

Linking the Surface and Subsurface in River Deltas - Part 1: Relating Surface and Subsurface Geometries

Jayaram Hariharan¹, Zhongyuan Xu², Holly A. Michael^{2,3}, Chris Paola⁴,
Elisabeth Steel⁵, Paola Passalacqua¹

¹Department of Civil, Architectural and Environmental Engineering and Center for Water and the
Environment, University of Texas at Austin, Austin, Texas, USA

²Department of Earth Sciences, University of Delaware, Newark, Delaware, USA

³Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA

⁴Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota,
USA

⁵Department of Geologic Science and Geologic Engineering, Queen's University, Kingston, Ontario,
Canada

Key Points:

- We investigate whether delta surface channel network metrics can inform predictions of subsurface properties
- Higher surface wetted fraction values and more variable shoreline roughness values are associated with increased connectivity in the subsurface
- The Kullback-Leibler divergence identifies shoreline roughness, wetted fraction, 2-D connectivity, and 2-D percolated path ratio as the most unique metrics

20 **Abstract**

21 River deltas are densely populated regions of the world with vulnerable groundwater re-
 22 serves. Contamination of these groundwater aquifers via saline water intrusion and pol-
 23 lutant transport is a growing threat due to both anthropogenic and climate changes. The
 24 arrangement and composition of subsurface sediment is known to have a significant im-
 25 pact on aquifer contamination; however, developing accurate depictions of the sub-
 26 surface is challenging. In this work, we explore the relationship between surface and sub-
 27 surface properties and identify the metrics most sensitive to different forcing conditions.
 28 To do so, we simulate river delta evolution with the rule-based numerical model, DeltaRCM,
 29 and test the influence of input sand fraction (ISF) and steady sea level rise (SLR) on delta
 30 evolution. From the model outputs we measure a variety of surface and subsurface met-
 31 rics chosen based on their applicability to imagery and modeling results. The Kullback-
 32 Leibler (KL) divergence is then used to quantitatively gauge which metrics are most in-
 33 dicative of the imposed forcings. Both qualitative observations and the KL divergence
 34 analysis suggest that estimates of subsurface connectivity can be constrained using sur-
 35 face information. In particular, more variable shoreline roughness values and higher sur-
 36 face wetted fraction values correspond to increased subsurface connectivity. These find-
 37 ings complement traditional methods of estimating subsurface structure in river-dominated
 38 delta systems and represent a step towards the identification of a direct link between sur-
 39 face observations and subsurface form.

40 **Plain Language Summary**

41 River deltas are home to over half a billion people facing increasing risks due to
 42 a variety of natural and human-induced factors. With rising sea levels, one of the expected
 43 threats to public health is the contamination of fresh drinking water. In particular, ground-
 44 water is susceptible to sea water intrusion; it is known that highly connected ‘fast-travel’
 45 pathways can exist in the subsurface and often determine the expected time of contam-
 46 ination. By modeling river delta formation and evolution, we tie observations from the
 47 surface waterways to the presence of highly connected pathways in the subsurface. Nu-
 48 matical modeling allows us to better understand how these delta systems may respond
 49 to different types of sediment inputs and to different steady sea level rise rates. We learn
 50 that the surface does indeed provide us some information about the hidden subsurface
 51 beneath it, opening up the opportunity for improved modeling of the subsurface from
 52 surface information.

53 **1 Introduction**

54 River deltas are geologically dynamic and home to large human populations (Syvitski
 55 & Saito, 2007; Syvitski et al., 2009; Twilley et al., 2016; Rahman et al., 2019). The chang-
 56 ing dynamics of river deltas in response to climate change, upstream river management,
 57 and sea level rise threaten both coastal ecosystem health and the lives of millions of peo-
 58 ple worldwide (Syvitski et al., 2009; Rahman et al., 2019). Thus, it is critical to advance
 59 our knowledge and understanding of these geologic systems to help plan and adapt for
 60 impending change. One of the resources being threatened is potable groundwater, the
 61 primary source of drinking water for 1.5 to 2.8 billion people (Morris et al., 2003). Within
 62 aquifers, the connectedness of high permeability facies has long been known to strongly
 63 influence flow and solute transport (Fogg, 1986). By understanding the connectedness
 64 of the subsurface, groundwater models can be better constrained (Hovadik & Larue, 2010),
 65 but the characterization of the subsurface can be challenging due to sparse data limit-
 66 ing our capability of planning for and managing future changes. The subsurface, how-
 67 ever, is the result of surface dynamics through time, and, relative to the subsurface, sur-
 68 face spatial data are abundant. Therefore, the characterization of subsurface architec-

ture regimes from surface analysis may provide opportunities to constrain estimates of shallow aquifer connectedness; we explore this idea in this study.

A large body of work has been devoted to the study and analysis of river delta growth and evolution. Studies have focused on the characterization and description of distributary channel networks (Edmonds et al., 2011; Shaw et al., 2013; Ke et al., 2019), the growth and evolution of delta shorelines (Kim et al., 2006; Shaw et al., 2008; Geleynse et al., 2012), and the influence of various external forcings, such as changes to the base level on delta growth and evolution (Koss et al., 1994; Parker et al., 2008; Martin et al., 2009). The control and influence of input sediment properties on delta formation has also been evaluated and quantified (Orton & Reading, 1993; Edmonds & Slingerland, 2010; Burpee et al., 2015). Additionally, global studies have begun to evaluate river deltas across the world to examine their properties and estimate their future morphologies (Giosan et al., 2014; Caldwell et al., 2019; Nienhuis et al., 2020).

Many deltaic systems, such as the Mississippi River Delta and the Ganges-Brahmaputra-Meghna Delta, contain naturally occurring arsenic in shallow subsurface aquifers (Yang et al., 2014; Ayers et al., 2016). These aquifers also face the ever-present threat of salt-water intrusion as both groundwater pumping and sea level rise move the salt-fresh water boundary inland (Moser et al., 2012; Rahman et al., 2019). Predicting groundwater aquifer contamination is further complicated by the fact that many of these coastal aquifers are highly heterogeneous (Winkel et al., 2008; Khan et al., 2016).

To quantify the structure of the subsurface, static (geometrically-based) metrics are used. The basis for this type of metric is connected cluster analysis, a class of methods that can be used to characterize the arrangement of highly permeable facies within the subsurface (Gawlinski & Stanley, 1981; King, 1990). Metrics associated with cluster analysis include the number of clusters, cluster size, and cluster shape and extent relative to the entire field (Renard & Allard, 2013). For example, one measure of bulk connectivity in the subsurface is the ratio of the largest connected cluster volume to the volume of all clusters (Hovadik & Larue, 2007, 2010).

The shape and arrangement of the subsurface are influenced by the surface processes that formed it. In natural river deltas, relating surface processes to subsurface form is complicated by a wide variety of factors as well as the limited time span over which observations are available. Evidence from the stratigraphic record has been used to develop theoretical models for deltaic deposits formed under different base level conditions (G. Allen & Mercier, 1988; Postma, 1995). Many physical and numerical experiments have been designed to test these theoretical models, as well as to measure morphological properties of the surface as the delta deposit is formed (e.g., Koss et al., 1994; Heller et al., 2001; Martin et al., 2009; Geleynse et al., 2012). These studies provide evidence that alloegenic forcings influence surface morphology and leave behind identifiable stratigraphic sequences, however the identification of direct relationships between surface morphology and subsurface form remains under-explored.

To interrogate overall patterns and more broad evolutionary trends related to deltaic growth, simplified modeling can be employed (Paola, 2011). The advantage of simplified numerical models over their fully physical counterparts is two-fold: the computational cost of solving simplified physics is lower and simpler models are easier to understand, apply, and analyze. Simplified models have been developed to understand, for example, the lobate growth of delta landforms (Seybold et al., 2007; Moodie et al., 2019). Established models have been modified to explore the influence that multiple variables such as waves and sea level rise (Ratliff et al., 2018), mud and vegetation (Lauzon & Murray, 2018), and ice and permafrost (Lauzon et al., 2019) have on delta morphology and dynamics. In contrast to physical experiments, numerical models allow more experiments to be conducted and therefore additional conditions and forcings to be tested.

120 In this study, we pursue two main goals. First, we qualitatively explore the influence
 121 of input sand fraction (ISF) and sea level rise (SLR) on the surface with a suite of
 122 morphologic metrics, and in the subsurface by using geometry-based, static subsurface
 123 metrics. Second, we quantitatively identify the metrics most sensitive to ISF and SLR
 124 by using the Kullback-Leibler divergence. We employ the numerical model DeltaRCM
 125 to simulate surface processes and generate stratigraphy. Inferring knowledge about the
 126 subsurface from surface information creates new opportunities to better inform ground-
 127 water models and reduce uncertainty around predictions of aquifer and well contamina-
 128 tion. In a companion paper, we explore the relationship between these static subsurface
 129 metrics and groundwater dynamics (Xu et al., accepted).

130 2 Methods

131 2.1 Description of DeltaRCM

132 We model delta evolution using DeltaRCM, a hydro-morphodynamic reduced-complexity
 133 model that uses empirical rules and weighted random walks to mimic the transport of
 134 water and sediment (Liang, Voller, & Paola, 2015; Liang, Geleynse, et al., 2015). DeltaRCM
 135 simulates the deposition, erosion, and reworking of two sediment facies: a fine ‘mud’ sed-
 136 iment that is transported in suspension, and a coarse ‘sand’ sediment that is transported
 137 as bedload. A brief overview of how DeltaRCM routes sediment and develops stratig-
 138 raphy is presented herein; for a more thorough description we refer the reader to Liang,
 139 Voller, and Paola (2015) and Liang, Geleynse, et al. (2015).

140 The DeltaRCM domain is initialized with an empty basin and a single inlet. In-
 141 let discharge is discretized into parcels of water and sediment which move across the do-
 142 main via a weighted random walk. The quantity of water and sediment per parcel is a
 143 function of the input discharge and the number of parcels specified; here we use 2000 parcels
 144 for both water and sediment, in agreement with the number of parcels recommended to
 145 balance handling of extreme events and computational cost (Liang, Voller, & Paola, 2015).
 146 First the water parcels are routed through the domain to compute a flow field based on
 147 the current topography. After the flow field has been computed, the sediment parcels
 148 are routed and bed elevations are modified as sediment is eroded and deposited. The par-
 149 titioning of sediment into individual sand and mud parcels is dictated by the input sed-
 150 iment ratio. In this work, the proportion of input sediment varies between 30% and 70%
 151 sand content, with the remainder of the sediment as mud. Physical properties of the sed-
 152 iment follow those of Liang, Voller, and Paola (2015).

153 The random walk weights are determined by reduced-complexity equations mod-
 154 eled after known physical relationships governing the transport of water and sediment.
 155 Fine ‘mud’ and coarse ‘sand’ sediment are approximated by varying the properties as-
 156 sociated with the transport of these materials such that the fine mud is more easily trans-
 157 ported than the coarse sand (see Text S2 and Liang, Voller, and Paola (2015) for fur-
 158 ther details). The DeltaRCM methodology for simulating river delta dynamics was val-
 159 idated against field data from the Wax Lake Delta and physical experiment data (Liang,
 160 Voller, & Paola, 2015; Liang, Van Dyk, & Passalacqua, 2016). The flow routing method
 161 was compared to numerical simulations conducted using Delft3D, which solves the dis-
 162 cretized Navier-Stokes equations (Liang, Geleynse, et al., 2015).

163 2.2 Model Setup and Numerical Experiments

164 We conducted a set of 240 numerical experiments to simulate the evolution of river
 165 deltas under a variety of scenarios. The inlet conditions, basin geometry, and physical
 166 parameters were chosen based on the runs in Liang, Van Dyk, and Passalacqua (2016)
 167 (Table 1). All model runs simulated 500 years of delta growth, assuming 10 days of bank-
 168 full discharge per year (Caldwell & Edmonds, 2014), absent effects of tides, wind, waves,

169 and subsidence. Three input sand fraction (ISF) scenarios were considered: 30%, 50%
 170 and 70% sand by volume in order to capture the variability present in natural systems.
 171 For example, bedload fraction estimates for the Ganges and Brahmaputra rivers range
 172 from 5 to 50% (Islam et al., 1999), and sand fraction estimates within the Yellow River
 173 are around 70% (Li et al., 1998; Edmonds & Slingerland, 2010). For each ISF case, we
 174 simulated eight steady sea level rise (SLR) scenarios: 0, 5, 10, 20, 30, 40, 50, and 60 mm/yr,
 175 to encompass rates indicative of current and future climatic conditions. Global mean sea
 176 level rise rates have been below 10 mm/yr for the past 100 years, however projected mean
 177 sea level rise rates are as high as 41 mm/yr by the end of the 21st century (Stocker et
 178 al., 2013). The model domain is rectangular and is composed of 50 m x 50 m square grid
 179 cells. The vertical depth of each cell in the preserved stratigraphy is 0.05 m. The extents
 180 of the domain vary with the SLR rate imposed to best accommodate the final delta ex-
 181 tent, while minimizing computational cost. For each scenario (Table 2), we analyzed sur-
 182 face metric trends over six model runs to capture the range of behavior present for a given
 183 scenario due to the stochastic variability of DeltaRCM (Liang, Kim, & Passalacqua, 2016;
 184 Liang, Van Dyk, & Passalacqua, 2016; Lauzon & Murray, 2018; Lauzon et al., 2019).

Model Parameter	Value	Units
Cell Size	50 x 50	m
Inlet Channel Width	250	m
Inlet Water Discharge	1,250	m ³ /s
Inlet Channel Depth	5	m
Inlet Sediment Discharge	1.25	m ³ /s
Basin Depth	5	m
Threshold dry cell depth	0.1	m
Time Step Size	0.0289	yrs
Number of Time Steps	17,300	#
Initial Sea Level	0	m
Number of Water Parcels	2000	#
Number of Sediment Parcels	2000	#
Topographic Diffusion Coefficient	0.1	#
Inlet (Reference) Velocity	1	m/s
Sand Erosion Velocity Threshold	1.05	m/s
Mud Erosion Velocity Threshold	1.5	m/s
Mud Deposition Velocity Threshold	0.3	m/s
Sand Parcel Depth Dependence Exponent (θ_{sand})	2	#
Mud Parcel Depth Dependence Exponent (θ_{mud})	1	#

Table 1. DeltaRCM Model Parameter Values

Run ID	Input Sediment Proportion	Sea Level Rise Rate
S30R00	30% Sand, 70% Mud	0 mm/yr
S30R05	30% Sand, 70% Mud	5 mm/yr
S30R10	30% Sand, 70% Mud	10 mm/yr
S30R20	30% Sand, 70% Mud	20 mm/yr
S30R30	30% Sand, 70% Mud	30 mm/yr
S30R40	30% Sand, 70% Mud	40 mm/yr
S30R50	30% Sand, 70% Mud	50 mm/yr
S30R60	30% Sand, 70% Mud	60 mm/yr
S50R00	50% Sand, 50% Mud	0 mm/yr
S50R05	50% Sand, 50% Mud	5 mm/yr
S50R10	50% Sand, 50% Mud	10 mm/yr
S50R20	50% Sand, 50% Mud	20 mm/yr
S50R30	50% Sand, 50% Mud	30 mm/yr
S50R40	50% Sand, 50% Mud	40 mm/yr
S50R50	50% Sand, 50% Mud	50 mm/yr
S50R60	50% Sand, 50% Mud	60 mm/yr
S70R00	70% Sand, 30% Mud	0 mm/yr
S70R05	70% Sand, 30% Mud	5 mm/yr
S70R10	70% Sand, 30% Mud	10 mm/yr
S70R20	70% Sand, 30% Mud	20 mm/yr
S70R30	70% Sand, 30% Mud	30 mm/yr
S70R40	70% Sand, 30% Mud	40 mm/yr
S70R50	70% Sand, 30% Mud	50 mm/yr
S70R60	70% Sand, 30% Mud	60 mm/yr

Table 2. Run IDs, Input Sediment Proportions, and Sea Level Rise Rates

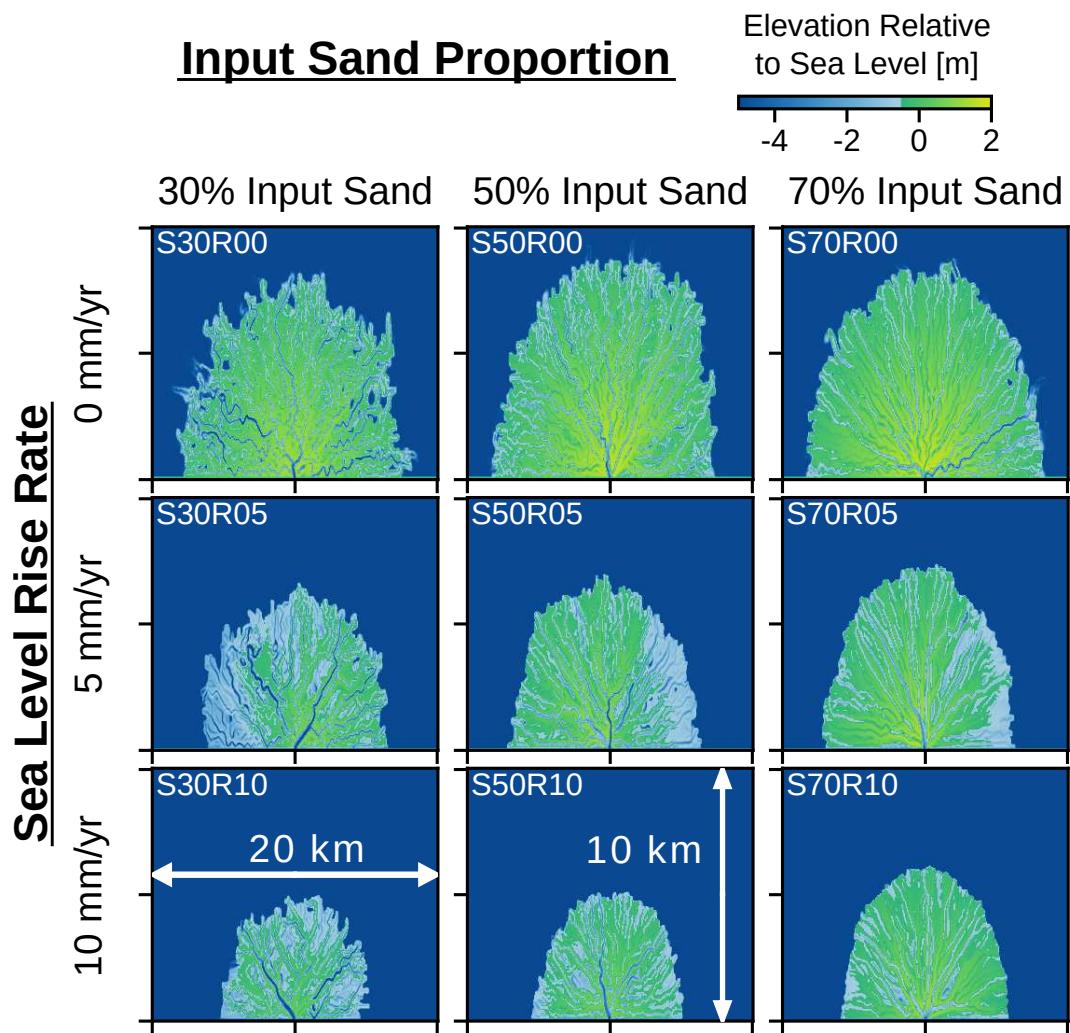


Figure 1. DeltaRCM simulated deltas. Representative final topographies of the lower (0, 5, and 10 mm/yr) SLR scenarios.

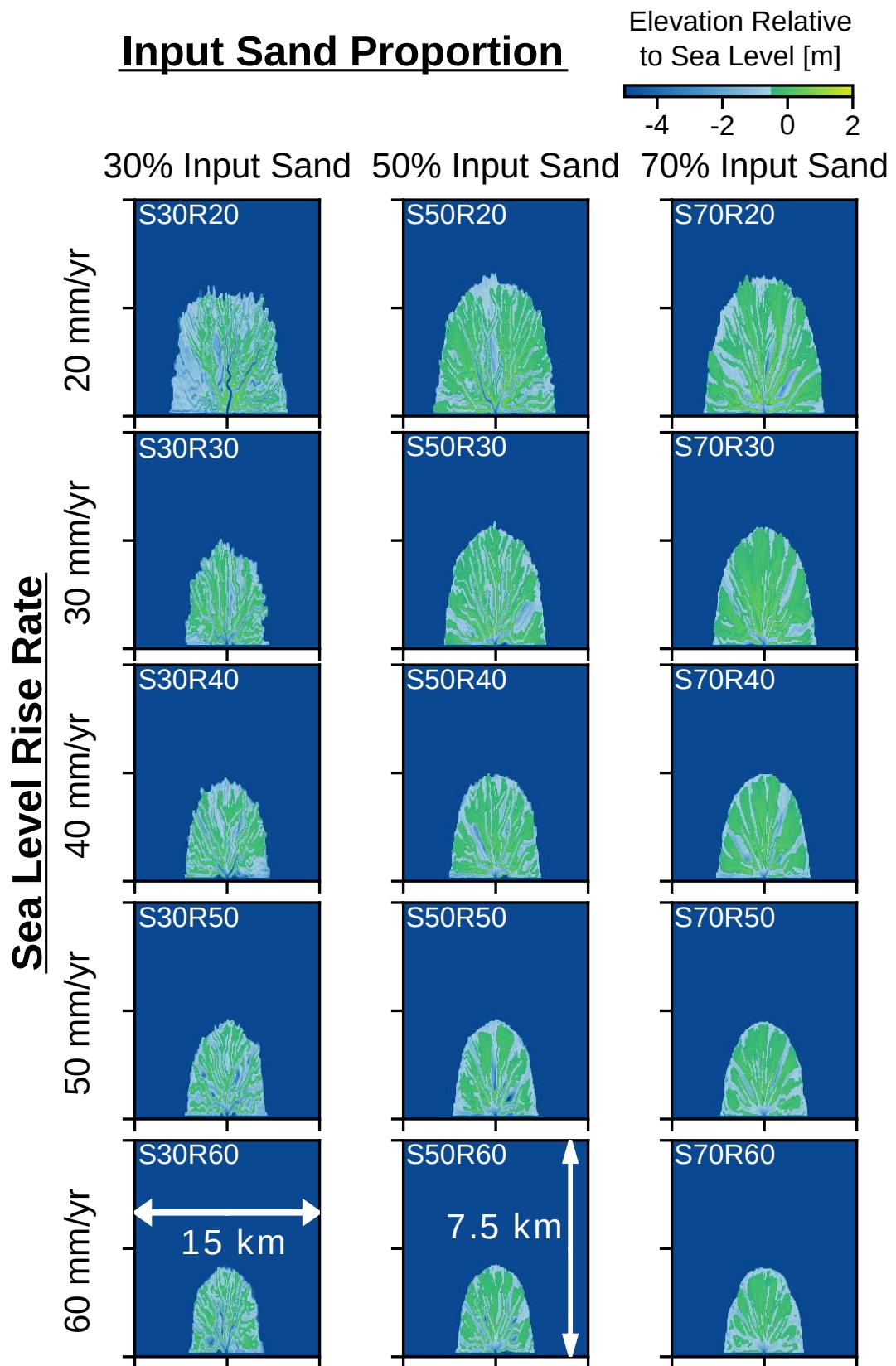


Figure 2. DeltaRCM simulated deltas. Representative final topographies of the higher (20, 30, 40, 50, and 60 mm/yr) SLR scenarios.

