.80 11 1.687 1.90
[44] ld— IKtX 1.73 13 0.750 1.31
COMPASS ld—Ilr= X 2.50 11 0.863 1.77
ld— IntX 1.69 12 0.496 1.71
3] Ip—1h~X 4.02 | 31 0.959 6.15
Ip—IhtX 3.93 | 34 0.847 4.70
[46] Tp—= X 534 | 15 0.659 1.03
Ip—IK~—X 1.70 14 0.398 0.72
Ilp = IKTX 1.73 14 1.545 0.54
HERMES | [41] Ip— Im°X 1.76 13 0.962 0.59
Ip—=1(rt—77)X | 1.73 15 1.182 0.52
Ip—In~ X 1.67 | 14 1.571 0.63
Ilp—=lirtX 1.69 14 1.401 0.54
JLAB 5] IN = IntX 1.41 4 0.449 0.11
IN = In~ X 1.69 4 1.725 0.11
pp — WX My | 8w 2.031 48.9
RHIC [47] pp— W—X My | Sw 1.583 52.0
pp — Z2°X My w 3.198 35.1
Total 452 1.444

Table 4. The distribution of x? for each data set for the fit 2a in table 1. The column AT is a
measure of the sensitivity of the fit to the DGLAP evolution kernel.

the x2/Ngata = 0.996. This result indicates that the issue with describing the RHIC data
is not that the high energy data has a small number of data points. Rather, it indicates
that when using our theoretical assumptions, these sets of data disagree on the properties
of the Sivers function.

In order to access which one of our theoretical assumptions is responsible for the large
x? of the RHIC data, we have performed several tests. Firstly, we have checked whether
the quality of the description of the RHIC data was due to the cut on ¢, /Q. In order to
check if quality of the fit is due to the value of this cut, we have performed an additional
fit with the cut ¢, /Q < 0.5. We find that this change leads to a x2/Ngata is 1.885 for the
RHIC data. While it would be preferable to perform an fit with ¢, /Q < 0.25, we note
that there is not enough data in this region to constrain the parameters of the fit. Because
there is no strong improvement in the description of the RHIC data after applying the
q1/@Q < 0.5, we conclude that this cut is not responsible for the disagreement between the
data sets.

Another possible assumption that could be causing the large x? of the RHIC data is the
assumption that the sea quarks have the same « and [ parameter. To check this, we have
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performed a 13 parameter fit with the chosen parameter with the parameters a,,, Ny, Byal,
ag, Ng, Ng, N3, Ns, N5, aq, a_, and feea. Here aj = as = a4 and ay = az = a—. The
introduction of the ay and a_ parameterization decouples the positive and negative sea
quarks from one another while the introduction of the parameters By, and Bsea decouples
the valance and sea quarks. However, we find that the addition of these parameters lead to
a X% /Ngata is 1.885. This implies that this assumption on the function form is not the issue.

In order to address the disagreement between the RHIC data and the rest of the data
sets, in figure 13 we plot the profiles of the x?/Ngata using the 13 parameter fit. In each
plot, we set all but one of the parameters equal to the values which are determined by the
fit and we vary the remaining parameter about its best value. The best value determined
by the fit is given by a vertical gray line. In this plot, we see that the curves for the RHIC
x? do not change much as the «, 3, and g{ parameters are varied. This indicates that
the RHIC data is insensitive to these parameters. On the other hand, we see that when
N, parameters are varied that there are large modifications to the RHIC x2. Thus, the
RHIC data is sensitive to these parameters. We see from the N, plots that the RHIC data
and the rest of the data sets agree on the sign of the quark-Sivers functions for Ny,Nz, N,
and Nz while the data sets disagree strongly about the magnitude of the parameters. For
Ny, we see that the RHIC data appears to be insensitive to the sign of this parameter so
that the disagreement is not striking. However, we find that the SIDIS and COMPASS
Drell-Yan data sets indicate that the sign of the u-quark is positive while the RHIC data is
indicating that the sign of the u-quark is negative. This disagreement is occurring because
the fit program is attempting to describe the large positive Ay asymmetry for the W+
RHIC data. Thus in order to describe this data, either the Nj or N3 parameters must be
large or the sign of the N, is incorrect. Since the value of the parameter N, is extremely
well constrained by the SIDIS and COMPASS Drell-Yan data while the value of N; and
Nz parameters are weakly constrained, we conclude that this sign disagreement will be
resolved once the magnitude of N; and N; parameters are addressed.

