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Abstract20

River deltas are densely populated regions of the world with vulnerable groundwater re-21

serves. Contamination of these groundwater aquifers via saline water intrusion and pol-22

lutant transport is a growing threat due to both anthropogenic and climate changes. The23

arrangement and composition of subsurface sediment is known to have a significant im-24

pact on aquifer contamination; however, developing accurate depictions of the subsur-25

face is challenging. In this work, we explore the relationship between surface and sub-26

surface properties and identify the metrics most sensitive to different forcing conditions.27

To do so, we simulate river delta evolution with the rule-based numerical model, DeltaRCM,28

and test the influence of input sand fraction (ISF) and steady sea level rise (SLR) on delta29

evolution. From the model outputs we measure a variety of surface and subsurface met-30

rics chosen based on their applicability to imagery and modeling results. The Kullback-31

Leibler (KL) divergence is then used to quantitatively gauge which metrics are most in-32

dicative of the imposed forcings. Both qualitative observations and the KL divergence33

analysis suggest that estimates of subsurface connectivity can be constrained using sur-34

face information. In particular, more variable shoreline roughness values and higher sur-35

face wetted fraction values correspond to increased subsurface connectivity. These find-36

ings complement traditional methods of estimating subsurface structure in river-dominated37

delta systems and represent a step towards the identification of a direct link between sur-38

face observations and subsurface form.39

Plain Language Summary40

River deltas are home to over half a billion people facing increasing risks due to41

a variety of natural and human-induced factors. With rising sea levels, one of the expected42

threats to public health is the contamination of fresh drinking water. In particular, ground-43

water is susceptible to sea water intrusion; it is known that highly connected ‘fast-travel’44

pathways can exist in the subsurface and often determine the expected time of contam-45

ination. By modeling river delta formation and evolution, we tie observations from the46

surface waterways to the presence of highly connected pathways in the subsurface. Nu-47

merical modeling allows us to better understand how these delta systems may respond48

to different types of sediment inputs and to different steady sea level rise rates. We learn49

that the surface does indeed provide us some information about the hidden subsurface50

beneath it, opening up the opportunity for improved modeling of the subsurface from51

surface information.52

1 Introduction53

River deltas are geologically dynamic and home to large human populations (Syvitski54

& Saito, 2007; Syvitski et al., 2009; Twilley et al., 2016; Rahman et al., 2019). The chang-55

ing dynamics of river deltas in response to climate change, upstream river management,56

and sea level rise threaten both coastal ecosystem health and the lives of millions of peo-57

ple worldwide (Syvitski et al., 2009; Rahman et al., 2019). Thus, it is critical to advance58

our knowledge and understanding of these geologic systems to help plan and adapt for59

impending change. One of the resources being threatened is potable groundwater, the60

primary source of drinking water for 1.5 to 2.8 billion people (Morris et al., 2003). Within61

aquifers, the connectedness of high permeability facies has long been known to strongly62

influence flow and solute transport (Fogg, 1986). By understanding the connectedness63

of the subsurface, groundwater models can be better constrained (Hovadik & Larue, 2010),64

but the characterization of the subsurface can be challenging due to sparse data limit-65

ing our capability of planning for and managing future changes. The subsurface, how-66

ever, is the result of surface dynamics through time, and, relative to the subsurface, sur-67

face spatial data are abundant. Therefore, the characterization of subsurface architec-68
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ture regimes from surface analysis may provide opportunities to constrain estimates of69

shallow aquifer connectedness; we explore this idea in this study.70

A large body of work has been devoted to the study and analysis of river delta growth71

and evolution. Studies have focused on the characterization and description of distribu-72

tary channel networks (Edmonds et al., 2011; Shaw et al., 2013; Ke et al., 2019), the growth73

and evolution of delta shorelines (Kim et al., 2006; Shaw et al., 2008; Geleynse et al., 2012),74

and the influence of various external forcings, such as changes to the base level on delta75

growth and evolution (Koss et al., 1994; Parker et al., 2008; Martin et al., 2009). The76

control and influence of input sediment properties on delta formation has also been eval-77

uated and quantified (Orton & Reading, 1993; Edmonds & Slingerland, 2010; Burpee78

et al., 2015). Additionally, global studies have begun to evaluate river deltas across the79

world to examine their properties and estimate their future morphologies (Giosan et al.,80

2014; Caldwell et al., 2019; Nienhuis et al., 2020).81

Many deltaic systems, such as the Mississippi River Delta and the Ganges-Brahmaputra-82

Meghna Delta, contain naturally occurring arsenic in shallow subsurface aquifers (Yang83

et al., 2014; Ayers et al., 2016). These aquifers also face the ever-present threat of salt-84

water intrusion as both groundwater pumping and sea level rise move the salt-fresh wa-85

ter boundary inland (Moser et al., 2012; Rahman et al., 2019). Predicting groundwater86

aquifer contamination is further complicated by the fact that many of these coastal aquifers87

are highly heterogeneous (Winkel et al., 2008; Khan et al., 2016).88

To quantify the structure of the subsurface, static (geometrically-based) metrics89

are used. The basis for this type of metric is connected cluster analysis, a class of meth-90

ods that can be used to characterize the arrangement of highly permeable facies within91

the subsurface (Gawlinski & Stanley, 1981; King, 1990). Metrics associated with clus-92

ter analysis include the number of clusters, cluster size, and cluster shape and extent rel-93

ative to the entire field (Renard & Allard, 2013). For example, one measure of bulk con-94

nectivity in the subsurface is the ratio of the largest connected cluster volume to the vol-95

ume of all clusters (Hovadik & Larue, 2007, 2010).96

The shape and arrangement of the subsurface are influenced by the surface pro-97

cesses that formed it. In natural river deltas, relating surface processes to subsurface form98

is complicated by a wide variety of factors as well as the limited time span over which99

observations are available. Evidence from the stratigraphic record has been used to de-100

velop theoretical models for deltaic deposits formed under different base level conditions101

