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Key Points: 15 

 In delta systems, net-to-gross ratio metrics highly correlate with horizontal flow, metrics 16 
of vertical connections highly correlate with vertical flow. 17 

 Deltas with higher sand input have lower horizontal and vertical normalized dynamic 18 
connectivity. 19 

 Deltas with higher SLR rates have higher horizontal normalized dynamic connectivity, 20 
while SLR has no obvious effect on vertical dynamic connectivity. 21 
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Abstract 22 

Understanding subsurface structure and groundwater flow in deltaic aquifers is essential 23 
to evaluating the vulnerability of groundwater resources in delta systems. Deltaic aquifers 24 
contain coarse-grained paleo-channels that preserve a record of former surface river channels as 25 
well as fine-grained floodplain deposits. The distribution of these deposits and how they are 26 
interconnected control groundwater flow and contaminant transport. In this work, we link 27 
depositional environments of deltaic aquifers to stratigraphic (static) and flow and transport 28 
(dynamic) connectivity metrics. Numerical models of deltaic stratigraphy were generated using a 29 
reduced-complexity numerical model (DeltaRCM) with different input sand fractions (ISF) and 30 
rates of sea-level rise (SLR). The groundwater flow and advective transport behavior of these 31 
deltas were simulated using MODFLOW and MODPATH. By comparing the static and dynamic 32 
metrics calculated from these numerical models, we show that groundwater behavior can be 33 
predicted by particular aspects of the subsurface architecture, and that horizontal and vertical 34 
connectivity display different characteristics. We also evaluate relationships between 35 
connectivity metrics and two environmental controls on delta evolution: ISF and SLR rate. The 36 
results show that geologic setting strongly influences both static and dynamic connectivity in 37 
different directions. These results provide insights into quantitatively differentiated subsurface 38 
hydraulic behavior between deltas formed under different external forcing (ISF and SLR rate) 39 
and they are a potential link in using information from delta surface networks and depositional 40 
history to predict vulnerability to aquifer contamination. 41 

Plain Language Summary 42 

Geologic structure and groundwater flow behaviors influence groundwater resources in 43 
delta plains. In deltaic aquifers, channel structures were created by past surface rivers. These 44 
channels in the subsurface are ‘fast-travel’ pathways for groundwater flow and contaminant 45 
transport. We created synthetic delta structures with a numerical model and then simulated 46 
groundwater flow through them in order to tie geologic structure to groundwater flow behavior. 47 
By using many different models, we investigate how structure and flow relate, and how the 48 
subsurface geology and groundwater system are affected by different sediment inputs and sea-49 
level rise rates. The findings will help us better manage delta groundwater resources and provide 50 
an opportunity to predict groundwater contamination from surface characteristics. 51 

1 Introduction 52 

Nearly half a billion people inhabit delta regions across the world and more than 40% of 53 
fresh water flows through deltas before entering global oceans (Syvitski and Saito, 2007). In 54 
many delta regions, groundwater is the primary source for drinking and irrigation (Shamsudduha 55 
et al., 2011). However, the groundwater resources of deltas are threatened by several factors, 56 
such as over-pumping, seawater intrusion and anthropogenic and geogenic contamination 57 
(Syvitski et al., 2009; Tessler et al., 2015; Overeem & Syvitski, 2009; Wada et al., 2010). Efforts 58 
to sustainably manage these resources and reduce vulnerability to contamination must consider 59 
both hydrology and subsurface structure (e.g., Michael and Khan, 2016; Khan et al., 2016). 60 
However, the complexity of delta architecture makes inference of structure from direct 61 
observations prohibitive. Improving understanding of the linkages between external forcings that 62 
can be observed or inferred, subsurface structure, and groundwater flow and contaminant 63 
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transport behaviors will improve our ability to manage delta aquifers and preserve water 64 
resources for future generations. 65 

The sedimentary structural controls on flow and transport have been demonstrated in 66 
aquifers through numerical modeling (Wen & Gomez-Hernandez, 1998; Zinn & Harvey, 2003; 67 
Dagan et al., 2003; Jankovic et al., 2017). Due to the difficulty in explicitly representing deltaic 68 
heterogeneity over large scales, parameters are often upscaled in regional models. For example, 69 
homogeneous and anisotropic hydraulic conductivity (K) were used to model the Colorado River 70 
Delta (Feirstein et al., 2008; Mohammed et al., 2017), the Bengal Delta (Michael & Voss, 2009), 71 
and the Mississippi Delta (Barlow & Clark, 2011;). On smaller scales, heterogeneity and 72 
subsurface structure have been incorporated in groundwater flow and solute transport models. 73 
Grain-size heterogeneity and clay beds have been incorporated into models of the Mekong Delta 74 
(Erban et al., 2013) and the Bengal Delta (Hoque et al., 2017). Additionally, palaeohydrology 75 
has been shown to control 3D structure and groundwater salinity in the Nile Delta (van Engelen, 76 
2019) and salinity traps and arsenic levels in the Red River Delta (Larsen et al., 2017). Michael 77 
and Khan (2016) and Khan et al. (2016) showed that heterogeneity-induced preferential flow 78 
plays an important role in aquifer vulnerability to contaminant migration in the Bengal Delta. 79 
Numerous sedimentological studies have demonstrated the prevalence of sandy paleo-channels 80 
in deltaic stratigraphy (Straub et al., 2009; Miall, 2014; Bhattacharyya et al., 2015), which are 81 
expected to affect the subsurface connectivity. Kolker et al. (2013) demonstrated that these 82 
paleo-channels serve as conduits for preferential flow in the Mississippi River Delta. Sawyer et 83 
al. (2015) showed that surface water – groundwater interaction was influenced by channel 84 
connectivity and sediment grain size. Rao et al. (2015) showed the importance of a single paleo-85 
channel on coastal groundwater development in deltaic aquifers.  86 