185 For the subsurface analysis, model runs with SLR rates greater than 30 mm/yr were
 186 extended to a final runtime of 720 years to generate stratigraphic sections with a thickness
 187 several times greater than the average sand body thickness (2-3 meters) for the ground-
 188 water modeling conducted in the companion study (Xu et al., accepted). Model simu-
 189 lations conducted with SLR rates at and below 30 mm/yr, however, lack the accommo-
 190 dation required to create deep stratigraphic deposits, so we adapted the image quilting
 191 (IQ) algorithm (Efros & Freeman, 2001) to join sections of the modeled stratigraphy (Text
 192 S1). This technique has been successfully applied to both stationary and non-stationary
 193 geological domains (Mahmud et al., 2014; Hoffmann et al., 2017). The forcing scenar-
 194 ios considered are steady in time and produce stratigraphy that is vertically stationary,
 195 so rather than using a training image, we employ the ‘stitching’ portion of the IQ work-
 196 flow from Mahmud et al. (2014) to vertically join modeled sections of stratigraphy with
 197 minimal discontinuities at the boundaries (Figure 3). In this way, the influence of the
 198 modeled surface processes on the stratigraphy is kept intact and the bulk properties of
 199 the deposit are unchanged (Figure S4), but the depth of the stratigraphic volumes is ex-
 200 tended allowing groundwater modeling to be performed.

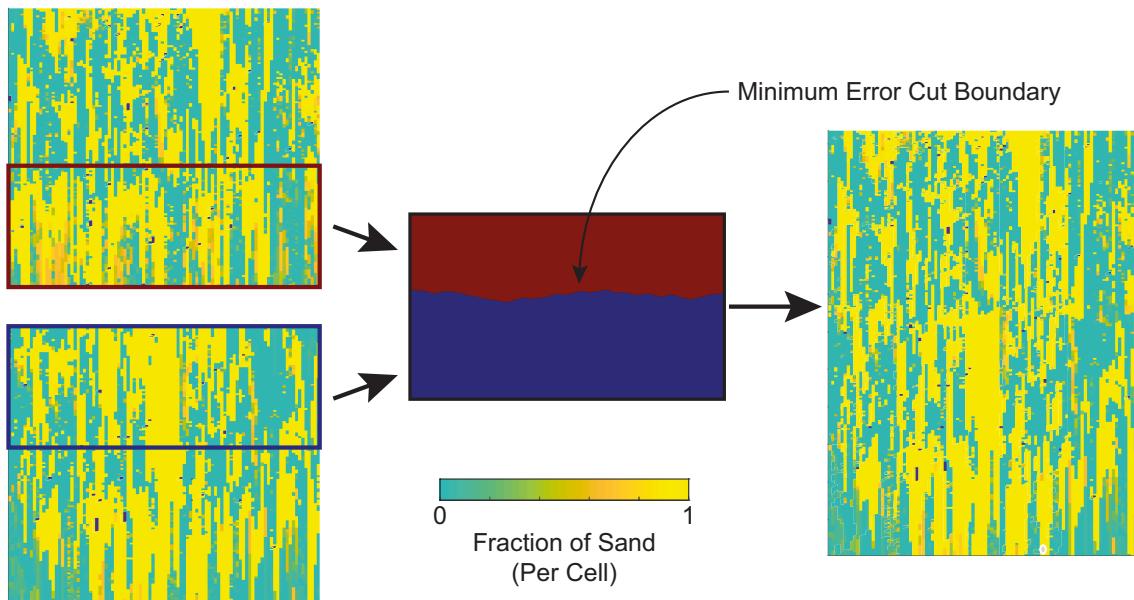


Figure 3. Example in 2-D of the ‘stitching’ procedure adapted from image quilting. First an overlap region is defined within which a minimum error cut boundary is defined (black box). Then the two pieces of stratigraphy are joined along that boundary to form a new image which has a greater depth than either of its constituent sections.

201 To avoid boundary effects created by the inlet condition and to increase the sta-
 202 tistical stationarity of the subsurface domain under study, a rectangular volume is cut
 203 from the modeled stratigraphy (Figure 4). We used dimensionless mass extraction pa-
 204 rameters (Strong et al., 2005) to determine the lateral extents of this subdomain: in the
 205 downstream direction, 30% of the volume from the inlet and 10% of the volume closest
 206 to the shoreline are disregarded; perpendicular to the downstream direction, the outer
 207 50% of the volume is excluded (Figure 4). In the vertical direction, the central 25 m from
 208 the IQ realizations (0-30 mm/yr SLR scenarios) is used. For the modeled domains from
 209 higher SLR scenarios (40-60 mm/yr) the top 5 m of channelized surface and bottom 7.5
 210 m from the initial deposit are excluded (Figure 4).

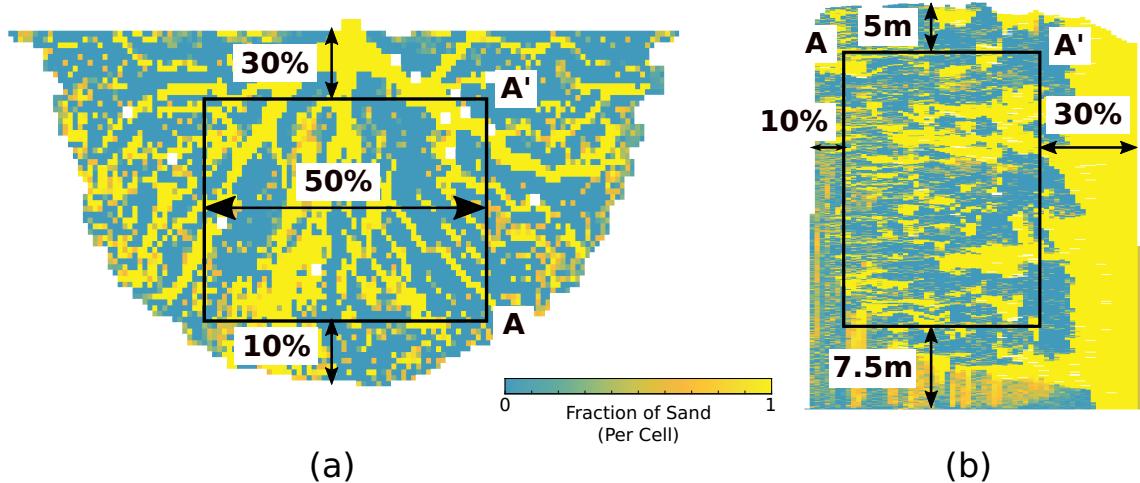


Figure 4. Example of the subsurface subdomain over which the subsurface metrics are computed, (a) depicts the lateral extents of the subdomain, and (b) depicts the vertical extents.

2.3 Model Output Quantification: Surface Metrics

Several metrics have been proposed and applied to real and simulated river deltas. These metrics were developed to characterize delta morphology and quantify the effect of different processes. We identify 10 of these metrics based on previous work and on their applicability to real systems (Kim & Paola, 2007; Seybold et al., 2007; Wolinsky et al., 2010; Edmonds et al., 2011; Reitz & Jerolmack, 2012; Passalacqua et al., 2013; Van de Lageweg et al., 2013; Liang, Van Dyk, & Passalacqua, 2016; Perignon et al., 2020), and apply them to the numerical modeling results. Metric names, brief descriptions, and sources are provided below and in Table 3. Surface metrics are computed for the years 100-500 of the model runs to avoid measuring properties associated with initial stages of delta formation (Piliouras et al., 2021).

To compute the surface metrics, we obtain a set of binary masks following methods described in Liang, Kim, and Passalacqua (2016) and Lauzon et al. (2019). The shoreline was identified using the opening angle method (Shaw et al., 2008), with a search angle of 75 degrees (after Liang, Kim, & Passalacqua, 2016). This shoreline extraction is based on topographic thresholding using a threshold value 0.5 m below the sea level, to include the shallow subaqueous land after Liang, Kim, and Passalacqua (2016) and Liang, Van Dyk, and Passalacqua (2016). Channel network identification is based on the water velocity fields. The binary channel network is identified as the locations where the water velocity exceeds 0.3 m/s, the minimum velocity required to mobilize sediment, after Liang, Kim, and Passalacqua (2016) and Lauzon et al. (2019). Example shorelines, water velocity fields, and extracted channel networks are provided in Figure S3.

2.3.1 Channel Density

Channel density (or channelized fraction) is the ratio of channelized area to the total delta topset area (Wolinsky et al., 2010; Liang, Van Dyk, & Passalacqua, 2016). This metric is known to correlate with both input sediment concentration and relative sea level rise rates (Liang, Van Dyk, & Passalacqua, 2016). Under constant forcing conditions, channel density for a mature delta is expected to fluctuate around a constant value (Wolinsky et al., 2010; Reitz & Jerolmack, 2012).

240 **2.3.2 Land Area**

241 The land area is measured as the total subaerial and shallow subaqueous area (up
 242 to 0.5 m below sea level) of the delta topset (Liang, Kim, & Passalacqua, 2016; Liang,
 243 Van Dyk, & Passalacqua, 2016). Land area is known to be influenced by both SLR (Muto
 244 & Steel, 1997) and ISF (Straub et al., 2015). When there is no base level change and off-
 245 shore water depth is constant, linear land area growth is expected (Wolinsky et al., 2010).

246 **2.3.3 Channel Depth**

247 In meandering river systems, the thickness of preserved deposits has been linked
 248 to channel morphology, in particular to channel depth (Van de Lageweg et al., 2013). Delta
 249 systems contain a variety of channel features, including meanders, making this metric
 250 a potential indicator of subsurface structure. Using model outputs, channel depth val-
 251 ues are queried at all channel locations and used to compute distributions of water depth
 252 in the channels.

253 **2.3.4 Fractal Dimension**

254 Fractal dimension is an indicator of how self-similar a delta system is and can be
 255 used to suggest the presence of a space filling network or a single channel dominated sys-
 256 tem (Edmonds et al., 2011). This metric is computed, using a box counting approach
 257 (Rodriguez-Iturbe et al., 1998), across the different model runs to develop distributions
 258 of its values.

259 **2.3.5 Shoreline Roughness**

260 Shoreline roughness is the ratio of the shoreline length to square root of the delta
 261 surface area. This metric is known to reflect sediment input characteristics, waves, and
 262 tidal effects (Caldwell & Edmonds, 2014; Liang, Van Dyk, & Passalacqua, 2016). The
 263 shoreline roughness metric provides insight into how evenly the system is delivering sed-
 264 iment at the shoreline.

265 **2.3.6 Nearest Edge Distance**

266 Nearest edge distance is the shortest distance from every land point to a water-land
 267 interface or edge (Edmonds et al., 2011). We compute the full distribution of nearest edge
 268 distance values as a potential indicator of different geomorphic regimes influencing the
 269 spatial arrangement of land and water. In real systems, nearest edge distance has been
 270 used to differentiate portions of a delta subject to different processes (Passalacqua et al.,
 271 2013).

272 **2.3.7 Island Area and Island Shape Factor**

273 Delta islands are defined as land masses bounded by channels. We extract islands
 274 from model topographies and compute their areas and shape factors (ratio of perime-
 275 ter to square root of the area). In real delta systems, island properties have been found
 276 to be related to channel processes (Edmonds et al., 2011; Piliouras & Rowland, 2020;
 277 Perignon et al., 2020). The link between island properties and morphologic activity sug-
 278 gests a potential relationship between surface island morphology and subsurface archi-
 279 tecture.

280 **2.3.8 Wetted Fraction and Wet Edge Distance**

281 The wetted fraction is the ratio of wet area to total delta surface area. Wet pix-
 282 els, unlike channelized pixels, include former channels that have yet to infill and contain

Metric Name	Description	Reference
Channel Density	Proportion of delta surface that is occupied by channels (also called ‘channelized fraction’)	(Wolinsky et al., 2010; Reitz & Jerolmack, 2012; Liang, Van Dyk, & Passalacqua, 2016)
Land Area	Subarial area of delta planform	(Wolinsky et al., 2010; Liang, Van Dyk, & Passalacqua, 2016)
Channel Depth	Distribution of water depths in channels	(Van de Lageweg et al., 2013)
Fractal Dimension	Fractal dimension of the centerline of the channel network	(Seybold et al., 2007; Edmonds et al., 2011)
Shoreline Roughness	Ratio of shoreline length to the square root of delta area	(Wolinsky et al., 2010; Liang, Van Dyk, & Passalacqua, 2016)
Nearest Edge Distance	Distribution of distances from a point on land to the nearest water body	(Edmonds et al., 2011; Passalacqua et al., 2013)
Island Area	Distribution of areas of deltaic islands	(Edmonds et al., 2011; Perignon et al., 2020)
Island Shape Factor	Distribution of the ratio of wetted perimeter of island to the square root of island area	(Passalacqua et al., 2013; Perignon et al., 2020)
Wet Edge Distance	Total length of wet-dry interface	(Wolinsky et al., 2010; Liang, Van Dyk, & Passalacqua, 2016)
Wetted Fraction	Fractional area covered by all water bodies	(Wolinsky et al., 2010; Reitz & Jerolmack, 2012; Liang, Van Dyk, & Passalacqua, 2016)

Table 3. List of Surface Metrics Measured

water below the channelization threshold velocity (Wolinsky et al., 2010; Liang, Van Dyk, & Passalacqua, 2016). The wetted fraction is thus an indicator of surficial water relative to land mass and can differ significantly from the channelized fraction when many lakes and marshes are present. The wet fraction is expected to vary with a periodicity dictated by delta autogenics (Kim & Paola, 2007; Kim & Jerolmack, 2008). The wet edge distance is the total measure of the edges of channels, lakes, and other water bodies, and has been found to grow even after the wetted fraction becomes constant (Wolinsky et al., 2010).

291 **2.4 Model Output Quantification: Subsurface Metrics**

292 Several metrics have been proposed to analyze synthetic stratigraphy and seismic
 293 data. Subsurface metrics are typically harder to compute than surface metrics for real
 294 systems due to constraints in data acquisition. For this reason, we test 9 different met-
 295 rics of varying practicality and ease of measurement in the field, ranging from full 3-D
 296 sand body identification to 1-D sand package thicknesses (measurable from core data)
 297 (Table 4).

298 **2.4.1 3-D Geobody Volumes**

299 The subsurface volume is transformed into a binary structure using a threshold of
 300 80% sand per cell to define ‘permeable’ and ‘impermeable’ cells. Once the binary trans-
 301 formation has been completed, we use a connected component analysis to define the vol-
 302 ume of each cluster of connected permeable cells. These connected cells (geobodies) are
 303 defined as cells which share a face (Pardo-Igúzquiza & Dowd, 2003; Renard & Allard,
 304 2013). We compute the probability distribution of the 3-D geobody volumes for each mod-
 305 eling scenario.

306 **2.4.2 2-D Section Geobody Connectivity**

307 Three orientations of 2-D sections are used to evaluate geobody connectivity: strike,
 308 dip, and horizontal. Strike sections are defined as 2-D stratigraphic sections taken per-
 309 pendicular to the direction of the inlet channel; dip sections are 2-D stratigraphic sec-
 310 tions taken parallel to the inlet channel; horizontal sections are plan view slices of the
 311 stratigraphic volume. For each section, we identify connected geobodies as those regions
 312 with ‘permeable’ cells that share an edge. The area of the largest geobody divided by
 313 the sum of all of the geobody areas in the section defines geobody connectivity (Hovadik
 314 & Larue, 2007).

315 **2.4.3 2-D Section Percolated Path Ratio**

316 For the 2-D sections, percolated geobodies are defined as those which connect two
 317 opposite boundaries. The sum of the total areas of percolated geobodies divided by the
 318 sum of all geobody areas in the section defines the percolated path ratio. For the dip,
 319 strike, and horizontal section orientations, we calculated this metric for every 2-D sec-
 320 tion available in the model subdomains.

321 **2.4.4 Sand Package Thickness Distribution and “Connectivity”**

322 From each modeled subsurface volume, 100 randomly located 1-D ‘core’ samples
 323 are obtained. The thickness of continuous sand packages in each core is recorded and used
 324 to develop distributions of sand package thicknesses. In addition, we adapted the first-
 325 order measure of connectivity (Hovadik & Larue, 2007) to 1-D by taking the ratio of the
 326 largest continuous sand package per core to the total amount of sand.

Metric Name	Description	Data Dimensionality	Reference
Geobody Volume	Distribution of volumes of connected sand parcels in the stratigraphy	3-D	(Hovadik & Larue, 2007; Renard & Allard, 2013)
Dip Section Connectivity	Ratio of largest geobody area to total summed area of geobodies in a dip section	2-D	(Hovadik & Larue, 2007)
Dip Section Percolated Path Ratio	Ratio of the total area of percolated geobodies to the total area of all geobodies in a dip section	2-D	(Renard & Allard, 2013)
Strike Section Connectivity	Ratio of largest geobody area to total summed area of geobodies in a strike section	2-D	(Hovadik & Larue, 2007)
Strike Section Percolated Path Ratio	Ratio of the total area of percolated geobodies to the total area of all geobodies in a strike section	2-D	(Renard & Allard, 2013)
Horizontal Section Connectivity	Ratio of largest geobody area to total summed area of geobodies in a horizontal section	2-D	(Hovadik & Larue, 2007)
Horizontal Section Percolated Path Ratio	Ratio of the total area of percolated geobodies to the total area of all geobodies in a horizontal section	2-D	(Renard & Allard, 2013)
Sand Package Thickness	Distribution of vertical thicknesses of sand packages identified in 100 random cores of the subsurface	1-D	(Hovadik & Larue, 2007)
Sand Package Connectivity	Ratio of thickest sand layer to sum of all sand in the core	1-D	(Hovadik & Larue, 2007)

Table 4. List of Subsurface Quantities Measured

327

2.5 Metric Ranking and Significance: Kullback-Leibler Divergence

328

Given the number of metrics that we propose in the previous section to quantify different aspects of delta morphology and stratigraphic structure, it is not clear which are the most informative for differentiating among delta systems formed under different conditions. To identify the ‘best’ metrics or those most indicative of the imposed forcings, we use the Kullback-Leibler (KL) divergence, also known as Relative Entropy (Kullback & Leibler, 1951) as in Perignon et al. (2020). The KL divergence of Q from P is defined as:

329

330

331

332

333

334

$$D_{KL}(P||Q) = \sum_{x \in X} P(x) \log \left(\frac{P(x)}{Q(x)} \right) \quad (1)$$

335 where both Q and P are discrete probability distributions (PDFs). P is often referred
 336 to as the data distribution, and Q as the reference distribution. If P and Q are identi-
 337 cal, then the KL divergence between the two is 0. As the probability distributions in-
 338 creasingly differ in shape and position, the KL divergence value increases (Figure S10).
 339 KL divergence values greater than 1 indicate significant differences between the distri-
 340 butions Q and P , while values less than 1 indicate that Q and P are similar (Perignon
 341 et al., 2020). In this way, the KL divergence can be used to quantify the uniqueness of
 342 the delta metrics as they correspond to different ISF and SLR scenarios.

343 To evaluate the delta metrics in this study, a normalized [0,1] discrete PDF is con-
 344 structed for each metric. To normalize the metrics, each is divided by the maximum value
 345 from the group of scenarios being compared. This normalization results in a [0, 1] dis-
 346 crete PDF for each case while preserving absolute differences between the scenarios be-
 347 ing compared. The modeled scenarios are compared in two different ways; the influence
 348 of the ISF on delta evolution is tested by holding SLR constant, while the influence of
 349 SLR is evaluated by holding the ISF constant. To measure the influence of ISF on met-
 350 ric results, P is represented by a single ISF and Q is represented by the combined PDF
 351 of the remaining two ISF scenarios. A similar procedure is adopted to compare the low
 352 SLR (0, 5, 10 mm/yr) scenarios in which a single scenario is used to construct P while
 353 Q is composed of the remaining two scenarios. For the comparison across all eight SLR
 354 scenarios, P is defined by the given scenario and Q is always the no SLR (0 mm/yr) case
 355 against which the others are compared.

356 3 Results and Discussion

357 3.1 Relating Surface Metric and Subsurface Metric Responses to Forc- 358 ings

359 From the normalized metric PDFs (Figures 5 & 6), we identify those metrics most
 360 indicative of the forcings imposed on the system. Trends in surface and subsurface met-
 361 rics in response to different external forcings are analyzed to make predictions about sub-
 362 surface properties from surface observations.