(G. Allen & Mercier, 1988; Postma, 1995). Many physical and numerical experiments102

have been designed to test these theoretical models, as well as to measure morpholog-103

ical properties of the surface as the delta deposit is formed (e.g., Koss et al., 1994; Heller104

et al., 2001; Martin et al., 2009; Geleynse et al., 2012). These studies provide evidence105

that allogenic forcings influence surface morphology and leave behind identifiable strati-106

graphic sequences, however the identification of direct relationships between surface mor-107

phology and subsurface form remains under-explored.108

To interrogate overall patterns and more broad evolutionary trends related to deltaic109

growth, simplified modeling can be employed (Paola, 2011). The advantage of simpli-110

fied numerical models over their fully physical counterparts is two-fold: the computa-111

tional cost of solving simplified physics is lower and simpler models are easier to under-112

stand, apply, and analyze. Simplified models have been developed to understand, for ex-113

ample, the lobate growth of delta landforms (Seybold et al., 2007; Moodie et al., 2019).114

Established models have been modified to explore the influence that multiple variables115

such as waves and sea level rise (Ratliff et al., 2018), mud and vegetation (Lauzon & Mur-116

ray, 2018), and ice and permafrost (Lauzon et al., 2019) have on delta morphology and117

dynamics. In contrast to physical experiments, numerical models allow more experiments118

to be conducted and therefore additional conditions and forcings to be tested.119
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In this study, we pursue two main goals. First, we qualitatively explore the influ-120

ence of input sand fraction (ISF) and sea level rise (SLR) on the surface with a suite of121

morphologic metrics, and in the subsurface by using geometry-based, static subsurface122

metrics. Second, we quantitatively identify the metrics most sensitive to ISF and SLR123

by using the Kullback-Leibler divergence. We employ the numerical model DeltaRCM124

to simulate surface processes and generate stratigraphy. Inferring knowledge about the125

subsurface from surface information creates new opportunities to better inform ground-126

water models and reduce uncertainty around predictions of aquifer and well contamina-127

tion. In a companion paper, we explore the relationship between these static subsurface128

metrics and groundwater dynamics (Xu et al., accepted).129

2 Methods130

2.1 Description of DeltaRCM131

We model delta evolution using DeltaRCM, a hydro-morphodynamic reduced-complexity132

model that uses empirical rules and weighted random walks to mimic the transport of133

water and sediment (Liang, Voller, & Paola, 2015; Liang, Geleynse, et al., 2015). DeltaRCM134

simulates the deposition, erosion, and reworking of two sediment facies: a fine ‘mud’ sed-135

iment that is transported in suspension, and a coarse ‘sand’ sediment that is transported136

as bedload. A brief overview of how DeltaRCM routes sediment and develops stratig-137

raphy is presented herein; for a more thorough description we refer the reader to Liang,138

Voller, and Paola (2015) and Liang, Geleynse, et al. (2015).139

The DeltaRCM domain is initialized with an empty basin and a single inlet. In-140

let discharge is discretized into parcels of water and sediment which move across the do-141

main via a weighted random walk. The quantity of water and sediment per parcel is a142

function of the input discharge and the number of parcels specified; here we use 2000 parcels143

for both water and sediment, in agreement with the number of parcels recommended to144

balance handling of extreme events and computational cost (Liang, Voller, & Paola, 2015).145

First the water parcels are routed through the domain to compute a flow field based on146

the current topography. After the flow field has been computed, the sediment parcels147

are routed and bed elevations are modified as sediment is eroded and deposited. The par-148

titioning of sediment into individual sand and mud parcels is dictated by the input sed-149

iment ratio. In this work, the proportion of input sediment varies between 30% and 70%150

sand content, with the remainder of the sediment as mud. Physical properties of the sed-151

iment follow those of Liang, Voller, and Paola (2015).152

The random walk weights are determined by reduced-complexity equations mod-153

eled after known physical relationships governing the transport of water and sediment.154

Fine ‘mud’ and coarse ‘sand’ sediment are approximated by varying the properties as-155

sociated with the transport of these materials such that the fine mud is more easily trans-156

ported than the coarse sand (see Text S2 and Liang, Voller, and Paola (2015) for fur-157

ther details). The DeltaRCM methodology for simulating river delta dynamics was val-158

idated against field data from the Wax Lake Delta and physical experiment data (Liang,159

Voller, & Paola, 2015; Liang, Van Dyk, & Passalacqua, 2016). The flow routing method160

was compared to numerical simulations conducted using Delft3D, which solves the dis-161

cretized Navier-Stokes equations (Liang, Geleynse, et al., 2015).162

2.2 Model Setup and Numerical Experiments163

We conducted a set of 240 numerical experiments to simulate the evolution of river164

deltas under a variety of scenarios. The inlet conditions, basin geometry, and physical165

parameters were chosen based on the runs in Liang, Van Dyk, and Passalacqua (2016)166

(Table 1). All model runs simulated 500 years of delta growth, assuming 10 days of bank-167

full discharge per year (Caldwell & Edmonds, 2014), absent effects of tides, wind, waves,168
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and subsidence. Three input sand fraction (ISF) scenarios were considered: 30%, 50%169

and 70% sand by volume in order to capture the variability present in natural systems.170

For example, bedload fraction estimates for the Ganges and Brahmaputra rivers range171

from 5 to 50% (Islam et al., 1999), and sand fraction estimates within the Yellow River172

are around 70% (Li et al., 1998; Edmonds & Slingerland, 2010). For each ISF case, we173

simulated eight steady sea level rise (SLR) scenarios: 0, 5, 10, 20, 30, 40, 50, and 60 mm/yr,174

to encompass rates indicative of current and future climatic conditions. Global mean sea175

level rise rates have been below 10 mm/yr for the past 100 years, however projected mean176

sea level rise rates are as high as 41 mm/yr by the end of the 21st century (Stocker et177

al., 2013). The model domain is rectangular and is composed of 50 m x 50 m square grid178

cells. The vertical depth of each cell in the preserved stratigraphy is 0.05 m. The extents179

of the domain vary with the SLR rate imposed to best accommodate the final delta ex-180

tent, while minimizing computational cost. For each scenario (Table 2), we analyzed sur-181

face metric trends over six model runs to capture the range of behavior present for a given182

scenario due to the stochastic variability of DeltaRCM (Liang, Kim, & Passalacqua, 2016;183

