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Key Points:

« We investigate whether delta surface channel network metrics can inform predic-
tions of subsurface properties

 Higher surface wetted fraction values and more variable shoreline roughness val-
ues are associated with increased connectivity in the subsurface

e The Kullback-Leibler divergence identifies shoreline roughness, wetted fraction,
2-D connectivity, and 2-D percolated path ratio as the most unique metrics
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Abstract

River deltas are densely populated regions of the world with vulnerable groundwater re-
serves. Contamination of these groundwater aquifers via saline water intrusion and pol-
lutant transport is a growing threat due to both anthropogenic and climate changes. The
arrangement and composition of subsurface sediment is known to have a significant im-
pact on aquifer contamination; however, developing accurate depictions of the subsur-

face is challenging. In this work, we explore the relationship between surface and sub-
surface properties and identify the metrics most sensitive to different forcing conditions.
To do so, we simulate river delta evolution with the rule-based numerical model, DeltaRCM,
and test the influence of input sand fraction (ISF) and steady sea level rise (SLR) on delta
evolution. From the model outputs we measure a variety of surface and subsurface met-
rics chosen based on their applicability to imagery and modeling results. The Kullback-
Leibler (KL) divergence is then used to quantitatively gauge which metrics are most in-
dicative of the imposed forcings. Both qualitative observations and the KL divergence
analysis suggest that estimates of subsurface connectivity can be constrained using sur-
face information. In particular, more variable shoreline roughness values and higher sur-
face wetted fraction values correspond to increased subsurface connectivity. These find-
ings complement traditional methods of estimating subsurface structure in river-dominated
delta systems and represent a step towards the identification of a direct link between sur-
face observations and subsurface form.

Plain Language Summary

River deltas are home to over half a billion people facing increasing risks due to
a variety of natural and human-induced factors. With rising sea levels, one of the expected
threats to public health is the contamination of fresh drinking water. In particular, ground-
water is susceptible to sea water intrusion; it is known that highly connected ‘fast-travel’
pathways can exist in the subsurface and often determine the expected time of contam-
ination. By modeling river delta formation and evolution, we tie observations from the
surface waterways to the presence of highly connected pathways in the subsurface. Nu-
merical modeling allows us to better understand how these delta systems may respond
to different types of sediment inputs and to different steady sea level rise rates. We learn
that the surface does indeed provide us some information about the hidden subsurface
beneath it, opening up the opportunity for improved modeling of the subsurface from
surface information.

1 Introduction

River deltas are geologically dynamic and home to large human populations (Syvitski
& Saito, 2007; Syvitski et al., 2009; Twilley et al., 2016; Rahman et al., 2019). The chang-
ing dynamics of river deltas in response to climate change, upstream river management,
and sea level rise threaten both coastal ecosystem health and the lives of millions of peo-
ple worldwide (Syvitski et al., 2009; Rahman et al., 2019). Thus, it is critical to advance
our knowledge and understanding of these geologic systems to help plan and adapt for
impending change. One of the resources being threatened is potable groundwater, the
primary source of drinking water for 1.5 to 2.8 billion people (Morris et al., 2003). Within
aquifers, the connectedness of high permeability facies has long been known to strongly
influence flow and solute transport (Fogg, 1986). By understanding the connectedness
of the subsurface, groundwater models can be better constrained (Hovadik & Larue, 2010),
but the characterization of the subsurface can be challenging due to sparse data limit-
ing our capability of planning for and managing future changes. The subsurface, how-
ever, is the result of surface dynamics through time, and, relative to the subsurface, sur-
face spatial data are abundant. Therefore, the characterization of subsurface architec-
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ture regimes from surface analysis may provide opportunities to constrain estimates of
shallow aquifer connectedness; we explore this idea in this study.

A large body of work has been devoted to the study and analysis of river delta growth
and evolution. Studies have focused on the characterization and description of distribu-
tary channel networks (Edmonds et al., 2011; Shaw et al., 2013; Ke et al., 2019), the growth
and evolution of delta shorelines (Kim et al., 2006; Shaw et al., 2008; Geleynse et al., 2012),
and the influence of various external forcings, such as changes to the base level on delta
growth and evolution (Koss et al., 1994; Parker et al., 2008; Martin et al., 2009). The
control and influence of input sediment properties on delta formation has also been eval-
uated and quantified (Orton & Reading, 1993; Edmonds & Slingerland, 2010; Burpee
et al., 2015). Additionally, global studies have begun to evaluate river deltas across the
world to examine their properties and estimate their future morphologies (Giosan et al.,
2014; Caldwell et al., 2019; Nienhuis et al., 2020).

Many deltaic systems, such as the Mississippi River Delta and the Ganges-Brahmaputra-
Meghna Delta, contain naturally occurring arsenic in shallow subsurface aquifers (Yang
et al., 2014; Ayers et al., 2016). These aquifers also face the ever-present threat of salt-
water intrusion as both groundwater pumping and sea level rise move the salt-fresh wa-
ter boundary inland (Moser et al., 2012; Rahman et al., 2019). Predicting groundwater
aquifer contamination is further complicated by the fact that many of these coastal aquifers
are highly heterogeneous (Winkel et al., 2008; Khan et al., 2016).

To quantify the structure of the subsurface, static (geometrically-based) metrics
are used. The basis for this type of metric is connected cluster analysis, a class of meth-
ods that can be used to characterize the arrangement of highly permeable facies within
the subsurface (Gawlinski & Stanley, 1981; King, 1990). Metrics associated with clus-
ter analysis include the number of clusters, cluster size, and cluster shape and extent rel-
ative to the entire field (Renard & Allard, 2013). For example, one measure of bulk con-
nectivity in the subsurface is the ratio of the largest connected cluster volume to the vol-
ume of all clusters (Hovadik & Larue, 2007, 2010).

