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In this paper we study transverse polarization of � hyperons in single-inclusive leptonic annihilation. We 
show that when the transverse momentum of the � baryon is measured with respect to the thrust axis, 
a transverse momentum dependent (TMD) factorization formalism is required and the polarization is 
generated by the TMD polarizing fragmentation function (TMD PFF), D⊥

1T . However, when the transverse 
momentum of the � baryon is measured with respect to the momentum of the initial leptons, a 
collinear twist-3 formalism is required and the polarization is generated by the intrinsic collinear twist-3 
fragmentation function DT . Thus while these measurements differ from one another only by a change in 
the measurement axis, they probe different distribution functions. Recently, Belle measured a significant 
polarization in single-inclusive � baryon production as a function of the transverse momentum with 
respect to the thrust axis. However, this data can in principle be re-analyzed to measure the polarization 
as a function of the transverse momentum of the � baryon with respect to the lepton pair. This 
observable could be the first significant probe of the function, DT . In this paper, we first develop a 
TMD formalism for � polarization; we then present a recent twist-3 formalism that was established to 
describe � polarization. Using the TMD formalism, we demonstrate that the � polarization at OPAL and 
Belle can be described using the twist-2 TMD factorization formalism. Finally, we make a theoretical 
prediction for this polarization in the collinear twist-3 formalism at Belle.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It has been a long standing challenge to describe the transverse 
polarization of � baryons in deep inelastic high energy reactions 
from a factorized framework in perturbative QCD. The strikingly 
large transverse polarization asymmetries of � hyperons observed 
in early experiments at Fermilab (along with follow-up experi-
ments) in pA → �X fixed target processes already 40 years ago 
[1–3], was at odds with the predictions from transverse polariza-
tion effects in perturbative QCD [4]. The discrepancy between the-
ory and experiment has resulted in numerous experimental [5–7]
and theoretical investigations [4,8–15] that have spanned decades. 
Fixed target measurements of this reaction were reported by the 

* Corresponding author.
E-mail addresses: lpg10@psu.edu (L. Gamberg), zkang@g.ucla.edu (Z.-B. Kang), 

dingyu.shao@cern.ch (D.Y. Shao), johndterry@physics.ucla.edu (J. Terry), 
fanyizhao@physics.ucla.edu (F. Zhao).
https://doi.org/10.1016/j.physletb.2021.136371
0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
NA48 collaboration [16] and the HERA-B collaboration [17]. At 
CERN the � polarization was also measured in pp collisions at 
moderate center-of-mass (CM) energy [18]. More recently, polar-
ization of � baryons were investigated at the LHC by the ATLAS 
collaboration [19]. While a small polarization was found in the AT-
LAS results in the mid-rapidity region measurements, essentially 
consistent with zero, such experiments demonstrate that the po-
larization of � baryons can be studied at the highest LHC energies 
and may be larger in different kinematical regions at forward ra-
pidities.

Experimentally, data on polarized � fragmentation in e+e−-
annihilation has been provided by the OPAL collaboration [20] at 
the LEP. This measurement was performed on the Z -pole, i.e., at 
a center of mass energy equal to the mass of the Z -boson. While 
a substantial longitudinal polarization of the �s was detected by 
OPAL, the transverse polarization was found to be zero within er-
ror bars.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Left: Thrust reference frame e+e− → �(Thrust) + X . Right: Center-of-mass 
frame e+e− → � + X .

Recently the Belle collaboration measured the production of 
transverse polarization of �-hyperons [21] in e+e−-annihilation 
for single-inclusive � production, where the hadron cross section 
is studied as a function of the fractional energy z� , and the trans-
verse momentum j⊥ with respect to the thrust axis. They find a 
significant non-zero effect for this process as well as for back-to-
back production of � and a light hadron h = π±, K± .

From theory there has been much progress since the work in 
Ref. [4]. For processes with more than one hard scale, such as 
the case for � production in semi-inclusive deep inelastic scat-
tering (SIDIS) as well as back-to-back � + h production in e+e−
collisions in the Belle experiment, the transverse momentum de-
pendent (TMD) formalism predicts a non-trivial result in term of 
TMD fragmentation functions (FFs) [22]. In the TMD factorization 
framework [23–25] for back-to-back production of � + h, a chiral 
even, naively T -odd fragmentation function, the TMD polarizing 
fragmentation function (TMD PFF) D⊥

1T (z�, p⊥) is predicted to be 
non-zero and universal [12,26–30]. As a result of this Belle mea-
surement, first phenomenological extractions of the T-odd polariz-
ing TMD D⊥

1T were carried out recently in [31–33].
While TMD factorization theorems have been well established 

for back-to-back production of � + h [23,25,34,35], the factoriza-
tion for the thrust-axis process with unpolarized hadron produc-
tion has only recently been considered from theory [36–38] in a 
TMD framework. In this case for e+e− → �(Thrust)X , as shown in 
Fig. 1 (left), one measures � transverse momentum j⊥ with re-
spect to the thrust axis n̂. Here, we extend this TMD factorization 
formalism to describe transversely polarized � production in this 
case with full QCD evolution. Establishing such a factorization the-
orem is an essential tool to carry out a global analysis of the TMD 
PFF.

On the other hand, much of the above mentioned data have 
been for single inclusive � production, e+e− → � X , where there 
is a single hard scale – the transverse momentum p�⊥ of the �, 
measured in the lepton center-of-mass (CM) frame as shown in 
Fig. 1 (right). In recent years QCD collinear factorization at higher 
twist [39,40] predicts a non-trivial result for these processes. 
For fully inclusive e+e− → � X the collinear twist-3 factorization 
framework predicts [15], that the cross section factorizes into a 
hard scattering contribution and the collinear twist-3 polarizing 
fragmentation function, DT (z�). A treatment of transverse polar-
ization for this process was also given in terms of a power sup-
pressed, one particle inclusive cross section by Boer et al. [24], and 
was also studied earlier for the inclusive deep inelastic scattering 
(DIS) process [41]. It is interesting to note that by naive time rever-
sal in what is expected to be the dominant one photon production 
approximation DT (z�), is predicted non-zero [26,42–44].