Liang, Van Dyk, & Passalacqua, 2016; Lauzon & Murray, 2018; Lauzon et al., 2019).184

Model Parameter Value Units

Cell Size 50 x 50 m
Inlet Channel Width 250 m
Inlet Water Discharge 1,250 m3/s
Inlet Channel Depth 5 m
Inlet Sediment Discharge 1.25 m3/s
Basin Depth 5 m
Threshold dry cell depth 0.1 m
Time Step Size 0.0289 yrs
Number of Time Steps 17,300 #
Initial Sea Level 0 m
Number of Water Parcels 2000 #
Number of Sediment Parcels 2000 #
Topographic Diffusion Coefficient 0.1 #
Inlet (Reference) Velocity 1 m/s
Sand Erosion Velocity Threshold 1.05 m/s
Mud Erosion Velocity Threshold 1.5 m/s
Mud Deposition Velocity Threshold 0.3 m/s
Sand Parcel Depth Dependence Exponent (θsand) 2 #
Mud Parcel Depth Dependence Exponent (θmud) 1 #

Table 1. DeltaRCM Model Parameter Values
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Run ID Input Sediment Proportion Sea Level Rise Rate

S30R00 30% Sand, 70% Mud 0 mm/yr
S30R05 30% Sand, 70% Mud 5 mm/yr
S30R10 30% Sand, 70% Mud 10 mm/yr
S30R20 30% Sand, 70% Mud 20 mm/yr
S30R30 30% Sand, 70% Mud 30 mm/yr
S30R40 30% Sand, 70% Mud 40 mm/yr
S30R50 30% Sand, 70% Mud 50 mm/yr
S30R60 30% Sand, 70% Mud 60 mm/yr

S50R00 50% Sand, 50% Mud 0 mm/yr
S50R05 50% Sand, 50% Mud 5 mm/yr
S50R10 50% Sand, 50% Mud 10 mm/yr
S50R20 50% Sand, 50% Mud 20 mm/yr
S50R30 50% Sand, 50% Mud 30 mm/yr
S50R40 50% Sand, 50% Mud 40 mm/yr
S50R50 50% Sand, 50% Mud 50 mm/yr
S50R60 50% Sand, 50% Mud 60 mm/yr

S70R00 70% Sand, 30% Mud 0 mm/yr
S70R05 70% Sand, 30% Mud 5 mm/yr
S70R10 70% Sand, 30% Mud 10 mm/yr
S70R20 70% Sand, 30% Mud 20 mm/yr
S70R30 70% Sand, 30% Mud 30 mm/yr
S70R40 70% Sand, 30% Mud 40 mm/yr
S70R50 70% Sand, 30% Mud 50 mm/yr
S70R60 70% Sand, 30% Mud 60 mm/yr

Table 2. Run IDs, Input Sediment Proportions, and Sea Level Rise Rates
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Figure 1. DeltaRCM simulated deltas. Representative final topographies of the lower (0, 5,

and 10 mm/yr) SLR scenarios.
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Figure 2. DeltaRCM simulated deltas. Representative final topographies of the higher (20,

30, 40, 50, and 60 mm/yr) SLR scenarios.
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For the subsurface analysis, model runs with SLR rates greater than 30 mm/yr were185

extended to a final runtime of 720 years to generate stratigraphic sections with a thick-186

ness several times greater than the average sand body thickness (2-3 meters) for the ground-187

water modeling conducted in the companion study (Xu et al., accepted). Model simu-188

lations conducted with SLR rates at and below 30 mm/yr, however, lack the accommo-189

dation required to create deep stratigraphic deposits, so we adapted the image quilting190

(IQ) algorithm (Efros & Freeman, 2001) to join sections of the modeled stratigraphy (Text191

S1). This technique has been successfully applied to both stationary and non-stationary192

geological domains (Mahmud et al., 2014; Hoffimann et al., 2017). The forcing scenar-193

ios considered are steady in time and produce stratigraphy that is vertically stationary,194

so rather than using a training image, we employ the ‘stitching’ portion of the IQ work-195

flow from Mahmud et al. (2014) to vertically join modeled sections of stratigraphy with196

minimal discontinuities at the boundaries (Figure 3). In this way, the influence of the197

modeled surface processes on the stratigraphy is kept intact and the bulk properties of198

the deposit are unchanged (Figure S4), but the depth of the stratigraphic volumes is ex-199

tended allowing groundwater modeling to be performed.200

Minimum Error Cut Boundary

0 1
Fraction of Sand 

(Per Cell) 

Figure 3. Example in 2-D of the ‘stitching’ procedure adapted from image quilting. First

an overlap region is defined within which a minimum error cut boundary is defined (black box).

Then the two pieces of stratigraphy are joined along that boundary to form a new image which

has a greater depth than either of its constituent sections.

To avoid boundary effects created by the inlet condition and to increase the sta-201

tistical stationarity of the subsurface domain under study, a rectangular volume is cut202

from the modeled stratigraphy (Figure 4). We used dimensionless mass extraction pa-203

rameters (Strong et al., 2005) to determine the lateral extents of this subdomain: in the204

downstream direction, 30% of the volume from the inlet and 10% of the volume closest205

to the shoreline are disregarded; perpendicular to the downstream direction, the outer206

50% of the volume is excluded (Figure 4). In the vertical direction, the central 25 m from207

the IQ realizations (0-30 mm/yr SLR scenarios) is used. For the modeled domains from208

higher SLR scenarios (40-60 mm/yr) the top 5 m of channelized surface and bottom 7.5209

m from the initial deposit are excluded (Figure 4).210

–9–



manuscript submitted to Water Resources Research

30%

50%

10%

A'

A

7.5m

5m

30%10%

A'A

Fraction of Sand

(Per Cell)

0 1

(a) (b)

Figure 4. Example of the subsurface subdomain over which the subsurface metrics are com-

puted, (a) depicts the lateral extents of the subdomain, and (b) depicts the vertical extents.