Though the effects of deltaic heterogeneity on groundwater flow and solute transport 87 
have been clearly demonstrated on multiple scales, the nature of characteristic delta channel 88 
networks has not been fully considered. Connected channels on the delta surface distribute water 89 
and sediments, with directionality determined by the hydrology and geology of the system (Shaw, 90 
2013; Hiatt & Passalacqua, 2015; Reitz et al., 2015). The channels move across the delta surface, 91 
through avulsion or migration, due to both external and internal forcings, such as tides, sea-level 92 
rise, sediment grain size and river flow rate (Heller et al., 2001; Sheets et al., 2002; Kim et al., 93 
2006). Subsurface paleo-channels are then created through burial and translation into the 94 
subsurface of the surface channel network (Liang et al., 2016a), and their subsurface connectivity 95 
structure can be tied to various surface conditions (Hariharan et al., submitted). The nature of the 96 
connectedness of coarse-grained channels and fine-grained matrix controls the flow of 97 
subsurface fluids, potentially resulting in highly preferential flow (Krishnan and Journel, 2003; 98 
Kolker et al., 2013).  99 

To better understand the subsurface channel connection and corresponding flow behavior 100 
in deltaic aquifers, the concept of connectivity is used in this study. Connectivity represents one 101 
of the fundamental properties of a system; it relates to heterogeneity and reflects the nature of 102 
connected geologic features that have a substantial impact on flow and transport (Dagan, 1986; 103 
Gelhar, 1986; Kundby and Carrera, 2006). A number of studies have shown that structural 104 
connections in a heterogeneous system is a better conceptualization for predicting dynamic 105 
behavior than two-point statistics. For example, Sanchez-Vila et al. (1996) noted that systems 106 
with high-K connections have a larger effective K than multi-Gaussian fields with similar K 107 
variations. Madden (1983) and de Marsily (1985) discussed the importance of connectivity on 108 



manuscript submitted to Water Resources Research 

4 
 

flow and transport in fractured rock systems. Zinn & Harvey (2003) revealed the differences in 109 
dynamic behavior among high-K connected systems, multi-Gaussian systems and low-K 110 
connected systems. They showed that the effective conductivity is higher and solute transport is 111 
faster in high-K connected fields. 112 

Despite the importance of connectivity to flow and transport, its definition and 113 
measurement are not straightforward (Kundby and Carrera, 2005; 2006; Western et al., 2001). 114 
Thus, a variety of quantitative metrics of connectivity have been developed. In general, 115 
connectivity metrics can be divided into two groups: static and dynamic (Renard & Allard, 2013). 116 
Static connectivity metrics quantify the intrinsic properties of geologic media that connect 117 
spatially, such as permeability or porosity. Many studies simplify the heterogeneous geologic 118 
field to a binary system, resulting in more-permeable or less-permeable ‘geobodies’ (Western et 119 
al., 2001; Larue & Hovadik, 2006; Kundby et al., 2006). Dynamic connectivity metrics quantify 120 
the flow and solute transport behavior affected by connected structures, particularly preferential 121 
flow and fast solute transport. These metrics depend not only on the geologic system, but also on 122 
the hydraulic gradient and aquifer geometry. Static and dynamic metrics are related, but the 123 
relationship is complex and not well defined. Bianchi et al. (2011) showed similar variations in 124 
static and dynamic metrics among different statistical models. Renard & Allard (2013) reviewed 125 
the relationship between effective K and the proportion of high-K zones within an aquifer (net-126 
to-gross ratio), and proposed that effective K is not a simple function of net-to-gross ratio but is 127 
also controlled by continuity, low-K barriers, and percolation status.  128 

In deltaic aquifers, static connectivity and external forcings may be more easily inferred 129 
than dynamic flow and transport behaviors, and we expect that these are related, since delta 130 
channel distributions and morphology are sensitive to variations in the external forcings, such as 131 
sand fraction and the rate of sea-level rise (Liang et al. 2016a; 2016b). Therefore, in this study, 132 
we investigate (1) the relationship between subsurface static and dynamic connectivity within 133 
numerically generated deltas, and (2) the influence of input sand fraction and rates of sea-level 134 
rise on subsurface static and dynamic metrics. In a companion paper (Hariharan et al., submitted), 135 
we explore the relationship between surface metrics and static subsurface metrics.  136 

2 Methods 137 

2.1 Process-based modeling 138 

Numerical models of deltaic aquifers were produced with DeltaRCM (Liang et al., 139 
2015a), a cellular, reduced-complexity morphodynamic model based on a set of physical rules. 140 
These rules regulate the transport of water and sediment particles through the system in a 141 
Lagrangian fashion using a weighted random walk. DeltaRCM can resolve a wide range of 142 
channel dynamics and reproduce important processes in delta generation. The detailed numerical 143 
implementation is extensively described in Liang et al. (2015a; 2015b), and is not repeated here.  144 