It is quite interesting that while these two measurements probe 
different distribution functions, they differ only by the definition 
of the measurement axis. That is, a measurement of the polariza-
tion as a function of j⊥ with respect to the thrust axis is a useful 
process for probing the properties of the TMD PFF D⊥

1T , while a 
measurement of the polarization as a function of p�⊥ , the trans-
verse momentum of the � in the lepton CM frame, is a useful 
2

Fig. 2. Transverse � polarization in the thrust frame. The blue semi-circle represents 
the plane which is perpendicular to the thrust axis n̂.

process for probing the collinear twist-3 function, DT . Therefore 
the polarization in the CM frame can in principle be studied from 
the existing Belle data by re-analyzing the data for the inclusive 
e+e− → �(Thrust)X measurement. With regard to the latter mea-
surement, it is important to note that an observation of a non-zero 
effect in the single inclusive process, is a fundamental test of naive 
time reversal invariance [26,41,42,45] which predicts a non-zero 
result for T-odd fragmentation, and a zero result for inclusive DIS 
processes [43]. Furthermore, in the recent paper [15] the factor-
ization of this process has been studied at next to leading order 
in perturbative QCD. In this paper, we use this formalism to make 
a theoretical prediction at Belle for this process. In this paper, we 
provide a clear distinction between the TMD and twist-3 factoriza-
tion theorems for these two measurements.

Our paper is organized as follows: In Sec. 2.1, we provide the 
theoretical formalism for the e+ e− → � (Thrust) X process. In 
Sec. 2.2, we provide the theoretical formalism for the e+ e− → � X
process. In Sec. 3.1, we provide the details of our phenomenologi-
cal analysis for the thrust TMD formalism and make a comparison 
of our formalism against the measurements performed by OPAL 
and Belle. In Sec. 3.2, we provide a theoretical prediction at Belle 
kinematics. We conclude our paper in Sec. 4.

2. QCD factorization

In this section, we provide the theoretical framework of our 
analysis. In Sec. 2.1, we extend the theoretical formalism presented 
in [36] to describe transverse polarization in e+ e− → � (Thrust)X
as shown in the left side of Fig. 1, where j⊥ is the � transverse 
momentum with respect to the thrust axis n̂. In Sec. 2.2, we pro-
vide the formalism for transverse � polarization in the twist-3 
collinear formalism under center-of-mass frame as illustrated in 
the right side of Fig. 1, where p�⊥ is the transverse momentum of 
the � baryon relative to the momentum of incoming electron.

2.1. � polarization in the thrust frame

In this section, we consider the transverse polarization for the 
process

e−(l) + e+(l′) → γ ∗(q) → �
(
z�, j⊥, S⊥

) + X . (1)

In this expression, qμ = lμ + l′μ with Q ≡ √
q2, and z� = 2P� ·

q/Q 2 is the parton fraction variable for the fragmentation function 
while the center-of-mass energy for this process is given by s =
Q 2. The momentum j⊥ represents the transverse momentum of 
the � baryon with respect to the thrust axis, n̂. The thrust axis is 
defined as the vector, n̂, which maximizes the thrust variable T

T =
∑

i

∣∣pi · n̂
∣∣∑

i

∣∣pi

∣∣ , (2)

where pi represent the momentum of the measured particles in 
the e+e− collision. The plane which lies perpendicular to the 
thrust axis at the interaction point of the lepton pair divides the 
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full phase space into two hemispheres. This plane is illustrated in 
Fig. 2 by the blue semi-circular plane. Finally S⊥ is the transverse 
spin of the � baryon.

In this paper, we consider the TMD kinematic region, i.e. j⊥ �
Q . In this kinematic region, the factorized expression is given at 
next-to-leading logarithmic level (NLL) by [36]

dσ

dz�d2 j⊥
=σ0

∑
q

e2q

∫
d2p⊥d2λ⊥ (3)

× δ(2)( j⊥ − p⊥ − z�λ⊥
)

× D�/q(z�, p⊥,μ, ζ/ν2)Shemi(λ⊥,μ,ν) ,

where

σ0 = 4Ncπα2
em

3Q 2
. (4)

In this expression, μ is the renormalization scale, ν is the 
scale which is used to regulate the rapidity divergences [46,47], 
and ζ is the Collins-Soper parameter [25,48]. We have also 
introduced Shemi(λ⊥, μ, ν), the hemisphere soft function, and 
D�/q(z�, p⊥, μ, ζ/ν2), the unpolarized TMD FF. It is important to 
emphasize that the hemisphere soft function is different than the 
usual soft function S defined in [25], which is used to describe the 
back-to-back di-hardon production in e+e− collisions. This differ-
ence occurs because Shemi(λ⊥, μ, ν) includes radiation in a single 
hemisphere while S includes radiation in both hemispheres.

Furthermore, we note that the factorization theorem in Eq. (3)
is a simplification of the full formula in [36]. This factorization 
matches the full one at NLL, while a more complicated factoriza-
tion formula occurs at higher order. For example, the one-loop 
hard function in the full formula contains not only virtual cor-
rections but also the wide-angle energetic radiation in one hemi-
sphere. As a result, the gluon TMD FF also contributes to the fac-
torized cross section at the leading power of O( j 2⊥/Q 2). For more 
details, see Ref. [36].