2.3 Model Output Quantification: Surface Metrics211

Several metrics have been proposed and applied to real and simulated river deltas.212

These metrics were developed to characterize delta morphology and quantify the effect213

of different processes. We identify 10 of these metrics based on previous work and on their214

applicability to real systems (Kim & Paola, 2007; Seybold et al., 2007; Wolinsky et al.,215

2010; Edmonds et al., 2011; Reitz & Jerolmack, 2012; Passalacqua et al., 2013; Van de216

Lageweg et al., 2013; Liang, Van Dyk, & Passalacqua, 2016; Perignon et al., 2020), and217

apply them to the numerical modeling results. Metric names, brief descriptions, and sources218

are provided below and in Table 3. Surface metrics are computed for the years 100-500219

of the model runs to avoid measuring properties associated with initial stages of delta220

formation (Piliouras et al., 2021).221

To compute the surface metrics, we obtain a set of binary masks following meth-222

ods described in Liang, Kim, and Passalacqua (2016) and Lauzon et al. (2019). The shore-223

line was identified using the opening angle method (Shaw et al., 2008), with a search an-224

gle of 75 degrees (after Liang, Kim, & Passalacqua, 2016). This shoreline extraction is225

based on topographic thresholding using a threshold value 0.5 m below the sea level, to226

include the shallow subaqueous land after Liang, Kim, and Passalacqua (2016) and Liang,227

Van Dyk, and Passalacqua (2016). Channel network identification is based on the wa-228

ter velocity fields. The binary channel network is identified as the locations where the229

water velocity exceeds 0.3 m/s, the minimum velocity required to mobilize sediment, af-230

ter Liang, Kim, and Passalacqua (2016) and Lauzon et al. (2019). Example shorelines,231

water velocity fields, and extracted channel networks are provided in Figure S3.232

2.3.1 Channel Density233

Channel density (or channelized fraction) is the ratio of channelized area to the to-234

tal delta topset area (Wolinsky et al., 2010; Liang, Van Dyk, & Passalacqua, 2016). This235

metric is known to correlate with both input sediment concentration and relative sea level236

rise rates (Liang, Van Dyk, & Passalacqua, 2016). Under constant forcing conditions,237

channel density for a mature delta is expected to fluctuate around a constant value (Wolinsky238

et al., 2010; Reitz & Jerolmack, 2012).239
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2.3.2 Land Area240

The land area is measured as the total subaerial and shallow subaqueous area (up241

to 0.5 m below sea level) of the delta topset (Liang, Kim, & Passalacqua, 2016; Liang,242

Van Dyk, & Passalacqua, 2016). Land area is known to be influenced by both SLR (Muto243

& Steel, 1997) and ISF (Straub et al., 2015). When there is no base level change and off-244

shore water depth is constant, linear land area growth is expected (Wolinsky et al., 2010).245

2.3.3 Channel Depth246

In meandering river systems, the thickness of preserved deposits has been linked247

to channel morphology, in particular to channel depth (Van de Lageweg et al., 2013). Delta248

systems contain a variety of channel features, including meanders, making this metric249

a potential indicator of subsurface structure. Using model outputs, channel depth val-250

ues are queried at all channel locations and used to compute distributions of water depth251

in the channels.252

2.3.4 Fractal Dimension253

Fractal dimension is an indicator of how self-similar a delta system is and can be254

used to suggest the presence of a space filling network or a single channel dominated sys-255

tem (Edmonds et al., 2011). This metric is computed, using a box counting approach256

(Rodriguez-Iturbe et al., 1998), across the different model runs to develop distributions257

of its values.258

2.3.5 Shoreline Roughness259

Shoreline roughness is the ratio of the shoreline length to square root of the delta260

surface area. This metric is known to reflect sediment input characteristics, waves, and261

tidal effects (Caldwell & Edmonds, 2014; Liang, Van Dyk, & Passalacqua, 2016). The262

shoreline roughness metric provides insight into how evenly the system is delivering sed-263

iment at the shoreline.264

2.3.6 Nearest Edge Distance265

Nearest edge distance is the shortest distance from every land point to a water-land266

interface or edge (Edmonds et al., 2011). We compute the full distribution of nearest edge267

distance values as a potential indicator of different geomorphic regimes influencing the268

spatial arrangement of land and water. In real systems, nearest edge distance has been269

used to differentiate portions of a delta subject to different processes (Passalacqua et al.,270

2013).271

2.3.7 Island Area and Island Shape Factor272

Delta islands are defined as land masses bounded by channels. We extract islands273

from model topographies and compute their areas and shape factors (ratio of perime-274

ter to square root of the area). In real delta systems, island properties have been found275

to be related to channel processes (Edmonds et al., 2011; Piliouras & Rowland, 2020;276

Perignon et al., 2020). The link between island properties and morphologic activity sug-277

gests a potential relationship between surface island morphology and subsurface archi-278

tecture.279

2.3.8 Wetted Fraction and Wet Edge Distance280

The wetted fraction is the ratio of wet area to total delta surface area. Wet pix-281

els, unlike channelized pixels, include former channels that have yet to infill and contain282
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Metric Name Description Reference

Channel Density Proportion of delta surface that is occu-
pied by channels (also called ‘channel-
ized fraction’)

(Wolinsky et al., 2010;
Reitz & Jerolmack,
2012; Liang, Van Dyk,
& Passalacqua, 2016)

Land Area Subarial area of delta planform (Wolinsky et al., 2010;
Liang, Van Dyk, &
Passalacqua, 2016)

Channel Depth Distribution of water depths in channels (Van de Lageweg et al.,
2013)

Fractal Dimension Fractal dimension of the centerline of the
channel network

(Seybold et al., 2007;
Edmonds et al., 2011)

Shoreline Roughness Ratio of shoreline length to the square
root of delta area

(Wolinsky et al., 2010;
Liang, Van Dyk, &
Passalacqua, 2016)

Nearest Edge Distance Distribution of distances from a point on
land to the nearest water body