Overall in figure 13, we see the trend that the RHIC data N, requires much larger values
for the N, parameter than the SIDIS and COMPASS Drell-Yan data. Since the SIDIS and
COMPASS Drell-Yan data were gathered at much lower energy scales that the RHIC data,
this tension between the sets indicates that the size of the Sivers asymmetry grows as
a function of the hard energy scale. This result indicates that the issue in describing
the RHIC data appears because of a possible evolution effect. Since the perturbative
TMD evolution of the Sivers asymmetry is known, this issue is either occurring due to
the chosen non-perturbative parameterization of the Sivers function or from the choice
of the DGLAP evolution of the Qiu-Sterman function. RHIC is expected to release the
new measurement for W/Z Sivers asymmetry [79] in the near future in which they have
much more statistics and thus smaller experimental uncertainty. The new data will be
very valuable in constraining the non-perturbative component of the TMD evolution for
the Sivers function. In the next section, we will study the effects of the DGLAP evolution
of the Qiu-Sterman function and how they will affect the size of the asymmetry.
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Figure 13. The distribution of x?/Ngata for each parameter. In each subplot, we vary each
parameter about the central value while keeping all other parameters fixed to the optimal values
determined by the fit. The gray line is the central value determined from the fit.
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Figure 14. X2/Ngat. profile for the n parameter. To generate this plot, we use the parameter
values from section 4.2 and vary the parameter 7.

4.3 Effects of the DGLAP evolution

In order to examine how the DGLAP evolution of the Qiu-Sterman function affects the
size of the asymmetry, we begin by examining eq. (2.41). The largest contributions to
this expression should appear in the region where p,, ~ Q = My [54, 80]. In this region,
the size of the asymmetry is roughly proportional to x4/, (N, My) in eq. (3.19). To
examine how the magnitude of the Qiu-Sterman function evolves in energy, we start from
the evolution equation in the moment space in eqgs. (3.14) and (3.16), and examine the
ratio of this function at the two relevant scales pg and My . One can easily show that this
ratio is given by

—fu N —Yu N M
TFq/p (N, MV) :N(MO MV) (as (mg)> Yu(N)/Bo(po) (as (M‘Q/)> Yu(N)/Bo(My) (44)
TFq/p (N, o) ’ Qs (/‘(2)) Qs (ml%) 7
where N (ug, My ) is given by
/Bo (ko) n/Bo(My)
as (m?) K as (M)
o =SB
as (1) as (mp)

From this expression, it becomes clear that when 1 > 0, the factor A in eq. (4.5) becomes
small at large scales. Thus this factor leads to a suppression of the quark-Sivers function
at large scales. Thus with this suppression factor, the values of the N, parameters must be
very large in order to describe the RHIC data. On the other hand, when n < 0, the factor
N leads to an enhancement of the asymmetry at large scales.

In order to test the sensitivity of each data set to changes in the evolution kernel due
to the change in the 1 parameter in eq. (3.13), we define the quantity

1 T ({a},n=Ne) =T ({a},n=0)

T ({a},n= Nc)

x 100,
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Collab. Ref. Process Qave | Naata | X*/Ndata
ld— IK°X 2.52 7 0.823
ld—IK-X 2.80 11 0.886
[44] ld— IKTX 173 | 13 0.831
COMPASS ld—In~X 2.50 11 1.071
ld — InTX 1.69 12 0.596
3] lp—1lh~X 4.02 31 0.975
Ilp—1htX 3.93 34 0.988
[46] T p—= X 5.34 15 0.675
lp—IK~X 1.70 14 0.368
lp—=IKTX 1.73 14 2.042
HERMES | [41] Ip—Ir°X 1.76 13 1.039
Ip—=l(rt —77)X | 1.73 15 1.238
Ip—Iln~ X 1.67 14 1.318
Ip—IntX 1.69 | 14 1.677
JLAB (43 IN = IntX 1.41 4 0.651
IN =~ X 1.69 4 2.409
pp— WTX My 8w 1.929
RHIC [47] p— WX My | 8w 1.461
pp = Z°X My w 3.113
Total 452 1.446