363 3.1.1 Influence of Input Sand Fraction

364 The three surficial metrics that are indicative of the ISF are channel density, shore-
 365 line roughness, and wetted fraction. Under low SLR conditions, the shoreline roughness
 366 and wetted fraction metrics are the strongest indicators of differences in ISF, while at
 367 higher SLR conditions the channel density and wetted fraction metrics are sensitive to
 368 different ISF values (Figures S5, S6). Other metric distributions largely retain their shape
 369 and position as ISF is changed. For example, the shape and range of the land area dis-
 370 tributions remain the same as ISF is varied (Figure 5). In the absence of SLR, total land
 371 area in the model is predominantly dependent on the quantity of sediment input into
 372 the system because offshore sources and sinks of sediment from waves and tides are not
 373 simulated. This model result differs from experimental studies where sediment cohesion
 374 is found to be inversely proportional to sediment retention within the delta (Straub et
 375 al., 2015). The increase in channel density as ISF is raised is consistent with results from
 376 other studies (Caldwell & Edmonds, 2014; Liang, Van Dyk, & Passalacqua, 2016). High
 377 sediment cohesion (low ISF) is known to be related to increased values of shoreline rough-
 378 ness (Edmonds & Slingerland, 2010; Straub et al., 2015). Sediment cohesion stabilizes
 379 channels, leading to growth of delta lobes while other regions of the delta may be flooded

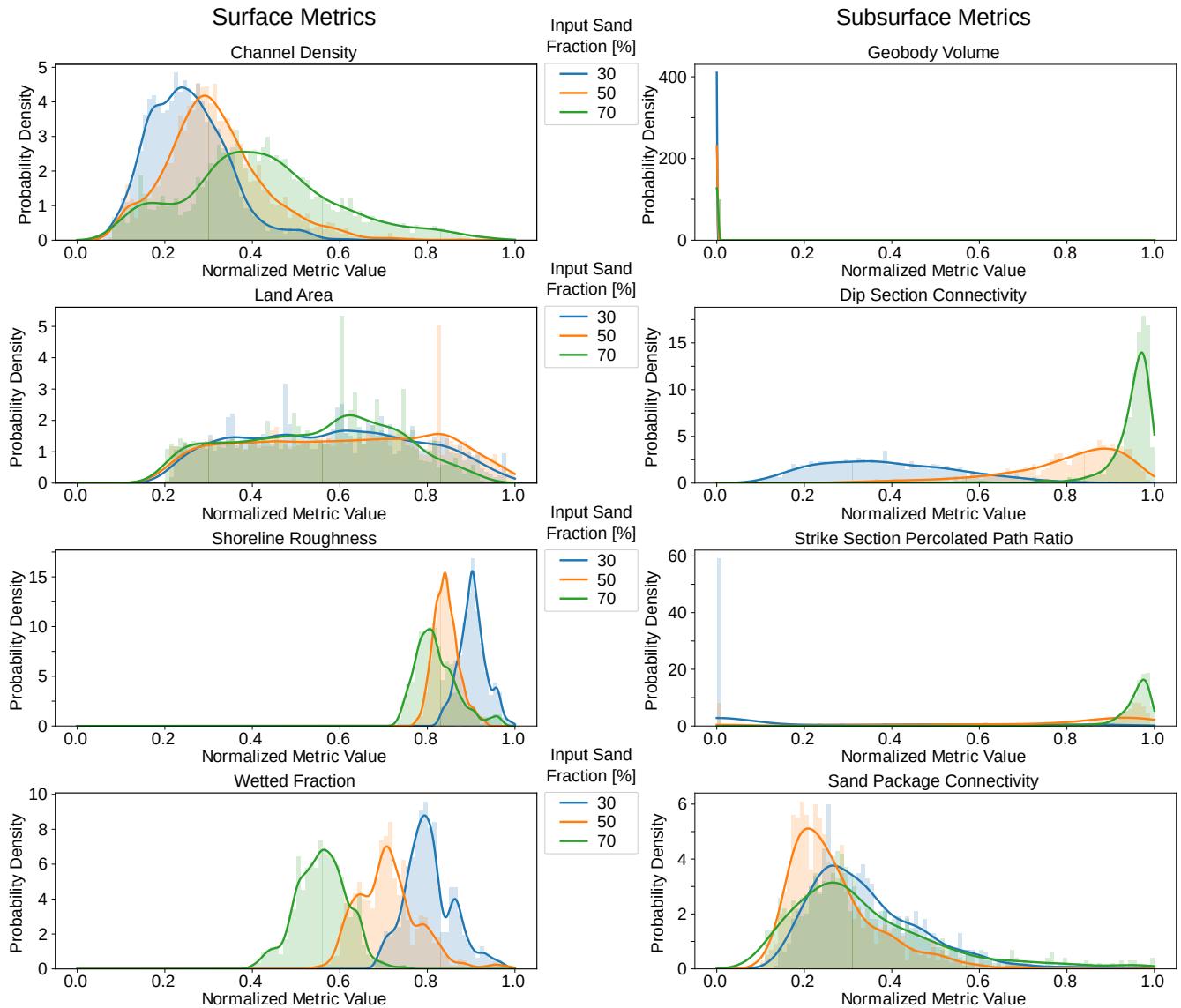


Figure 5. Visualization of the influence of ISF on metric values for the 0 mm/yr sea level rise scenarios. Kernel density estimated PDFs are shown overlaid on their source histograms. Normalized histograms for each metric are presented with 100 bins between 0 and 1.

380 as SLR occurs. This flooding process causes the wetted fraction to decrease as the ISF
 381 is increased.

382 In the subsurface, the most differentiable properties due to variations in input sand
 383 content are 2-D section connectivity and percolated path ratio (Figure 5). Normalized
 384 distributions of 3-D geobody volume and core sand body thicknesses are largely the same
 385 across ISF scenarios due to the presence of many small connected components. These
 386 smaller components skew the distributions so severely that they become very similar in
 387 shape. Similarly, the percolated path ratio calculated in the strike sections shows evi-
 388 dence of many non-percolated sections for the 30% ISF scenario. Conversely, the 70%
 389 ISF scenario has a peak near a percolated path ratio of 1.0, meaning that almost all of
 390 the sand is in a geobody that spans the full length of the strike section and connects two
 391 opposite boundaries. Dip section geobody connectivity also has visibly different distri-
 392 butions due to differences in ISF (Figure 5). As the ISF into the system increases, we
 393 expect geobody connectivity to increase as well. This trend is observed in the dip sec-
 394 tions, where the 70% input sand cases have large peaks in connectivity near the value
 395 of 1, meaning that the largest geobody in the section includes almost all of the sand. Per-
 396 colation theory would suggest that between 55 and 60% sand content, the sand bodies
 397 in the 2-D sections should be fully connected (King, 1990; Hovadik & Larue, 2007). Al-
 398 though the distribution of sand in deltaic stratigraphy violates many assumptions of per-
 399 colation theory (random distribution, infinite domain), the connectivity values observed
 400 for the 70% ISF scenarios suggest that the mathematical principles from percolation the-
 401 ory can still be applied in geologic settings, a finding consistent with other studies (J. R. Allen,
 402 1978; Donselaar & Overeem, 2008; Pranter & Sommer, 2011).

403 *3.1.2 Influence of Sea Level Rise*

404 Under different SLR forcing scenarios, delta metrics change in value. On the sur-
 405 face, land area decreases with increasing SLR rate, while channel density increases (Fig-
 406 ure 6). The narrowing of the land area PDFs as the rate of SLR increases is indicative
 407 of aggradation, while the wide PDF observed for the scenario without any SLR is a sig-
 408 nature of progradation. Wetted fraction values increase as the rate of SLR increases, al-
 409 lowing a greater portion of the delta top to be flooded. Shoreline roughness becomes more
 410 variable, indicated by wider PDF distributions, in response to increased SLR. Trends in
 411 channel density, shoreline roughness, and wetted fraction metrics due to increased SLR
 412 are similar to those observed due to changes in ISF (Figure 5).

413 In the subsurface, several metrics are very similar under all SLR scenarios. 2-D met-
 414 rics of geobody connectivity in the strike and dip orientations display an initial decrease
 415 as SLR increases from 0 to 10 mm/yr (Figure 6). Above the 10 mm/yr SLR rate 2-D
 416 connectivity metrics become quite similar, suggesting the existence of a threshold SLR
 417 rate above which the preserved deposits maintain a similar level of connectedness. The
 418 1-D analysis of sediment cores shows that sand package connectivity decreases as SLR
 419 rate increases (Figure 6). This trend, although subtle, is consistent with the observations
 420 of increased shoreline roughness variability and increased channel density on the surface.
 421 As surface channels become more numerous and mobile, sand is distributed all over the
 422 delta top, resulting in a more even distribution of sand across the platform. The ratio
 423 of sand to mud in the system remains the same, however, and the increased spread of
 424 sand creates thinner individual sand layers that become segmented by mud.

425 *3.1.3 Applying the Kullback-Leibler Divergence to Metric Differenti- 426 ation*

427 The strike and dip section connectivity and percolated path ratio metrics are the
 428 most divergent in the subsurface due to changes in ISF (Figure 7a,b). This finding is con-
 429 sistent with the previous observations made from the metric PDFs. On the surface, shore-

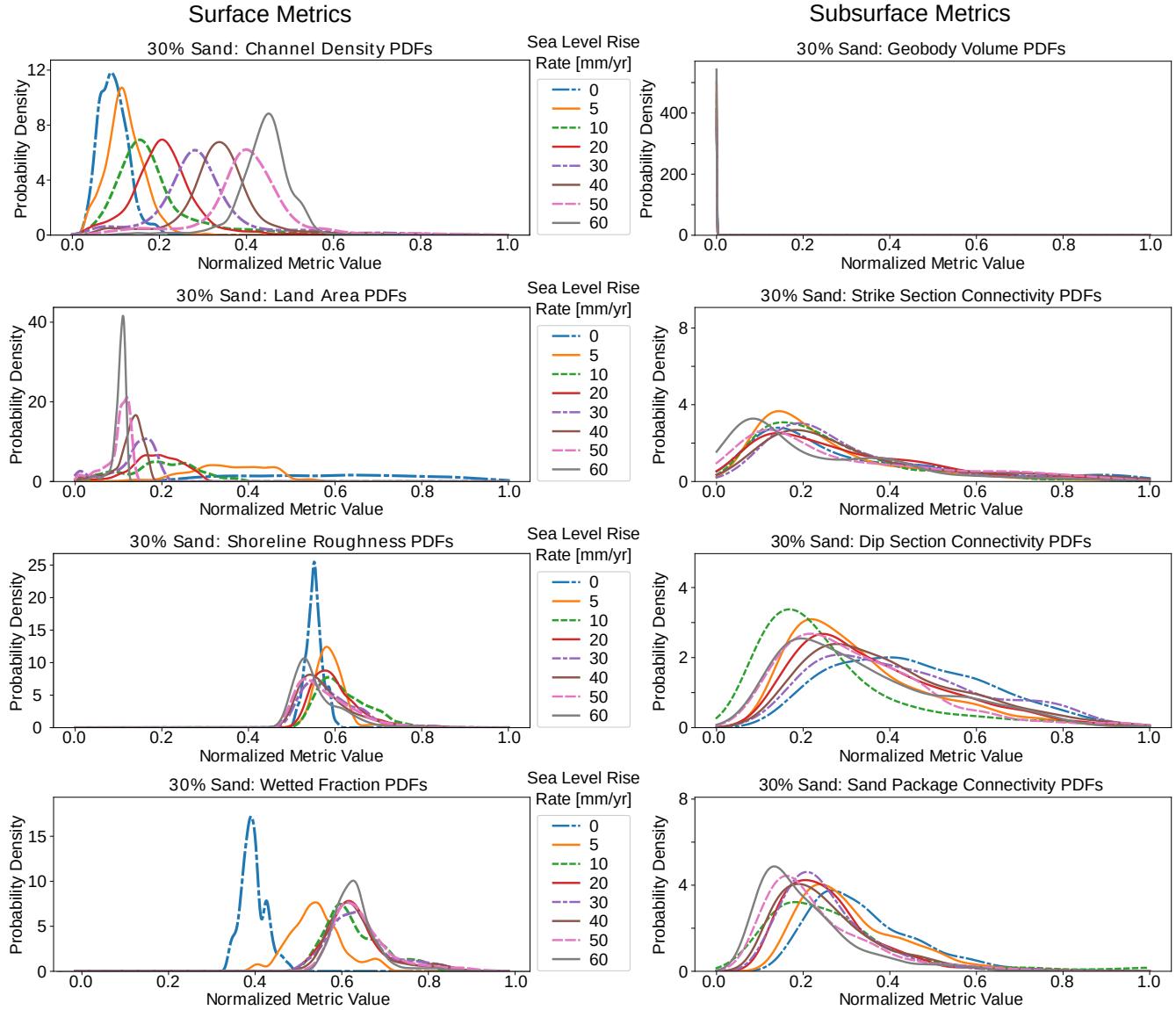


Figure 6. Visualization of the influence of SLR on metric values for the 30% ISF scenarios. Kernel density estimated PDFs of normalized metric values are shown for each SLR scenario. Some metrics exhibit clear responses to the different SLR conditions. For example, channel density PDFs (upper left) display a visible response to the SLR forcing, whereas geobody volume PDFs (upper right) are indistinguishable across the different SLR scenarios.

430 line roughness and wetted fraction are consistently divergent as ISF is varied, even under different SLR conditions. At higher SLR rates channel density, land area, nearest edge distance, and wet edge distance have increasingly large KL divergence values, indicating that these PDFs become more sensitive to ISF when SLR rates are high (Figure 7b).
 431
 432
 433
 434

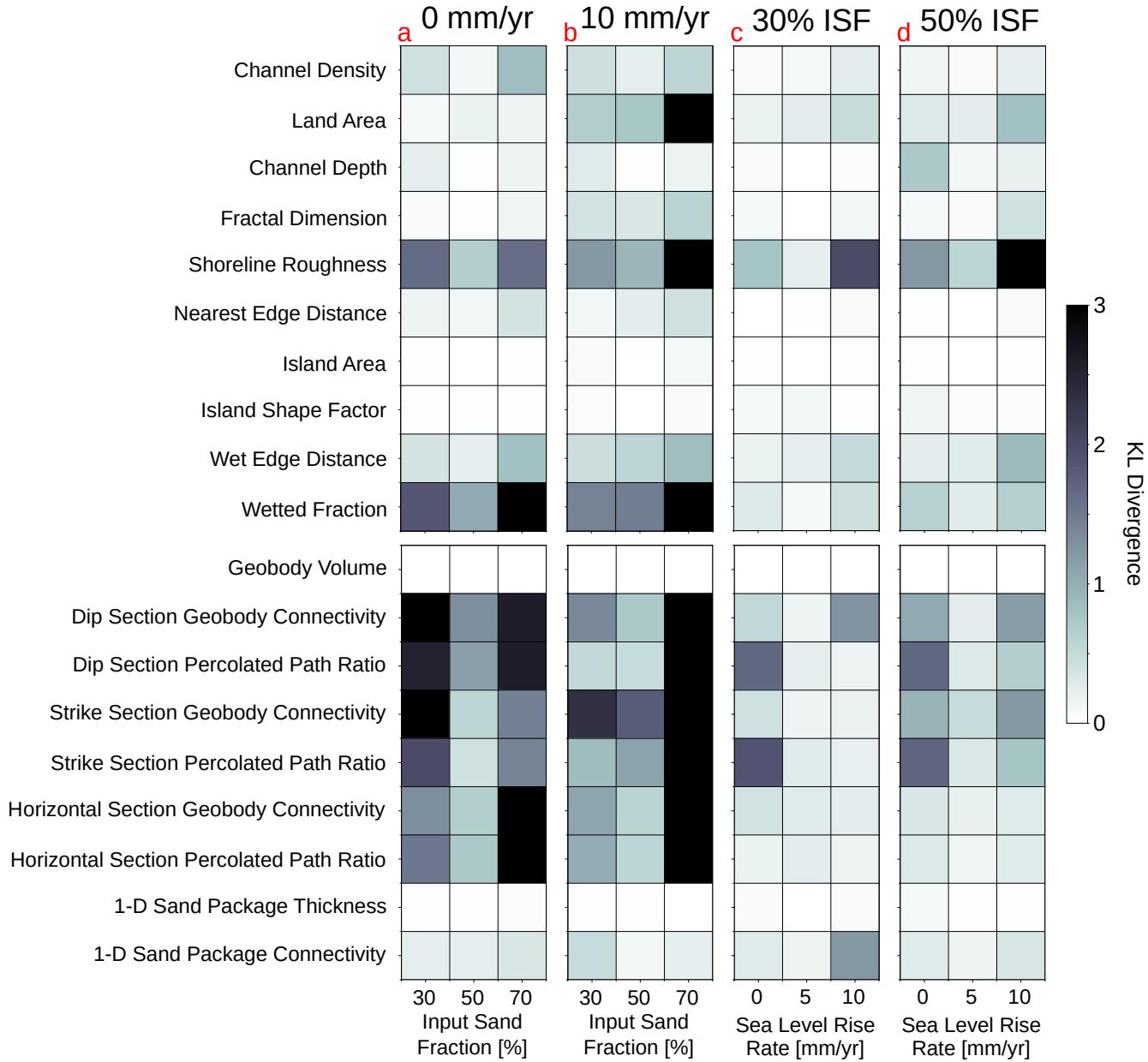


Figure 7. Graphic depiction of the KL divergence results. The darkness of the cells indicates the KL divergence value between that metric represented by that cell for that particular scenario and the others in the row. **a:** Differences in metric response due to changes in ISF under no SLR (rise rate of 0 mm/yr). **b:** Differences in metric response due to changes in ISF when sea level rises at a rate of 10 mm/yr. **c:** Metric differences due to SLR for the lowest three sea level rise scenarios examined when ISF is held constant at 30%. **d:** Metric differences due to SLR for the lowest three SLR scenarios examined when ISF is held constant at 50%.

435 When examining the influence of SLR on metric distributions, we analyzed the ‘low’
 436 SLR scenarios (0, 5, 10 mm/yr) separately (Figure 7c,d) as well as together with the full
 437 range of SLR rates simulated (Figure 8). To better understand the differences among
 438 these metrics at lower rates of SLR, we evaluated the 0, 5, and 10 mm/yr cases sepa-
 439 rately in the same manner as the ISF cases. On the surface, shoreline roughness is a weak
 440 metric for distinguishing between these different rates of SLR. In the subsurface, the most
 441 distinct metrics are the connectivity and percolated path ratios in the strike and dip sec-
 442 tions. Overall, distinctions between subsurface metrics due to SLR are more muted than
 443 those due to ISF.

444 When looking at the full panel of SLR scenarios, metrics like channel density, shore-
 445 line roughness, wetted edge distance, and wetted fraction have high divergence values,
 446 which is in line with observations made from the PDFs. The change in the land area PDFs
 447 as a result of SLR is evident in the KL divergence results, as systems that are smaller
 448 and more aggradational show higher KL divergence values than those closer to the ref-
 449 erence case (0 mm/yr SLR). As SLR values become increasingly extreme, fractal dimen-
 450 sion PDFs at high SLR begin to diverge significantly from the reference (0 mm/yr) SLR
 451 case (Figure 8). In the subsurface, 1-D sand package connectivity, strike and dip section
 452 connectivity, and percolated path ratios metrics are the most divergent. The distinction
 453 between the reference no SLR case, and the 5 and 10 mm/yr SLR cases is made clear
 454 by the darker squares, while the lighter squares around 20 and 30 mm/yr suggest that
 455 these distributions begin to resemble the reference case again (Figure 8). This behav-
 456 ior is consistent with the initial trend of decreasing connectivity from 0 to 10 mm/yr SLR,
 457 and the absence of a trend as SLR rate increased. The differences between distributions
 458 of geobody volumes and sand package thicknesses are small, as previously noted, due to
 459 the sheer number of small geobody volumes and thin sand packages skewing the distri-
 460 butions. By computing the KL divergence in addition to the metric PDFs shown pre-
 461 viously (Figure 6), our qualitative observations are supported by quantitative differences
 462 between the different modeled scenarios.

463 In this study we began to constrain subsurface geometry using surface network in-
 464 formation. We focused on river dominated deltas, where the riverine input is the primary
 465 driver of the surface and subsurface structure. On the surface, the shoreline roughness
 466 and wetted fraction are useful metrics for differentiating between deltas formed under
 467 different ISF and SLR conditions. In the subsurface, metrics of connectivity and perco-
 468 lated path ratios computed in the 2-D strike and dip sections are the strongest indica-
 469 tors of different ISF and SLR forcings. With this knowledge we can improve surface met-
 470 ric selection needed to make inferences about stratigraphic properties. The next step to-
 471 wards improving aquifer contamination forecasts is to link properties of subsurface ge-
 472 ometry to groundwater flow behavior; this relationship is explored in a companion pa-
 473 per, Xu et al. (accepted).

474 3.2 Study Applicability and Limitations

475 Using simplified model dynamics allowed us to isolate the effects of ISF and SLR
 476 on deltaic evolution. These two forcings are known to have strong controls on river delta
 477 morphology (Caldwell & Edmonds, 2014). We find that for river-dominated systems, the
 478 surface metrics most sensitive to ISF and SLR are the wetted fraction and shoreline rough-
 479 ness metrics, both of which can be readily calculated from satellite imagery. Wetted frac-
 480 tion values can be calculated from remotely sensed imagery using automated methods
 481 for surface water detection (e.g. Isikdogan et al., 2020; Feng et al., 2019), while the open-
 482 ing angle method, used for shoreline detection in this work, was originally applied to satel-
 483 lite imagery (Shaw et al., 2008). These two surface metrics are potential indicators of
 484 subsurface connectivity, a metric much more difficult to estimate in real systems. There-
 485 fore, these findings may be used in studies that seek to compare the subsurface struc-
 486 ture of existing river-dominated systems as they utilize surface information, complement-

487 ing methods for subsurface estimation based on direct measurements and field data. The
 488 KL divergence approach as applied to deltaic metrics is also useful when comparing mor-
 489 phological metrics between different delta experiments.