The shape and arrangement of the subsurface are influenced by the surface pro-
cesses that formed it. In natural river deltas, relating surface processes to subsurface form
is complicated by a wide variety of factors as well as the limited time span over which
observations are available. Evidence from the stratigraphic record has been used to de-
velop theoretical models for deltaic deposits formed under different base level conditions
(G. Allen & Mercier, 1988; Postma, 1995). Many physical and numerical experiments
have been designed to test these theoretical models, as well as to measure morpholog-
ical properties of the surface as the delta deposit is formed (e.g., Koss et al., 1994; Heller
et al., 2001; Martin et al., 2009; Geleynse et al., 2012). These studies provide evidence
that allogenic forcings influence surface morphology and leave behind identifiable strati-
graphic sequences, however the identification of direct relationships between surface mor-
phology and subsurface form remains under-explored.

To interrogate overall patterns and more broad evolutionary trends related to deltaic
growth, simplified modeling can be employed (Paola, 2011). The advantage of simpli-
fied numerical models over their fully physical counterparts is two-fold: the computa-
tional cost of solving simplified physics is lower and simpler models are easier to under-
stand, apply, and analyze. Simplified models have been developed to understand, for ex-
ample, the lobate growth of delta landforms (Seybold et al., 2007; Moodie et al., 2019).
Established models have been modified to explore the influence that multiple variables
such as waves and sea level rise (Ratliff et al., 2018), mud and vegetation (Lauzon & Mur-
ray, 2018), and ice and permafrost (Lauzon et al., 2019) have on delta morphology and
dynamics. In contrast to physical experiments, numerical models allow more experiments
to be conducted and therefore additional conditions and forcings to be tested.



120 In this study, we pursue two main goals. First, we qualitatively explore the influ-

121 ence of input sand fraction (ISF) and sea level rise (SLR) on the surface with a suite of
122 morphologic metrics, and in the subsurface by using geometry-based, static subsurface
123 metrics. Second, we quantitatively identify the metrics most sensitive to ISF and SLR
124 by using the Kullback-Leibler divergence. We employ the numerical model DeltaRCM
125 to simulate surface processes and generate stratigraphy. Inferring knowledge about the
126 subsurface from surface information creates new opportunities to better inform ground-
127 water models and reduce uncertainty around predictions of aquifer and well contamina-
128 tion. In a companion paper, we explore the relationship between these static subsurface
120 metrics and groundwater dynamics (Xu et al., accepted).

130 2 Methods

131 2.1 Description of DeltaRCM

132 We model delta evolution using DeltaRCM, a hydro-morphodynamic reduced-complexity
133 model that uses empirical rules and weighted random walks to mimic the transport of

134 water and sediment (Liang, Voller, & Paola, 2015; Liang, Geleynse, et al., 2015). DeltaRCM
135 simulates the deposition, erosion, and reworking of two sediment facies: a fine ‘mud’ sed-

136 iment that is transported in suspension, and a coarse ‘sand’ sediment that is transported

137 as bedload. A brief overview of how DeltaRCM routes sediment and develops stratig-

138 raphy is presented herein; for a more thorough description we refer the reader to Liang,

139 Voller, and Paola (2015) and Liang, Geleynse, et al. (2015).

140 The DeltaRCM domain is initialized with an empty basin and a single inlet. In-

141 let discharge is discretized into parcels of water and sediment which move across the do-
142 main via a weighted random walk. The quantity of water and sediment per parcel is a

143 function of the input discharge and the number of parcels specified; here we use 2000 parcels
144 for both water and sediment, in agreement with the number of parcels recommended to

15 balance handling of extreme events and computational cost (Liang, Voller, & Paola, 2015).
146 First the water parcels are routed through the domain to compute a flow field based on

7 the current topography. After the flow field has been computed, the sediment parcels

148 are routed and bed elevations are modified as sediment is eroded and deposited. The par-
149 titioning of sediment into individual sand and mud parcels is dictated by the input sed-

150 iment ratio. In this work, the proportion of input sediment varies between 30% and 70%
151 sand content, with the remainder of the sediment as mud. Physical properties of the sed-

152 iment follow those of Liang, Voller, and Paola (2015).

153 The random walk weights are determined by reduced-complexity equations mod-
154 eled after known physical relationships governing the transport of water and sediment.
155 Fine ‘mud’ and coarse ‘sand’ sediment are approximated by varying the properties as-
156 sociated with the transport of these materials such that the fine mud is more easily trans-

157 ported than the coarse sand (see Text S2 and Liang, Voller, and Paola (2015) for fur-

158 ther details). The DeltaRCM methodology for simulating river delta dynamics was val-
150 idated against field data from the Wax Lake Delta and physical experiment data (Liang,
160 Voller, & Paola, 2015; Liang, Van Dyk, & Passalacqua, 2016). The flow routing method
161 was compared to numerical simulations conducted using Delft3D, which solves the dis-
162 cretized Navier-Stokes equations (Liang, Geleynse, et al., 2015).