Table 5. The distribution of x? for each data set for the fit 2b.

which gives the average percent difference between the two theory calculated with n = N¢
and n = 0 for a given set. In this expression, {a} are the parameters obtained from the
n = N¢ fit. In table 4, we provide the value for AT for each data set. We find that
the result of the low energy data can vary only within a few percent on the choice of the
DGLAP evolution kernel. On the other hand, the high energy RHIC data sets varies by a
factor of 50% when using these different kernels.

In order to explicitly demonstrate the dependence on the DGLAP evolution scheme,
in figure 14 we plot a profile of the x?/Ngata as a function of the parameter 7, while the
rest of the parameters are fixed as those from scheme fit 2a. As we can see from this
plot, x2/Ngata for RHIC data decreases as ) decreases. This indicates the RHIC seems to
prefer smaller 7 ~ 0 or even negative values. This trend is opposite to what is seen in the
SIDIS+DY data. Because of the driving from the RHIC data, the global x? seems to favor
the evolution scheme with n = 0 or even negative.

4.4 Global fit of the Sivers function

In section 4.1, we have presented fit 1, which was performed to Sivers asymmetry for
SIDIS+DY data at the low energy. The strengths of this extraction are that the theoretical
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¥2/d.o.f.. = 1.482
No=  0.09879-2% Gey aw =  0.82111.088
Ng= —0.2547017 Gev ag = 13427578
No= 075473927 Gev Qoea = 150173000
Ny= —0140130%Gev B = 276472827
N;j= —0.51073120Gev gr = 023270768 Gev?
Ne= —0.38779122 Gev

Table 6. Fit parameters for fit 2b in table 1. The presented values is the parameter value of the fit
with no Gaussian noise. The uncertainties for the replicas are generated from the parameter values
which lie on the boundary of 68% confidence.

0.3

=037 02 03 05 01 02 03 05 01 02 03 05
X

Figure 15. The extracted transverse moment of the Sivers function from fit 2b in table 1 at
o = VvV 1.9GeV. The black curve is the fit to the experimental data with no Gaussian noise.

uncertainties were small so that this extraction should describe very well future low energy
experiments. However, as we showed in the prediction for the RHIC data, this extraction
failed to describe the high energy data. In this section, we present a fit which emphasizes
the contributions of the RHIC data in order to allow future predictions for high energy
measurements of the Sivers asymmetry.

To emphasize the contributions of the high energy data, we retain the weighted defini-
tion of the x? in eq. (4.2). On the other hand, as we have seen in our model, the description
of the high energy data from RHIC depends strongly on the choice of the parameter 7.
By performing a global fit with = N¢, we found that the y2/Ngata for RHIC was 1.888.
In order to eliminate the suppression from the —Ngd(1 — x) term in the evolution kernel
eq. (3.13). In this section, we perform the fit with n = 0. This fit is referred to as fit 2b in
table 1.

For this fit, we recover a x?/d.o.f. of 1.482 with a x?/Ngata of 1.778 for the RHIC data.
The parameter values for this fit are given in table 6 while the distribution of the x? is given
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Figure 16. Left: the COMPASS deuteron target measurement [44] for 7%, 7=, K+, K~ and K°
from top to bottom, and as a function of x5 (left), z, (middle), and Py, (right). Right: HERMES
proton target measurement [41] 7+, 7% 7=, KT, K=, and (#* —7~) from top to bottom, and as a
function of xp (left), z; (middle), and Py, (right). The data is plotted in red along with the total
experimental error. The central curve in blue as well as the uncertainty band in gray are generated
using the result from fit 2b in table 1.