TMD factorization is conventionally carried out in b-space, 
where the factorized expression deconvolutes [49],

dσ

dz�d2 j⊥
=σ0

∑
q

e2q

∞∫
0

d2b

(2π)2
eib· j⊥/z�

× D�/q(z�,b,μ, ζ/ν2)Shemi(b,μ,ν) . (5)

In this expression,

D�/q(z�,b,μ, ζ/ν2) = 1

z2�

∫
d2p⊥e−ib·p⊥/z�

× D�/q(z�, p⊥,μ, ζ/ν2) , (6)

Shemi(b,μ,ν) =
∫

d2λ⊥e−ib·λ⊥ Shemi(λ⊥,μ,ν) , (7)

are the Fourier transforms of the momentum space TMD FF and 
hemisphere soft function, respectively.

We note that for this process, we have only considered a 
single-inclusive measurement in the hemisphere which contains 
the thrust axis, while the other plane is fully inclusive. For this 
type of measurement, only soft radiation which is emitted into the 
hemisphere containing the thrust axis will contribute to j⊥ . This 
subtlety introduces two complications which must be considered 
in the factorized expression. The first complication arises with the 
definition of the fully renormalized/finite so-called properly de-
fined TMD FF. In the Collins-Soper-Sterman (CSS) treatment [25]
3

DTMD
�/q (z�,b,μ, ζ ) =D�/q(z�,b,μ, ζ/ν2) (8)

× √
S(b,μ,ν) ,

where S(b, μ, ν) is the standard soft function usually arose in the 
SIDIS, Drell-Yan and back-to-back hadron pair production in e+e−
collisions [25,47,48,50,51]. The explicit calculation of Shemi given 
in [36] demonstrated at one-loop order that

Shemi(b,μ,ν) = √
S(b,μ,ν) . (9)

Because of this, the product of D�/q(z�, b, μ, ζ/ν2) and
Shemi(b, μ, ν) in Eq. (5) equals the standard TMD FF
DTMD

�/q (z�, b, μ, ζ ) in Eq. (8). Thus the factorized expression in 
Eq. (5) can be written as the following form

dσ

dz�d2 j⊥
=σ0H(Q ,μ)

∑
q

e2q

∞∫
0

d2b

(2π)2
eib· j⊥/z�

× DTMD
�/q (z�,b,μ, ζ ) . (10)

We note that for all phenomenological applications, we will take 
μ2 = ζ = Q 2 in the following discussions. Because of this, we sup-
press explicit μ and ζ dependence in our functions in this paper 
and instead give only explicit Q dependence.

The second complication that must be accounted for is that 
since we have restricted soft radiation to only one hemisphere, this 
observable is non-global [52]. The factorization formula for non-
global observables has been constructed in an effective field theory 
context in [53–56], where a multi-Wilson-line structure [57–59] is 
the key ingredient to capture the non-linear QCD evolution effects 
from the so-called non-global logarithms. It was recently shown in 
[36], that at NLL accuracy the factorization formula is given by

dσ

dz�d2 j⊥
= σ0

∑
q

e2q

∞∫
0

d2b

(2π)2
eib· j⊥/z� (11)

× DTMD
�/q (z�,b, Q , Q 2)UNG(μb∗ , Q ) .

To arrive at this expression, we have introduced the auxiliary scale, 
μb∗ which is defined in the b∗ prescription [60]. We note that the 
most important difference between Eqs. (10) and (11) is the intro-
duction of the function UNG(μb∗ , Q ), which contains the effects of 
the non-global logarithms. Since the treatment of the non-global 
logarithms will be addressed phenomenologically in this paper, we 
will discuss this function in more detail in Sec. 3.1.

In order to provide the full expression for the NLL cross section, 
the TMD FF must be matched onto the collinear fragmentation 
function through the relation

DTMD
�/q (z�,b, Q , Q 2) = 1

z2�
D�/q(z�,μb∗) (12)

× e−Spert(μb∗ ,Q )−SNP(b,z�,Q 0,Q ).

In order to arrive at this expression, we have performed tree level 
matching. The factor SNP(b, z�, Q 0, Q ) is the non-perturbative 
evolution factor for the unpolarized TMD FF where Q 0 is the initial 
TMD scale. Since this function depends on choice of parameteri-
zation, we will defer discussion of this function until 3.1. On the 
other hand, the perturbative Sudakov factor is given by

Spert(μb∗ , Q ) = − K̃ (b∗,μb∗)ln

(
Q

μb∗

)

−
Q∫

μb∗

dμ

μ

[
γF

(
αs(μ),

Q 2

μ2

)]
, (13)
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where at NLL order one has K (b∗, μb∗ ) = 0 and

γF

(
αs(μ),

Q 2

μ2

)
= αs

π
CF

(
ln

Q 2

μ2
− 3

2

)
(14)

+ α2
s

π2
CF

[
CA

(
67

18
− π2

6

)
− 10

9
TR n f

]
ln

Q 2

μ2
.

To further simplify the expression for the differential cross sec-
tion, it is now convenient to perform the integration over the b-
space azimuthal angle. After performing this angular integration, 
we arrive at the final expression for the unpolarized scattering 
cross section at NLL

dσ

dz�d2 j⊥
= σ0

∑
q

e2q

∞∫
0

bdb

(2π)
J0

(
b j⊥
z�

)
(15)

× 1

z2�
D�/q(z�,μb∗) e

−SNP(b,z�,Q 0,Q )−Spert(μb∗ ,Q )

× UNG(μb∗ , Q ) .

In this expression, J0 is the zero order Bessel function of the first 
kind.

Now that we have summarized each of the pieces of the un-
polarized cross section, we can extend this factorization theorem 
to the spin-dependent case. The spin-dependent differential cross 
section can be obtained from Eq. (11) by replacing the unpolar-
ized TMD FF with the spin-dependent one. In order to obtain the 
b-space spin-dependent TMD FF, we begin by performing a Fourier 
transform of the momentum space spin-dependent TMD FF. In this 
paper, we follow the Trento conventions [61] for the normaliza-
tion of this function and we assume the fragmenting quark to be 
moving in the +z direction. This normalization is given by the ex-
pression,

D̂�/q
(
z�, p⊥, S⊥, Q

) = 1

2

[
D�/q(z�, p�⊥, Q ) (16)

+ 1

z�M�

D⊥
1T ,�/q (z�, p⊥, Q ) ε⊥ρσ pρ

⊥Sσ⊥
]
.