163 2.2 Model Setup and Numerical Experiments

164 We conducted a set of 240 numerical experiments to simulate the evolution of river
165 deltas under a variety of scenarios. The inlet conditions, basin geometry, and physical

166 parameters were chosen based on the runs in Liang, Van Dyk, and Passalacqua (2016)

167 (Table 1). All model runs simulated 500 years of delta growth, assuming 10 days of bank-
168 full discharge per year (Caldwell & Edmonds, 2014), absent effects of tides, wind, waves,
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and subsidence. Three input sand fraction (ISF) scenarios were considered: 30%, 50%

and 70% sand by volume in order to capture the variability present in natural systems.
For example, bedload fraction estimates for the Ganges and Brahmaputra rivers range
from 5 to 50% (Islam et al., 1999), and sand fraction estimates within the Yellow River
are around 70% (Li et al., 1998; Edmonds & Slingerland, 2010). For each ISF case, we
simulated eight steady sea level rise (SLR) scenarios: 0, 5, 10, 20, 30, 40, 50, and 60 mm/yr,
to encompass rates indicative of current and future climatic conditions. Global mean sea
level rise rates have been below 10 mm/yr for the past 100 years, however projected mean
sea level rise rates are as high as 41 mm/yr by the end of the 21st century (Stocker et

al., 2013). The model domain is rectangular and is composed of 50 m x 50 m square grid
cells. The vertical depth of each cell in the preserved stratigraphy is 0.05 m. The extents
of the domain vary with the SLR rate imposed to best accommodate the final delta ex-
tent, while minimizing computational cost. For each scenario (Table 2), we analyzed sur-
face metric trends over six model runs to capture the range of behavior present for a given
scenario due to the stochastic variability of DeltaRCM (Liang, Kim, & Passalacqua, 2016;
Liang, Van Dyk, & Passalacqua, 2016; Lauzon & Murray, 2018; Lauzon et al., 2019).

Model Parameter Value Units
Cell Size 50 x 50 m
Inlet Channel Width 250 m
Inlet Water Discharge 1,250 m? /s
Inlet Channel Depth 5 m
Inlet Sediment Discharge 1.25 m3 /s
Basin Depth 5 m
Threshold dry cell depth 0.1 m
Time Step Size 0.0289 yIs
Number of Time Steps 17,300 #
Initial Sea Level 0 m
Number of Water Parcels 2000 #
Number of Sediment Parcels 2000 #
Topographic Diffusion Coefficient 0.1 #
Inlet (Reference) Velocity 1 m/s
Sand Erosion Velocity Threshold 1.05 m/s
Mud Erosion Velocity Threshold 1.5 m/s
Mud Deposition Velocity Threshold 0.3 m/s
Sand Parcel Depth Dependence Exponent (6sqn4) 2 #
Mud Parcel Depth Dependence Exponent (6,,44) 1 #

Table 1. DeltaRCM Model Parameter Values



Run ID Input Sediment Proportion Sea Level Rise Rate

S30R00 30% Sand, 70% Mud 0 mm/yr

S30R05 30% Sand, 70% Mud 5 mm/yr

S30R10 30% Sand, 70% Mud 10 mm/yr
S30R20 30% Sand, 70% Mud 20 mm/yr
S30R30 30% Sand, 70% Mud 30 mm/yr
S30R40 30% Sand, 70% Mud 40 mm/yr
S30R50 30% Sand, 70% Mud 50 mm/yr
S30R60 30% Sand, 70% Mud 60 mm/yr
S50R00 50% Sand, 50% Mud 0 mm/yr

S50R05 50% Sand, 50% Mud 5 mm/yr

S50R10 50% Sand, 50% Mud 10 mm/yr
S50R20 50% Sand, 50% Mud 20 mm/yr
S50R30 50% Sand, 50% Mud 30 mm/yr
S50R40 50% Sand, 50% Mud 40 mm/yr
S50R50 50% Sand, 50% Mud 50 mm/yr
S50R60 50% Sand, 50% Mud 60 mm/yr
S70R00 70% Sand, 30% Mud 0 mm/yr

S70R05 70% Sand, 30% Mud 5 mm/yr

S7TO0R10 70% Sand, 30% Mud 10 mm/yr
S7TO0R20 70% Sand, 30% Mud 20 mm/yr
S7TO0R30 70% Sand, 30% Mud 30 mm/yr
S70R40 70% Sand, 30% Mud 40 mm/yr
S70R50 70% Sand, 30% Mud 50 mm/yr
S7TOR60 70% Sand, 30% Mud 60 mm/yr

Table 2. Run IDs, Input Sediment Proportions, and Sea Level Rise Rates



Elevation Relative

Input Sand Proportion to Sea Level [m]

[
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30% Input Sand 50% Input Sand 70% Input Sand
S30R00

0 mml/yr

Sea Level Rise Rate
5 mml/yr

10 mm/yr

Figure 1. DeltaRCM simulated deltas. Representative final topographies of the lower (0, 5,
and 10 mm/yr) SLR scenarios.



_ Elevation Relative
Input Sand Proportion to Sea Level [m]
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30% Input Sand 50% Input Sand 70% Input Sand
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Sea Level Rise Rate
50 mm/yr 40 mm/yr

60 mm/yr

Figure 2. DeltaRCM simulated deltas. Representative final topographies of the higher (20,
30, 40, 50, and 60 mm/yr) SLR scenarios.
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For the subsurface analysis, model runs with SLR rates greater than 30 mm/yr were
extended to a final runtime of 720 years to generate stratigraphic sections with a thick-
ness several times greater than the average sand body thickness (2-3 meters) for the ground-
water modeling conducted in the companion study (Xu et al., accepted). Model simu-
lations conducted with SLR rates at and below 30 mm/yr, however, lack the accommo-
dation required to create deep stratigraphic deposits, so we adapted the image quilting
(IQ) algorithm (Efros & Freeman, 2001) to join sections of the modeled stratigraphy (Text
S1). This technique has been successfully applied to both stationary and non-stationary
geological domains (Mahmud et al., 2014; Hoffimann et al., 2017). The forcing scenar-
ios considered are steady in time and produce stratigraphy that is vertically stationary,
so rather than using a training image, we employ the ‘stitching’ portion of the IQ work-
flow from Mahmud et al. (2014) to vertically join modeled sections of stratigraphy with
minimal discontinuities at the boundaries (Figure 3). In this way, the influence of the
modeled surface processes on the stratigraphy is kept intact and the bulk properties of
the deposit are unchanged (Figure S4), but the depth of the stratigraphic volumes is ex-
tended allowing groundwater modeling to be performed.