in table 5. We can see from table 6 that while the extraction of the Sivers function from
the low energy data could not resolve the sign of the s-quark Sivers function, this fit finds
that the s-quark should be positive. At the same time, the sign of all other quark functions
are consistent with the previous extraction. However, we note that the central values for
the N, parameters are much larger than the previous fit. This is occurring because of the
large RHIC asymmetry along with the weighting used in the fit. We see also in this table
that the uncertainties in the parameters are very large and tend to skewed in one direction.
The magnitude of this uncertainty is due to the large experimental uncertainties in the
RHIC data while the skew favors fits which increase the size of the asymmetry.

In figure 15, we plot the extracted transverse momentum moment of the Sivers function,
flJ‘T(l)(:I:, o) as a function of  at the scale pg = /1.9 GeV. The blue curve is the fit to the
experimental data with no Gaussian noise, while the grey uncertainty band is generated
from the middle 68% of the curves. In comparison with the extracted Sivers function in
figure 7 from SIDIS+DY data at low energy, this fit leads to much larger uncertainty band
for the Sivers function. The size of the Sivers functions in this fit is also significantly larger.
This is of course due to the much larger asymmetries for W/Z bosons measured at RHIC.
We note that we have also checked the extracted asymmetry in fit 2b against the new
HERMES data in [77]. We find that there is very strong agreement between this extracted
asymmetry and the new data.
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Figure 17. Left: the COMPASS proton target measurement for h~ for 1GeV2 < Q? < 4GeV?,
4GeV2 < @Q? < 6.25GeV?, 6.25GeV2 < Q? < 16GeV?, 16GeV2 < Q? < 81 GeV? from top to
bottom [43]. Right: same as the left except for At production. The central curve and uncertainty
band are generated using the result from fit 2b in table 1.
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Figure 18. JLab measurement of the Sivers asymmetry for a neutron target [45] as a function of
zp. The central curve and uncertainty band are generated using the result from fit 2b in table 1.
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Figure 19. COMPASS Drell-Yan measurement for 7 -p collision [46] as a function of ¢, , Q, zF,
zn, and z, from left to right. The central curve and uncertainty band are generated using the
result from fit 2b in table 1.
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Figure 20. The Sivers asymmetry for p+p — W/Z at v/S = 500 GeV [47]. The central curve and
uncertainty band are generated using the result from fit 2b in table 1.

In figures 16, 17, and 18, we plot the theoretical curve of this fit against the low
energy experimental data for SIDIS Sivers asymmetry. In figure 19, the comparison with
the COMPASS Drell-Yan data is presented. While the theoretical uncertainties are much
larger than the previous extraction, the fitted asymmetry still describes the this subset
of the data very well. Finally, in figure 20, we plot the fitted asymmetry to the RHIC
data. We find that in this scheme, the size of the asymmetry for the central fit can now
be up to 5%. Overall, this scheme describes the RHIC data much better than the previous
extraction. The future RHIC data with much smaller experimental uncertainty will for
sure help to reduce the theoretical uncertainties in the extracted Sivers functions, as well
as the Sivers asymmetries computed based on these Sivers functions.