(Edmonds et al., 2011;
Passalacqua et al., 2013)

Island Area Distribution of areas of deltaic islands (Edmonds et al., 2011;
Perignon et al., 2020)

Island Shape Factor Distribution of the ratio of wetted
perimeter of island to the square root
of island area

(Passalacqua et al.,
2013; Perignon et al.,
2020)

Wet Edge Distance Total length of wet-dry interface (Wolinsky et al., 2010;
Liang, Van Dyk, &
Passalacqua, 2016)

Wetted Fraction Fractional area covered by all water
bodies

(Wolinsky et al., 2010;
Reitz & Jerolmack,
2012; Liang, Van Dyk,
& Passalacqua, 2016)

Table 3. List of Surface Metrics Measured

water below the channelization threshold velocity (Wolinsky et al., 2010; Liang, Van Dyk,283

& Passalacqua, 2016). The wetted fraction is thus an indicator of surficial water rela-284

tive to land mass and can differ significantly from the channelized fraction when many285

lakes and marshes are present. The wet fraction is expected to vary with a periodicity286

dictated by delta autogenics (Kim & Paola, 2007; Kim & Jerolmack, 2008). The wet edge287

distance is the total measure of the edges of channels, lakes, and other water bodies, and288

has been found to grow even after the wetted fraction becomes constant (Wolinsky et289

al., 2010).290
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2.4 Model Output Quantification: Subsurface Metrics291

Several metrics have been proposed to analyze synthetic stratigraphy and seismic292

data. Subsurface metrics are typically harder to compute than surface metrics for real293

systems due to constraints in data acquisition. For this reason, we test 9 different met-294

rics of varying practicality and ease of measurement in the field, ranging from full 3-D295

sand body identification to 1-D sand package thicknesses (measurable from core data)296

(Table 4).297

2.4.1 3-D Geobody Volumes298

The subsurface volume is transformed into a binary structure using a threshold of299

80% sand per cell to define ‘permeable’ and ‘impermeable’ cells. Once the binary trans-300

formation has been completed, we use a connected component analysis to define the vol-301

ume of each cluster of connected permeable cells. These connected cells (geobodies) are302

defined as cells which share a face (Pardo-Igúzquiza & Dowd, 2003; Renard & Allard,303

2013). We compute the probability distribution of the 3-D geobody volumes for each mod-304

eling scenario.305

2.4.2 2-D Section Geobody Connectivity306

Three orientations of 2-D sections are used to evaluate geobody connectivity: strike,307

dip, and horizontal. Strike sections are defined as 2-D stratigraphic sections taken per-308

pendicular to the direction of the inlet channel; dip sections are 2-D stratigraphic sec-309

tions taken parallel to the inlet channel; horizontal sections are plan view slices of the310

stratigraphic volume. For each section, we identify connected geobodies as those regions311

with ‘permeable’ cells that share an edge. The area of the largest geobody divided by312

the sum of all of the geobody areas in the section defines geobody connectivity (Hovadik313

& Larue, 2007).314

2.4.3 2-D Section Percolated Path Ratio315

For the 2-D sections, percolated geobodies are defined as those which connect two316

opposite boundaries. The sum of the total areas of percolated geobodies divided by the317

sum of all geobody areas in the section defines the percolated path ratio. For the dip,318

strike, and horizontal section orientations, we calculated this metric for every 2-D sec-319

tion available in the model subdomains.320

2.4.4 Sand Package Thickness Distribution and “Connectivity”321

From each modeled subsurface volume, 100 randomly located 1-D ‘core’ samples322

are obtained. The thickness of continuous sand packages in each core is recorded and used323

to develop distributions of sand package thicknesses. In addition, we adapted the first-324

order measure of connectivity (Hovadik & Larue, 2007) to 1-D by taking the ratio of the325

largest continuous sand package per core to the total amount of sand.326
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Metric Name Description Data Dimen-
sionality

Reference

Geobody Vol-
ume

Distribution of volumes of
connected sand parcels in the
stratigraphy

3-D (Hovadik & Larue, 2007;
Renard & Allard, 2013)

Dip Section
Connectivity

Ratio of largest geobody area to
total summed area of geobodies
in a dip section

2-D (Hovadik & Larue,
2007)

Dip Section
Percolated Path
Ratio

Ratio of the total area of perco-
lated geobodies to the total area
of all geobodies in a dip section

2-D (Renard & Allard, 2013)

Strike Section
Connectivity

Ratio of largest geobody area to
total summed area of geobodies
in a strike section

2-D (Hovadik & Larue,
2007)

Strike Section
Percolated Path
Ratio

Ratio of the total area of per-
colated geobodies to the total
area of all geobodies in a strike
section

2-D (Renard & Allard, 2013)

Horizontal
Section Connec-
tivity

Ratio of largest geobody area to
total summed area of geobodies
in a horizontal section

2-D (Hovadik & Larue,
2007)

Horizontal Sec-
tion Percolated
Path Ratio

Ratio of the total area of perco-
lated geobodies to the total area
of all geobodies in a horizontal
section

2-D (Renard & Allard, 2013)

Sand Package
Thickness

Distribution of vertical thick-
nesses of sand packages identi-
fied in 100 random cores of the
subsurface

1-D (Hovadik & Larue,
2007)

Sand Package
Connectivity

Ratio of thickest sand layer to
sum of all sand in the core

1-D (Hovadik & Larue,
2007)

Table 4. List of Subsurface Quantities Measured

2.5 Metric Ranking and Significance: Kullback-Leibler Divergence327

Given the number of metrics that we propose in the previous section to quantify328

different aspects of delta morphology and stratigraphic structure, it is not clear which329

are the most informative for differentiating among delta systems formed under different330

conditions. To identify the ‘best’ metrics or those most indicative of the imposed forc-331

ings, we use the Kullback-Leibler (KL) divergence, also known as Relative Entropy (Kullback332