Minimum Error Cut Boundary

Fraction of Sand
(Per Cell)

Figure 3. Example in 2-D of the ‘stitching’ procedure adapted from image quilting. First
an overlap region is defined within which a minimum error cut boundary is defined (black box).
Then the two pieces of stratigraphy are joined along that boundary to form a new image which

has a greater depth than either of its constituent sections.

To avoid boundary effects created by the inlet condition and to increase the sta-
tistical stationarity of the subsurface domain under study, a rectangular volume is cut
from the modeled stratigraphy (Figure 4). We used dimensionless mass extraction pa-
rameters (Strong et al., 2005) to determine the lateral extents of this subdomain: in the
downstream direction, 30% of the volume from the inlet and 10% of the volume closest
to the shoreline are disregarded; perpendicular to the downstream direction, the outer
50% of the volume is excluded (Figure 4). In the vertical direction, the central 25 m from
the IQ realizations (0-30 mm/yr SLR scenarios) is used. For the modeled domains from
higher SLR scenarios (40-60 mm/yr) the top 5 m of channelized surface and bottom 7.5
m from the initial deposit are excluded (Figure 4).
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Figure 4. Example of the subsurface subdomain over which the subsurface metrics are com-

puted, (a) depicts the lateral extents of the subdomain, and (b) depicts the vertical extents.

2.3 Model Output Quantification: Surface Metrics

Several metrics have been proposed and applied to real and simulated river deltas.
These metrics were developed to characterize delta morphology and quantify the effect
of different processes. We identify 10 of these metrics based on previous work and on their
applicability to real systems (Kim & Paola, 2007; Seybold et al., 2007; Wolinsky et al.,
2010; Edmonds et al., 2011; Reitz & Jerolmack, 2012; Passalacqua et al., 2013; Van de
Lageweg et al., 2013; Liang, Van Dyk, & Passalacqua, 2016; Perignon et al., 2020), and
apply them to the numerical modeling results. Metric names, brief descriptions, and sources
are provided below and in Table 3. Surface metrics are computed for the years 100-500
of the model runs to avoid measuring properties associated with initial stages of delta
formation (Piliouras et al., 2021).

To compute the surface metrics, we obtain a set of binary masks following meth-
ods described in Liang, Kim, and Passalacqua (2016) and Lauzon et al. (2019). The shore-
line was identified using the opening angle method (Shaw et al., 2008), with a search an-
gle of 75 degrees (after Liang, Kim, & Passalacqua, 2016). This shoreline extraction is
based on topographic thresholding using a threshold value 0.5 m below the sea level, to
include the shallow subaqueous land after Liang, Kim, and Passalacqua (2016) and Liang,
Van Dyk, and Passalacqua (2016). Channel network identification is based on the wa-
ter velocity fields. The binary channel network is identified as the locations where the
water velocity exceeds 0.3 m/s, the minimum velocity required to mobilize sediment, af-
ter Liang, Kim, and Passalacqua (2016) and Lauzon et al. (2019). Example shorelines,
water velocity fields, and extracted channel networks are provided in Figure S3.

2.3.1 Channel Density

Channel density (or channelized fraction) is the ratio of channelized area to the to-
tal delta topset area (Wolinsky et al., 2010; Liang, Van Dyk, & Passalacqua, 2016). This
metric is known to correlate with both input sediment concentration and relative sea level
rise rates (Liang, Van Dyk, & Passalacqua, 2016). Under constant forcing conditions,
channel density for a mature delta is expected to fluctuate around a constant value (Wolinsky
et al., 2010; Reitz & Jerolmack, 2012).

,10,



240 2.3.2 Land Area

on The land area is measured as the total subaerial and shallow subaqueous area (up

22 to 0.5 m below sea level) of the delta topset (Liang, Kim, & Passalacqua, 2016; Liang,

213 Van Dyk, & Passalacqua, 2016). Land area is known to be influenced by both SLR (Muto
24 & Steel, 1997) and ISF (Straub et al., 2015). When there is no base level change and off-

25 shore water depth is constant, linear land area growth is expected (Wolinsky et al., 2010).
246 2.3.3 Channel Depth

27 In meandering river systems, the thickness of preserved deposits has been linked

28 to channel morphology, in particular to channel depth (Van de Lageweg et al., 2013). Delta
249 systems contain a variety of channel features, including meanders, making this metric

250 a potential indicator of subsurface structure. Using model outputs, channel depth val-

251 ues are queried at all channel locations and used to compute distributions of water depth
252 in the channels.

253 2.3.4 Fractal Dimension

254 Fractal dimension is an indicator of how self-similar a delta system is and can be

255 used to suggest the presence of a space filling network or a single channel dominated sys-
256 tem (Edmonds et al., 2011). This metric is computed, using a box counting approach

257 (Rodriguez-Tturbe et al., 1998), across the different model runs to develop distributions
258 of its values.

259 2.3.5 Shoreline Roughness

260 Shoreline roughness is the ratio of the shoreline length to square root of the delta
261 surface area. This metric is known to reflect sediment input characteristics, waves, and
262 tidal effects (Caldwell & Edmonds, 2014; Liang, Van Dyk, & Passalacqua, 2016). The

263 shoreline roughness metric provides insight into how evenly the system is delivering sed-
264 iment at the shoreline.

265 2.3.6 Nearest Edge Distance

266 Nearest edge distance is the shortest distance from every land point to a water-land
267 interface or edge (Edmonds et al., 2011). We compute the full distribution of nearest edge
268 distance values as a potential indicator of different geomorphic regimes influencing the

269 spatial arrangement of land and water. In real systems, nearest edge distance has been
270 used to differentiate portions of a delta subject to different processes (Passalacqua et al.,
on 2013).