Conceptually, we considered one river inlet in a coastal area. Surface and subsurface 145 
channel networks conform to the general delta network distribution: sparse main channels in the 146 
upstream region, and multiple, complex distributaries downstream (Figure 1a). Sediment is 147 
transported by these branching river channels to build the delta. In DeltaRCM, the aquifer was 148 
discretized into rectangular cells with dimension 50 m × 50 m × 5 cm. The size of each model is 149 
different, so they have different numbers of cells. After sediment deposition, the sand content in 150 
each cell is recorded, ranging from 0 (no sand at all – pure mud) to 1 (pure sand).  151 
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Figure 1. The model of delta stratigraphy used in this study. (a) the delta generated numerically 152 
by DeltaRCM with a surface channel network and subsurface channel distribution. (b) the 153 
rectangular volume extracted from (a) for groundwater modeling. Red arrows are direction of 154 
flow in the horizontal and vertical cases for numerical groundwater flow simulations, K is 155 
hydraulic conductivity. The conversion of the DeltaRCM realizations to groundwater models is 156 
detailed in Text S2 in the Supporting Information. 157 

 
A set of 240 deltas were generated using DeltaRCM, these realizations were randomly 158 

generated based on weighted random walks (Liang et al., 2015a). Two variations in external 159 
conditions were considered and analyzed in this study, input sand fraction (ISF) and rate of sea-160 
level rise (SLR), other physical parameters and basin geometry were the same as those in Liang 161 
et al. (2016a) as this parameter set was validated against real and experimental deltas. The ISF is 162 
the sand fraction input at the inlet boundary, which controls the total sand fraction in the aquifer, 163 
though the actual sand fraction in the preserved stratigraphy depends on fractionation between 164 
various depositional elements (e.g. channel vs floodplain). ISF also strongly influences the sand 165 
content of each cell and the channel distribution in the system, for example sandy deltas have 166 
higher channel mobility and more active distributaries (Liang et al., 2016a). We used three ISFs 167 
in this study: 30%, 50%, and 70%, to span a range of values while avoiding extremes which tend 168 
to homogeneity. The rate of SLR is another critical component of delta evolution. The current 169 
average rate of SLR is around 3.3 mm/y (Cazenave et al., 2014), and before the mid-Holocene 170 
when deltas rapidly built, this rate was ~10 - 20 mm/y (Goodbred et al., 2003; Spratt & Lisiecki, 171 
2016). Increasing the SLR rate results in more channel distributaries and a thicker but narrower 172 
delta (Liang et al., 2016a). We used a wide range of SLR rate, from 0 to 60 mm/y. Only 173 
DeltaRCM simulations run with high SLR rates (40, 50, 60 mm/y) are able to generate models 174 
with enough stratigraphy to span our criterion of at least 10 channel heights within a reasonable 175 
timeframe. In order to incorporate the full range of SLR rate in our analysis (0, 5, 10, 20, 30 176 
mm/y), we developed a method to stitch together multiple low SLR rate models to obtain an 177 
aquifer of sufficient thickness, as explained in Hariharan et al. (submitted). We tested the 178 
stitching method to ensure it does not strongly influence the connectivity in the system (Text S1). 179 
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Overall, the five scenarios from 0 to 30 mm/y are stitched models, and the three from 40 to 60 180 
mm/y are raw (unstitched) models.   181 

2.2 Groundwater modeling 182 

To create models with some degree of spatial statistical stationarity, and for convenient 183 
computation of connectivity metrics and assignment of flow boundaries, we extracted a 184 
rectangular volume from the full DeltaRCM model (Figure 1). The grid of the groundwater 185 
model is the same as that of the stratigraphic model. Because the size of the simulated deltas 186 
varies under different SLR rates, the strategy of box cutting is dependent on the delta size and is 187 
designed to maintain a consistent sampled portion of the delta among different SLR rates (Text 188 
S2, Figure S1). Therefore, groundwater models under different SLR rates have different 189 
dimensions. The depth of low SLR rate models was 25 m after stitching, and the depth of high 190 
SLR rate models was variable. There was also a small difference in the size of models with the 191 
same SLR rates because deltas were generated randomly. The rough dimensions of the 192 
groundwater models for each SLR rate is shown in Figure S2. 193 

The sand content in each model cell was converted to K. The K values of pure sand and 194 
pure mud were set as 1e-4 m/s and 1e-9 m/s, respectively. The K of each cell was calculated 195 
based on the geometric mean of sand content value (Text S2). The relationship of K and sand 196 
content is presented in Figure S3 and explained in Text S2 in the SI. 197 

We simulated steady-state groundwater flow with MODFLOW (Harbaugh et al., 2005), 198 
considering two cases: horizontal and vertical (Figure 2). In the horizontal case, h1 = 1 m was 199 
assigned to the face of the inlet, h2 = 0 m was assigned to the face at the seaside, and no-flow 200 
boundary conditions were imposed on the other four faces. In the vertical case, h1 = 1 m and h2 = 201 
0 m were assigned to the top and bottom faces, respectively, and the other four faces were no-202 
flow boundaries. The particle travel times in the simulated flow field were calculated with 203 
MODPATH (Pollock, 2016). More than 20,000 particles were evenly distributed across the 204 
upstream face in the horizontal case with at least 1 particle in each cell, and more than 12,000 205 
particles were used in the vertical case with at least 5 particles in each cell. Only advective 206 
transport is considered in this study, and the effects of mechanical dispersion and molecular 207 
diffusion are ignored. Effective conductivity and travel times calculated in MODFLOW and 208 
MODPATH are used to calculate connectivity metrics. 209 

 210 

 211 
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Figure 2. Boundary conditions of horizontal and vertical cases. Yellow face is the higher-head 212 
boundary, blue is the lower-head boundary, no-color faces are no-flow boundaries. 213 

 