& Leibler, 1951) as in Perignon et al. (2020). The KL divergence of Q from P is defined333

as:334
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DKL (P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(1)

where both Q and P are discrete probability distributions (PDFs). P is often referred335

to as the data distribution, and Q as the reference distribution. If P and Q are identi-336

cal, then the KL divergence between the two is 0. As the probability distributions in-337

creasingly differ in shape and position, the KL divergence value increases (Figure S10).338

KL divergence values greater than 1 indicate significant differences between the distri-339

butions Q and P , while values less than 1 indicate that Q and P are similar (Perignon340

et al., 2020). In this way, the KL divergence can be used to quantify the uniqueness of341

the delta metrics as they correspond to different ISF and SLR scenarios.342

To evaluate the delta metrics in this study, a normalized [0,1] discrete PDF is con-343

structed for each metric. To normalize the metrics, each is divided by the maximum value344

from the group of scenarios being compared. This normalization results in a [0, 1] dis-345

crete PDF for each case while preserving absolute differences between the scenarios be-346

ing compared. The modeled scenarios are compared in two different ways; the influence347

of the ISF on delta evolution is tested by holding SLR constant, while the influence of348

SLR is evaluated by holding the ISF constant. To measure the influence of ISF on met-349

ric results, P is represented by a single ISF and Q is represented by the combined PDF350

of the remaining two ISF scenarios. A similar procedure is adopted to compare the low351

SLR (0, 5, 10 mm/yr) scenarios in which a single scenario is used to construct P while352

Q is composed of the remaining two scenarios. For the comparison across all eight SLR353

scenarios, P is defined by the given scenario and Q is always the no SLR (0 mm/yr) case354

against which the others are compared.355

3 Results and Discussion356

3.1 Relating Surface Metric and Subsurface Metric Responses to Forc-357

ings358

From the normalized metric PDFs (Figures 5 & 6), we identify those metrics most359

indicative of the forcings imposed on the system. Trends in surface and subsurface met-360

rics in response to different external forcings are analyzed to make predictions about sub-361

surface properties from surface observations.362

3.1.1 Influence of Input Sand Fraction363

The three surficial metrics that are indicative of the ISF are channel density, shore-364

line roughness, and wetted fraction. Under low SLR conditions, the shoreline roughness365

and wetted fraction metrics are the strongest indicators of differences in ISF, while at366

higher SLR conditions the channel density and wetted fraction metrics are sensitive to367

different ISF values (Figures S5, S6). Other metric distributions largely retain their shape368

and position as ISF is changed. For example, the shape and range of the land area dis-369

tributions remain the same as ISF is varied (Figure 5). In the absence of SLR, total land370

area in the model is predominantly dependent on the quantity of sediment input into371

the system because offshore sources and sinks of sediment from waves and tides are not372

simulated. This model result differs from experimental studies where sediment cohesion373

is found to be inversely proportional to sediment retention within the delta (Straub et374

al., 2015). The increase in channel density as ISF is raised is consistent with results from375

other studies (Caldwell & Edmonds, 2014; Liang, Van Dyk, & Passalacqua, 2016). High376

sediment cohesion (low ISF) is known to be related to increased values of shoreline rough-377

ness (Edmonds & Slingerland, 2010; Straub et al., 2015). Sediment cohesion stabilizes378

channels, leading to growth of delta lobes while other regions of the delta may be flooded379

–15–



manuscript submitted to Water Resources Research

Surface Metrics Subsurface Metrics

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Metric Value

Channel Density

Land Area

Shoreline Roughness

Wetted Fraction

Geobody Volume

Dip Section Connectivity

Strike Section Percolated Path Ratio

Sand Package Connectivity

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Metric Value

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Metric Value

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Metric Value

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Metric Value

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Metric Value

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Metric Value

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Metric Value

Input Sand
Fraction [%]

30
50
70

0

1

2

3

4

5

0

1

2

3

4

5

0

5

10

15

0

2

4

6

8

10

0

2

4

6

0

20

40

60

0

5

10

15

0

200

400

P
ro

ba
bi

lit
y 

D
en

si
ty

P
ro

ba
bi

lit
y 

D
en

si
ty

P
ro

ba
bi

lit
y 

D
en

si
ty

P
ro

ba
bi

lit
y 

D
en

si
ty

P
ro

ba
bi

lit
y 

D
en

si
ty

P
ro

ba
bi

lit
y 

D
en

si
ty

P
ro

ba
bi

lit
y 

D
en

si
ty

P
ro

ba
bi

lit
y 

D
en

si
ty

Input Sand
Fraction [%]

30
50
70

Input Sand
Fraction [%]

30
50
70

Input Sand
Fraction [%]

30
50
70

Figure 5. Visualization of the influence of ISF on metric values for the 0 mm/yr sea level

rise scenarios. Kernel density estimated PDFs are shown overlaid on their source histograms.

Normalized histograms for each metric are presented with 100 bins between 0 and 1.
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as SLR occurs. This flooding process causes the wetted fraction to decrease as the ISF380

is increased.381

In the subsurface, the most differentiable properties due to variations in input sand382

content are 2-D section connectivity and percolated path ratio (Figure 5). Normalized383

distributions of 3-D geobody volume and core sand body thicknesses are largely the same384

across ISF scenarios due to the presence of many small connected components. These385

smaller components skew the distributions so severely that they become very similar in386

shape. Similarly, the percolated path ratio calculated in the strike sections shows evi-387

dence of many non-percolated sections for the 30% ISF scenario. Conversely, the 70%388

ISF scenario has a peak near a percolated path ratio of 1.0, meaning that almost all of389

the sand is in a geobody that spans the full length of the strike section and connects two390

opposite boundaries. Dip section geobody connectivity also has visibly different distri-391

butions due to differences in ISF (Figure 5). As the ISF into the system increases, we392

expect geobody connectivity to increase as well. This trend is observed in the dip sec-393

tions, where the 70% input sand cases have large peaks in connectivity near the value394

of 1, meaning that the largest geobody in the section includes almost all of the sand. Per-395

colation theory would suggest that between 55 and 60% sand content, the sand bodies396

in the 2-D sections should be fully connected (King, 1990; Hovadik & Larue, 2007). Al-397

though the distribution of sand in deltaic stratigraphy violates many assumptions of per-398

colation theory (random distribution, infinite domain), the connectivity values observed399

for the 70% ISF scenarios suggest that the mathematical principles from percolation the-400

ory can still be applied in geologic settings, a finding consistent with other studies (J. R. Allen,401