490 The deposits modeled in this study are on the order of 10 m thick, and generated
 491 over timescales $< 10^3$ years (Figure S2). Although much of this modeled stratigraphy
 492 may be reworked, and the corresponding surface signal ‘shredded,’ over longer geologic
 493 timescales (Jerolmack & Paola, 2010; Toby et al., 2019), the structure of the shallow sub-
 494 surface remains important for those dependent on the groundwater it contains. In the
 495 Bengal basin for example, many domestic wells and some irrigation wells are shallower
 496 than 50 m, making the near-surface stratigraphy critical for contaminant transport (Michael
 497 & Voss, 2009; Bahar & Reza, 2010; Shamsudduha et al., 2011). Groundwater resources
 498 may therefore be affected by subsurface features which are not persistent over the ge-
 499 ologic record, making studies focused on shorter timescales, such as this one, important
 500 when trying to predict the structure of the shallow subsurface as forcings change and land-
 501 scapes evolve.

502 Specific forcings not incorporated in the DeltaRCM model include winds, waves,
 503 and tides, which are known to have strong effects on delta morphology (Galloway, 1975;
 504 Anthony, 2015) and are the dominant forcings in many deltas world-wide (Nienhuis et
 505 al., 2020). River-dominated deltas, as analyzed here, tend to be large in size, convey sig-
 506 nificant quantities of water and sediment, and are home to millions of people (Nienhuis
 507 et al., 2020; Edmonds et al., 2020). This study also simplifies the variety of flow condi-
 508 tions present in river deltas by exclusively simulating bankfull discharge conditions, thereby
 509 missing processes and reworking which occur during periods of lower flow (Shaw & Mohrig,
 510 2014; Miller et al., 2019). We acknowledge that by not modeling these effects, this study
 511 does not capture the full range of deltaic morphology and dynamics. But we believe that
 512 our present findings are still useful as complementary methods to other subsurface es-
 513 timation methods, and serve as a starting point for future studies seeking to link sur-
 514 face and subsurface form in river-dominated deltaic systems experiencing different ISF
 515 or SLR conditions.

516 The division of sediment types into two discrete categories, a fine mud and a coarse
 517 sand, simplifies the sediment grain size continuum. The input sediment grain size dis-
 518 tribution is known to impact the morphology and subsurface structure of river deltas (Orton
 519 & Reading, 1993; Caldwell & Edmonds, 2014). Given the resolution at which the stratig-
 520 raphy has been modeled (5 cm), this two-facies methodology accelerates model run time,
 521 and maintains the reduced-complexity modeling approach. As a result, the results do
 522 not reproduce small stratigraphic structures that exist below the modeled resolution such
 523 as thin mud drapes, which are often found in deltaic deposits (Galloway, 1976; Tye &
 524 Coleman, 1989; Tanabe et al., 2003). In addition, the modeling conducted in this study
 525 did not account for the effects of vegetation, permafrost, or ice on deltaic evolution. We
 526 note that the DeltaRCM model has been modified to simulate these effects (Lauzon &
 527 Murray, 2018; Lauzon et al., 2019; Piliouras et al., 2021), however these modifications
 528 were kept out of this study for the sake of simplicity.

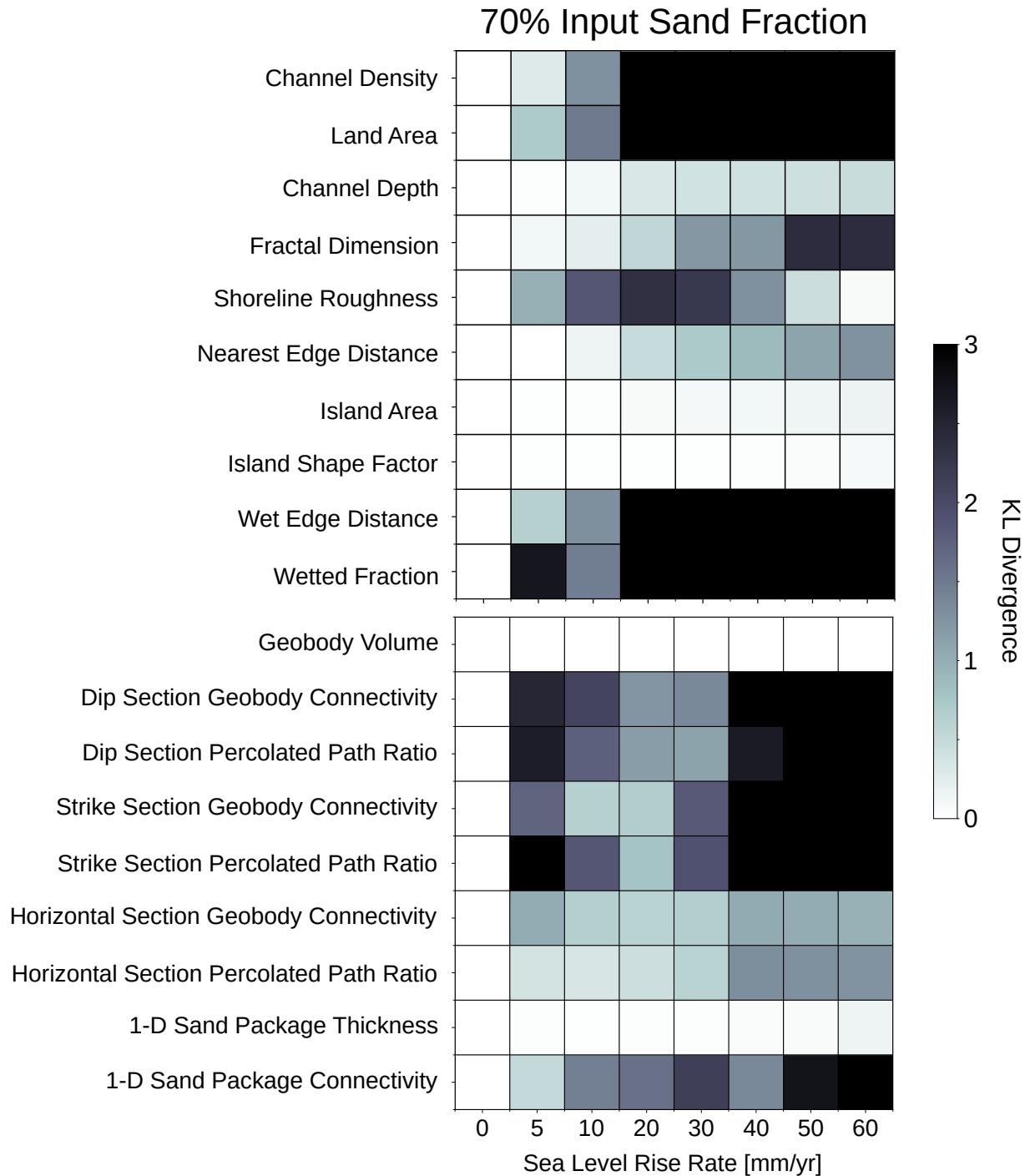


Figure 8. Graphic depiction of the KL divergence results computed in reference to the no SLR (0 mm/yr) scenario. Darker cells indicate a greater divergence from the reference, no SLR, scenario. Results shown are for the 70% ISF scenarios.

4 Conclusions

In our simulated scenarios we find that information from the surface network can be used to constrain predictions of subsurface structure, however further work needs to be conducted to constrain the applicability of these results to real systems. Broadly, more

533 variable shoreline roughness values and greater wetted fraction values correspond with
534 higher subsurface connectivity. By modeling and evaluating 24 different scenarios of delta
535 growth and evolution, we find that:

- 536 1. As ISF increases, wetted fraction, shoreline roughness variability, and subsurface
537 connectivity increase
- 538 2. Surface metrics are useful in informing subsurface properties at SLR rates below
539 10 mm/yr; above this rate the subsurface properties become insensitive to SLR
540 rate
- 541 3. Shoreline roughness and wetted fraction consistently prove to be the most effec-
542 tive for differentiating between forcing scenarios of the 10 surface metrics stud-
543 ied
- 544 4. Connectivity and percolated path ratio in the strike and dip sections were the most
545 sensitive to changes in forcings of the 9 subsurface metrics evaluated

546 These findings are supported by both qualitative observations of the metric PDFs, as
547 well as a KL divergence analysis in which the PDFs of the metrics were compared math-
548 ematically. This study has shown the potential for surface information to provide insights
549 into subsurface properties, and that mathematical methods such as the KL divergence
550 can be applied to support the choice of metrics to measure.

551 **Acknowledgments**

552 The authors acknowledge support from the National Science Foundation via EAR-1719670.
553 The DeltaRCM model can be downloaded from the CSDMS model repository at <https://csdms.colorado.edu/wiki/Model:DeltaRCM>.
554

555 **References**

556 Allen, G., & Mercier, F. (1988). Subsurface sedimentology of deltaic systems. *PESA*
 557 *J.*, (12), 30–44.

558 Allen, J. R. (1978, aug). Studies in fluvialite sedimentation: an exploratory quantitative
 559 model for the architecture of avulsion-controlled alluvial suites. *Sedimentary Geology*, 21(2), 129–147. doi: 10.1016/0037-0738(78)90002-7

560 Anthony, E. J. (2015, mar). *Wave influence in the construction, shaping and destruction of river deltas: A review* (Vol. 361). Elsevier. Retrieved from <https://www.sciencedirect.com/science/article/pii/S0025322714003788> doi: 10.1016/j.margeo.2014.12.004

561 Ayers, J. C., Goodbred, S., George, G., Fry, D., Benneyworth, L., Hornberger, G.,
 562 ... Akter, F. (2016, dec). Sources of salinity and arsenic in groundwater in
 563 southwest Bangladesh. *Geochemical Transactions*, 17(1), 4. Retrieved from
 564 <http://geochemicaltransactions.springeropen.com/articles/10.1186/s12932-016-0036-6> doi: 10.1186/s12932-016-0036-6

565 Bahar, M. M., & Reza, M. S. (2010, feb). Hydrochemical characteristics and
 566 quality assessment of shallow groundwater in a coastal area of southwest
 567 Bangladesh. *Environmental Earth Sciences*, 61(5), 1065–1073. Retrieved from
 568 <https://link.springer.com/article/10.1007/s12665-009-0427-4>
 569 doi: 10.1007/s12665-009-0427-4

570 Burpee, A. P., Slingerland, R. L., Edmonds, D. A., Parsons, D., Best, J., Cederberg,
 571 J., ... Royce, J. (2015, jun). Grain-size controls on the morphology and in-
 572 ternal geometry of river-dominated deltas. *Journal of Sedimentary Research*,
 573 85(6), 699–714. Retrieved from <http://dx.doi.org/10.2110/jsr.2015.39>
 574 doi: 10.2110/jsr.2015.39

575 Caldwell, R. L., & Edmonds, D. A. (2014, may). The effects of sediment
 576 properties on deltaic processes and morphologies: A numerical modeling
 577 study. *Journal of Geophysical Research: Earth Surface*, 119(5), 961–982.
 578 Retrieved from <http://doi.wiley.com/10.1002/2013JF002965> doi:
 579 10.1002/2013JF002965

580 Caldwell, R. L., Edmonds, D. A., Baumgardner, S., Paola, C., Roy, S., & Nienhuis,
 581 J. H. (2019, aug). A global delta dataset and the environmental variables that
 582 predict delta formation on marine coastlines. *Earth Surface Dynamics*, 7(3),
 583 773–787. Retrieved from <https://www.earth-surf-dynam.net/7/773/2019/>
 584 doi: 10.5194/esurf-7-773-2019

585 Donselaar, M. E., & Overeem, I. (2008, sep). Connectivity of fluvial point-bar de-
 586 posit: An example from the Miocene Huesca fluvial fan, Ebro Basin, Spain.
 587 *American Association of Petroleum Geologists Bulletin*, 92(9), 1109–1129. Re-
 588 trieved from <http://pubs.geoscienceworld.org/aapgbull/article-pdf/92/9/1109/3369570/bltn07079.pdf> doi: 10.1306/04180807079

589 Edmonds, D. A., Caldwell, R. L., Brondizio, E. S., & Siani, S. M. (2020, sep).
 590 Coastal flooding will disproportionately impact people on river deltas. *Nature
 591 Communications*, 11(1), 1–8. Retrieved from <https://www.nature.com/articles/s41467-020-18531-4> doi: 10.1038/s41467-020-18531-4

592 Edmonds, D. A., Paola, C., Hoyal, D. C., & Sheets, B. A. (2011, nov). Quantitative
 593 metrics that describe river deltas and their channel networks. *Journal of Geo-
 594 physical Research: Earth Surface*, 116(4), F04022. Retrieved from <http://doi.wiley.com/10.1029/2010JF001955> doi: 10.1029/2010JF001955

595 Edmonds, D. A., & Slingerland, R. L. (2010). Significant effect of sediment co-
 596 cohesion on deltamorphology. *Nature Geoscience*, 3(2), 105–109. Retrieved
 597 from <https://search-proquest-com.ezproxy.lib.utexas.edu/docview/1030084431?pq-origsite=summon> doi: 10.1038/ngeo730

598 Efros, A. A., & Freeman, W. T. (2001). Image quilting for texture synthesis and
 599 transfer. In *Proceedings of the 28th annual conference on computer graph-
 600 ics and interactive techniques, siggraph 2001* (pp. 341–346). New York,
 601

610 New York, USA: ACM Press. Retrieved from <http://portal.acm.org/citation.cfm?doid=383259.383296> doi: 10.1145/383259.383296

611

612 Feng, W., Sui, H., Huang, W., Xu, C., & An, K. (2019, apr). Water Body
613 Extraction From Very High-Resolution Remote Sensing Imagery Using
614 Deep U-Net and a Superpixel-Based Conditional Random Field Model.
615 *IEEE Geoscience and Remote Sensing Letters*, 16(4), 618–622. Retrieved from
616 <https://ieeexplore.ieee.org/document/8573826/> doi:
617 10.1109/LGRS.2018.2879492

618 Fogg, G. E. (1986, may). Groundwater Flow and Sand Body Interconnectedness in
619 a Thick, Multiple-Aquifer System. *Water Resources Research*, 22(5), 679–694.
620 Retrieved from <http://doi.wiley.com/10.1029/WR022i005p00679> doi: 10
621 .1029/WR022i005p00679

622 Galloway, W. E. (1975). Process framework for describing the morphologic and
623 stratigraphic evolution of deltaic systems. In *Deltas, models for exploration*
624 (pp. 87–98). Houston Geological Society. Retrieved from <https://archives.datapages.com/data/hgssp/data/022/022001/87\hgs0220087.htm>

625 Galloway, W. E. (1976, sep). Sediments and Stratigraphic Framework of the Copper
626 River Fan-delta, Alaska. *SEPM Journal of Sedimentary Research*, Vol. 46(3),
627 726–737. Retrieved from <http://pubs.geoscienceworld.org/sepm/jsedres/article-pdf/46/3/726/2807555/726.pdf> doi: 10.1306/212f703b-2b24-11d7
628 -8648000102c1865d

629 Gawlinski, E. T., & Stanley, H. E. (1981, aug). Continuum percolation in two di-
630 mensions: Monte Carlo tests of scaling and universality for non-interacting
631 discs. *Journal of Physics A: Mathematical and General*, 14(8), 291–299.
632 Retrieved from <https://iopscience-iop-org.ezproxy.lib.utexas.edu/article/10.1088/0305-4470/14/8/007>
633 doi: 10.1088/0305-4470/14/8/007

634 Geleynse, N., Voller, V. R., Paola, C., & Ganti, V. (2012, sep). Characterization
635 of river delta shorelines. *Geophysical Research Letters*, 39(17), n/a–n/a. Retrieved from
636 <http://doi.wiley.com/10.1029/2012GL052845> doi: 10.1029/
637 2012GL052845

638 Giosan, L., Syvitski, J., Constantinescu, S., & Day, J. (2014, dec). *Climate change: Protect the world's deltas* (Vol. 516) (No. 729). Nature Publishing Group. doi:
639 10.1038/516031a

640 Heller, P. L., Paola, C., Hwang, I. G., John, B., & Steel, R. (2001, may). Ge-
641 omorphology and sequence stratigraphy due to slow and rapid base-level
642 changes in an experimental subsiding basin (XES96-1). *AAPG Bulletin*,
643 85(5), 817–838. Retrieved from <http://pubs.geoscienceworld.org/aapg/aapgbull/article-pdf/85/5/817/3358382/817.pdf> doi: 10.1306/
644 8626ca0f-173b-11d7-8645000102c1865d

645 Hoffmann, J., Scheidt, C., Barfod, A., & Caers, J. (2017, sep). Stochastic simu-
646 lation by image quilting of process-based geological models. *Computers and*
647 *Geosciences*, 106, 18–32. Retrieved from <https://www.sciencedirect.com/science/article/pii/S0098300417301139> doi: 10.1016/j.cageo.2017.05
648 .012

649 Hovadik, J. M., & Larue, D. K. (2007, aug). *Static characterizations of reservoirs: Refining the concepts of connectivity and continuity* (Vol. 13) (No. 3). Geological Society of London. Retrieved from <http://pg.lyellcollection.org/cgi/doi/10.1144/1354-079305-697> doi: 10.1144/1354-079305-697

650 Hovadik, J. M., & Larue, D. K. (2010). Stratigraphic and structural connectivity. *Geological Society, London, Special Publications*, 347(1), 219–242. Retrieved from <https://sp.lyellcollection.org/content/347/1/219> doi: 10.1144/SP347.13

651 Isikdogan, L. F., Bovik, A., & Passalacqua, P. (2020, oct). Seeing Through the

Clouds With DeepWaterMap. *IEEE Geoscience and Remote Sensing Letters*, 17(10), 1662–1666. Retrieved from <https://ieeexplore.ieee.org/document/8913594/> doi: 10.1109/LGRS.2019.2953261

Islam, M. R., Begum, S. F., Yamaguchi, Y., & Ogawa, K. (1999, dec). The Ganges and Brahmaputra rivers in Bangladesh: Basin denudation and sedimentation. *Hydrological Processes*, 13(17), 2907–2923. Retrieved from [https://onlinelibrary.wiley.com/doi/10.1002/\(SICI\)1099-1085\(19991215\)13:17%3C2907::AID-HYP906%3E3.0.CO;2-E](https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1085(19991215)13:17%3C2907::AID-HYP906%3E3.0.CO;2-E) doi: 10.1002/(SICI)1099-1085(19991215)13:17(2907::AID-HYP906)3.0.CO;2-E

Jerolmack, D. J., & Paola, C. (2010, oct). Shredding of environmental signals by sediment transport. *Geophysical Research Letters*, 37(19). Retrieved from <http://doi.wiley.com/10.1029/2010GL044638> doi: 10.1029/2010GL044638

Ke, W. T., Shaw, J. B., Mahon, R. C., & Cathcart, C. A. (2019, jul). Distributary Channel Networks as Moving Boundaries: Causes and Morphodynamic Effects. *Journal of Geophysical Research: Earth Surface*, 124(7), 1878–1898. Retrieved from <https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JF005084> doi: 10.1029/2019JF005084

Khan, M. R., Koneshloo, M., Knappett, P. S., Ahmed, K. M., Bostick, B. C., Mailoux, B. J., ... Michael, H. A. (2016). Megacity pumping and preferential flow threaten groundwater quality. *Nature Communications*, 7. Retrieved from <https://search-proquest-com.ezproxy.lib.utexas.edu/docview/1823511985?pq-origsite=summon> doi: 10.1038/ncomms12833

Kim, W., & Jerolmack, D. J. (2008, jul). The pulse of calm fan deltas. *Journal of Geology*, 116(4), 315–330. Retrieved from <https://www.journals.uchicago.edu/doi/10.1086/588830> doi: 10.1086/588830

Kim, W., & Paola, C. (2007, apr). Long-period cyclic sedimentation with constant tectonic forcing in an experimental relay ramp. *Geology*, 35(4), 331–334. Retrieved from <http://pubs.geoscienceworld.org/gsa/geology/article-pdf/35/4/331/3533089/i0091-7613-35-4-331.pdf> doi: 10.1130/G23194A.1

Kim, W., Paola, C., Swenson, J. B., & Voller, V. R. (2006, dec). Shoreline response to autogenic processes of sediment storage and release in the fluvial system. *Journal of Geophysical Research: Earth Surface*, 111(4), F04013. Retrieved from <http://doi.wiley.com/10.1029/2006JF000470> doi: 10.1029/2006JF000470

King, P. R. (1990). The connectivity and conductivity of overlapping sand bodies. *North sea oil and gas reservoirs - II*, 353–362. Retrieved from https://link-springer-com.ezproxy.lib.utexas.edu/chapter/10.1007/978-94-009-0791-1_30 doi: 10.1007/978-94-009-0791-1_30

Koss, J. E., Ethridge, F. G., & Schumm, S. A. (1994, may). An experimental study of the effects of base-level change on fluvial, coastal plain and shelf systems. *Journal of Sedimentary Research B: Stratigraphy & Global Studies*, 64(B64(2)), 90–98. Retrieved from <http://pubs.geoscienceworld.org/sepm/jsedres/article-pdf/64/2b/90/2811439/90.pdf> doi: 10.1306/d4267f64-2b26-11d7-8648000102c1865d

Kullback, S., & Leibler, R. A. (1951, mar). On Information and Sufficiency. *The Annals of Mathematical Statistics*, 22(1), 79–86. doi: 10.1214/aoms/1177729694

Lauzon, R., & Murray, A. B. (2018, oct). Comparing the Cohesive Effects of Mud and Vegetation on Delta Evolution. *Geophysical Research Letters*, 45(19), 10,437–10,445. Retrieved from <https://onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079405> doi: 10.1029/2018GL079405