2.3 Connectivity metrics 214 

Ideal connectivity metrics are those that can be easily measured and can sufficiently 215 
represent the spatial distribution of parameters and dynamic behaviors. Static connectivity 216 
metrics were calculated based on the spatial characteristics of the geologic model in 3D and 2D 217 
sections, and dynamic connectivity metrics were calculated based on the results of the 218 
groundwater flow simulation. We calculated 30 metrics to analyze correlations between static 219 
and dynamic connectivity. Only those metrics that proved to be significantly correlated are 220 
shown below (Tables 1 & 2). Among them, we selected 12 connectivity metrics from previous 221 
studies (Kundby and Carrera, 2005; 2006; Renard & Allard, 2013) and we formulated 18 other 222 
metrics for deltaic characteristics. In the companion paper, Hariharan et al. (submitted), 223 
probability distributions were used to compare surface and subsurface static metrics. Here, we 224 
use single average values of the static metrics in order to better correlate them to typical dynamic 225 
metrics.  226 

Static connectivity metrics capture spatial parameter distributions and channel 227 
connectedness. Because it is more straightforward to quantify connectivity in a binary system, 228 
the K field was converted to binary using a threshold of 0.8 sand content. The basis for this 229 
threshold is discussed in Text S3, and we note that the threshold choice had little effect on the 230 
results, as the original distribution was strongly bimodal (Figure S4). A group of connected cells 231 
with K values equal to or larger than the threshold are defined as a geobody (Larue & Hovadik, 232 
2006; Hovadik & Larue, 2007; Stauffer & Aharony, 2014), and a geobody that connects opposite 233 
boundaries is designated as a percolated path (Figure S5). To avoid bias related to the total sand 234 
fraction in the system and to specifically target the effect of spatial connections, we normalized 235 
the volume of the largest geobody and percolated path by sand volume (0.8). We then calculated 236 
normalized volumes in 2D planes with different directions. These metrics are Horizontal, Strike, 237 
and Dip section connectivity, and Horizontal, Strike, and Dip section percolated path ratio 238 
(Table 1). Another set of metrics is based on sampling a core, defined as a 1D, vertical column in 239 
the system (Figure S6). We calculated the arithmetic mean of sand content of each core and 240 
converted the 3D box to a map of vertically-averaged sand content (Figure S6), which reflects 241 
channel stacking patterns and vertical connections. Two static metrics were derived from this 242 
map, Highest core sand fraction and Fraction of high sand cores (Table 1). We classified the 243 
static metrics into two orders (Table 1). First-order metrics reflect bulk properties, essentially the 244 
net-to-gross ratio. Second-order metrics reflect the spatial connection of high-K faces. These 245 
properties were calculated on the entire extracted domain, and also locally by dividing the 246 
domain into three regions. Regions 1, 2, and 3 are the closest, intermediate and farthest from the 247 
delta source, respectively (Figure S7), reflecting differences in channel distributions from 248 
upstream to downstream (Table 1).  249 

Table 1. Static metric definitions. 1st order static metrics reflect bulk properties and overall 
net-to-gross ratio, 2nd order static metrics show the spatial distribution. The definition of 
geobody and percolated path are in Figure S5, the definition of core and averaged sand content 
map is in Figure S6. 
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Metric Order Definition 

Sand Fraction 1 Average sand content of all cells in the system 

KG [L/T] 1 Geometric mean of hydraulic conductivity (K) of all the cells 

Average Geobody 
Volume [L3] 

2 Average volume of geobodies 

Horizontal Section 
Connectivity [0] 

2 Arithmetic mean over horizontal sections of the ratio of the largest 
geobody to the total area of geobodies in each section. 

Strike Section 
Connectivity [0] 

2 Arithmetic mean over strike vertical sections of the ratio of the 
largest geobody to the total area of geobodies in each section. 

Dip Section 
Connectivity [0] 

2 Arithmetic mean over dip vertical sections of the ratio of the largest 
geobody to the total area of geobodies in each section. 

Horizontal Section 
Percolated Path ratio 
[0] 

2 Arithmetic mean over horizontal sections of the ratio of percolated 
path geobodies to the total summed area of geobodies in each section. 

Strike Section 
Percolated Path ratio 
[0] 

2 Arithmetic mean over strike vertical sections of the ratio of 
percolated paths to total summed area of geobodies in each section. 

Dip Section 
Percolated Path ratio 
[0] 

2 Arithmetic mean over dip vertical sections of the ratio of percolated 
paths to total summed area of geobodies in each section. 

Highest Core Sand 
Fraction [0] 

2 The highest sand fraction of any core in the domain 

Fraction of High 
Sand Cores [0] 

2 The number of vertical columns (cores) with greater than 0.8 sand 
content divided by the total number of cores. 

Local metrics / Static metrics above calculated in Region 1, 2 and 3 (Figure S7) 

 
Dynamic connectivity metrics (Table 2) are used to measure the flow and advective 250 

transport behavior. These metrics were derived from the results of numerical groundwater flow 251 
modeling and particle tracking in the horizontal and vertical directions, designed to target 252 
preferential flow behavior in particular. The simplest and most widely used metric is effective 253 
hydraulic conductivity (Keff) (Guswa & Freyberg, 2002), calculated by simulating horizontal and 254 
vertical flow through each model to obtain specific discharge for a given gradient, then back-255 
calculating Keff by Darcy’s law. According to Matheron (1967), Keff is equal to the geometric 256 
mean of K (KG) for an isotropic, multi-Gaussian field. Thus, the ratio Keff /KG is widely used as a 257 
normalized connectivity indicator measuring overall flow behavior normalized, in effect, by net-258 
to-gross ratio (Knudby & Carrera, 2005; Zarlenga et al., 2018). For advective transport, Knudby 259 
& Carrera (2005) proposed the ratio of early arrival time to average arrival time (Ta/T5) as an 260 
advective transport-normalized connectivity metric derived from breakthrough curves; it 261 
represents preferential flow normalized by overall flow behavior. Keff/KG and Ta/T5 have been 262 
widely used as dynamic connectivity metrics in previous studies (Knudby & Carrera, 2005; Zinn 263 
& Harvey, 2003; Jankovic et al., 2017; Le Goc et al., 2010; Frippiat et al., 2009). In addition, 264 
preferential discharge measures the importance of preferential flow in the total discharge; it is 265 
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defined as the fraction of discharge at the exit locations of the first 5% of particles to arrive 266 
relative to total discharge (Bianchi et al., 2011).   267 