The function D̂�/q
(
z�, p⊥, S⊥, Q

)
on the left hand side of this ex-

pression is the advertised spin-dependent TMD FF. The first term 
on the right hand side is the unpolarized TMD FF while the sec-
ond term on the right hand side contains D⊥

1T ,�/q (z�, p�⊥, Q ), 
the TMD PFF. We see in this expression that the first term on the 
right hand side is independent of the spin, while the second term 
in this expression is not. Therefore the first term in this expres-
sion contributes to the unpolarized cross section while the second 
contributes to the polarized cross section.

After performing the Fourier transform of this expression, we 
arrive at the expression for the b-space spin-dependent TMD FF

D̂�/q
(
z�,b, S⊥, Q

) = 1

2

[
D�/q(z�,b, Q ) (17)

− iM�ε⊥ρσ bρ Sσ⊥
z2�

D⊥(1)
1T ,�/q (z�,b, Q )

]
.

In this expression, we have introduced the full spin-dependent b-
space TMD FF

D̂�/q
(
z�,b, S⊥, Q

) = 1

z2�

∫
d2p⊥e−ib·p⊥/z� (18)

× D̂�/q
(
z�, p⊥, S⊥, Q

)
,

as well as the b-space first Bessel moment-TMD PFF [49]
4

D⊥(1)
1T ,�/q (z�,b, Q ) = − 2z2�

M2
�

∂

∂b2
D⊥

1T ,�/q (z�,b, Q ) (19)

= 2π

M2
�

z2�
b

∫
dp⊥
z�

(
p⊥
z�

)2

× J1

(
b p⊥
z�

)
D⊥

1T ,�/q (z�, p⊥, Q ) ,

where we have b2 = |b|2 in the first line. Analogous to the collinear 
matching of the TMD FF in Eq. (12), the TMD PFF can be matched 
to a collinear distribution, D⊥(1)

1T ,�/q

(
z�,μb∗

)
at NLL

D⊥(1)
1T ,�/q (z�,b, Q ) =D⊥(1)

1T ,�/q

(
z�,μb∗

)
(20)

× e−Spert(μb∗ ,Q )−S⊥
NP(b,z�,Q 0,Q ) ,

which reduces to the “transverse momentum” moments [22,62] in 
the small b limit [49],

lim
b→0

D⊥(1)
1T ,�/q (z�,b, Q ) (21)

= 1

M2
�

z2�
b

∫
d2p⊥
z2�

p⊥
z�

bp⊥
2z�

D⊥
1T ,�/q (z�, p⊥, Q )

=
∫

d2p⊥
p2⊥

z2�2M2
�

D⊥
1T ,�/q (z�, p⊥, Q )

≡ D⊥(1)
1T ,�/q (z�, Q ) .

Furthermore, the non-perturbative evolution factor for the TMD 
PFF is denoted S⊥

NP(b, z�, Q 0, Q ). This non-perturbative factor is 
not the same as the unpolarized factor. We note that in order to 
make this difference clear, we have included a ‘⊥’ in the super-
script for the non-perturbative factor. The form of these functions 
will be addressed in 3.1. Contrary to the non-perturbative evolu-
tion factor, the perturbative evolution factor, Spert(μb∗ , Q ) is the 
same as the unpolarized case.

In order to arrive at an expression for the spin-dependent dif-
ferential cross section, we now replace the unpolarized TMD FF in 
Eq. (11) with the spin-dependent TMD FF,

dσ
(
S⊥

)
dz�d2 j⊥

=σ0

∑
q

e2q

∞∫
0

d2b

(2π)2
eib· j⊥/z� (22)

× D̂�/q
(
z�,b, S⊥, Q

)
UNG(μb∗ , Q ) .

We can see from Eq. (17) that the first term is independent of the 
transverse spin vector Sσ⊥ while the second term is an odd function 
of Sσ⊥ . We can therefore isolate the unpolarized cross section by 
adding two full spin-dependent cross sections which have opposite 
spin configurations

dσ

dz�d2 j⊥
= dσ

(
S⊥

)
dz�d2 j⊥

+ dσ
( − S⊥

)
dz�d2 j⊥

(23)

= σ0

∑
q

e2q

∞∫
0

bdb

2π
J0

(
b j⊥
z�

)
(24)

× 1

z2�
D�/q(z�,μb∗) e

−SNP(b,z�,Q 0,Q )−Spert(μb∗ ,Q )

× UNG(μb∗ , Q ) .

In order to isolate the contribution of the TMD PFF, we subtract 
two full spin-dependent cross sections which have opposite spin 
configurations.



L. Gamberg, Z.-B. Kang, D.Y. Shao et al. Physics Letters B 818 (2021) 136371
Fig. 3. Transverse � polarization in the lepton CM frame.

d�σ

dz�d2 j⊥
= dσ

(
S⊥

)
dz�d2 j⊥

− dσ
( − S⊥

)
dz�d2 j⊥

(25)

=σ0 sin
(
φs − φ j

)∑
q

e2q

∞∫
0

b2db

2π
J1

(
bj⊥
z�

)

× M�

z2�
D⊥(1)

1T ,�/q

(
z�,μb∗

)
× e−S⊥

NP(b,z�,Q 0,Q )−Spert(μb∗ ,Q )UNG(μb∗ , Q ) .