272 2.3.7 Island Area and Island Shape Factor

73 Delta islands are defined as land masses bounded by channels. We extract islands
274 from model topographies and compute their areas and shape factors (ratio of perime-

215 ter to square root of the area). In real delta systems, island properties have been found
276 to be related to channel processes (Edmonds et al., 2011; Piliouras & Rowland, 2020;

277 Perignon et al., 2020). The link between island properties and morphologic activity sug-
o78 gests a potential relationship between surface island morphology and subsurface archi-

279 tecture.

280 2.3.8 Wetted Fraction and Wet Edge Distance

281 The wetted fraction is the ratio of wet area to total delta surface area. Wet pix-

28 els, unlike channelized pixels, include former channels that have yet to infill and contain

—11-
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Metric Name

Description

Reference

Channel Density

Land Area

Channel Depth

Fractal Dimension

Shoreline Roughness

Nearest Edge Distance

Island Area

Island Shape Factor

Wet Edge Distance

Wetted Fraction

Table 3.

Proportion of delta surface that is occu-
pied by channels (also called ‘channel-
ized fraction’)

Subarial area of delta planform

Distribution of water depths in channels
Fractal dimension of the centerline of the
channel network

Ratio of shoreline length to the square
root of delta area

Distribution of distances from a point on
land to the nearest water body
Distribution of areas of deltaic islands
Distribution of the ratio of wetted
perimeter of island to the square root

of island area

Total length of wet-dry interface

Fractional area covered by all water
bodies

List of Surface Metrics Measured

(Wolinsky et al., 2010;
Reitz & Jerolmack,
2012; Liang, Van Dyk,
& Passalacqua, 2016)

(Wolinsky et al., 2010;
Liang, Van Dyk, &
Passalacqua, 2016)

(Van de Lageweg et al.,
2013)

(Seybold et al., 2007;
Edmonds et al., 2011)

(Wolinsky et al., 2010;
Liang, Van Dyk, &
Passalacqua, 2016)

(Edmonds et al., 2011;
Passalacqua et al., 2013)

(Edmonds et al., 2011;
Perignon et al., 2020)

(Passalacqua et al.,
2013; Perignon et al.,
2020)

(Wolinsky et al., 2010;
Liang, Van Dyk, &
Passalacqua, 2016)

(Wolinsky et al., 2010;
Reitz & Jerolmack,
2012; Liang, Van Dyk,
& Passalacqua, 2016)

water below the channelization threshold velocity (Wolinsky et al., 2010; Liang, Van Dyk,
& Passalacqua, 2016). The wetted fraction is thus an indicator of surficial water rela-
tive to land mass and can differ significantly from the channelized fraction when many
lakes and marshes are present. The wet fraction is expected to vary with a periodicity
dictated by delta autogenics (Kim & Paola, 2007; Kim & Jerolmack, 2008). The wet edge
distance is the total measure of the edges of channels, lakes, and other water bodies, and
has been found to grow even after the wetted fraction becomes constant (Wolinsky et

al., 2010).

—12—
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2.4 Model Output Quantification: Subsurface Metrics

Several metrics have been proposed to analyze synthetic stratigraphy and seismic
data. Subsurface metrics are typically harder to compute than surface metrics for real
systems due to constraints in data acquisition. For this reason, we test 9 different met-
rics of varying practicality and ease of measurement in the field, ranging from full 3-D
sand body identification to 1-D sand package thicknesses (measurable from core data)
(Table 4).

2.4.1 3-D Geobody Volumes

The subsurface volume is transformed into a binary structure using a threshold of
80% sand per cell to define ‘permeable’ and ‘impermeable’ cells. Once the binary trans-
formation has been completed, we use a connected component analysis to define the vol-
ume of each cluster of connected permeable cells. These connected cells (geobodies) are
defined as cells which share a face (Pardo-Igiizquiza & Dowd, 2003; Renard & Allard,
2013). We compute the probability distribution of the 3-D geobody volumes for each mod-
eling scenario.

2.4.2 2-D Section Geobody Connectivity

Three orientations of 2-D sections are used to evaluate geobody connectivity: strike,
dip, and horizontal. Strike sections are defined as 2-D stratigraphic sections taken per-
pendicular to the direction of the inlet channel; dip sections are 2-D stratigraphic sec-
tions taken parallel to the inlet channel; horizontal sections are plan view slices of the
stratigraphic volume. For each section, we identify connected geobodies as those regions
with ‘permeable’ cells that share an edge. The area of the largest geobody divided by
the sum of all of the geobody areas in the section defines geobody connectivity (Hovadik
& Larue, 2007).

2.4.3 2-D Section Percolated Path Ratio

For the 2-D sections, percolated geobodies are defined as those which connect two
opposite boundaries. The sum of the total areas of percolated geobodies divided by the
sum of all geobody areas in the section defines the percolated path ratio. For the dip,
strike, and horizontal section orientations, we calculated this metric for every 2-D sec-
tion available in the model subdomains.

2.4.4 Sand Package Thickness Distribution and “Connectivity”

From each modeled subsurface volume, 100 randomly located 1-D ‘core’ samples
are obtained. The thickness of continuous sand packages in each core is recorded and used
to develop distributions of sand package thicknesses. In addition, we adapted the first-
order measure of connectivity (Hovadik & Larue, 2007) to 1-D by taking the ratio of the
largest continuous sand package per core to the total amount of sand.
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327