Table 2. The definition of dynamic metrics. All metrics were calculated in both horizontal and 
vertical directions. 
Metric Order Definition 

Keff [L/T] Overall flow Effective K calculated by Darcy’s Law 

Keff/KG [-] Overall flow / 
net-to-gross 

Effective K normalized by geometric mean of K. This metric 
indicates overall flow normalized by a 1st order static metric. 

L/Ta[L/T] Overall flow Inverse of geometric mean of travel time of all particles tracked 
from one constant head boundary to the opposite boundary, L is the 
distance between boundaries 

L/T5 [L/T] Preferential flow Inverse of 5th percentile of travel time of particles tracked from one 
constant head boundary to the opposite boundary, L is the distance 
between boundaries 

Ta/T5 [-] Preferential flow 
/ overall flow 

5th percentile of travel time normalized by geometric mean of travel 
times. This metric indicates preferential flow normalized by overall 
flow. 

Preferential 
Discharge 
[-] 

Preferential flow The fraction of discharge at the exit locations of fast flow paths (first 
5% to arrive) to total discharge. 

 
3 Results 268 

3.1 Relationships between static and dynamic metrics 269 

The correlations between static and dynamic metrics provide insights into the controls of 270 
sedimentary architecture on groundwater flow and advective transport in deltaic aquifers. A high 271 
correlation between a static and dynamic metric suggests that the given dynamic metric can be 272 
predicted with the static metric. These correlations are useful because static metrics are generally 273 
more easily measured than dynamic metrics. We calculated Pearson correlation coefficients for 274 
each pair of metrics across the 240 model simulations – 10 realizations each for 3 ISF and 8 SLR 275 
rates – 24 combinations of each pair of metrics. We consider a static metric to be predictive of a 276 
dynamic metric if 12 out of the 24 combinations are significantly correlated; these are shown in 277 
Table 3. Correlations for all static-dynamic metric pairs are given in Table S2.  278 

Horizontally, 1st-order static metrics tend to be correlated with overall flow behavior (Keff, 279 
Keff/KG, and L/Ta). For example, sand fraction and KG are highly correlated with Keff and Keff/KG 280 
(Table 3). Most of the P-values are less than 0.01, which indicates a strong correlation between 281 
the static metrics and overall flow. This is because the delta is a highly connected system 282 
horizontally, so the sand fraction exerts a primary control on the percolated paths and connected 283 
geobodies, which in turn drives flow behavior. However, none of the static metrics correlate with 284 
transport metrics to a high significance level. Horizontal section percolated path ratio is the 285 
most predictive static metric for preferential flow (L/T5) (Table 3). In addition, the left panel of 286 
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Figure 3 shows that most of the preferential flow follows the high-sand clusters in the horizontal 287 
direction, which also indicates that the horizontal sand distribution controls the flow behavior.  288 

Table 3. Highly correlated static and dynamic metrics. Each pair of static-dynamic metrics has 
21 correlations, they are listed in this table if more than 10 correlations are significant. The 
significant correlations are based on the P-values in Pearson Correlation. 

Static metrics Dynamic metrics # of p-values≤
0.05 

# of p-values ≤ 
0.01 

Sand Fraction Horizontal Keff 21 14 

Sand Fraction Horizontal Keff/KG 20 18 

KG Horizontal Keff 20 14 

KG Horizontal Keff/KG 22 20 

Average Geobody Volume Horizontal Keff 15 9 

Horizontal Section Connectivity Horizontal Keff 13 6 

Horizontal Section Connectivity Horizontal Keff/KG 12 5 

Horizontal Section Percolated Path Ratio Horizontal Keff 16 8 

Horizontal Section Percolated Path Ratio Horizontal T5 12 4 

Dip Section Percolated Path Ratio Vertical Keff 12 5 

Highest Core Sand Fraction Vertical Keff 13 5 

Highest Core Sand Fraction Vertical Keff/KG 12 5 

Highest Core Sand Fraction Vertical T5 13 6 

Fraction of High Sand Core Vertical Keff 12 4 

Fraction of High Sand Core in Region 1 Vertical Keff 13 4 

Fraction of High Sand Core in Region 1 Vertical T5 12 5 

 
In the vertical direction, the flow paths are more tortuous, and preferential flow follows 289 