To arrive at this expression, we have integrated over the b az-
imuthal angle. From this expression, we see that the size of the 
spin-dependent cross section depends on the sin(φs − φ j) modu-
lation. In this modulation, the angles φs and φ j are the azimuthal 
angles of S⊥ and j⊥ , respectively. In Fig. 2, we provide a figure 
which demonstrates the definition of these angles relative to the 
other kinematics. In the experimentally measured polarization, it is 
conventional to take φs = π/2 and φ j = 0 so that only the magni-
tude of the modulation is measured. For the purposes of this paper, 
we will always take these angles to be defined in this way. With 
this definition of the angles, the experimentally measured quantity 
for � transverse polarization is therefore given by the expression

P�⊥(z�, j⊥) = d�σ

dz�d2 j⊥

/
dσ

dz�d2 j⊥
. (26)

2.2. � polarization in the CM frame

In this section, we consider the transverse polarization for the 
process

e−(l) + e+(l′) → γ ∗(q) → �
(
z�, p�⊥, S⊥

) + X . (27)

In this expression, p�⊥ is the transverse momentum of the �

baryon with respect to the lepton pair in the CM frame, while 
z� and S⊥ are defined in the same way as the previous section. 
For this process, each component of the fragmenting quark’s mo-
mentum can be of order Q . Therefore each component of the �
baryon’s momentum, P� , is of order z�Q . Since each component 
of P� is of the same order, a collinear factorization is well justi-
fied [15,25,63,64].

At LO, the collinear factorization for unpolarized single-inclusive 
hadron production has the well-known form

E�dσ

d3P�

= 2Ncα
2
em

Q 4z�

[
(1− v)2 + v2

]∑
q

e2q D�/q(z�, Q ) . (28)

In Eq. (28), we have introduced the kinematic variable v = P� ·
l′/P� · q which is related to the � rapidity.

For transversely polarized � production, the LO differential 
cross section was shown in [15] to have the following form

E�d�σ

d3P�

= 2Ncα
2
em

Q 4z�

8M�

z�s2
ε��′ P� S⊥ 1

z�

∑
q

e2q DT ,�/q(z�, Q ) .

(29)
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In this expression

ε��′ P� S⊥ = εμνρσ �μ�′
ν P�ρ S⊥σ . (30)

Here the four momentum of the � baryon is denoted P� while 
the transverse spin of the � baryon is denoted S⊥ . In Fig. 3, we 
provide a diagram which illustrates the kinematics for this pro-
cess. We note that a similar result to Eq. (29) was given by Boer 
et al. [24] in the context of a power suppressed one particle inclu-
sive cross section formalism.1 We see that the relevant distribution 
function for this process is DT ,�/q(z�, Q ), the intrinsic collinear 
twist-3 fragmentation function.

In this paper, we will work in the lepton center of mass frame 
where e− and e+ move in the positive and negative z directions, 
respectively. In order to draw a clear connection to the TMD case, 
we choose to make the cross section differentiable in two kine-
matic parameters p�⊥ and z� . After simplifying Eq. (28), the un-
polarized cross section can be written as

dσ

dz� d2p�⊥
= 2Ncα

2
em

Q 4z�

(
1− 2p2

�⊥
z2�Q 2

)
Q

2p�z

×
∑
q

e2q D�/q(z�, Q ) (31)

where

p�z =
√

Q 2

4
z2� − p2

�⊥ (32)

is the magnitude of the z component of P� . Since the mag-
nitude of this component must be non-negative, we must have 
p�⊥ ≤ Q z�/2. Similarly, the transverse spin-dependent contribu-
tion to the cross section can be written as

d�σ

dz� d2p�⊥
= − sin(φs − φ�)

2Ncα
2
em

Q 4z�

(
4M�

Q

)
p�⊥
Q

× 1

z3�

∑
q

e2q
DT ,�/q(z�, Q )

z�
. (33)

Analogous to the TMD case, the transverse spin-dependent cross 
section is modulated by a factor of sin (φs − φ�). Here φs and φ�

are the azimuthal angles of the spin vector, S⊥ , and the � baryon 
transverse momentum, p�⊥ , respectively. In Fig. 3, these angles 
are shown with respect to the other kinematic variables in the 
measurement. Experimental measurements of the asymmetry will 
usually take the convention that φs = π/2 and φ� = 0. In our pa-
per, we will always follow this convention. After setting the values 
of these angles, the polarization in the twist-3 formalism is given 
by

P�
CM(z�, p�⊥) = d�σ

dz� d2p�⊥

/
dσ

dz� d2p�⊥
. (34)

At this point, it is important to note that the polarization in the 
CM frame is proportional to M�/Q .

3. Phenomenology

In this section, we first use the TMD formalism in the previ-
ous section to compute the polarization in the thrust frame and 
compare with the OPAL and Belle measurements. We then make a 
prediction for polarization for the polarization in the CM frame at 
Belle kinematics.

1 It is of note that next to leading order factorization the collinear twist-3 for-
malism has been investigated in [15], whereas no factorization for the twist-3 TMD 
framework has been proposed [65,66].
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3.1. TMD phenomenology

As we saw in Sec. 2.1, the denominator of the TMD polarization 
at NLL is given in Eq. (24). In this paper, we will use the standard 
b∗ prescription from [60]

b∗ = b√
1+ b2/b2max

, (35)

where bmax characterizes the boundary between the non-perturb-
ative and perturbative regions for b dependence [67,68]. Typi-
cal values used in phenomenology range from approximate 0.5 �
bmax � 1.5 [69,70]. In order to describe the collinear FF, we follow 
the work in [32] to use the collinear AKK fragmentation function 
[71] for D�/q

(
z�,μb∗

)
. Note that the AKK fragmentation function 

in [71] is only given in the region with Q > Qmin = 1 GeV. Thus, 
since μb∗ > Qmin [69] this restricts bmax � 1.1 GeV−1 using the 
AKK fragmentation functions; we choose bmax = 0.5.