328

329

330

331

332

333

334

Metric Name Description Data Dimen- Reference
sionality

Geobody Vol- Distribution of volumes of 3-D (Hovadik & Larue, 2007;
ume connected sand parcels in the Renard & Allard, 2013)

stratigraphy
Dip Section Ratio of largest geobody area to  2-D (Hovadik & Larue,
Connectivity total summed area of geobodies 2007)

in a dip section
Dip Section Ratio of the total area of perco-  2-D (Renard & Allard, 2013)
Percolated Path  lated geobodies to the total area
Ratio of all geobodies in a dip section
Strike Section Ratio of largest geobody area to  2-D (Hovadik & Larue,
Connectivity total summed area of geobodies 2007)

in a strike section
Strike Section Ratio of the total area of per- 2-D (Renard & Allard, 2013)
Percolated Path  colated geobodies to the total
Ratio area of all geobodies in a strike

section
Horizontal Ratio of largest geobody area to  2-D (Hovadik & Larue,
Section Connec-  total summed area of geobodies 2007)
tivity in a horizontal section
Horizontal Sec-  Ratio of the total area of perco-  2-D (Renard & Allard, 2013)
tion Percolated lated geobodies to the total area
Path Ratio of all geobodies in a horizontal

section
Sand Package Distribution of vertical thick- 1-D (Hovadik & Larue,
Thickness nesses of sand packages identi- 2007)

fied in 100 random cores of the

subsurface
Sand Package Ratio of thickest sand layer to 1-D (Hovadik & Larue,

Connectivity

sum of all sand in the core

Table 4. List of Subsurface Quantities Measured

2007)

2.5 Metric Ranking and Significance: Kullback-Leibler Divergence

Given the number of metrics that we propose in the previous section to quantify
different aspects of delta morphology and stratigraphic structure, it is not clear which
are the most informative for differentiating among delta systems formed under different
conditions. To identify the ‘best’ metrics or those most indicative of the imposed forc-
ings, we use the Kullback-Leibler (KL) divergence, also known as Relative Entropy (Kullback
& Leibler, 1951) as in Perignon et al. (2020). The KL divergence of @ from P is defined

as:
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where both @ and P are discrete probability distributions (PDFs). P is often referred
to as the data distribution, and () as the reference distribution. If P and () are identi-
cal, then the KL divergence between the two is 0. As the probability distributions in-
creasingly differ in shape and position, the KL divergence value increases (Figure S10).
KL divergence values greater than 1 indicate significant differences between the distri-
butions @ and P, while values less than 1 indicate that @) and P are similar (Perignon
et al., 2020). In this way, the KL divergence can be used to quantify the uniqueness of
the delta metrics as they correspond to different ISF and SLR, scenarios.

To evaluate the delta metrics in this study, a normalized [0,1] discrete PDF is con-
structed for each metric. To normalize the metrics, each is divided by the maximum value
from the group of scenarios being compared. This normalization results in a [0, 1] dis-
crete PDF for each case while preserving absolute differences between the scenarios be-
ing compared. The modeled scenarios are compared in two different ways; the influence
of the ISF on delta evolution is tested by holding SLR constant, while the influence of
SLR is evaluated by holding the ISF constant. To measure the influence of ISF on met-
ric results, P is represented by a single ISF and @ is represented by the combined PDF
of the remaining two ISF scenarios. A similar procedure is adopted to compare the low
SLR (0, 5, 10 mm/yr) scenarios in which a single scenario is used to construct P while
@ is composed of the remaining two scenarios. For the comparison across all eight SLR,
scenarios, P is defined by the given scenario and @ is always the no SLR, (0 mm/yr) case
against which the others are compared.

3 Results and Discussion

3.1 Relating Surface Metric and Subsurface Metric Responses to Forc-
ings

From the normalized metric PDFs (Figures 5 & 6), we identify those metrics most
indicative of the forcings imposed on the system. Trends in surface and subsurface met-
rics in response to different external forcings are analyzed to make predictions about sub-
surface properties from surface observations.

3.1.1 Influence of Input Sand Fraction

The three surficial metrics that are indicative of the ISF are channel density, shore-
line roughness, and wetted fraction. Under low SLR conditions, the shoreline roughness
and wetted fraction metrics are the strongest indicators of differences in ISF, while at
higher SLR conditions the channel density and wetted fraction metrics are sensitive to
different ISF values (Figures S5, S6). Other metric distributions largely retain their shape
and position as ISF is changed. For example, the shape and range of the land area dis-
tributions remain the same as ISF is varied (Figure 5). In the absence of SLR, total land
area in the model is predominantly dependent on the quantity of sediment input into
the system because offshore sources and sinks of sediment from waves and tides are not
simulated. This model result differs from experimental studies where sediment cohesion
is found to be inversely proportional to sediment retention within the delta (Straub et
al., 2015). The increase in channel density as ISF is raised is consistent with results from
other studies (Caldwell & Edmonds, 2014; Liang, Van Dyk, & Passalacqua, 2016). High
sediment cohesion (low ISF) is known to be related to increased values of shoreline rough-
ness (Edmonds & Slingerland, 2010; Straub et al., 2015). Sediment cohesion stabilizes
channels, leading to growth of delta lobes while other regions of the delta may be flooded
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as SLR occurs. This flooding process causes the wetted fraction to decrease as the ISF
is increased.

In the subsurface, the most differentiable properties due to variations in input sand
content are 2-D section connectivity and percolated path ratio (Figure 5). Normalized
distributions of 3-D geobody volume and core sand body thicknesses are largely the same
across ISF scenarios due to the presence of many small connected components. These
smaller components skew the distributions so severely that they become very similar in
shape. Similarly, the percolated path ratio calculated in the strike sections shows evi-
dence of many non-percolated sections for the 30% ISF scenario. Conversely, the 70%
ISF scenario has a peak near a percolated path ratio of 1.0, meaning that almost all of
the sand is in a geobody that spans the full length of the strike section and connects two
opposite boundaries. Dip section geobody connectivity also has visibly different distri-
butions due to differences in ISF (Figure 5). As the ISF into the system increases, we
expect geobody connectivity to increase as well. This trend is observed in the dip sec-
tions, where the 70% input sand cases have large peaks in connectivity near the value
of 1, meaning that the largest geobody in the section includes almost all of the sand. Per-
colation theory would suggest that between 55 and 60% sand content, the sand bodies
in the 2-D sections should be fully connected (King, 1990; Hovadik & Larue, 2007). Al-
though the distribution of sand in deltaic stratigraphy violates many assumptions of per-
colation theory (random distribution, infinite domain), the connectivity values observed
for the 70% ISF scenarios suggest that the mathematical principles from percolation the-

ory can still be applied in geologic settings, a finding consistent with other studies (J. R. Allen,

1978; Donselaar & Overeem, 2008; Pranter & Sommer, 2011).