Lauzon, R., Piliouras, A., & Rowland, J. C. (2019, jun). Ice and Permafrost Effects on Delta Morphology and Channel Dynamics. *Geophysical Research Letters*, 46(12), 6574–6582. Retrieved from <https://onlinelibrary.wiley.com/>

doi/abs/10.1029/2019GL082792 doi: 10.1029/2019GL082792

Li, G., Wei, H., Han, Y., & Chen, Y. (1998, aug). Sedimentation in the Yellow River delta, Part I: Flow and suspended sediment structure in the upper distributary and the estuary. *Marine Geology*, 149(1-4), 93–111. doi: 10.1016/S0025-3227(98)00031-0

Liang, M., Geleynse, N., Edmonds, D. A., & Passalacqua, P. (2015). A reduced-complexity model for river delta formation - Part 2: Assessment of the flow routing scheme. *Earth Surface Dynamics*, 3(1), 87–104. Retrieved from www.earth-surf-dynam.net/3/87/2015/ doi: 10.5194/esurf-3-87-2015

Liang, M., Kim, W., & Passalacqua, P. (2016, oct). How much subsidence is enough to change the morphology of river deltas? *Geophysical Research Letters*, 43(19), 10,266–10,276. Retrieved from <http://doi.wiley.com/10.1002/2016GL070519> doi: 10.1002/2016GL070519

Liang, M., Van Dyk, C., & Passalacqua, P. (2016, feb). Quantifying the patterns and dynamics of river deltas under conditions of steady forcing and relative sea level rise. *Journal of Geophysical Research: Earth Surface*, 121(2), 465–496. Retrieved from <http://doi.wiley.com/10.1002/2015JF003653> doi: 10.1002/2015JF003653

Liang, M., Voller, V. R., & Paola, C. (2015). A reduced-complexity model for river delta formation - Part 1: Modeling deltas with channel dynamics. *Earth Surface Dynamics*, 3(1), 67–86. Retrieved from www.earth-surf-dynam.net/3/67/2015/ doi: 10.5194/esurf-3-67-2015

Mahmud, K., Mariethoz, G., Caers, J., Tahmasebi, P., & Baker, A. (2014, apr). Simulation of Earth textures by conditional image quilting. *Water Resources Research*, 50(4), 3088–3107. Retrieved from <http://doi.wiley.com/10.1002/2013WR015069> doi: 10.1002/2013WR015069

Martin, J., Sheets, B., Paola, C., & Hoyal, D. (2009, aug). Influence of steady base-level rise on channel mobility, shoreline migration, and scaling properties of a cohesive experimental delta. *Journal of Geophysical Research: Solid Earth*, 114(3), F03017. Retrieved from <http://doi.wiley.com/10.1029/2008JF001142> doi: 10.1029/2008JF001142

Michael, H. A., & Voss, C. I. (2009, feb). Controls on groundwater flow in the Bengal Basin of India and Bangladesh: Regional modeling analysis. *Hydrogeology Journal*, 17(7), 1561–1577. Retrieved from <https://link.springer.com/article/10.1007/s10040-008-0429-4> doi: 10.1007/s10040-008-0429-4

Miller, K. L., Kim, W., & McElroy, B. (2019, feb). Laboratory Investigation on Effects of Flood Intermittency on Fan Delta Dynamics. *Journal of Geophysical Research: Earth Surface*, 124(2), 383–399. Retrieved from <https://onlinelibrary.wiley.com/doi/abs/10.1029/2017JF004576> doi: 10.1029/2017JF004576

Moodie, A. J., Nittrouer, J. A., Ma, H., Carlson, B. N., Chadwick, A. J., Lamb, M. P., & Parker, G. (2019, nov). Modeling Deltaic Lobe-Building Cycles and Channel Avulsions for the Yellow River Delta, China. *Journal of Geophysical Research: Earth Surface*, 124(11), 2438–2462. Retrieved from <https://doi.org/10.1029/2019JF005220> doi: 10.1029/2019JF005220

Morris, B., Lawrence, A., Chilton, P., & Adams, B. (2003). *Groundwater and its susceptibility to degradation: A global assessment of the problem and options for management* (Tech. Rep.). Retrieved from <http://nora.nerc.ac.uk/id/eprint/19395/>

Moser, S. C., Jeffress Williams, S., & Boesch, D. F. (2012). Wicked Challenges at Land's End: Managing Coastal Vulnerability Under Climate Change. *Annual Review of Environment and Resources*, 37(1), 51–78. Retrieved from <http://www.annualreviews.org/doi/10.1146/annurev-environ-021611-135158> doi: 10.1146/annurev-environ-021611-135158

Muto, T., & Steel, R. J. (1997). Principles of regression and transgression: The

775 nature of the interplay between accommodation and sediment supply. *Journal
776 of Sedimentary Research, Section B: Stratigraphy and Global Studies*, 67(6),
777 994–1000. doi: 10.1306/d42686a8-2b26-11d7-8648000102c1865d

778 Nienhuis, J. H., Ashton, A. D., Edmonds, D. A., Hoitink, A. J., Kettner, A. J., Row-
779 land, J. C., & Törnqvist, T. E. (2020, jan). Global-scale human impact on
780 delta morphology has led to net land area gain. *Nature*, 577(7791), 514–518.
781 doi: 10.1038/s41586-019-1905-9

782 Orton, G. J., & Reading, H. G. (1993, jun). Variability of deltaic processes in
783 terms of sediment supply, with particular emphasis on grain size. *Sedimen-
784 tology*, 40(3), 475–512. Retrieved from <http://doi.wiley.com/10.1111/j.1365-3091.1993.tb01347.x> doi: 10.1111/j.1365-3091.1993.tb01347.x

785 Paola, C. (2011, jan). *In modelling, simplicity isn't simple* (Vol. 469) (No. 7328).
786 doi: 10.1038/469038a

787 Pardo-Igúzquiza, E., & Dowd, P. A. (2003, jul). CONNEC3D: A computer pro-
788 gram for connectivity analysis of 3D random set models. *Computers and Geo-
789 sciences*, 29(6), 775–785. doi: 10.1016/S0098-3004(03)00028-1

790 Parker, G., Muto, T., Akamatsu, Y., Dietrich, W. E., & Lauer, J. W. (2008, dec).
791 Unravelling the conundrum of river response to rising sea-level from laboratory
792 to field. Part I: Laboratory experiments. *Sedimentology*, 55(6), 1643–1655.
793 Retrieved from <http://doi.wiley.com/10.1111/j.1365-3091.2008.00961.x> doi: 10.1111/j.1365-3091.2008.00961.x

794 Passalacqua, P., Lanzoni, S., Paola, C., & Rinaldo, A. (2013, sep). Geomorphic sig-
795 natures of deltaic processes and vegetation: The Ganges-Brahmaputra-Jamuna
796 case study. *Journal of Geophysical Research: Earth Surface*, 118(3), 1838–
797 1849. Retrieved from <http://doi.wiley.com/10.1002/jgrf.20128> doi:
798 10.1002/jgrf.20128

799 Perignon, M., Adams, J., Overeem, I., & Passalacqua, P. (2020). Dominant process
800 zones in a mixed fluvial–tidal delta are morphologically distinct. *Earth Surface
801 Dynamics*, 8(3), 809–824. Retrieved from [https://esurf.copernicus.org/](https://esurf.copernicus.org/articles/8/809/2020/)
802 articles/8/809/2020/ doi: 10.5194/esurf-8-809-2020

803 Piliouras, A., Lauzon, R., & Rowland, J. C. (2021, apr). Unraveling the Com-
804 bined Effects of Ice and Permafrost on Arctic Delta Morphodynamics. *Journal
805 of Geophysical Research: Earth Surface*, 126(4), e2020JF005706. Retrieved
806 from <https://onlinelibrary.wiley.com/doi/10.1029/2020JF005706> doi:
807 10.1029/2020jf005706

808 Piliouras, A., & Rowland, J. C. (2020, jan). Arctic River Delta Morphologic Vari-
809 ability and Implications for Riverine Fluxes to the Coast. *Journal of Geophysi-
810 cal Research: Earth Surface*, 125(1), e2019JF005250. Retrieved from <https://doi.org/> doi: 10.1029/2019JF005250

811 Postma, G. (1995, aug). Sea-level-related architectural trends in coarse-grained delta
812 complexes. *Sedimentary Geology*, 98(1-4), 3–12. doi: 10.1016/0037-0738(95)
813 00024-3

814 Pranter, M. J., & Sommer, N. K. (2011, jun). Static connectivity of fluvial sand-
815 stones in a lower coastal-plain setting: An example from the Upper Creta-
816 ceous lower Williams Fork Formation, Piceance Basin, Colorado. *AAPG
817 Bulletin*, 95(6), 899–923. Retrieved from <http://pubs.geoscienceworld.org/aapgbull/article-pdf/95/6/899/3373341/bltn10008.pdf> doi:
818 10.1306/12091010008

819 Rahman, M. M., Penny, G., Mondal, M. S., Zaman, M. H., Kryston, A., Sale-
820 hin, M., ... Müller, M. F. (2019, mar). *Salinization in large river deltas:
821 Drivers, impacts and socio-hydrological feedbacks* (Vol. 6). Retrieved from
822 <https://linkinghub.elsevier.com/retrieve/pii/S2468312418300087>
823 doi: 10.1016/j.wasec.2019.100024

824 Ratliff, K. M., Hutton, E. H., & Murray, A. B. (2018, nov). Exploring Wave and
825 Sea-Level Rise Effects on Delta Morphodynamics With a Coupled River-Ocean

830 Model. *Journal of Geophysical Research: Earth Surface*, 123(11), 2887–2900.
 831 Retrieved from <https://onlinelibrary.wiley.com/doi/abs/10.1029/2018JF004757> doi: 10.1029/2018JF004757

832 Reitz, M. D., & Jerolmack, D. J. (2012, jun). Experimental alluvial fan evolution:
 833 Channel dynamics, slope controls, and shoreline growth. *Journal of Geophysical Research: Earth Surface*, 117(2), n/a–n/a. Retrieved from <http://doi.wiley.com/10.1029/2011JF002261> doi: 10.1029/2011JF002261

834 Renard, P., & Allard, D. (2013, jan). Connectivity metrics for subsurface
 835 flow and transport. *Advances in Water Resources*, 51, 168–196. Retrieved from <https://www.sciencedirect.com/science/article/pii/S0309170811002223> doi: 10.1016/j.advwatres.2011.12.001

836 Rodriguez-Iturbe, I., Rinaldo, A., & Levy, O. (1998, jan). Fractal River Basins:
 837 Chance and Self-Organization. *Physics Today*, 51(7), 70–71. doi: 10.1063/1.882305

838 Seybold, H., Andrade, J. S., & Herrmann, H. J. (2007, oct). Modeling river delta
 839 formation. *Proceedings of the National Academy of Sciences of the United States of America*, 104(43), 16804–16809. Retrieved from <http://www.ncbi.nlm.nih.gov/pubmed/17940031> doi: 10.1073/pnas.0705265104

840 Shamsudduha, M., Taylor, R. G., Ahmed, K. M., & Zahid, A. (2011, jun). The
 841 impact of intensive groundwater abstraction on recharge to a shallow regional
 842 aquifer system: Evidence from Bangladesh. *Hydrogeology Journal*, 19(4), 901–916. Retrieved from <https://ui.adsabs.harvard.edu/abs/2011HydJ...19..901S/abstract> doi: 10.1007/s10040-011-0723-4

843 Shaw, J. B., & Mohrig, D. (2014, jan). The importance of erosion in distributary
 844 channel network growth, Wax Lake Delta, Louisiana, USA. *Geology*, 42(1), 31–34. Retrieved from <https://pubs.geoscienceworld.org/geology/article/42/1/31-34/131325> doi: 10.1130/G34751.1

845 Shaw, J. B., Mohrig, D., & Whitman, S. K. (2013, sep). The morphology and evolution
 846 of channels on the Wax Lake Delta, Louisiana, USA. *Journal of Geophysical Research: Earth Surface*, 118(3), 1562–1584. Retrieved from <http://doi.wiley.com/10.1002/jgrf.20123> doi: 10.1002/jgrf.20123

847 Shaw, J. B., Wolinsky, M. A., Paola, C., & Voller, V. R. (2008, jun). An image-based
 848 method for shoreline mapping on complex coasts. *Geophysical Research Letters*, 35(12), n/a–n/a. Retrieved from <http://doi.wiley.com/10.1029/2008GL033963> doi: 10.1029/2008GL033963

849 Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., ...
 850 others (2013). Climate change 2013. the physical science basis. working group
 851 i contribution to the fifth assessment report of the intergovernmental panel on
 852 climate change-abstract for decision-makers; changements climatiques 2013. les
 853 elements scientifiques. contribution du groupe de travail i au cinquieme rap-
 854 port d'évaluation du groupe d'experts intergouvernemental sur l'évolution du
 855 climat-resume a l'intention des decideurs.

856 Straub, K. M., Li, Q., & Benson, W. M. (2015, nov). Influence of sediment co-
 857 hesion on deltaic shoreline dynamics and bulk sediment retention: A lab-
 858 oratory study. *Geophysical Research Letters*, 42(22), 9808–9815. Retrieved from <http://doi.wiley.com/10.1002/2015GL066131> doi: 10.1002/2015GL066131

859 Strong, N., Sheets, B. A., Hickson, T. A., & Paola, C. (2005). A mass-balance
 860 framework for quantifying downstream changes in fluvial architecture. In
 861 *Fluvial sedimentology vii* (Vol. 35, pp. 243–253). International Association of
 862 Sedimentologists Special Publication 35.

863 Syvitski, J. P., Kettner, A. J., Overeem, I., Hutton, E. W., Hannon, M. T., Brak-
 864 enridge, G. R., ... Nicholls, R. J. (2009, oct). Sinking deltas due to
 865 human activities. *Nature Geoscience*, 2(10), 681–686. Retrieved from

885 <http://www.nature.com/articles/ngeo629> doi: 10.1038/ngeo629

886 Syvitski, J. P., & Saito, Y. (2007, jun). Morphodynamics of deltas under the
887 influence of humans. *Global and Planetary Change*, 57(3-4), 261–282. Retrieved
888 from <https://www.sciencedirect.com/science/article/pii/S0921818106003146> doi: 10.1016/j.gloplacha.2006.12.001

889 Tanabe, S., Ta, T. K. O., Nguyen, V. L., Tateishi, M., Kobayashi, I., & Saito, Y.
890 (2003). Delta Evolution Model Inferred From the Holocene Mekong Delta,
891 Southern Vietnam. In *Tropical deltas of southeast asia* (Vol. 76, pp. 175–188).
892 Special Publications of SEPM. doi: 10.2110/pec.03.76.0175

893 Toby, S. C., Duller, R. A., De Angelis, S., & Straub, K. M. (2019, may). A Stratigraphic
894 Framework for the Preservation and Shredding of Environmental
895 Signals. *Geophysical Research Letters*, 46(11), 5837–5845. Retrieved from
896 <https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL082555> doi:
897 10.1029/2019GL082555

898 Twilley, R. R., Bentley, S. J., Chen, Q., Edmonds, D. A., Hagen, S. C., Lam, N. S.,
899 ... McCall, A. (2016). Co-evolution of wetland landscapes, flooding, and
900 human settlement in the Mississippi River Delta Plain. *Sustainability Science*,
901 11(4), 711–731. doi: 10.1007/s11625-016-0374-4

902 Tye, R. S., & Coleman, J. M. (1989). Depositional processes and stratigraphy
903 of fluvially dominated lacustrine deltas: Mississippi delta plain. *Journal of
904 Sedimentary Petrology*, 59(6), 973–996. doi: 10.1306/212F90CA-2B24-11D7
905 -8648000102C1865D

906 Van de Lageweg, W. I., van Dijk, W. M., & Kleinhans, M. G. (2013, apr).
907 Channel belt architecture formed by a meandering river. *Sedimentology*,
908 60(3), 840–859. Retrieved from <http://doi.wiley.com/10.1111/j.1365-3091.2012.01365.x> doi: 10.1111/j.1365-3091.2012.01365.x

909 Winkel, L., Berg, M., Amini, M., Hug, S. J., & Johnson, A. A. (2008, aug). Predicting
910 groundwater arsenic contamination in Southeast Asia from surface parameters.
911 *Nature Geoscience*, 1(8), 536–542. Retrieved from
912 <http://www.nature.com/articles/ngeo254> doi: 10.1038/ngeo254

913 Wolinsky, M. A., Edmonds, D. A., Martin, J., & Paola, C. (2010, nov). Delta allometry:
914 Growth laws for river deltas. *Geophysical Research Letters*, 37(21), n/a–n/a. Retrieved
915 from <http://doi.wiley.com/10.1029/2010GL044592> doi: 10
916 .1029/2010GL044592

917 Xu, Z., Hariharan, J., Passalacqua, P., Steel, E., Paola, C., & Michael, H. A. (accepted).
918 Constraining subsurface properties from surface information in river
919 deltas – part 2: Relating subsurface geometries and groundwater behavior.
920 *Submitted to Water Resources Research*.

921 Yang, N., Winkel, L. H., & Johannesson, K. H. (2014, may). Predicting geogenic ar-
922 senic contamination in shallow groundwater of South Louisiana, United States.
923 *Environmental Science and Technology*, 48(10), 5660–5666. Retrieved from
924 <http://pubs.acs.org/doi/10.1021/es405670g> doi: 10.1021/es405670g

927 References From the Supporting Information

928 Garcia, M., & Parker, G. (1991, apr). Entrainment of Bed Sediment into Sus-
929 pension. *Journal of Hydraulic Engineering*, 117(4), 414–435. Retrieved
930 from <https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281991%29117%3A4%28414%29> doi: 10.1061/(asce)0733-9429(1991)117:4(414)

931 Liang, M., Geleynse, N., Edmonds, D. A., & Passalacqua, P. (2015). A reduced-
932 complexity model for river delta formation - Part 2: Assessment of the flow
933 routing scheme. *Earth Surface Dynamics*, 3(1), 87–104. Retrieved from
934 www.earth-surf-dynam.net/3/87/2015/ doi: 10.5194/esurf-3-87-2015

935 Liang, M., Voller, V. R., & Paola, C. (2015). A reduced-complexity model for river
936 delta formation - Part 1: Modeling deltas with channel dynamics. *Earth Sur-*
937

face Dynamics, 3(1), 67–86. Retrieved from www.earth-surf-dynam.net/3/67/2015/ doi: 10.5194/esurf-3-67-2015

Mahmud, K., Mariethoz, G., Caers, J., Tahmasebi, P., & Baker, A. (2014, apr). Simulation of Earth textures by conditional image quilting. *Water Resources Research*, 50(4), 3088–3107. Retrieved from <http://doi.wiley.com/10.1002/2013WR015069> doi: 10.1002/2013WR015069

Meyer-Peter, E., & Müller, R. (1948). Formulas for Bed-Load transport. *IAHSR 2nd meeting, Stockholm, appendix 2.* Retrieved from <https://repository.tudelft.nl/islandora/object/uuid%3A4fda9b61-be28-4703-ab06-43cdc2a21bd7>

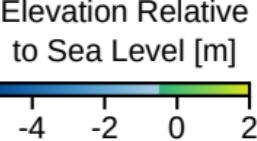
van Rijn, L. C. (1984, nov). Sediment Transport, Part II: Suspended Load Transport. *Journal of Hydraulic Engineering*, 110(11), 1613–1641. Retrieved from <https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429%281984%29110%3A11%281613%29> doi: 10.1061/(asce)0733-9429(1984)110:11(1613)

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ... SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature Methods*, 17, 261–272. doi: 10.1038/s41592-019-0686-2

Xu, Z., Hariharan, J., Passalacqua, P., Steel, E., Paola, C., & Michael, H. A. (accepted). Constraining subsurface properties from surface information in river deltas – part 2: Relating subsurface geometries and groundwater behavior. *Submitted to Water Resources Research*.

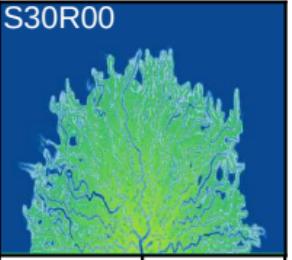
Figure 1.

Input Sand Proportion

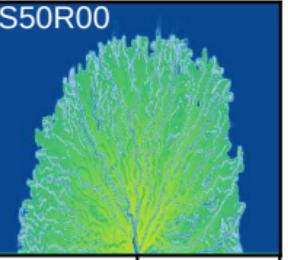


Sea Level Rise Rate

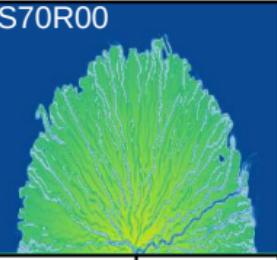
30% Input Sand



50% Input Sand



70% Input Sand



0 mm/yr

5 mm/yr

10 mm/yr

20 km

10 km

Figure 2.