Furthermore, for the non-perturbative function SNP(b, z�, Q 0,

Q ) we use the parametrization [72,73]

SNP(b, z�, Q 0, Q ) = gh
b2

z2�
+ g2

2
ln

Q

Q 0
ln

b

b∗
(36)

for the fragmentation function. Here there are two non-perturba-
tive parameters, gh and g2. The parameter gh controls the Gaus-
sian width of the unpolarized TMD FF at the initial scale Q 0, with 
gh 
 〈p2⊥〉/4. On the other hand, the parameter g2 is universal for 
all TMDs [67,68] and controls the evolution from Q 0 to Q . In or-
der to obtain numerical values for gh and Q 0, we closely follow 
the parameterization in [32], where the Gaussian width 〈p2⊥〉 is 
translated to gh 
 0.048 GeV2 at Q 0 = 10.58 GeV. Furthermore, 
we use the value of g2 = 0.84 which was obtained in [73] from a 
global fit from unpolarized SIDIS and Drell-Yan data.

In order to account for the non-linear QCD evolution associated 
with the non-global logarithms, we follow the parameterization in 
[52]

UNG(μb∗ , Q ) = exp

[
−CACF

π2

3
u2 1+ (au)2

1+ (bu)c

]
(37)

with a = 0.85CA , b = 0.86CA , c = 1.33 and

u ≡
Q∫

μb∗

dμ

μ

αs(μ)

2π
= 1

β0
ln

[
αs(μb∗)

αs(Q )

]
(38)

β0 = 11
3 CA − 4

3 T Fn f , with T F = 1/2. Finally, in order to perform 
the numerical Bessel transform in Eq. (24), we use the numerical 
algorithm in [74].

Having summarized the details for the unpolarized scattering 
cross section, we will provide the details for the transverse spin-
dependent cross section. In Sec. 2.1, the polarized differential cross 
section was shown to be given in Eq. (25). In order to obtain a pa-
rameterization for the b-space TMD PFF, we note that the momen-
tum space TMD PFF was recently extracted at the scale Q 0 = 10.58
GeV in [32] using the parameterization

D⊥
1T ,h/q(z, p⊥, Q 0) = D⊥

1T ,h/q(z, Q 0)
e−p2⊥/〈M2

D 〉

π〈M2
D〉 . (39)

In this expression, D⊥
1T ,h/q(z, Q 0) is the collinear PFF [32] while 

〈M2
D 〉 is the Gaussian width which was extracted from the Belle 

data. In this reference, the authors take the parameterization

D⊥
1T ,h/q(z, Q 0) = Nq(z)Dh/q(z, Q 0) . (40)
6

Fig. 4. P�⊥(z�, j⊥) in e+ e− → �(Thrust)X for OPAL [20]. The theoretical curve is 
integrated over the region 0.15 < z� < 1. We plot the experimental data in red with 
the total experimental uncertainty as a vertical error bar while the experimental 
uncertainty on j⊥ is in the horizontal error bar. The gray band is the theoretical 
uncertainty which was generated from the replicas for the TMD PFF in [32].

Here the factor Nq(z) is a collinear modulation function which is 
parameterized by the expression

Nq(z) = Nqz
αq (1− z)βq

(αq + βq − 1)αq+βq−1

(αq − 1)αq−1β
βq
q

. (41)

The parameters αq , βq , and Nq were all determined from the fit 
in [32].

Using this parameterization, we obtain the following expression 
for the b-space TMD PFF in Eq. (20) with QCD evolution

D⊥(1)
1T ,�/q (z,b, Q ) = 〈M2

D〉
2z2M2

�

D⊥
1T ,�/q(z,μb∗)

× e−Spert(μb∗ ,Q )−S⊥
NP(b,z,Q 0,Q ) (42)

where

S⊥
NP (b, z, Q 0, Q ) = 〈M2

D〉
4

b2

z2
+ g2

2
ln

Q

Q 0
ln

b

b∗
. (43)

We used again that the coefficient in front of b2 is given by the 
corresponding Gaussian width, 〈M2

D 〉/4, and g2 is universal for all 
TMDs. Now that we have supplied all of the details of the phe-
nomenology, we can compare our theoretical prediction in Eq. (26)
against the OPAL and Belle data.

In Fig. 4, we plot the polarization as a function of j⊥ . We note 
that our convention for the direction of the vector S⊥ is opposite 
of the direction that was used in the OPAL measurement. To ac-
count for this different convention, we have multiplied the exper-
imental data by a minus sign. We also note that the experimental 
data at OPAL is integrated over the region 0.15 ≤ z� ≤ 1. In our 
calculation, we have also included the theoretical uncertainty in 
Nq(z) in Eq. (40) from the fit performed in [32]. We note however 
that in this reference, the theoretical uncertainty associated with 
random sampling for the initial fit parameter values was not con-
sidered. In order to account for this uncertainty, we have initialized 
the fit parameters from [32] using Monte Carlo sampling, following 
the procedure in [75]. We have then re-performed the fit for each 
replica. Using the updated parameter values, we generate a theo-
retical prediction for each of the updated replicas. At each point in 
our theoretical prediction, we calculate the average and the stan-
dard deviation from these replicas. The error band presented here 
represents our theoretical prediction within one standard deviation 
of the mean of the replicas. This uncertainty is plotted as a gray 
band in our description of the experimental data. While our the-
oretical description of the data is slightly larger than the central 
values of the experimental result, we expect that the OPAL data 
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Fig. 5. P�⊥(z�, j⊥) in e+ e− → �(Thrust)X for the Belle data [21]. From left column to right column, the theoretical curve is integrated from 0.2 < z� < 0.3, 0.3 < z� < 0.4, 
0.4 < z� < 0.5, 0.5 < z� < 0.9. The data in red is for � production while the data in blue is for �̄ production. The experimental data is plotted with the total experimental 
uncertainty as a vertical error bar while the experimental uncertainty on j⊥ is in the horizontal error bar. The gray band represents the theoretical prediction with the 
uncertainty obtained from the replicas for the TMD PFF.
can be used in a future global analysis to constrain the form and 
evolution of the TMD PFF.