5 Predictions for the EIC

As we have seen in the previous sections, the choice of DGLAP evolution scheme used for the
evolution of the Qiu-Sterman function greatly affects the quality of the fit when considering
data at large hard scales. While this issue currently presents difficulties for performing a
global extraction of the Sivers function, this effect also presents an opportunity at the future
EIC. The EIC will be capable of performing high precision measurements of transverse spin
asymmetries at a large range of scales. Experimental data which are collected over these
large range of scales can be used to study DGLAP evolution effects of the Qiu-Sterman
function. On the left side of figure 21, we plot our prediction for the Sivers asymmetry in
SIDIS on a proton target as a function of zp at v/S = 105 GeV, z, = 0.25, q1/Q =0.2 at
Q? =5, 50, 500 GeV? for 7+, 7, K*, and K~ production. In this figure, we have plotted
our prediction for the low energy fit (fit 1 in table 1) in blue, and the global fit (fit 2b in
table 1) in gray. While this prediction demonstrates the x-dependence of our fits, in order
to demonstrate the k| -dependence of our fitted Sivers function, we also make a prediction
as a function of P, on the right side of figure 21. In this figure, we have used the same
kinematics as the left side except that we take zg = 0.2. We see from these curves that
the predicted asymmetry for 7~ and K~ production is small. This behavior is expected
because of the suppression by the fractional charge eg for the d-quark Sivers function, as
well as the cancellation that occurs between the u and d-quarks. On the other hand, we
predict an asymmetry of a few percent for 7+ and K production in this kinematic region.
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Figure 21. The prediction for the EIC at /S = 105GeV. Left: the 5 dependent prediction at
zp, = 0.5 and ¢, /@ = 0.2. Right: the P, dependent prediction at zp = 0.2 and 2, = 0.25. The
blue band represents the prediction from the low energy extraction while the blue band represents
the prediction from the 1 = 0 scheme.

We see in these plots that the theoretical curves generated from fit 1 and fit 2b are
very similar at Q? = 5GeV2. This behaviour occurs because the suppression factor, A/
in eq. (4.5), is close to one at small energies. However, at Q% = 500 GeV?, the theoretical
curves generated from fit 1 and fit 2b can differ by a few percent. This effect presents a
great opportunity at the future EIC. Since measurements at large values of Q2 are sensitive
to the DGLAP evolution effects of the Qiu-Sterman function, these data may prove useful
in phenomenological studies of this evolution. At the same time, these future measurements
at the EIC could provide additional statistics for high energy data which will prove useful
in reducing the theoretical uncertainties for the extraction of the Sivers asymmetry at large
energy scales.

6 Conclusions

In this paper, we have performed extractions of the Sivers function for the first time
at the NLO+NNLL order. We first perform an extraction from the Sivers asymmetry
data measured in SIDIS at HERMES, COMPASS and JLab, and in Drell-Yan lepton pair
production at COMPASS. Using this first extraction, we generate a prediction for the
Sivers asymmetry of W/Z boson at RHIC kinematics and compare with the experimental
data. We find that while the SIDIS and COMPASS Drell-Yan lepton pair production data
is very well described by our extraction, that our theoretical curve is much smaller than the
RHIC data. We study in great detail the impact of the RHIC data and their implications.
For such a purpose, we perform a fit in which we introduce a weighting factor of ~ 13
for the RHIC data, so that the RHIC data and the rest of the experimental data sets are
equally weighed in the calculation of the x?. We study how RHIC data are sensitive or
insensitive to the non-perturbative parameters in the Sivers function parameterization. In
addition, we study in detail the dependence on the choice of the scheme used to perform the
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DGLAP evolution of the Qiu-Sterman function, the collinear counterpart that enters the
TMD evolution formalism for the Sivers function. We investigate the impact of two DGLAP
evolution schemes which are commonly used in the extraction of the Sivers function. We
find that the scheme which treats the evolution of the Qiu-Sterman function the same as the
unpolarized parton distribution function, is better suited for describing the experimental
data at RHIC. Using DGLAP evolution scheme, we perform for the first time a global
extraction of the Sivers function and find that this scheme improves the description of
the RHIC data. While our first fit describes the low energy data extremely well, our
second fit describes the RHIC data much better than the first. However, due to the large
experimental uncertainties at RHIC, we find that the globally extracted Sivers function
has large theoretical uncertainties. We expect the forthcoming RHIC experimental data
on W/Z Sivers asymmetry with large statistics and reduced experimental uncertainties
would help us better constrain the Sivers function and its evolution. In addition, we make
predictions for Sivers asymmetry at the future Electron Ion Collider (EIC). We find that
with large range of hard scale @) to be probed at the EIC, the effects due to the DGLAP
evolution of the Qiu-Sterman function can be extremely pronounced. Such measurements
would present a great opportunity for testing such effects.