sand bodies connected by channel stacking (Figure 3, right panel). Dynamic connectivity metrics 290 
such as Keff are best predicted by static metrics that reflect vertical spatial connections and 291 
channel stacking patterns, such as dip section percolated path ratio, fraction of high sand core, 292 
and highest core sand fraction (Table 3). Additionally, highest core sand fraction, which 293 
represents the stability of channel stacking, is highly predictive of vertical preferential flow (L/T5) 294 
with 13 significant correlations (Table 3). However, most of the p-values for the static-dynamic 295 
correlations are larger than 0.01, which indicates weaker correlations in the vertical direction 296 
compared to the horizontal direction. The system is less connected in the vertical direction 297 
because channels are inherently horizontal features, transporting sand and water basinward and 298 
depositing horizontally-connected sandbodies. High-sand connections between the top and 299 
bottom boundaries (i.e. vertical connectivity) are highly sensitive to channel stacking driven by 300 
channel migration and avulsion, which depends on ISF and rate of SLR (Section 3.2 & 3.3).  301 
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Another characteristic of vertical groundwater flow is that preferential flow is 302 
concentrated in the upstream portion, near the sediment source (Figure 3 b&d), where lateral 303 
channel migration is low and channels have a tendency to stack vertically. Thus, local metrics in 304 
Region 1 play a more important role in predicting vertical flow than in Regions 2 and 3 (Table 305 
S2; Figure S7). For example, fraction of high sand core in Region 1 is significantly correlated 306 
with vertical Keff and vertical L/T5 (Table 3), but the correlation is not strong for the fraction of 307 
high sand core in Regions 2 and 3 (Table S2). 308 

 

Figure 3. Sand distribution and preferential flow lines for one realization of a model with 309 
ISF=30% and SLR rate=40 mm/y. Red areas are high-sand clusters and black lines are flow 310 
paths of the 5% fastest particles. From top to bottom are 3D view, plan view, face view, and side 311 
view. Left is horizontal flow simulation, right is vertical flow simulation. 312 
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3.2 The effect of input sand fraction on connectivity 313 

Input Sand Fraction (ISF) is the total amount of sand initially put into the system. ISF 314 
directly determines how much sand is in the delta as a whole, with some variability due 315 
extraction of the sub-domain. Sandy deltas tend to have greater channel mobility and shallower 316 
channel depth, which cause more variable channel stacking and therefore more variable vertical 317 
connectivity. Muddy deltas tend to display less mobile and deeper channels, leading to more 318 
stable channels and more consistent vertical stacking (Liang et al., 2016a).  Realizations of 0 and 319 
40 mm/y SLR rates shown in Figure 4 indicate the effect of ISF on stitched and non-stitched 320 
models. The actual sand fraction of models is higher than the corresponding ISF due to model 321 
cutting (Text S2). In general, the impact of ISF on connectivity metrics is similar in models with 322 
SLR rates from 0 mm/y to 60mm/y (Figure S8-S10). Two dynamic normalized connectivity 323 
metrics, Keff/KG and Ta/T5, are analyzed in this section.  324 

In the horizontal direction, non-normalized static and dynamic metrics generally 325 
increased with increasing ISF due to higher overall K values (Figure S9 a,d,e). However, the 326 
normalized ratios of Keff/KG and Ta/T5 decreased from 100 to less than 20 with increasing sand 327 
fraction in both low SLR and high SLR rates (Figure 4 a&b and Figure S9 b&f). This indicates 328 
that the channel distributions with less sand input remain well connected; a larger sand input 329 
only increases the width of preserved channels, which effectively makes it more like a 330 
homogeneous system. Keff/KG nonlinearly decreases with ISF (Figure 4a) because KG increases 331 
more with ISF than Keff does. This is because the horizontal system is always percolated by sand-332 
rich channels, so the overall horizontal flow behavior is relatively insensitive to the variation of 333 
sand fraction. Ta/T5 also shows an inverse trend with sand fraction (Figure 4b). Similar to Keff/KG, 334 
preferential flow (L/T5) is more controlled by the presence of percolated channels than overall 335 
flow (L/Ta). Thus preferential flow changes less than overall flow after adding more sand into 336 
system, the ratio of Ta/T5 decreases with increasing sand input. Nearly 30% of water discharged 337 
through the fast flow exit locations (where the fastest 5% of tracked particles exited the model) 338 
in 30% ISF models, while this percentage decreased to 10% with more sand input (Figure S9c). 339 
This implies that preferential flow is not a primary control on horizontal flow and transport in 340 
percolated deltaic aquifers. The presence of many relatively efficient paths means that the tail of 341 
highly efficient ones does not have a strong influence.   342 

In the vertical direction, the ratios of Keff/KG and Ta/T5 are orders of magnitude smaller 343 
than in the horizontal case (Figure 4 c&d). In particular, Keff/KG < 1, which indicates that the 344 
system is not well connected vertically. Channel stacking determines the vertical sand 345 
connections, especially in the upstream area where channels are less mobile. Therefore, the 346 
preferential flow concentrates in the upstream area (Figure 2), and exerts a stronger control on 347 
the flow field than horizontal cases, with 40% to 70% of discharge at the fast exit locations 348 
(Figure S10c). In muddy deltas (30% ISF), more stable channels with less migration create more 349 
vertical connections and preferential flow. Thus, Keff/KG and Ta/T5 are both greater for 30% ISF 350 
than 50% and 70% ISF conditions (Figure 4 c&d and Figure S10 b&f).  351 

 



manuscript submitted to Water Resources Research 

13 
 

 

Figure 4. The effect of ISF on normalized dynamic connectivity. (a) and (b) are horizontal 352 
Keff/KG and Ta/T5. (c) and (d) are vertical Keff/KG and Ta/T5. Only SLR rates of 0 mm/y and 40 353 
mm/y are shown for clarity while spanning a range of values.  354 