In Fig. 5, we plot our theoretical calculations against the Belle 
data. The columns from left to right of this figure indicated the 
binned values for the z� that we used in our numerical calcu-
lations. To generate our theoretical curve, we integrate over the 
advertised z� values. It is important to note that the rightmost bin 
in the experimental data was 0.5 ≤ z� ≤ 0.9. While the TMD PFF 
in [32] was extracted in the region 0.2 ≤ z� ≤ 0.5, we also pro-
vide our prediction for the final bin. In this plot, the blue data 
is for � production while the red data is for �̄ production. The 
horizontal error bars indicate the bin size in j⊥ while the verti-
cal error bars are the total experimental error. We note that the 
TMD PFF in our phenomenology is invariant under charge con-
jugation, explicitly D⊥

1T ,�/q(z, b, Q ) = D⊥
1T ,�̄/q̄

(z, b, Q ). Therefore, 
after performing the sum over the quark flavors, the theoretical 
prediction for � and �̄ is then the same. We see in Fig. 5 that 
in the region of small z� , the magnitude of the experimental data 
is small. This behavior can be described by examining Fig. 5 in 
[32]. At small z� the magnitude of the u, d, and sea TMD PFFs 
are large and the sign of the u TMD PFF is opposite of the d and 
sea TMD PFFs. Therefore in this region there are large cancella-
tions that are occurring between the different flavors. However, at 
z� > 0.4, the d and s TMD PFFs dominate. Since the d and s quark 
TMD PFFs have the same sign, the magnitude of the theoretical 
curve is larger in that region. We see in the regions 0.2 ≤ z� ≤ 0.3, 
0.3 ≤ z� ≤ 0.4, and 0.4 ≤ z� ≤ 0.5 that our theoretical prediction 
agrees with the experimental data. Furthermore, while the TMD 
PFF was only extracted in the region 0.2 ≤ z� ≤ 0.5, we find that 
the parameterization still describes the experimental data well in 
the region 0.5 < z� < 0.9.

3.2. Twist-3 phenomenology

In this section, we provide our prediction for the twist-3 trans-
verse polarization at Belle. The denominator for the twist-3 po-
larization is given by Eq. (31). In order to generate a numerical 
prediction for unpolarized � production, we only need to fix the 
collinear unpolarized FFs for � baryons. For this purpose, we once 
again use the AKK collinear FFs in [71].

On the other hand, we saw that the numerator of the polar-
ization is given in Eq. (33). Therefore in order to describe this 
process, we only need a parameterization for DT ,�/q(z�, Q ). Given 
our lack of knowledge of this fundamental twist-3 T-odd fragmen-
tation function, we will employ the approach outlined in [76] in 
order to re-express the DT ,�/q(z�, Q ) in terms of our knowledge 
of D⊥(1)

1T ,�/q(z�, Q ). We observe that we can relate this intrinsic 
twist-3 FF to the kinematic and dynamical twist-3 functions [40]
through the relation,
7

Fig. 6. The twist-3 fragmentation functions DT ,�/q(z�, Q ), defined in Eq. (46), plot-
ted as functions of z� . The bands represent the uncertainty band which is generated 
from one standard deviation of the replicas.

1

z�
DT ,�/q(z�, Q ) = −

(
1− z�

d

dz�

)
D⊥(1)

1T ,�/q(z�, Q )

− 2

1∫
0

dβ



[
D̂qg

F T (z�, Q , β)
]

(1 − β)2
, (44)

which as derived in Ref. [77] by employing both Lorentz invari-
ance relations and equations of motion relations (EOMs). In this 
expression D⊥(1)

1T ,�/q(z�, Q ) is the kinematic twist-3 fragmentation 
function which is defined in terms of the TMD PFF in the previous 
section through the relation

D⊥(1)
1T ,�/q(z�, Q ) =

∫
d2p�⊥

p2
�⊥

2z2�M2
�

D⊥
1T ,�/q

(
z, p2

�⊥, Q
)

, (45)

where a regularization procedure is implied [76,78,79]. That is, 
the collinear limit of the first Bessel moment of the TMD PFF in 
Eq. (20) corresponds to the first moment of the TMD PFF, through 
a limiting procedure, as b becomes very small and is associated 
with the hard scale b ∼ 1/Q [76,78], resulting in a renormalized 
first moment of the functions originally introduced in [22,24].

On the other hand, D̂qg
F T (z�, Q , β) is the dynamical twist-3 

fragmentation function [40]. Since from Eq. (45) the kinematic 
function D⊥(1)

1T ,�/q(z�, Q ) is related to the TMD PFFs, we can use 
the extracted results from [32] to obtain this function. The dynam-
ical twist-3 function D̂qg

F T (z, Q , β) on the other hand is not yet 
known. In order to perform a phenomenological analysis, we adopt 
the approach outlined in Ref. [76] where as a first approximation 
we neglect the last term in Eq. (44); that is,

1

z�
DT ,�/q(z�, Q ) = −

(
1− z�

d

dz�

)
D⊥(1)

1T ,�/q(z�, Q ) . (46)

This is a statement that integral in Eq. (44) is parametrically 
smaller than the first term: not that D̂qg

(z�, β) is zero. In fact 
F T
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Fig. 7. P�
CM(z�, p�⊥) defined in Eq. (34) for e+e− → �X as a function of z� and p�⊥ at Belle. Top left: A contour plot of the polarization in z� and p�⊥ . Top right: A 

three dimensional plot of the polarization. Bottom left: Plot of the polarization as a function of z� only. Bottom right: Plot of the polarization as a function of p�⊥ only. 
The top plots are generated only using the central fit. The red and blue curves in the bottom plots are generated using the central fit while the gray band is the theoretical 
uncertainty.
D̂qg
F T (z�, Q , β) must not be zero since it was shown in Ref. [77], 

D⊥(1)
1T ,�/q(z�, Q ) is an integral of D̂qg

F T (z�, Q , β). Our purpose here 
is to provide first estimate of DT ,�/q(z�, Q ) in order to provide 
a first prediction of P�

CM(z�, p�⊥) in e+ e− → � X for the Belle 
data [21]. Once data from Belle is analyzed in the CM frame, we 
can ascertain the size of the neglected contribution.