Upon publication, the extracted Sivers functions from both fits in this paper will be
made available open source at the following link: https://github.com/UCLA-TMD/TMD-
GRIDS/tree/EKT2020.
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A Wilson coefficient functions

The scale dependent TMDPDF quark to quark and gluon to quark Wilson coefficient
function is given by [81-83]

g
Cq<—q’ (.Z', b? Hy C) = 5qq’5(1 - fL') + 5qq’ﬂ

2Cp(1 —x) — 2Py q¢(z)L
—L(-3+CFp (L+2L<))5(1—x)—CF7:6(1—x) , (A1)

Qg 1
Cyeglarbips€) = 2 o1 = )T = 5 Ppe (@)

where in these expressions, we have used the short-hand

L=In (Z;) , Le;=1In <52> . (A.2)
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The quark to quark coefficient function for the TMDFF is given by the relation

A

quq’ (27 b7 /'L7 C) = Cq%q’ (Za b7 M? C) ’L%L—IH(ZZ) ’ (Ag)
while the quark to gluon Wilson coefficient function for the TMD FF is given by
N o 1
Cyo (i, Q) = 52 O+ 2Pocy(2) () - 52 (A4)
In these expressions, we have introduced the standard collinear splitting kernels
1+ a2 3
P, = —— + =6(1 — A.
q%q(x) Cr (1 — .’B)+ + 25( x)] ( 5)
1+ (1—2)?
Py qy(z) = CF(z) (A.6)
Py g(x)=TF [zQ +(1- 2)2} . (A.7)

Finally, the coefficient function for the quark-Sivers function is given by

Cq<—q’($17$2’ b7 122 C) :5qq’ 5(]— - 351) 5(1 — $2)
Qs 1 +CL‘%

B ﬁéqq' { _ L[é(l _xQ/x1)<CF<1 —$1)+ — CAd(1 —:c1))

2
+ (00— ) = 50— /) b )]

—x1 1—x

= (1= aa/m) (1 — 21)

2N
b Cpa(1— 21)6(1 — )FL—LL—lﬁ—Wj} (A.8)
i x1 22)| 5 ¢ 5 TR .
which for u? = ¢ = ,ug* reduces to
_ s Oggl
Coeg (1,22, b5 iy, , 113, ) =04 6(1 — 21)5(1 — a2) — gﬁ&l —x2/21)(1 — 1)
2
Qs T
— 825 01— 21)3(1 — 2). (A.9)

B TMD evolution ingredients

The following expansions, numbers, etc, can be found in the 2013 PDG [84]. First of all,
we need the expansion of the strong coupling in terms of Aqcop:

as(p) 1 B1 Inx ﬁln%ﬁ —Inz—-1 (51

- A7z e N - S E B.1
47 Box B3 2% B x3 + Bs a3 T (B.1)
where x = In (,u2 / AéCD), and the coefficients of the beta-function are given as
11 4
=—Cy— = B.2
Bo 5 Ca—5Trny, (B.2)
34 20
@:§ﬁ—§@ﬂm—wﬂmﬁ (B.3)
2857 4 5 205 1415 2) (44 158 ) 9 9
=— 2Cp — — - — T, — — TEn% .
Bo 5 CA+< Cr 9 CrCy 97 Cy | Tpny + 9 Cr+ 57 Ca U

(B.4)
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Since we want the resummation up to NNLL, we take the expansion of oy with 5y, 81 and
f2. Depending on the number of active flavours, the value of Aqcp changes. For ny = 4
we have Aqcp = 0.297 GeV, and for ny = 5 we have Aqcp = 0.214 GeV. The pole-mass
for bottom-quark is my = 4.7 GeV.

The rapidity anomalous dimension, Collins-Soper kernel, is defined perturbatively as

Dl = XS ()"t (®.5)

where the coefficients up to NNLL are given by

40 =0, Y =Ty /2,
404 112
(2,0) — 204
d CACF ( o7 14C3> o7 CFTFTZf,
d®D =1,/2, d®? =ToB/4. (B.6)

On the other hand, in order to describe the perturbative TMD evolution, we want to
analytically solve the integral

o dp uir
v 4+ Teugp In ) (B.7)
T R
where the coefficients of the perturbative expansions of the anomalous dimensions can be
found in the below.