1978; Donselaar & Overeem, 2008; Pranter & Sommer, 2011).402

3.1.2 Influence of Sea Level Rise403

Under different SLR forcing scenarios, delta metrics change in value. On the sur-404

face, land area decreases with increasing SLR rate, while channel density increases (Fig-405

ure 6). The narrowing of the land area PDFs as the rate of SLR increases is indicative406

of aggradation, while the wide PDF observed for the scenario without any SLR is a sig-407

nature of progradation. Wetted fraction values increase as the rate of SLR increases, al-408

lowing a greater portion of the delta top to be flooded. Shoreline roughness becomes more409

variable, indicated by wider PDF distributions, in response to increased SLR. Trends in410

channel density, shoreline roughness, and wetted fraction metrics due to increased SLR411

are similar to those observed due to changes in ISF (Figure 5).412

In the subsurface, several metrics are very similar under all SLR scenarios. 2-D met-413

rics of geobody connectivity in the strike and dip orientations display an initial decrease414

as SLR increases from 0 to 10 mm/yr (Figure 6). Above the 10 mm/yr SLR rate 2-D415

connectivity metrics become quite similar, suggesting the existence of a threshold SLR416

rate above which the preserved deposits maintain a similar level of connectedness. The417

1-D analysis of sediment cores shows that sand package connectivity decreases as SLR418

rate increases (Figure 6). This trend, although subtle, is consistent with the observations419

of increased shoreline roughness variability and increased channel density on the surface.420

As surface channels become more numerous and mobile, sand is distributed all over the421

delta top, resulting in a more even distribution of sand across the platform. The ratio422

of sand to mud in the system remains the same, however, and the increased spread of423

sand creates thinner individual sand layers that become segmented by mud.424

3.1.3 Applying the Kullback-Leibler Divergence to Metric Differenti-425

ation426

The strike and dip section connectivity and percolated path ratio metrics are the427

most divergent in the subsurface due to changes in ISF (Figure 7a,b). This finding is con-428

sistent with the previous observations made from the metric PDFs. On the surface, shore-429
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Figure 6. Visualization of the influence of SLR on metric values for the 30% ISF scenarios.

Kernel density estimated PDFs of normalized metric values are shown for each SLR scenario.

Some metrics exhibit clear responses to the different SLR conditions. For example, channel den-

sity PDFs (upper left) display a visible response to the SLR forcing, whereas geobody volume

PDFs (upper right) are indistinguishable across the different SLR scenarios.
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line roughness and wetted fraction are consistently divergent as ISF is varied, even un-430

der different SLR conditions. At higher SLR rates channel density, land area, nearest431

edge distance, and wet edge distance have increasingly large KL divergence values, in-432

dicating that these PDFs become more sensitive to ISF when SLR rates are high (Fig-433

ure 7b).434
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Figure 7. Graphic depiction of the KL divergence results. The darkness of the cells indicates

the KL divergence value between that metric represented by that cell for that particular scenario

and the others in the row. a: Differences in metric response due to changes in ISF under no SLR

(rise rate of 0 mm/yr). b: Differences in metric response due to changes in ISF when sea level

rises at a rate of 10 mm/yr. c: Metric differences due to SLR for the lowest three sea level rise

scenarios examined when ISF is held constant at 30%. d: Metric differences due to SLR for the

lowest three SLR scenarios examined when ISF is held constant at 50%.
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When examining the influence of SLR on metric distributions, we analyzed the ‘low’435

SLR scenarios (0, 5, 10 mm/yr) separately (Figure 7c,d) as well as together with the full436

range of SLR rates simulated (Figure 8). To better understand the differences among437

these metrics at lower rates of SLR, we evaluated the 0, 5, and 10 mm/yr cases sepa-438

rately in the same manner as the ISF cases. On the surface, shoreline roughness is a weak439

metric for distinguishing between these different rates of SLR. In the subsurface, the most440

distinct metrics are the connectivity and percolated path ratios in the strike and dip sec-441

tions. Overall, distinctions between subsurface metrics due to SLR are more muted than442

those due to ISF.443

When looking at the full panel of SLR scenarios, metrics like channel density, shore-444

line roughness, wetted edge distance, and wetted fraction have high divergence values,445

which is in line with observations made from the PDFs. The change in the land area PDFs446

as a result of SLR is evident in the KL divergence results, as systems that are smaller447

and more aggradational show higher KL divergence values than those closer to the ref-448

erence case (0 mm/yr SLR). As SLR values become increasingly extreme, fractal dimen-449

sion PDFs at high SLR begin to diverge significantly from the reference (0 mm/yr) SLR450

case (Figure 8). In the subsurface, 1-D sand package connectivity, strike and dip section451

connectivity, and percolated path ratios metrics are the most divergent. The distinction452

between the reference no SLR case, and the 5 and 10 mm/yr SLR cases is made clear453

by the darker squares, while the lighter squares around 20 and 30 mm/yr suggest that454

these distributions begin to resemble the reference case again (Figure 8). This behav-455

ior is consistent with the initial trend of decreasing connectivity from 0 to 10 mm/yr SLR,456

and the absence of a trend as SLR rate increased. The differences between distributions457

of geobody volumes and sand package thicknesses are small, as previously noted, due to458

the sheer number of small geobody volumes and thin sand packages skewing the distri-459

butions. By computing the KL divergence in addition to the metric PDFs shown pre-460

viously (Figure 6), our qualitative observations are supported by quantitative differences461

between the different modeled scenarios.462

In this study we began to constrain subsurface geometry using surface network in-463

formation. We focused on river dominated deltas, where the riverine input is the primary464

driver of the surface and subsurface structure. On the surface, the shoreline roughness465

and wetted fraction are useful metrics for differentiating between deltas formed under466

different ISF and SLR conditions. In the subsurface, metrics of connectivity and perco-467