In Fig. 6 we plot the function DT ,�/q(z�, Q ) computed in 
Eq. (46) as a function of z� at Q = 10.58 GeV for u, d, s, and 
the sea quarks. To generate the contribution of the sea quarks, 
we add the contributions of the ū, d̄, s̄-quarks. We once again 
follow the procedure which is given in detail in the previous sec-
tion to generate the uncertainty band. We emphasize again that 
the uncertainty band arises only based on the fitted parameters 
in Nq(z) in Eq. (40), while we only use the central values for 
the unpolarized fragmentation function Dh/q(z, Q ). In red we plot 
DT ,�/u(z�, Q ) while in green we plot DT ,�/d(z�, Q ). In blue, we 
plot DT ,�/s(z�, Q ). Finally in light blue, we plot the sum over 
the sea quarks. We find that at small z� , the sum over the sea 
quarks for DT ,�/q(z�, Q ) becomes very large. However at large 
z� , the contribution of the sea quarks becomes small. At small z� , 
the next largest contribution comes from the u-quarks which are 
negative. On the other hand, the contribution of the d-quarks is 
positive. At small z� the contribution from the d quarks is smaller 
than that of the sea and u quarks. However, at large z� , the d-
quark has the largest contribution. We find that DT ,�/s(z�, Q )

tends to be much smaller than the other twist-3 FFs in the plotted 
region.

In order to generate a prediction for Belle [21], in Fig. 7 we plot 
the polarization as a function of both p�⊥ and z� at Q = 10.58
GeV. We note that because the p�z must be non-negative, we 
then only plot our prediction in the region where p�⊥ ≤ z�Q /2. 
8

Therefore as z� grows, the range of available p�⊥ increases. Fur-
thermore due to this phase space restriction, at Q = 10.58 GeV 
the transverse momentum of the � baryon can then be at most 
a few GeV. However, it is important to note that this transverse 
momentum originates from the hard interaction as well as the 
collinear fragmentation, and not from any TMD physics. In the top-
left plot of this figure, we provide a contour plot for P�

CM(z�, p�⊥)

in Eq. (34) in e+e− → �X using the central fit parameter values. 
In the top-right, we provide a three-dimensional plot of the po-
larization using the central fit. In the bottom-left plot, we show 
the polarization as a function of z� at p�⊥ = 0.8 GeV in blue and 
p�⊥ = 1.8 GeV in red. In the bottom-right plot, we see the polar-
ization as a function of p�⊥ for z� = 0.2 and z� = 0.5. In all of 
our plots, we see that the size of the predicted asymmetry tends to 
be 1 − 2% in magnitude. While the size of this polarization is rela-
tively small, it is important to note that this prediction was made 
using a Wandzura-Wilczek type relation, Eq. (46). If the size of the 
polarization at Belle is found to be larger than our prediction, this 
could be an indication that the Wandzura-Wilczek relation is not 
a good approximation for this function. Furthermore, if a signifi-
cant signal for this process is found, this would also be the first 
demonstration that the function DT ,�/q is non-zero.

Additionally, we have made theoretical predictions against 
the measurement at OPAL. As shown in [20], the polarization 
P�
CM(z�, p�⊥) measured in the direction of Ŝ⊥ = ẑ × P̂� is given 

to be 1.1 ± 1.8% for z� > 0.15 and p�⊥ > 0.3 GeV/c. With the 
theoretical framework provided in this work, we obtain P�

CM =
0.020+0.003

−0.004% with z� integrated from 0.15 to 1 and p�⊥ inte-
grated from 0.3 GeV to z�Q /2, which is in agreement with the 
measurement provided by OPAL.
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4. Conclusion

In this paper we have studied transverse polarization in single-
inclusive � production in a thrust TMD framework as well as a 
collinear twist-3 framework. We have shown that when the polar-
ization is differential in the transverse momentum with respect to 
the thrust axis, the polarization can be used to probe the TMD Po-
larizing Fragmentation Function (PFF), D⊥

1T . On the other hand, we 
have also shown that when polarization is differential in the trans-
verse momentum with respect to the leptons, the polarization is 
sensitive to the DT ,� function, a collinear twist-3 fragmentation 
function. In order to describe the first process, we have extended 
a recent TMD formalism. Using this formalism, we have generated 
a theoretical prediction and compared this against the OPAL and 
Belle measurements. We have found good theoretical description 
of the Belle thrust axis data, and also demonstrated that the OPAL 
is reasonably described from the thrust axis factorization theorem 
developed here. This analysis provides proof of principle that the 
experimental data at OPAL and Belle can be described using the 
factorization and resummation formalism that we have introduced. 
Future work could involve using these experimental data to con-
strain the evolution of the TMD PFF.

Furthermore we have discussed how this recent Belle data can 
in principle be re-binned to measure the transverse momentum 
of the � baryon with respect to the lepton pair. Using a collinear 
twist-3 formalism, we have generated a theoretical prediction for 
this polarization at Belle. This measurement will allow for the first 
measurement of the intrinsic twist-3 FF, DT ,�/q which by naive 
time reversal [26,42–44] symmetry, is predicted to be non-zero.
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