3.3 The effect of the rate of Sea-Level Rise (SLR) 355 

In coastal regions, delta formation is influenced by rate of SLR. The rate of sea-level 356 
variation determines the space available for sediment deposition (accommodation), and also 357 
influences channel flow via backwater effects. A higher SLR rate has been demonstrated by 358 
conceptual models (Jerolmack, 2009) and physical experiments (Martin et al., 2009) to intensify 359 
channel branching and shorten the autogenic timescales. This effect was also supported by 360 
DeltaRCM numerically (Liang et al., 2016a). In the DeltaRCM simulations, a higher deposition 361 
rate on the delta top is required to maintain an elevation of the shoreline close to sea level under 362 
higher SLR rates, and river channels split into more distributaries to deliver sediment. Though 363 
sand fraction is not strongly influenced by SLR rate, there is a trend of sand fraction decreasing 364 
slightly with SLR rates (Figure S8a). This is most likely because high rates of sea-level rise 365 
cause more deposition of sand near the sediment source, which is removed when extracting the 366 
sub-domain. The effect of SLR rate on horizontal and vertical connectivity is described below. 367 
Only the 30% ISF case is discussed here since the effect of SLR rate in other ISF simulations is 368 
similar (Figure S8-S10).  369 

In the horizontal plane, normalized dynamic connectivity increases with SLR rates 370 
(Figure 5a & b and Figure S9 b&f). A possible explanation is that higher SLR rate results in a 371 
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lower sand fraction in the main part of the delta, similar to the effect of ISF, thus resulting in 372 
greater normalized dynamic connectivity in a system that is always fully percolated. Another 373 
explanation is that high SLR rate models have greater horizontal percolation because channels 374 
tend to span the formation from upstream to downstream (Figure S2). This results in increasing 375 
horizontal preferential flow (L/T5) with SLR rates (Figure S9d).  376 

In the vertical direction, both sand fraction and channel migration vary with SLR rates, 377 
and they have opposing effects on dynamic connectivity, resulting in a lack of systematic 378 
variation with SLR rates (Figure 5 c&d and Figure S10 b&f). Higher SLR rate results in a lower 379 
sand fraction, which creates more stable channels, resulting in a higher vertical connectivity. On 380 
the other hand, fast deposition rates in the high-SLR conditions result in more river avulsions and 381 
migration, which reduces the vertical sand connections.  382 

 

Figure 5. The effect of SLR rates on static and normalized dynamic connectivity, only 30% ISF 383 
displayed. (a) and (b) are horizontal Keff/KG and Ta/T5. (c) and (d) are vertical Keff/KG and Ta/T5. 384 

4. Discussion 385 

The selection of connectivity metrics is key in determining the relationship between 386 
stratigraphic structure and groundwater flow behavior. 3D static metrics were not distinguish 387 
characteristics in many cases because the sand in the simulated systems in this work was found 388 
to be highly connected horizontally. Thus, 3D geobody connectivity and percolated path ratio 389 
were exactly same and very close to the overall net-to-gross ratio. Statistics in 2D sections, 390 
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however, proved to be useful in correlating horizontal and vertical dynamic behavior, and 391 
performed well in predicting a variety of dynamic metrics, such as Keff, Keff/KG and L/T5 (Table 392 
3). The most useful dynamic metrics in this study were Keff/KG and Ta/T5. These are higher order 393 
metrics normalized by lower order metrics, removing the influence of total sand fraction and 394 
indicating spatial connectedness and preferential flow behavior. In addition to the metrics 395 
mentioned above, we calculated connectivity metrics which eventually excluded from this paper, 396 
such as geodesic distance (Passalacqua et al., 2012), metrics related to the variogram (Western et 397 
al., 1998; Kundby & Carrera, 2005), connectivity function (Western et al., 2001), flow 398 
channeling (Le Goc et al., 2010), and hydraulic diffusivity (Kundby & Carrera, 2006). These 399 
metrics are not presented in this work because they are not well correlated with other metrics or 400 
they do not capture the important features of flow and advective transport in a channelized 401 
system.  402 

Different static metrics correlate with different dynamic behaviors in the horizontal and 403 
vertical directions. In general, 1st-order static metrics have a good correlation with overall flow 404 
in the horizontal plane, and 2nd-order static metrics perform well in predicting vertical overall 405 
flow and preferential flow (Table 3). Horizontal overall flow is very easy to predict with static 406 
metrics and shows agreement among ISF and SLR rates, because the delta system is highly 407 
percolated and sand-connected horizontally. However, the horizontal preferential flow is difficult 408 
to capture because the system is highly percolated for all conditions, so that fast flow is not 409 
sensitive to channel variations in this system. Vertical flow behavior is more complex than 410 
horizontal flow (Figure 4c&d, Figure 5c&d) - it is controlled by channel stacking which is 411 
influenced by multiple geologic conditions and varies by spatial location. For example, 412 
increasing SLR rate produces more channel distributaries and promotes channel migration, while 413 
a lower sand fraction for higher SLR rate decreases channel migration (Figure S8a). Additionally, 414 
upstream regions have more stable channels than downstream regions. These combined effects 415 
make vertical flow concentrate in upstream areas and obscure any relationship to geologic setting. 416 