Input Sand Proportion

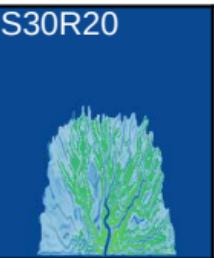
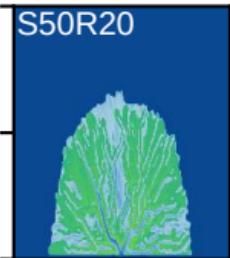
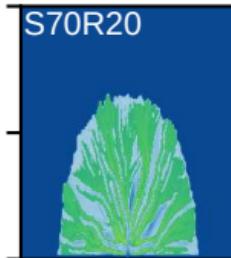
Elevation Relative
to Sea Level [m]

-4 -2 0 2

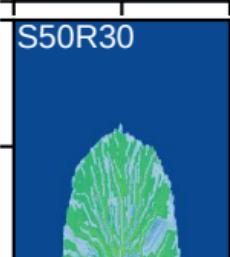
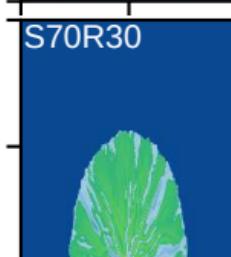
30% Input Sand 50% Input Sand 70% Input Sand

Sea Level Rise Rate

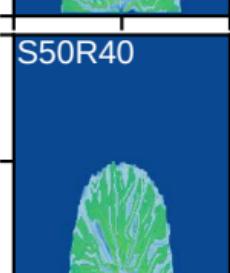
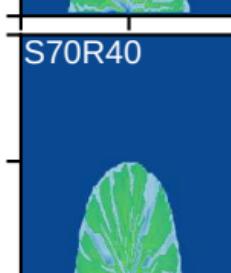
20 mm/yr



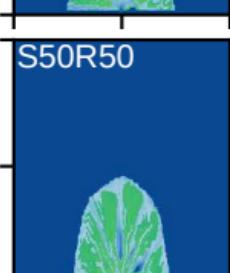
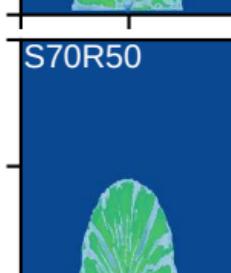
30 mm/yr



40 mm/yr



50 mm/yr



60 mm/yr

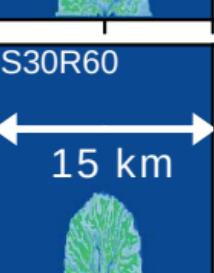
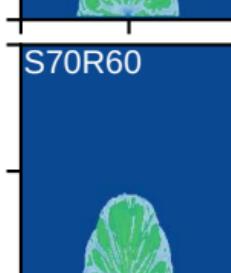
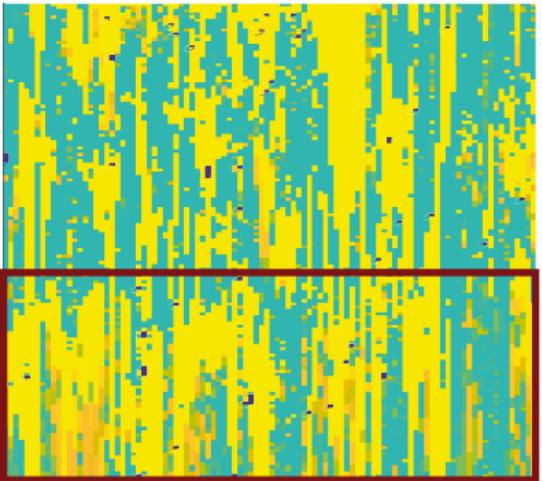
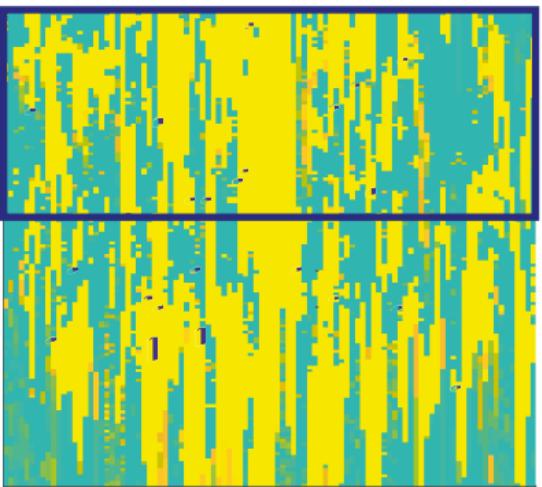
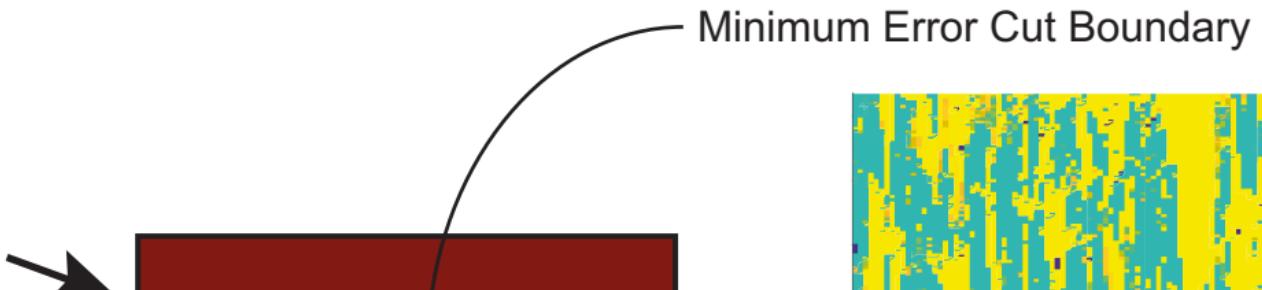


Figure 3.



Fraction of Sand
(Per Cell)

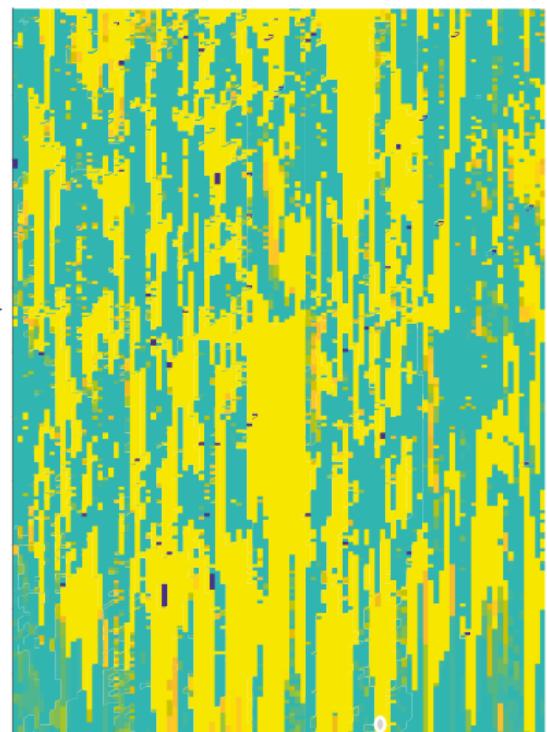


Figure 4.

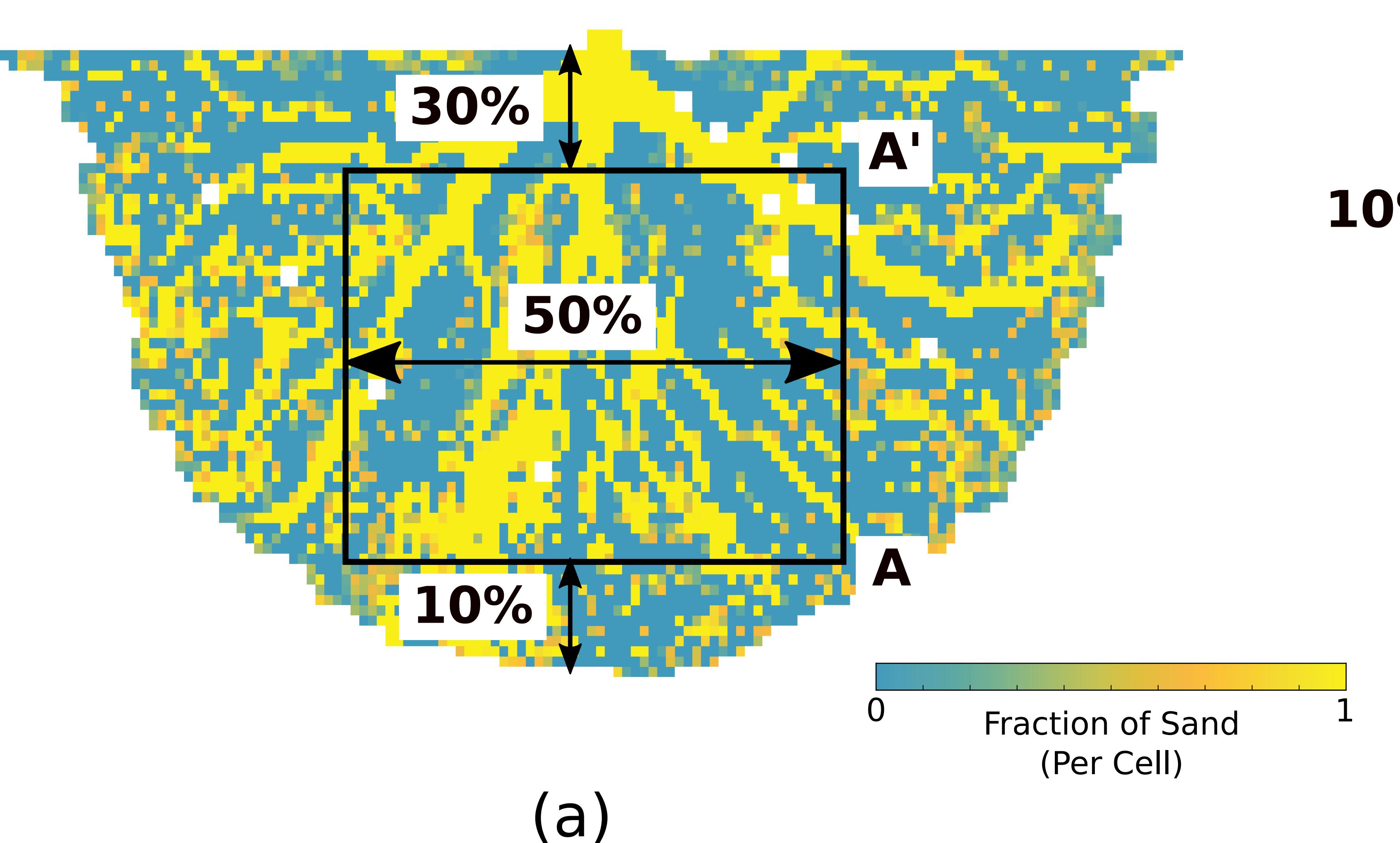
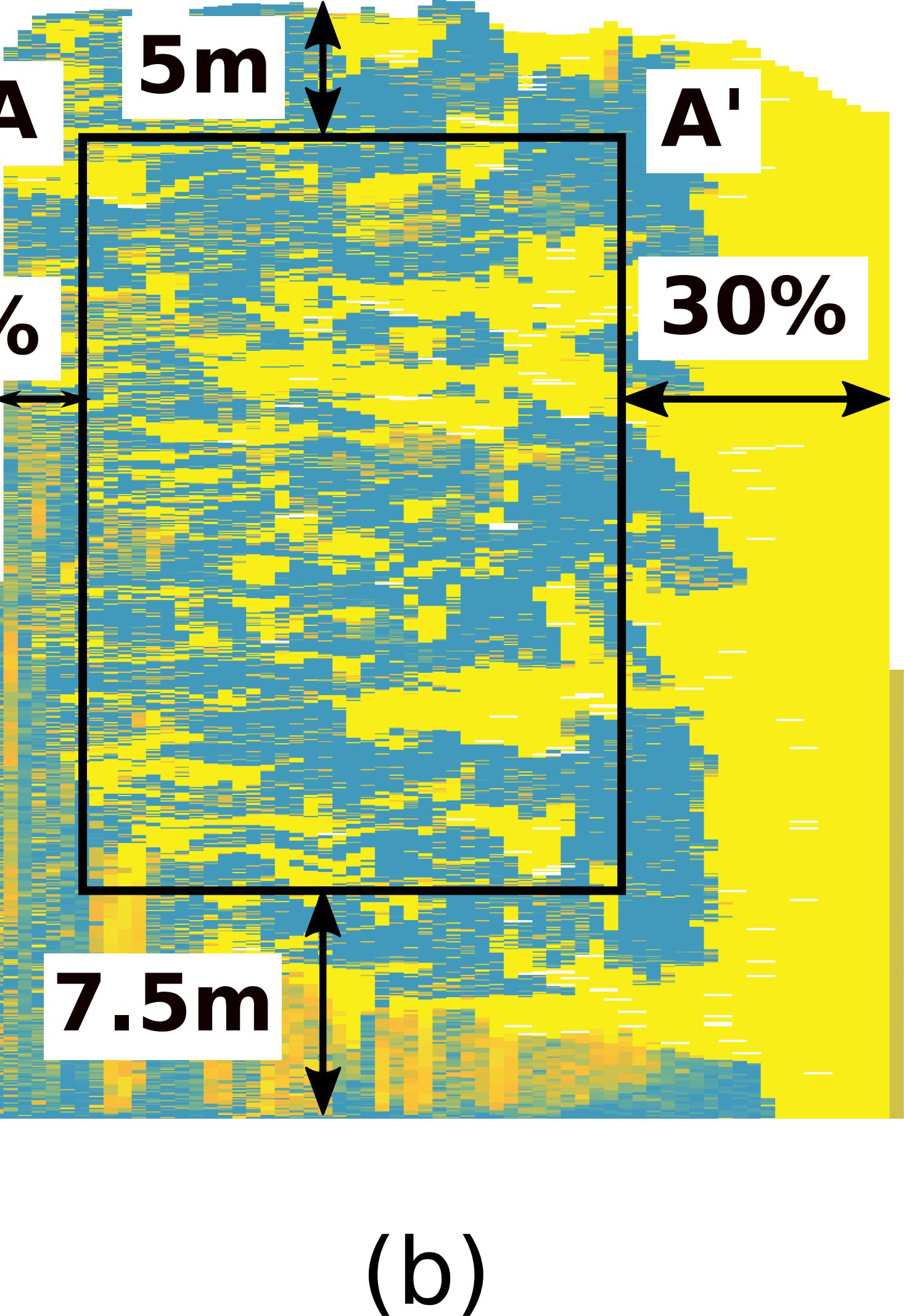
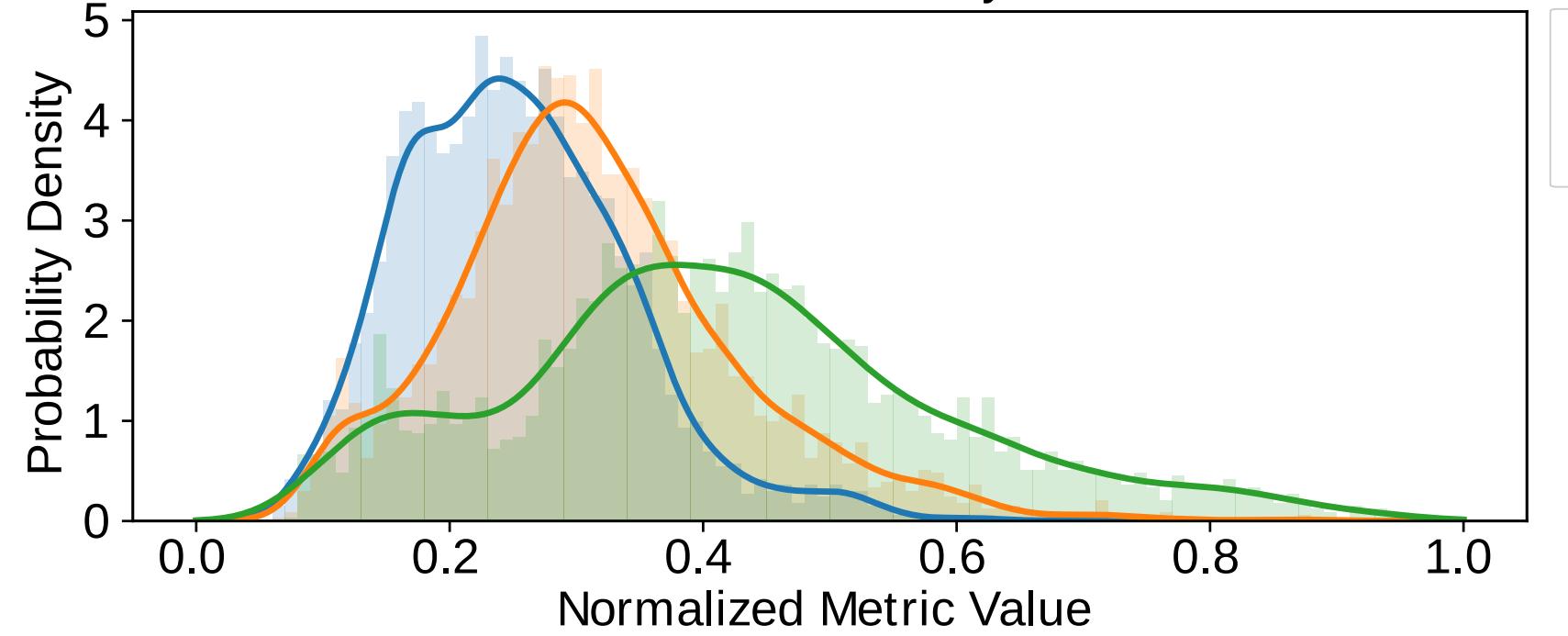


Figure 5.