B.1 Integration at NLL accuracy

For this order we take g, ['g, I'1, Bp and ;. Thus we have:

LU di Qg M
CNLL :/ L (1)

pr M 4m
_ﬂ/“’d (1_ Bﬂnx)
2B T\ 32 x?
Yo —-1- lnx)} ru
== B.8
200 { . (B8)
BU di ( )
NLL M I MU
CFO /ML ﬁ am 72 12
Ty ru 1 Bl hll‘)
=9 de (= - 2L —
260 / ! (az Rar) o)
1) 051 zy  xylhz In’z v
=— |— neg ——|—-——- —— — B.9
2%, T + zylnze 5[%( . . 5 . (B.9)

bU di )\ 2 2
CFNILL:/ #Fl (O‘Z(:)) ln/;—g
1259

_Fl/wd <1_51m>2( — 2)
_253 o X - 53 x2 Ty X
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2832 x g \zr 42?2 = 22
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54 4z2  27x3 222 93 22 33 . )
L
The final result is then
HU dn
/ ap 4V 4 Teusp In MU CNLL i CNLL n CNLL. (B.11)
pr M I

Be careful with the number of active flavors. The number of flavors for the xy that appears
inside the integrand is fixed and depends on the value of u;;. However, depending on the
hierarchy between pr, py and my we might have to split the integral in several pieces, and
in that case, when we substitute the limits of the integral, x; and zy, they would have
different numbers of active flavors (still the xy that already appeared in the integrand
before the substitutions just depends on the value of pr).

B.2 Integration at NNLL accuracy
For this order we take vg, 71, I'o, I'1, I'2, Bo, 81 and B2. Thus we have:

CNNLL _ /“U dip as(p)
Y0

— 70
pr M 4m
@ 1 1 2In?r — Inz — 1 1
:l/ Y (LD nx+@%+£§?
260 €z ﬁo By x By x
_ B ﬁ —1- ln:n) Bl In%z & <—1> v
= %5 llna: 72 (;E + =5 5 2m2 on? + 53 \ 222 . (B.12)
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The final result is then

BU di 2
/ fﬂ (W + Ceusp 1n‘;g> = O+ OO+ O 4 ORI - oML (BT
222

C Evolution of the hard matching coefficient

The evolution of the hard matching coefficient Cy, which is related to the usual hard
function as H = |Cy|?, is given by

o (@ 1) = vy () % 1)
dlnu \%4 m-) = Cy s\H), M2 5 .

2

Q
Yo, = I‘Cusp(@s) lnﬁ + ’Yv(as) 5 (02)

where the cusp term is related to the evolution of the Sudakov double logarithms and
the remaining term with the evolution of single logarithms. The exact solution of this
equation is

7 2
CV(Q2/H§) = CV(Q2//%2) exp [/#f CZL YOy <O‘s(:u)v hlffg)]

i

as(uf)  der
= CV(QQ/MzQ) €xXp [/a (lf)f JZ_Z) YCy (as)] ) (03)

where we have used that d/dlnp = B(as)d/das, where S(as) = das/dlny is the QCD
S-function.

Below we give the expressions for the anomalous dimensions and the QCD [-function,
in the MS renormalization scheme. We use the following expansions:

[e.9] as n
1—‘cusp = Z Fn—l (47_‘_) y (04)
n=1
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The coefficients for the cusp anomalous dimension I'cygp are

'y =4CF,
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The anomalous dimension v can be determined up to three-loop order from the partial

three-loop expression for the on-shell quark form factor in QCD. We have

'7(‘)/ = —6Cp,
961  11x2
Vi_ 2 (_ 2 o
M= CF ( 3+ 4r 48(3) + CrCy ( 957 3 + 52§3>
260 4rn?
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