lated path ratios computed in the 2-D strike and dip sections are the strongest indica-468

tors of different ISF and SLR forcings. With this knowledge we can improve surface met-469

ric selection needed to make inferences about stratigraphic properties. The next step to-470

wards improving aquifer contamination forecasts is to link properties of subsurface ge-471

ometry to groundwater flow behavior; this relationship is explored in a companion pa-472

per, Xu et al. (accepted).473

3.2 Study Applicability and Limitations474

Using simplified model dynamics allowed us to isolate the effects of ISF and SLR475

on deltaic evolution. These two forcings are known to have strong controls on river delta476

morphology (Caldwell & Edmonds, 2014). We find that for river-dominated systems, the477

surface metrics most sensitive to ISF and SLR are the wetted fraction and shoreline rough-478

ness metrics, both of which can be readily calculated from satellite imagery. Wetted frac-479

tion values can be calculated from remotely sensed imagery using automated methods480

for surface water detection (e.g. Isikdogan et al., 2020; Feng et al., 2019), while the open-481

ing angle method, used for shoreline detection in this work, was originally applied to satel-482

lite imagery (Shaw et al., 2008). These two surface metrics are potential indicators of483

subsurface connectivity, a metric much more difficult to estimate in real systems. There-484

fore, these findings may be used in studies that seek to compare the subsurface struc-485

ture of existing river-dominated systems as they utilize surface information, complement-486
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ing methods for subsurface estimation based on direct measurements and field data. The487

KL divergence approach as applied to deltaic metrics is also useful when comparing mor-488

phological metrics between different delta experiments.489

The deposits modeled in this study are on the order of 10 m thick, and generated490

over timescales < 103 years (Figure S2). Although much of this modeled stratigraphy491

may be reworked, and the corresponding surface signal ‘shredded,’ over longer geologic492

timescales (Jerolmack & Paola, 2010; Toby et al., 2019), the structure of the shallow sub-493

surface remains important for those dependent on the groundwater it contains. In the494

Bengal basin for example, many domestic wells and some irrigation wells are shallower495

than 50 m, making the near-surface stratigraphy critical for contaminant transport (Michael496

& Voss, 2009; Bahar & Reza, 2010; Shamsudduha et al., 2011). Groundwater resources497

may therefore be affected by subsurface features which are not persistent over the ge-498

ologic record, making studies focused on shorter timescales, such as this one, important499

when trying to predict the structure of the shallow subsurface as forcings change and land-500

scapes evolve.501

Specific forcings not incorporated in the DeltaRCM model include winds, waves,502

and tides, which are known to have strong effects on delta morphology (Galloway, 1975;503

Anthony, 2015) and are the dominant forcings in many deltas world-wide (Nienhuis et504

al., 2020). River-dominated deltas, as analyzed here, tend to be large in size, convey sig-505

nificant quantities of water and sediment, and are home to millions of people (Nienhuis506

et al., 2020; Edmonds et al., 2020). This study also simplifies the variety of flow condi-507

tions present in river deltas by exclusively simulating bankfull discharge conditions, thereby508

missing processes and reworking which occur during periods of lower flow (Shaw & Mohrig,509

2014; Miller et al., 2019). We acknowledge that by not modeling these effects, this study510

does not capture the full range of deltaic morphology and dynamics. But we believe that511

our present findings are still useful as complementary methods to other subsurface es-512

timation methods, and serve as a starting point for future studies seeking to link sur-513

face and subsurface form in river-dominated deltaic systems experiencing different ISF514

or SLR conditions.515

The division of sediment types into two discrete categories, a fine mud and a coarse516

sand, simplifies the sediment grain size continuum. The input sediment grain size dis-517

tribution is known to impact the morphology and subsurface structure of river deltas (Orton518

& Reading, 1993; Caldwell & Edmonds, 2014). Given the resolution at which the stratig-519

raphy has been modeled (5 cm), this two-facies methodology accelerates model run time,520

and maintains the reduced-complexity modeling approach. As a result, the results do521

not reproduce small stratigraphic structures that exist below the modeled resolution such522

as thin mud drapes, which are often found in deltaic deposits (Galloway, 1976; Tye &523

Coleman, 1989; Tanabe et al., 2003). In addition, the modeling conducted in this study524

did not account for the effects of vegetation, permafrost, or ice on deltaic evolution. We525

note that the DeltaRCM model has been modified to simulate these effects (Lauzon &526

Murray, 2018; Lauzon et al., 2019; Piliouras et al., 2021), however these modifications527

were kept out of this study for the sake of simplicity.528
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Figure 8. Graphic depiction of the KL divergence results computed in reference to the no

SLR (0 mm/yr) scenario. Darker cells indicate a greater divergence from the reference, no SLR,

scenario. Results shown are for the 70% ISF scenarios.

4 Conclusions529

In our simulated scenarios we find that information from the surface network can530

be used to constrain predictions of subsurface structure, however further work needs to531

be conducted to constrain the applicability of these results to real systems. Broadly, more532
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variable shoreline roughness values and greater wetted fraction values correspond with533

higher subsurface connectivity. By modeling and evaluating 24 different scenarios of delta534

growth and evolution, we find that:535

1. As ISF increases, wetted fraction, shoreline roughness variability, and subsurface536

connectivity increase537

2. Surface metrics are useful in informing subsurface properties at SLR rates below538

10 mm/yr; above this rate the subsurface properties become insensitive to SLR539

rate540

3. Shoreline roughness and wetted fraction consistently prove to be the most effec-541

tive for differentiating between forcing scenarios of the 10 surface metrics stud-542

ied543

4. Connectivity and percolated path ratio in the strike and dip sections were the most544

sensitive to changes in forcings of the 9 subsurface metrics evaluated545

These findings are supported by both qualitative observations of the metric PDFs, as546

well as a KL divergence analysis in which the PDFs of the metrics were compared math-547

ematically. This study has shown the potential for surface information to provide insights548

into subsurface properties, and that mathematical methods such as the KL divergence549

can be applied to support the choice of metrics to measure.550
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