3.1.2 Influence of Sea Level Rise

Under different SLR forcing scenarios, delta metrics change in value. On the sur-
face, land area decreases with increasing SLR rate, while channel density increases (Fig-
ure 6). The narrowing of the land area PDF's as the rate of SLR increases is indicative
of aggradation, while the wide PDF observed for the scenario without any SLR is a sig-
nature of progradation. Wetted fraction values increase as the rate of SLR increases, al-
lowing a greater portion of the delta top to be flooded. Shoreline roughness becomes more
variable, indicated by wider PDF distributions, in response to increased SLR. Trends in
channel density, shoreline roughness, and wetted fraction metrics due to increased SLR
are similar to those observed due to changes in ISF (Figure 5).

In the subsurface, several metrics are very similar under all SLR scenarios. 2-D met-
rics of geobody connectivity in the strike and dip orientations display an initial decrease
as SLR increases from 0 to 10 mm/yr (Figure 6). Above the 10 mm/yr SLR rate 2-D
connectivity metrics become quite similar, suggesting the existence of a threshold SLR
rate above which the preserved deposits maintain a similar level of connectedness. The
1-D analysis of sediment cores shows that sand package connectivity decreases as SLR
rate increases (Figure 6). This trend, although subtle, is consistent with the observations
of increased shoreline roughness variability and increased channel density on the surface.
As surface channels become more numerous and mobile, sand is distributed all over the
delta top, resulting in a more even distribution of sand across the platform. The ratio
of sand to mud in the system remains the same, however, and the increased spread of
sand creates thinner individual sand layers that become segmented by mud.

3.1.3 Applying the Kullback-Leibler Divergence to Metric Differenti-
ation

The strike and dip section connectivity and percolated path ratio metrics are the
most divergent in the subsurface due to changes in ISF (Figure 7a,b). This finding is con-
sistent with the previous observations made from the metric PDFs. On the surface, shore-
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Some metrics exhibit clear responses to the different SLR conditions. For example, channel den-

sity PDFs (upper left) display a visible response to the SLR forcing, whereas geobody volume

PDFs (upper right) are indistinguishable across the different SLR scenarios.
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430 line roughness and wetted fraction are consistently divergent as ISF is varied, even un-
31 der different SLR conditions. At higher SLR rates channel density, land area, nearest
e edge distance, and wet edge distance have increasingly large KL divergence values, in-
433 dicating that these PDFs become more sensitive to ISF when SLR rates are high (Fig-
434 ure 7b)
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Figure 7. Graphic depiction of the KL divergence results. The darkness of the cells indicates
the KL divergence value between that metric represented by that cell for that particular scenario
and the others in the row. a: Differences in metric response due to changes in ISF under no SLR
(rise rate of 0 mm/yr). b: Differences in metric response due to changes in ISF when sea level
rises at a rate of 10 mm/yr. c: Metric differences due to SLR for the lowest three sea level rise
scenarios examined when ISF is held constant at 30%. d: Metric differences due to SLR for the

lowest three SLR scenarios examined when ISF is held constant at 50%.
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When examining the influence of SLR on metric distributions, we analyzed the ‘low’
SLR scenarios (0, 5, 10 mm/yr) separately (Figure 7c,d) as well as together with the full
range of SLR rates simulated (Figure 8). To better understand the differences among
these metrics at lower rates of SLR, we evaluated the 0, 5, and 10 mm/yr cases sepa-
rately in the same manner as the ISF cases. On the surface, shoreline roughness is a weak
metric for distinguishing between these different rates of SLR. In the subsurface, the most
distinct metrics are the connectivity and percolated path ratios in the strike and dip sec-
tions. Overall, distinctions between subsurface metrics due to SLR are more muted than
those due to ISF.

When looking at the full panel of SLR scenarios, metrics like channel density, shore-
line roughness, wetted edge distance, and wetted fraction have high divergence values,
which is in line with observations made from the PDFs. The change in the land area PDFs
as a result of SLR is evident in the KL divergence results, as systems that are smaller
and more aggradational show higher KL divergence values than those closer to the ref-
erence case (0 mm/yr SLR). As SLR values become increasingly extreme, fractal dimen-
sion PDFs at high SLR begin to diverge significantly from the reference (0 mm/yr) SLR
case (Figure 8). In the subsurface, 1-D sand package connectivity, strike and dip section
connectivity, and percolated path ratios metrics are the most divergent. The distinction
between the reference no SLR case, and the 5 and 10 mm/yr SLR cases is made clear
by the darker squares, while the lighter squares around 20 and 30 mm/yr suggest that
these distributions begin to resemble the reference case again (Figure 8). This behav-
ior is consistent with the initial trend of decreasing connectivity from 0 to 10 mm/yr SLR,
and the absence of a trend as SLR rate increased. The differences between distributions
of geobody volumes and sand package thicknesses are small, as previously noted, due to
the sheer number of small geobody volumes and thin sand packages skewing the distri-
butions. By computing the KL divergence in addition to the metric PDFs shown pre-
viously (Figure 6), our qualitative observations are supported by quantitative differences
between the different modeled scenarios.