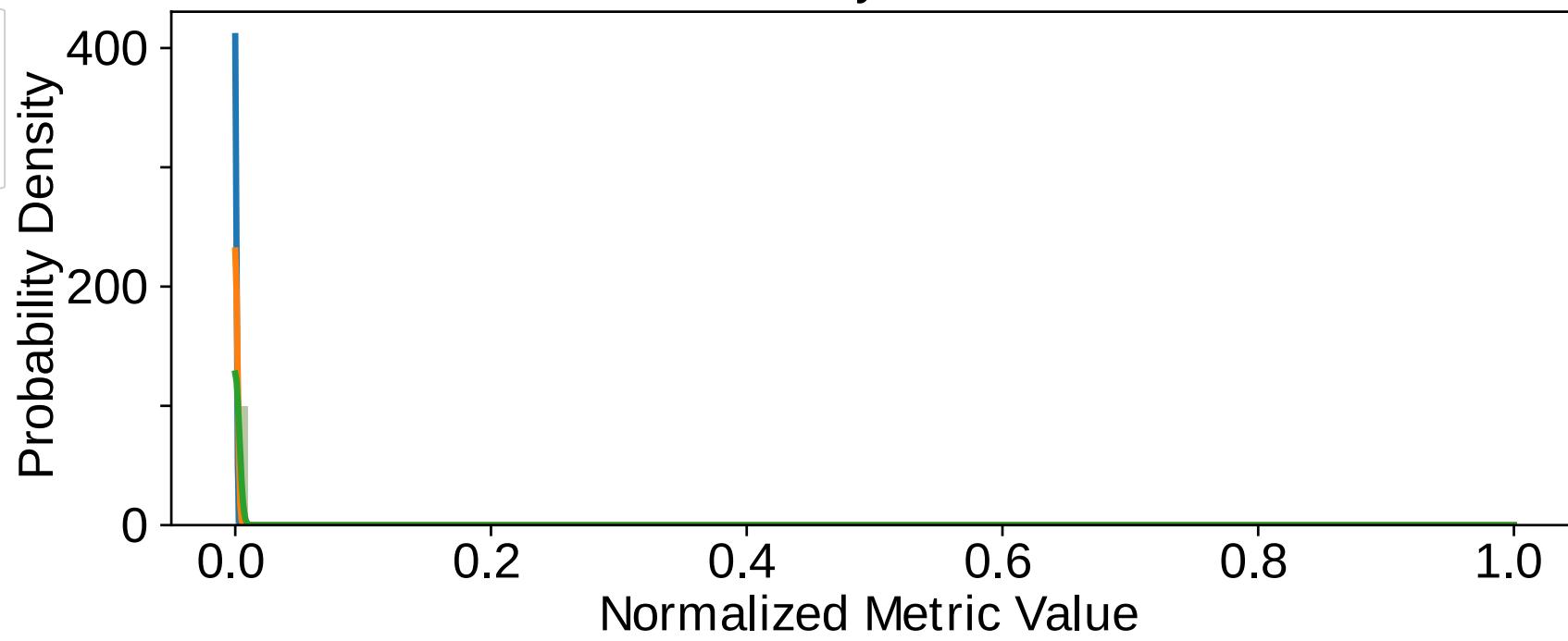
Surface Metrics

Channel Density

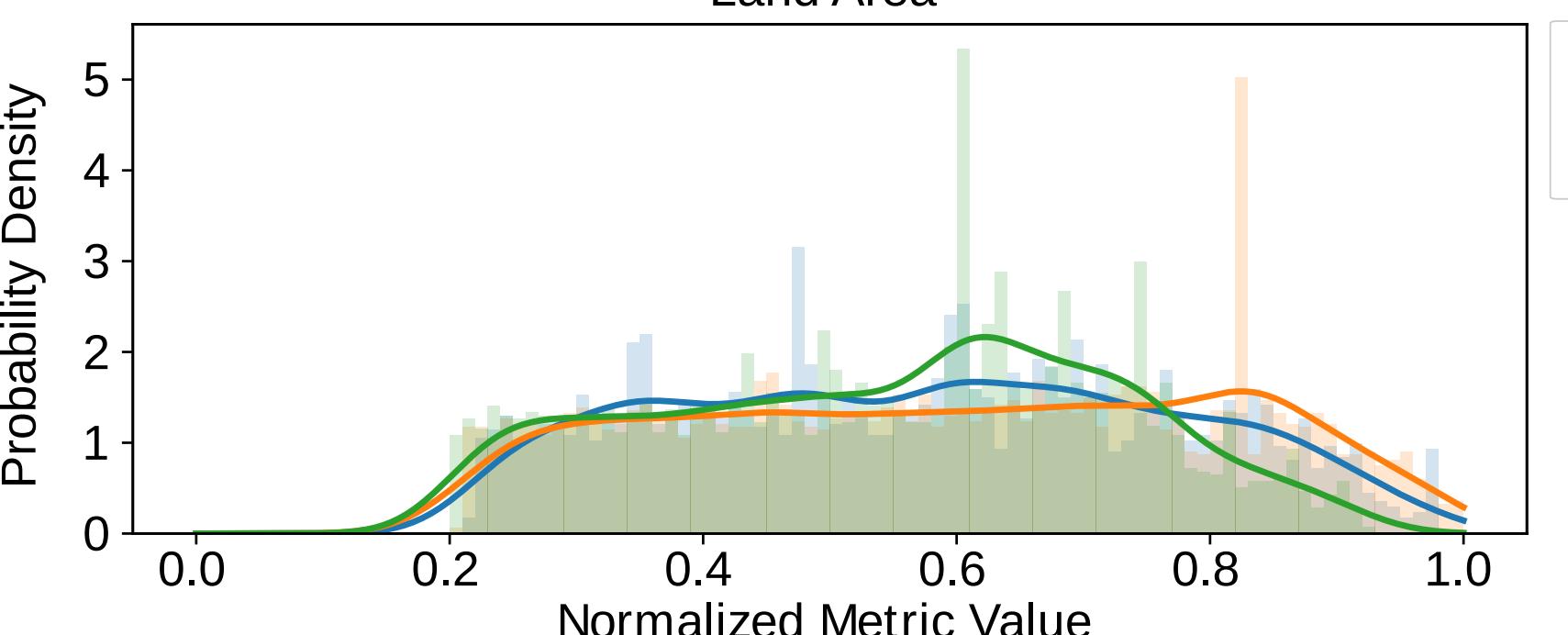


Subsurface Metrics

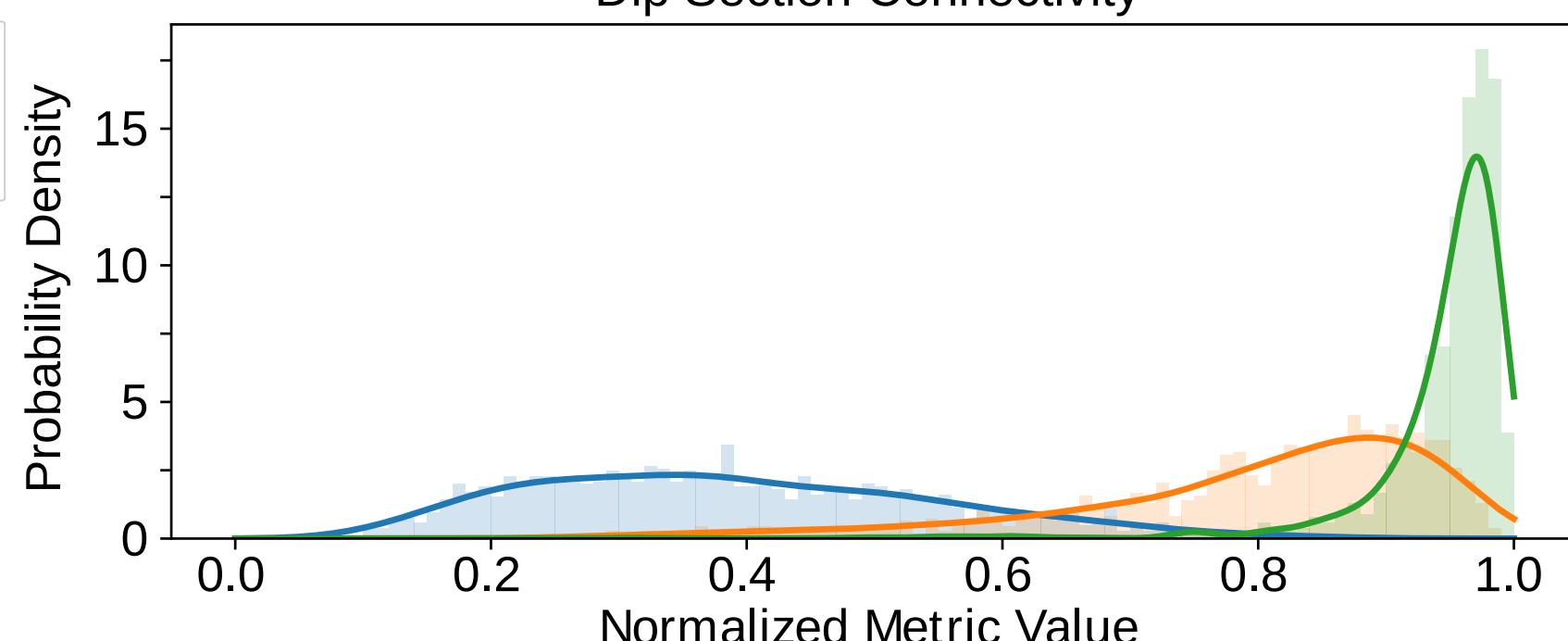
Geobody Volume



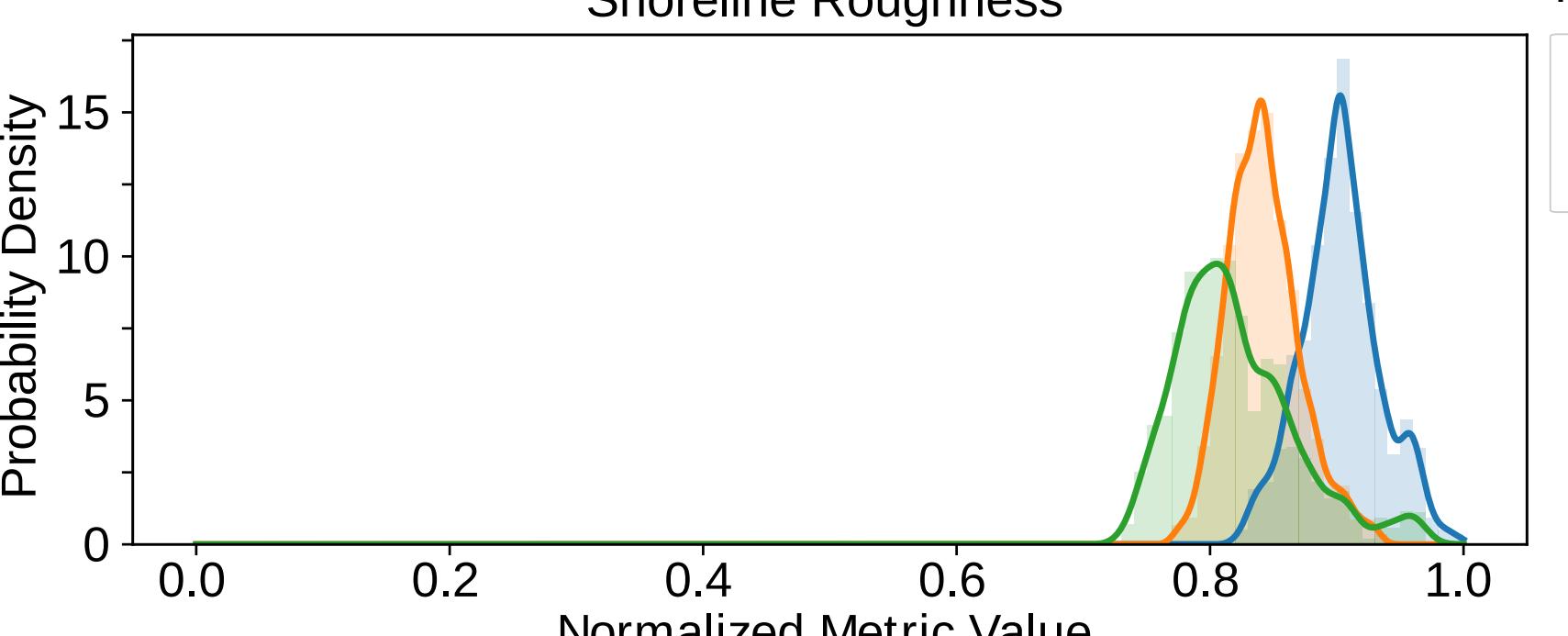
Land Area



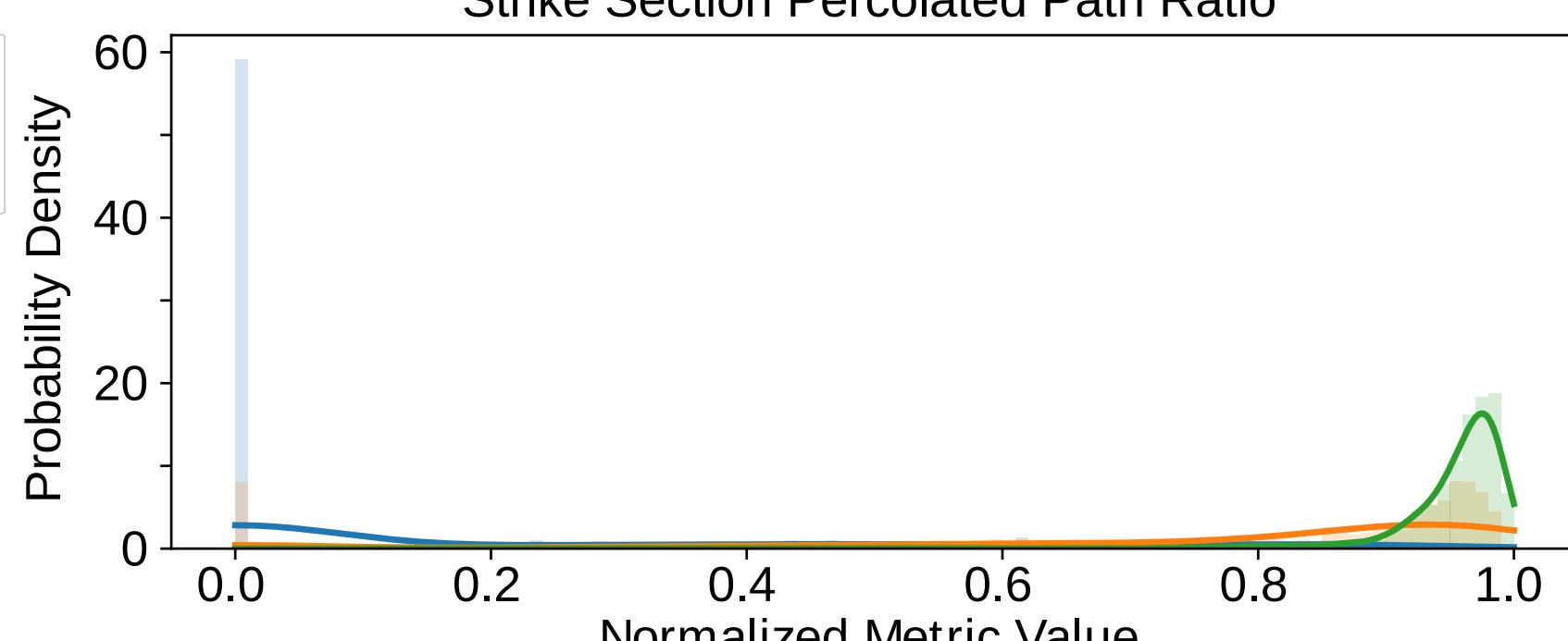
Dip Section Connectivity



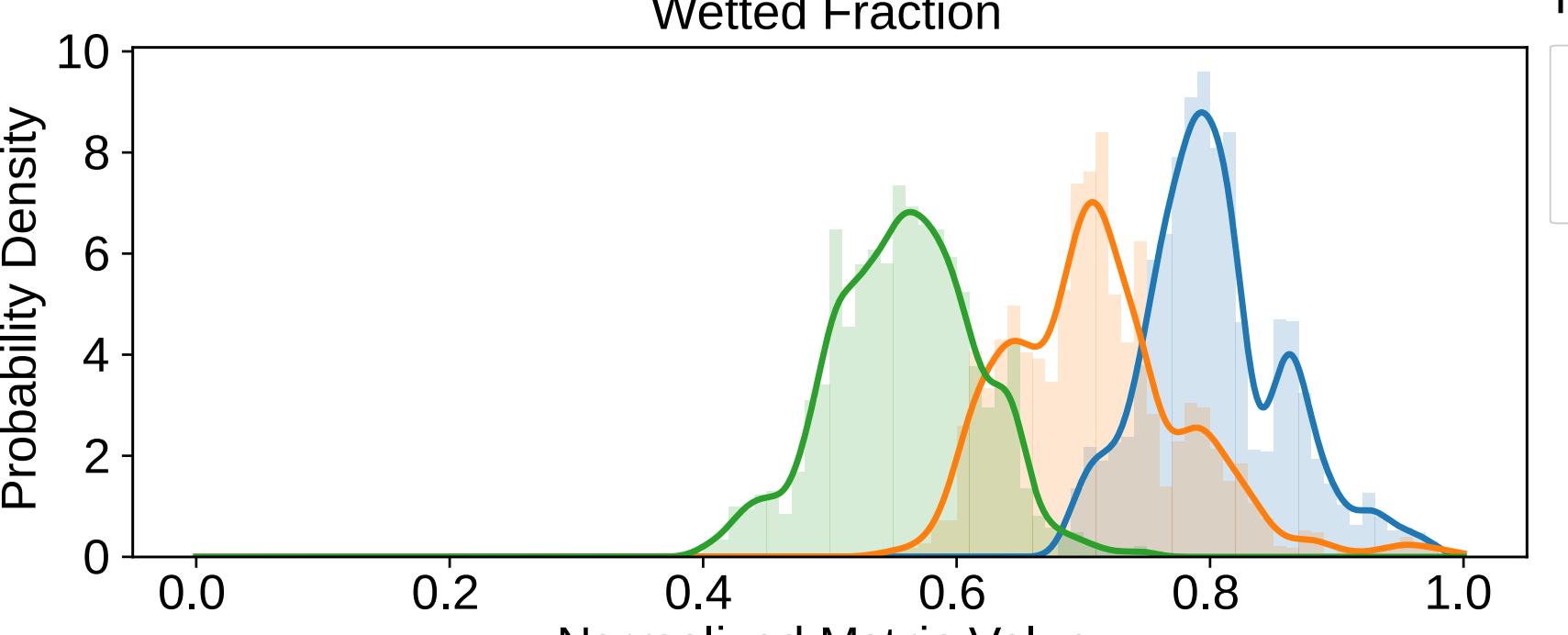
Shoreline Roughness



Strike Section Percolated Path Ratio



Wetted Fraction



Sand Package Connectivity

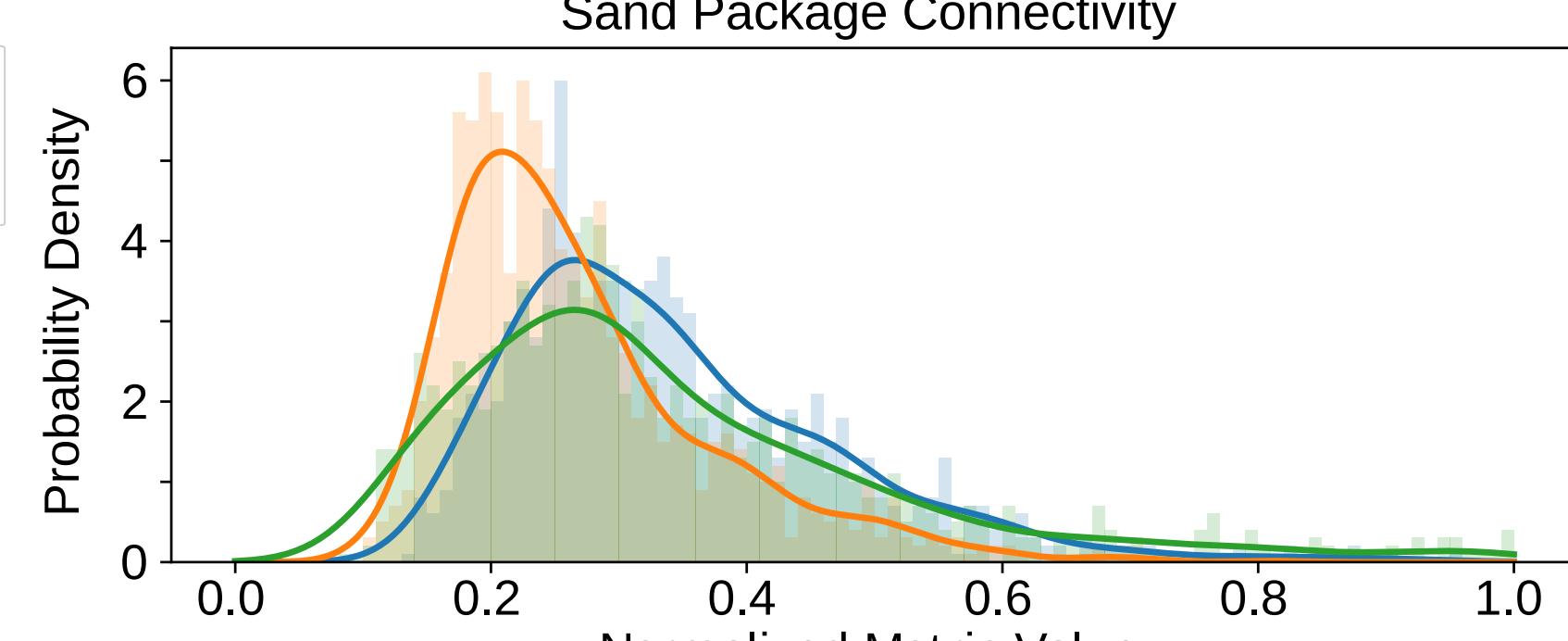
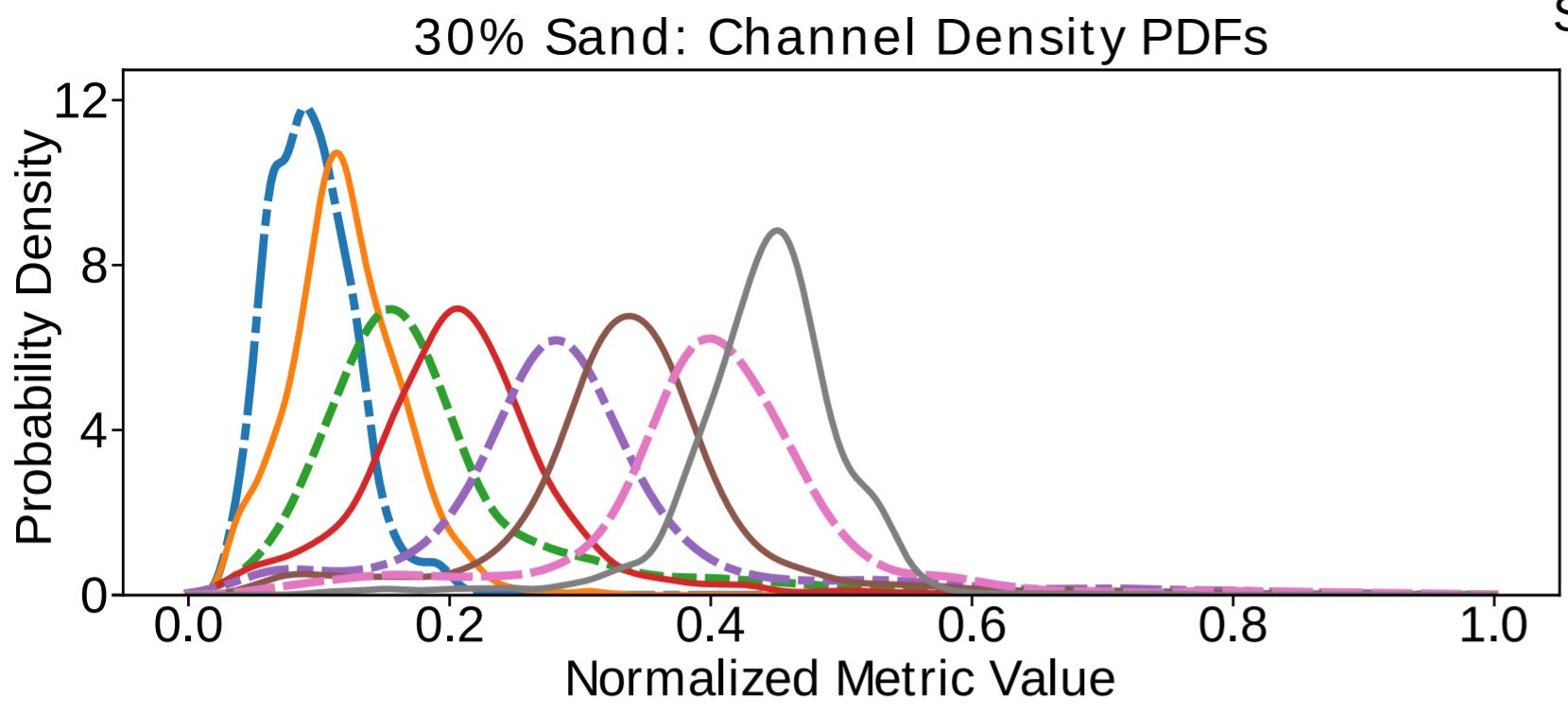


Figure 6.