Our analysis shows that flow and advective transport prediction could be improved by 417 
understanding of geologic structure and external forcings of deltaic systems. According to this 418 
analysis, lateral flow dynamics, such as submarine groundwater discharge (SGD) and saltwater 419 
intrusion (SWI), would occur at high rates even in deltas with rich mud content, due to existing 420 
highly percolated channels (e.g., Kolker et al., 2013). The hydrogeologic parameters and 421 
hydrochemistry is likely to be strongly heterogeneous in the lower delta plain environments due 422 
to sedimentation of complex river distributary networks - this paleo-channel distribution tends to 423 
create a multi-facies, inter-fingering architecture (Goodbred & Kuehl, 2000; Goodbred et al., 424 
2003; Hoque et al., 2017). Channel stacking is an important structural factor in this study, and is 425 
predictable in the delta evolution process. For example, in the Ganges Delta in the mid-Holocene, 426 
sea-level rise and more humid conditions accelerated sediment discharge and river channel 427 
migration (Goodbred et al., 2003), so paleo-channels tend to have less stacking and fewer 428 
vertical sand connections. However, in the late-Holocene, the stacking density may have 429 
increased again due to a less active sedimentary environment. Spatially, greater infiltration and 430 
vertical flow may occur in upstream regions due to more consistent channel stacking. This 431 
consistent stacking may contribute to vertical transport of contaminants, such as geogenic arsenic 432 
in deltas of Southern Asia, from Holocene aquifers to older strata (e.g., Michael & Khan, 2016; 433 
Khan et al., 2019). 434 
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This study synthetically relates the delta sedimentological structure and flow behaviors. 435 
In order to extend the relationship to real deltas, several factors should be considered. First, the 436 
external forcings (ISF and SLR rate) are held constant in our simulations, whereas forcing in real 437 
deltas is variable. This may limit the sedimentary time interval over which insights from 438 
knowledge of forcing may be applied to the subsurface. We also do not consider forcing 439 
mechanisms such as tidal effects in this study. Tides act as pistons pushing channel water back, 440 
interacting with both fluvial and ocean material (Ensign et al., 2015). This may influence both 441 
sediment distribution and river morphology, changing the channel distributions and preservation 442 
in the downstream region. 443 

This work shows the strong influence of subsurface channel structure on groundwater 444 
flow and advective solute transport dynamics. Because these structures, primarily sandy channels, 445 
are a result of deposition by river channels on land surface, there is potential to predict flow and 446 
transport based on surface drainage network characteristics. Subsurface information acquisition 447 
including static and dynamic data are costly, while surface information is more easily obtained. 448 
In our companion paper (Hariharan et al., submitted), we show that the depositional environment 449 
affects surface metrics of shoreline roughness and wetted fraction, which are in turn indicative of 450 
subsurface static metrics, such as connectivity and percolated path ratio. Thus, information on 451 
subsurface structure can be obtained from surface information and understanding of the external 452 
forcings. Here we show that these subsurface static metrics also are predictive of flow and 453 
advective transport behavior. This connection, from surface to subsurface to flow and transport, 454 
has the potential to greatly improve our ability to predict vulnerability of groundwater resources 455 
to contamination in globally important deltaic aquifer systems.  456 

5. Conclusions 457 

This study aims to investigate the relationship between flow behavior and geologic 458 
structure in deltaic aquifers, and the influence of external forcings. We establish the links 459 
between static and dynamic connectivity in synthetic systems generated with different rates of 460 
sea-level rise and sand proportion to gain insights into how geologic features and external 461 
forcings can help to predict groundwater flow and advective transport behavior. In general, static 462 
metrics are more correlated to flow metrics than to transport metrics, and the metrics for 463 
horizontal flow are better correlated with static metrics. The results show that the net-to-gross 464 
ratio and spatial connections capture the overall flow in the horizontal direction, while spatial 465 
connectivity and channel stacking capture the vertical flow behavior. Horizontal flow behavior is 466 
well predicted by lower-order static metrics because the flow systems are horizontally percolated. 467 
Vertical flow and transport behavior is controlled by higher-order static metrics due to less 468 
channel connectedness. 469 

We also show the effect of ISF and SLR rate on the numerically simulated hydraulic 470 
connectivity of delta settings. Different ISF and SLR rate yield different geologic structure and 471 
channel variation, thus influencing horizontal and vertical flow. The main findings are:  472 

1) Horizontal normalized dynamic connectivity is greater in low-ISF deltas because the 473 
systems are still percolated, but with less sand. This indicates that processes dependent on 474 
horizontal flow and transport in deltas, such as contamination by lateral seawater intrusion or 475 
submarine groundwater discharge, still occur in muddy deltas, but with more dominant 476 
preferential flow. This has implications for the rate of intrusion, for example, because transport 477 
in a more highly preferential system occurs faster for the same hydraulic gradient. It also has 478 
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implications for prediction of contamination pathways, because more preferential systems are 479 
more highly variable, thus monitoring and managing can be more difficult (e.g., Yu and Michael, 480 
2019; Geng and Michael, 2020). 481 

2) Vertical normalized dynamic connectivity is also greater with less sand input because 482 
channels in muddy systems tend to migrate less, thus channel stacking creates greater vertical 483 
connectedness. This implies that muddy deltas, despite having more low-permeability sediments 484 
that may be considered protective, may actually be more vulnerable to vertical contaminant 485 
transport, such as arsenic in shallow aquifers (e.g., Fendorf et al., 2010) and salt from surface 486 
sources such as storm-surge overwash (e.g., Mahmoodzadeh and Karamouz, 2019).  487 

3) Higher rates of SLR increase horizontal connectivity by creating a more percolated 488 
structure horizontally, while vertical flow and channel stacking patterns are too complex to vary 489 
systematically with SLR rate. Thus, understanding of SLR rate during delta formation may 490 
improve predictability of horizontal processes, such as seawater intrusion and submarine 491 
groundwater discharge, as indicated above, but it is a less useful predictor for vertical flow and 492 
transport processes. 493 

These insights illustrate the potential to improve prediction of groundwater flow and 494 
solute transport behavior through analysis of geological architecture and understanding of 495 
external forcings in deltaic aquifers. In combination with Hariharan et al. (submitted), these 496 
insights also form a basis for further study of the translation of delta surface characteristics to 497 
groundwater flow and solute transport processes.  498 
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