In this study we began to constrain subsurface geometry using surface network in-
formation. We focused on river dominated deltas, where the riverine input is the primary
driver of the surface and subsurface structure. On the surface, the shoreline roughness
and wetted fraction are useful metrics for differentiating between deltas formed under
different ISF and SLR conditions. In the subsurface, metrics of connectivity and perco-
lated path ratios computed in the 2-D strike and dip sections are the strongest indica-
tors of different ISF and SLR forcings. With this knowledge we can improve surface met-
ric selection needed to make inferences about stratigraphic properties. The next step to-
wards improving aquifer contamination forecasts is to link properties of subsurface ge-
ometry to groundwater flow behavior; this relationship is explored in a companion pa-
per, Xu et al. (accepted).

3.2 Study Applicability and Limitations

Using simplified model dynamics allowed us to isolate the effects of ISF and SLR
on deltaic evolution. These two forcings are known to have strong controls on river delta
morphology (Caldwell & Edmonds, 2014). We find that for river-dominated systems, the
surface metrics most sensitive to ISF and SLR are the wetted fraction and shoreline rough-
ness metrics, both of which can be readily calculated from satellite imagery. Wetted frac-
tion values can be calculated from remotely sensed imagery using automated methods
for surface water detection (e.g. Isikdogan et al., 2020; Feng et al., 2019), while the open-
ing angle method, used for shoreline detection in this work, was originally applied to satel-
lite imagery (Shaw et al., 2008). These two surface metrics are potential indicators of
subsurface connectivity, a metric much more difficult to estimate in real systems. There-
fore, these findings may be used in studies that seek to compare the subsurface struc-
ture of existing river-dominated systems as they utilize surface information, complement-
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ing methods for subsurface estimation based on direct measurements and field data. The
KL divergence approach as applied to deltaic metrics is also useful when comparing mor-
phological metrics between different delta experiments.

The deposits modeled in this study are on the order of 10 m thick, and generated
over timescales < 10% years (Figure S2). Although much of this modeled stratigraphy
may be reworked, and the corresponding surface signal ‘shredded,” over longer geologic
timescales (Jerolmack & Paola, 2010; Toby et al., 2019), the structure of the shallow sub-
surface remains important for those dependent on the groundwater it contains. In the
Bengal basin for example, many domestic wells and some irrigation wells are shallower
than 50 m, making the near-surface stratigraphy critical for contaminant transport (Michael
& Voss, 2009; Bahar & Reza, 2010; Shamsudduha et al., 2011). Groundwater resources
may therefore be affected by subsurface features which are not persistent over the ge-
ologic record, making studies focused on shorter timescales, such as this one, important
when trying to predict the structure of the shallow subsurface as forcings change and land-
scapes evolve.

Specific forcings not incorporated in the DeltaRCM model include winds, waves,
and tides, which are known to have strong effects on delta morphology (Galloway, 1975;
Anthony, 2015) and are the dominant forcings in many deltas world-wide (Nienhuis et
al., 2020). River-dominated deltas, as analyzed here, tend to be large in size, convey sig-
nificant quantities of water and sediment, and are home to millions of people (Nienhuis
et al., 2020; Edmonds et al., 2020). This study also simplifies the variety of flow condi-
tions present in river deltas by exclusively simulating bankfull discharge conditions, thereby
missing processes and reworking which occur during periods of lower flow (Shaw & Mohrig,
2014; Miller et al., 2019). We acknowledge that by not modeling these effects, this study
does not capture the full range of deltaic morphology and dynamics. But we believe that
our present findings are still useful as complementary methods to other subsurface es-
timation methods, and serve as a starting point for future studies seeking to link sur-
face and subsurface form in river-dominated deltaic systems experiencing different ISF
or SLR conditions.

The division of sediment types into two discrete categories, a fine mud and a coarse
sand, simplifies the sediment grain size continuum. The input sediment grain size dis-
tribution is known to impact the morphology and subsurface structure of river deltas (Orton
& Reading, 1993; Caldwell & Edmonds, 2014). Given the resolution at which the stratig-
raphy has been modeled (5 cm), this two-facies methodology accelerates model run time,
and maintains the reduced-complexity modeling approach. As a result, the results do
not reproduce small stratigraphic structures that exist below the modeled resolution such
as thin mud drapes, which are often found in deltaic deposits (Galloway, 1976; Tye &
Coleman, 1989; Tanabe et al., 2003). In addition, the modeling conducted in this study
did not account for the effects of vegetation, permafrost, or ice on deltaic evolution. We
note that the DeltaRCM model has been modified to simulate these effects (Lauzon &
Murray, 2018; Lauzon et al., 2019; Piliouras et al., 2021), however these modifications
were kept out of this study for the sake of simplicity.
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scenario. Results shown are for the 70% ISF scenarios.

529 4 Conclusions

530 In our simulated scenarios we find that information from the surface network can

531 be used to constrain predictions of subsurface structure, however further work needs to

532 be conducted to constrain the applicability of these results to real systems. Broadly, more
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533 variable shoreline roughness values and greater wetted fraction values correspond with

534 higher subsurface connectivity. By modeling and evaluating 24 different scenarios of delta
535 growth and evolution, we find that:

536 1. As ISF increases, wetted fraction, shoreline roughness variability, and subsurface

537 connectivity increase

538 2. Surface metrics are useful in informing subsurface properties at SLR rates below

539 10 mm/yr; above this rate the subsurface properties become insensitive to SLR

540 rate

541 3. Shoreline roughness and wetted fraction consistently prove to be the most effec-

542 tive for differentiating between forcing scenarios of the 10 surface metrics stud-

543 ied

544 4. Connectivity and percolated path ratio in the strike and dip sections were the most
545 sensitive to changes in forcings of the 9 subsurface metrics evaluated

546 These findings are supported by both qualitative observations of the metric PDFs, as

547 well as a KL divergence analysis in which the PDFs of the metrics were compared math-
548 ematically. This study has shown the potential for surface information to provide insights
549 into subsurface properties, and that mathematical methods such as the KL divergence

550 can be applied to support the choice of metrics to measure.
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