Surface Metrics



Subsurface Metrics

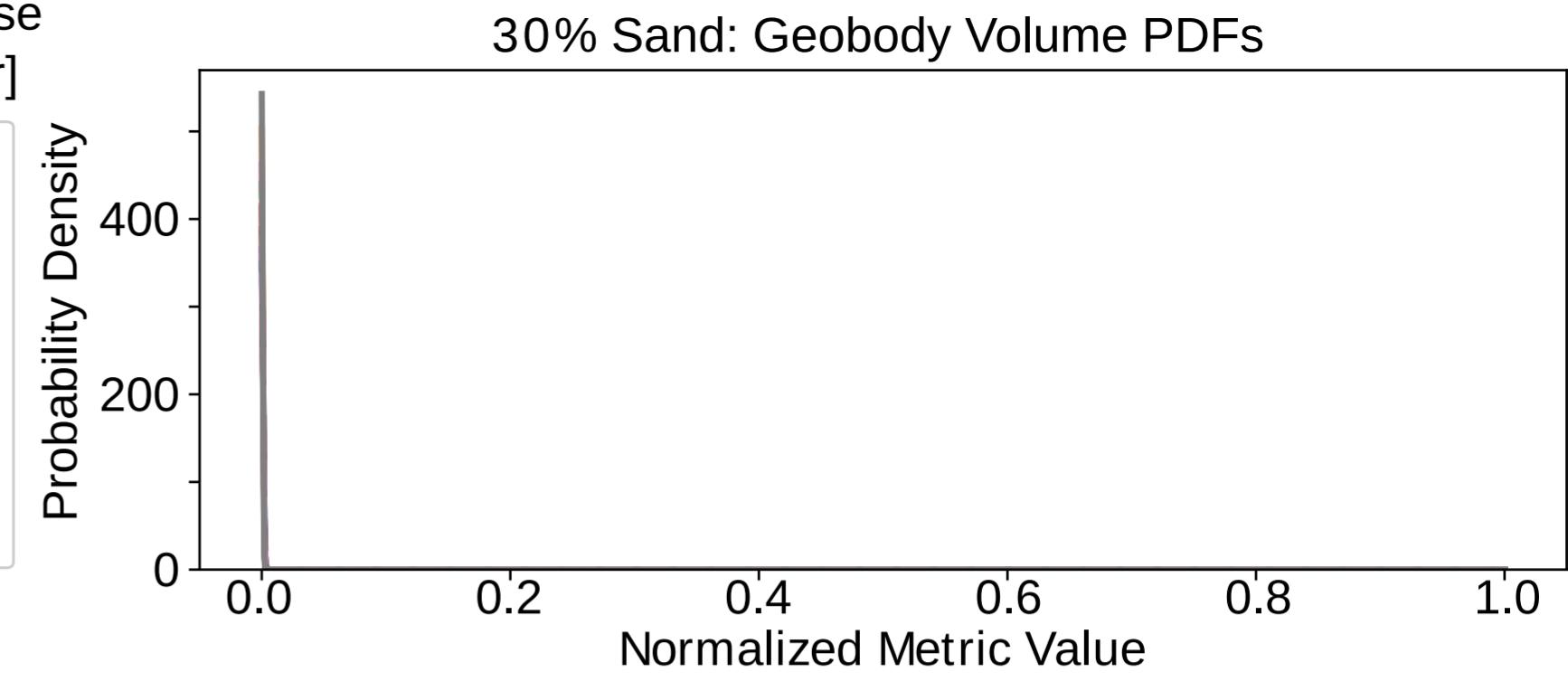
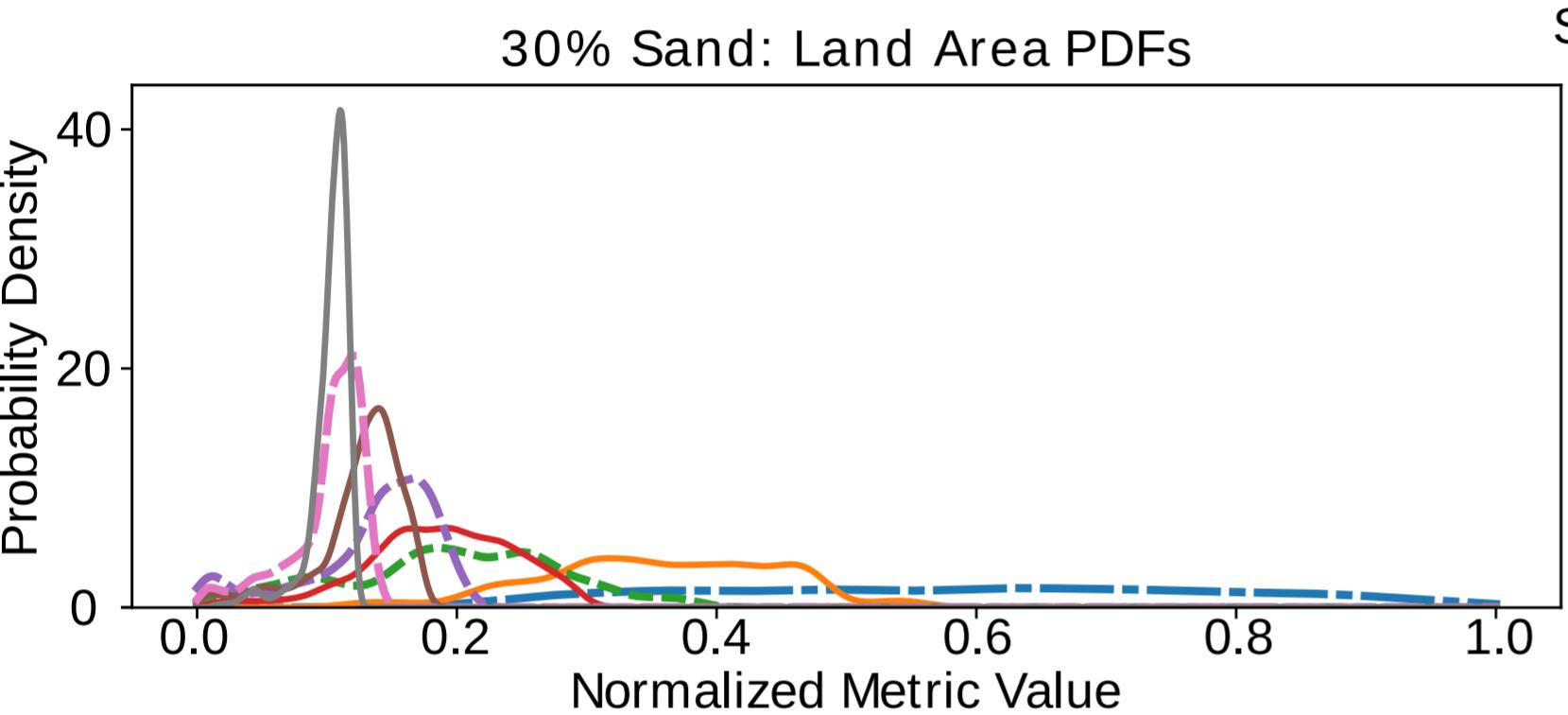
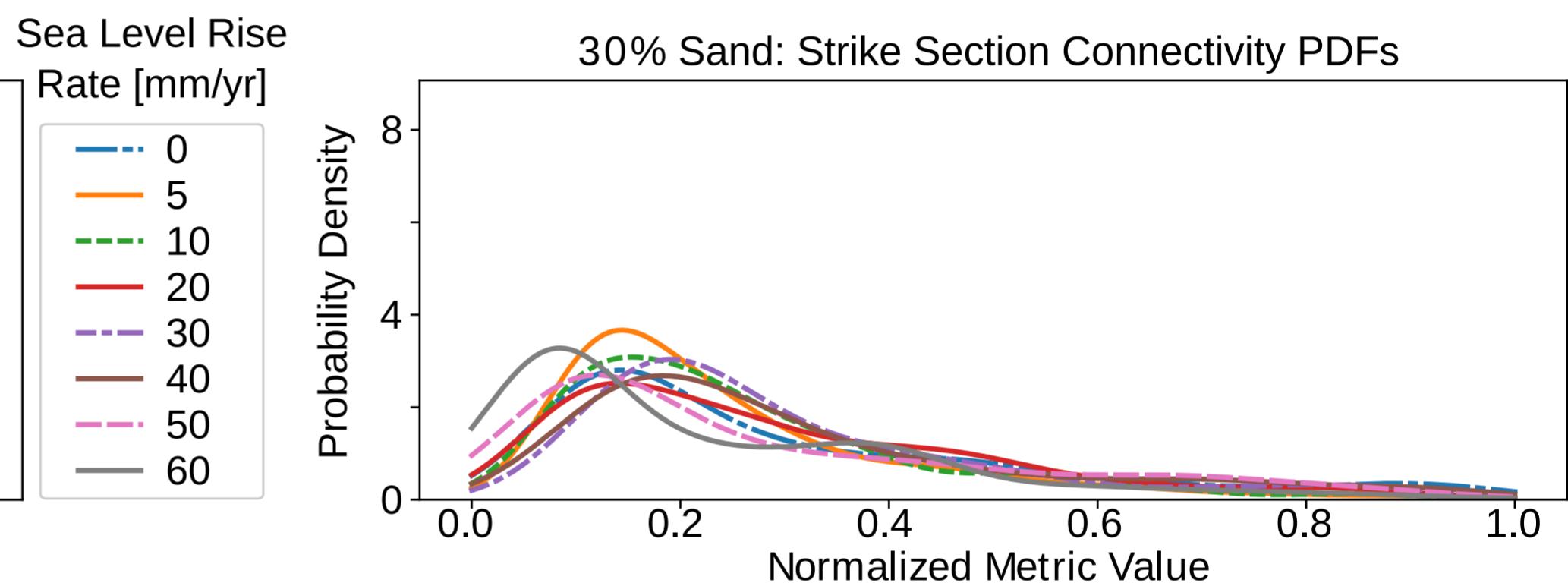
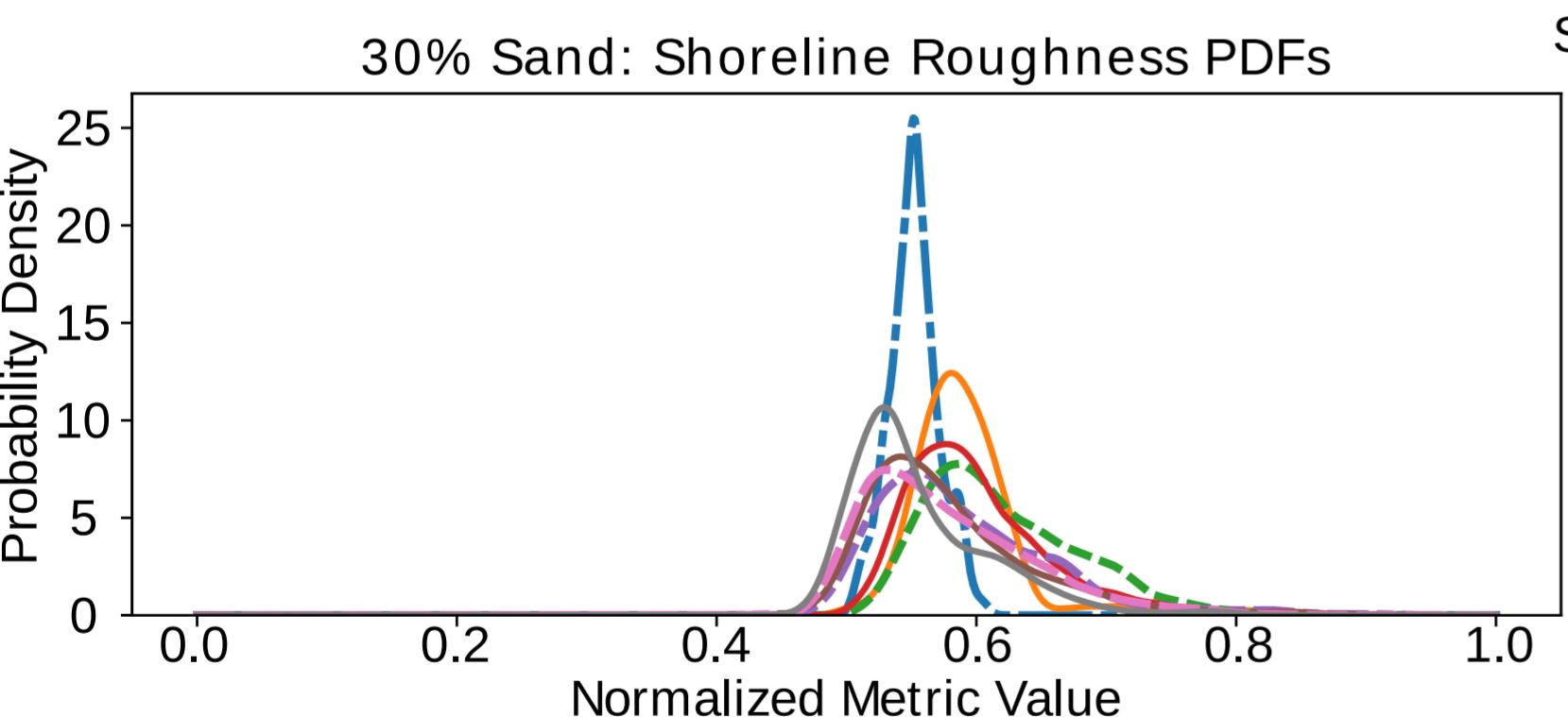
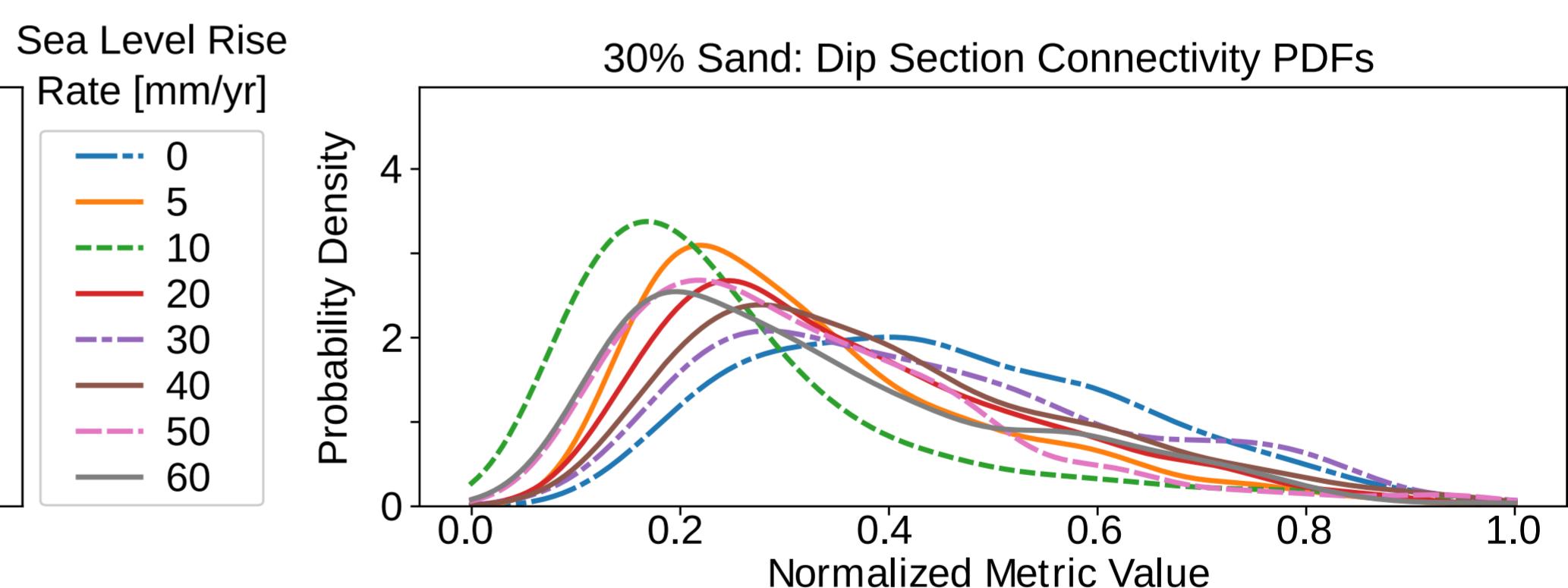
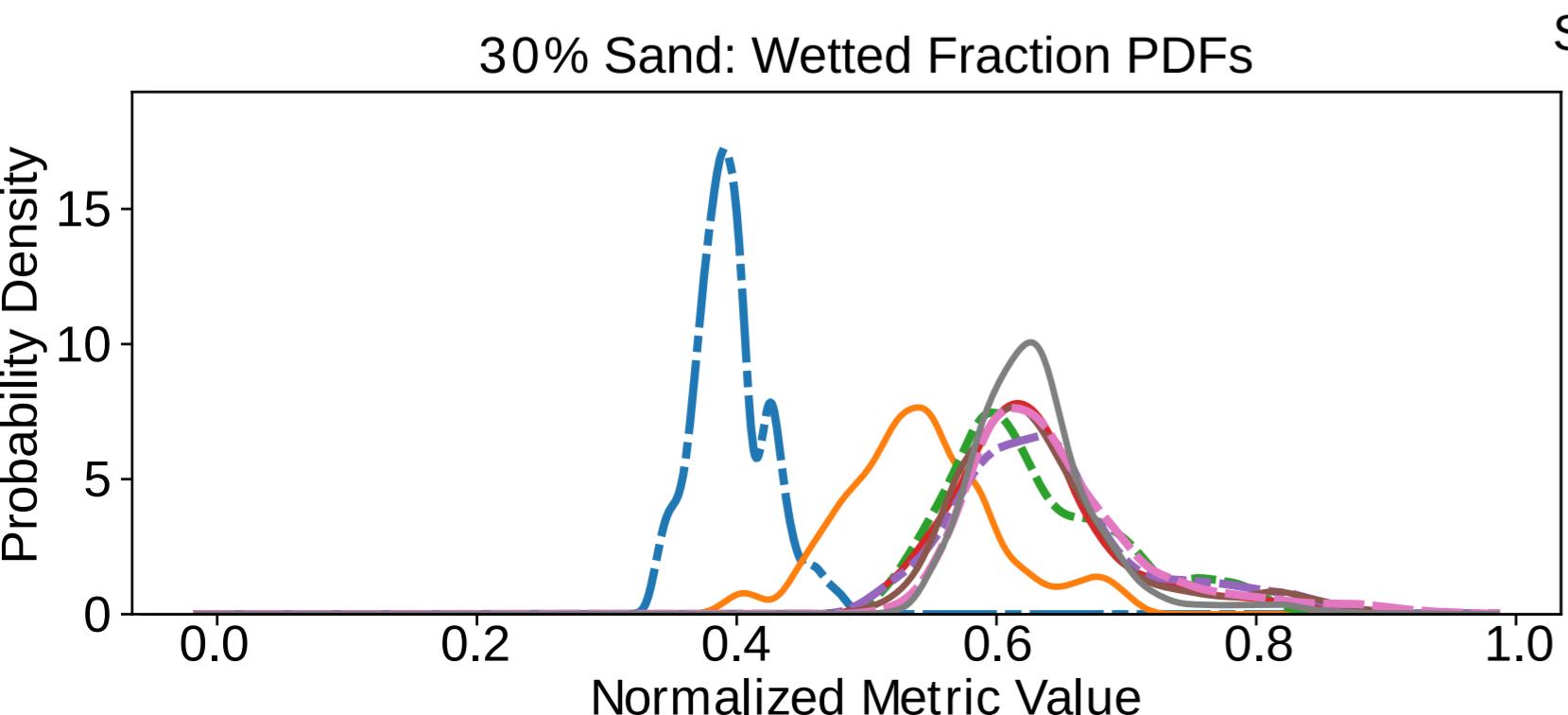


Figure 7.

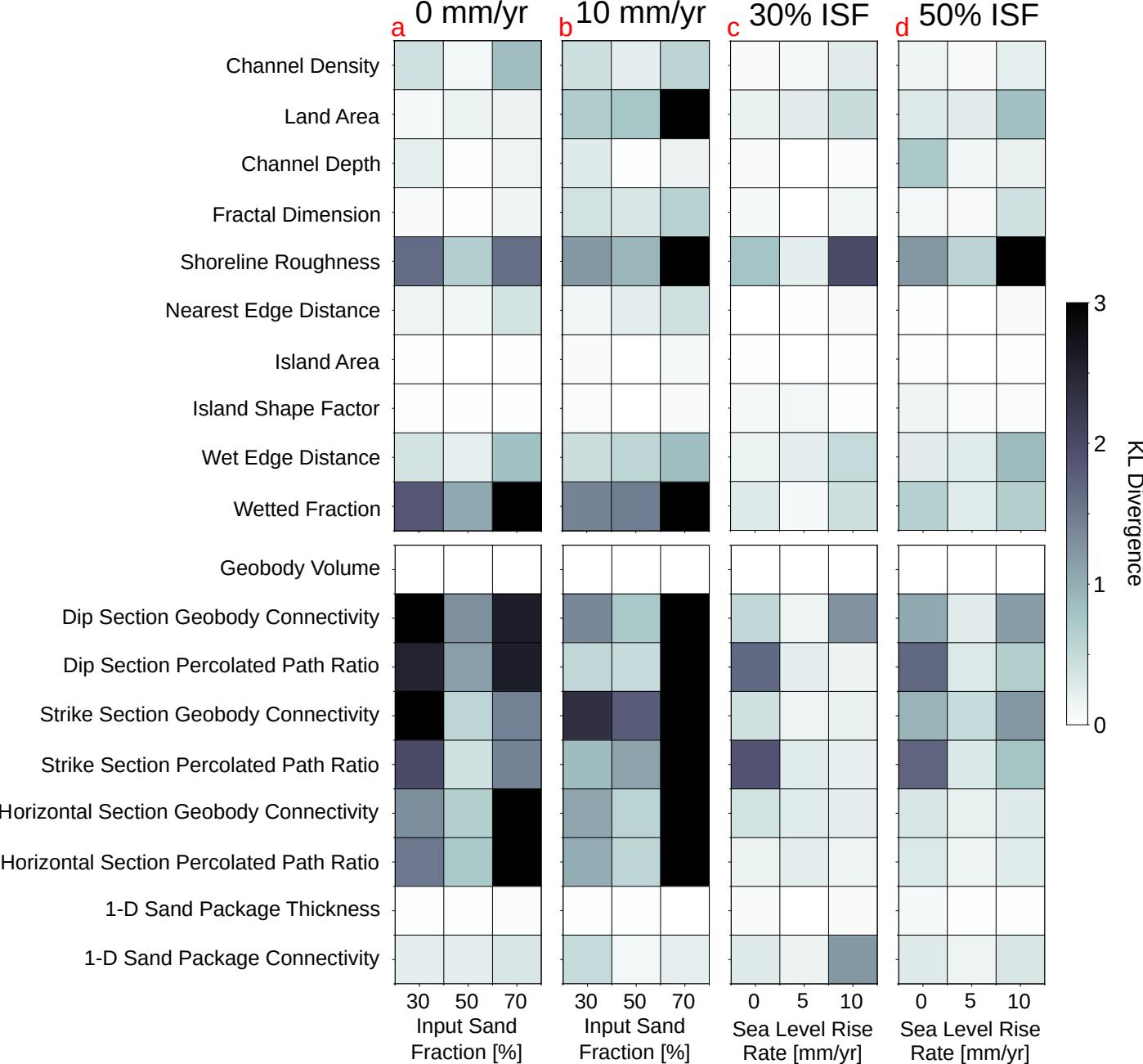


Figure 8.

70% Input Sand Fraction

