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Abstract

This paper describes algorithms for nonrelativistic hydrodynamics in the toolkit for high-order neutrino radiation
hydrodynamics (thornado), which is being developed for multiphysics simulations of core-collapse supernovae
(CCSNe) and related problems with Runge–Kutta discontinuous Galerkin (RKDG) methods. More specifically,
thornado employs a spectral-type nodal collocation approximation, and we have extended limiters—a slope
limiter to prevent nonphysical oscillations and a bound-enforcing limiter to prevent nonphysical states—from the
standard RKDG framework to be able to accommodate a tabulated nuclear equation of state (EoS). To demonstrate
the efficacy of the algorithms with a nuclear EoS, we first present numerical results from basic test problems in
idealized settings in one and two spatial dimensions, employing Cartesian, spherical-polar, and cylindrical
coordinates. Then, we apply the RKDG method to the problem of adiabatic collapse, shock formation, and shock
propagation in spherical symmetry, initiated with a 15Me progenitor. We find that the extended limiters improve
the fidelity and robustness of the RKDG method in idealized settings. The bound-enforcing limiter improves the
robustness of the RKDG method in the adiabatic collapse application, while we find that slope limiting in
characteristic fields is vulnerable to structures in the EoS—more specifically, in the phase transition from nuclei
and nucleons to bulk nuclear matter. The success of these applications marks an important step toward applying
RKDG methods to more realistic CCSN simulations with thornado in the future.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Core-collapse supernovae (304);
Hydrodynamical simulations (767); Nuclear astrophysics (1129)

1. Introduction

Stars with zero-age main sequence (ZAMS) masses
MZAMS 8Me end their lives as spectacular explosions known
as core-collapse supernovae (CCSNe). These explosions are
at the heart of some of the most important questions in
astrophysics. They are the primary catalysts of galactic
chemical evolution, producing and dispersing many of the
elements heavier than hydrogen and helium, and provide
feedback into the interstellar medium. They may even be a
source of the lighter first peak r-process elements (Martínez-
Pinedo et al. 2014), though neutron star mergers are likely the
primary production site for the r-process (Kasen et al. 2017).
Their cores are the foundries for compact objects including
those recently detected by Advanced LIGO and Virgo (Abbott
et al. 2016, 2017a, 2017b, 2020). Through their observables
and the compact objects left behind, we may even begin to
probe the nature of nuclear matter (Schneider et al. 2019).

Throughout their lives, these massive stars undergo
successive cycles of nuclear fusion, forging heavier elements

in their cores. At the end of a star’s lifetime, fusion processes
build up a degenerate iron core that is unable to undergo
nuclear fusion itself. This iron core, supported thus far by
electron degeneracy pressure, grows to the effective Chan-
drasekhar mass (Baron & Cooperstein 1990) and, no longer
able to balance gravity, subsequently collapses. During the
collapse, runaway electron capture processes accelerate the
collapse and produce vast numbers of neutrinos, while
photodissociation of iron- group nuclei robs the core of more
energy. Eventually, the core reaches nuclear density and the
nuclear strong force becomes repulsive, effectively stiffening
the equation of state (EoS) tremendously, and collapse is halted
in the inner core. The collapse rebounds and produces a strong
shock that is driven through the outer core. Ultimately, through
a combination of neutrino cooling and dissociation of iron-
group nuclei, the shock runs out of energy and stalls before
escaping the core, becoming an accretion shock. Meanwhile,
the inner core regains equilibrium in the form of a newborn
proto-neutron star (PNS).
Providing a mechanism to revive the stalled shock and drive

the explosion is among the forefront questions in the study of
CCSNe. Of the proposed mechanisms, the most favored has
been the delayed neutrino-driven mechanism (Bethe &
Wilson 1985). Neutrinos emitted from the surface of the
cooling PNS, aided by hydrodynamic and magnetohydro-
dynamic instabilities, deposit energy below the stalled shock
and reinvigorate the explosion. Of the other proposed
mechanisms, the magnetorotational mechanism—wherein a
rapidly rotating PNS supplies energy to power the shock
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(Akiyama et al. 2003)—has potential, but likely does not
account for most CCSNe. A key characteristic of magnetor-
otationally driven SNe is the formation of collimated jets,
which are not seen in the vast majority of supernova remnants
(e.g., see Soderberg et al. 2010). Additionally, for this
mechanism to be effective the stellar core must be very rapidly
rotating, beyond the rotation rates commonly achieved through
stellar evolution (Heger et al. 2005). Ultimately, any successful
mechanism must not only revive the shock but also explain the
observations of supernovae (e.g., light curves and spectra).

For several decades, this was the state of the field. These
mechanisms saw little success until relatively recently:
spherically symmetric (spatially one-dimensional (1D)) simula-
tions of CCSNe consistently failed to produce explosions. It
was not until computing resources allowed for axisymmetric
(spatially two-dimensional (2D)), and eventually full-physics
three-dimensional (3D), simulations that successful explosions
could be consistently produced without modified or parameter-
ized physics. Ultimately, the reason for this is 1D fails to
capture the fundamentally nonspherical nature of CCSNe, and
hydrodynamic instabilities are unable to develop. The CCSN
explosion mechanism has been the subject of decades of work
and still remains incompletely described (for in-depth reviews,
see, e.g., Bethe 1990; Mezzacappa 2001, 2005; Janka et al.
2012, 2016; Burrows 2013; Hix et al. 2014; Müller et al. 2016;
Couch 2017).

Hydrodynamics, along with gravity and neutrino transport,
plays a key role in the dynamics of CCSNe. This starts with the
progenitors, which in nature are multidimensional and likely
involve a complicated mixing of elements in the convectively
burning shells (see, e.g., Arnett & Meakin 2011). Further, it has
been shown that asphericities in progenitors can mean the
difference between a model that explodes and a model that
does not (Couch & Ott 2013). However, regardless of the
progenitor, after the core rebounds, it is known that the shocked
fluid develops instabilities.

Once the bounce shock stalls and the neutrino-heating (or
gain) region is established below the shock, at least two
hydrodynamical instabilities may contribute to the evolution of
the shock: neutrino-driven convection (Herant et al. 1992) and
standing accretion shock instability (SASI; Blondin et al.
2003). Both of these instabilities create turbulence in the post-
shock flow, and that turbulence contributes ram pressure that
enlarges the extent of the gain region (Murphy et al. 2013), thus
increasing the efficacy of neutrino heating, therefore aiding the
explosion (see Couch & Ott 2015, and references therein).
Which effect is more dynamically important, however, may
depend on the progenitor mass (Müller et al. 2012; Hanke et al.
2013; Summa et al. 2016; Vartanyan et al. 2019). Regardless of
which effect is dominant, simulations should be able to
satisfactorily quantify the turbulence, and in particular should
be able to capture the turbulent energy cascade from the
energy-carrying scale through the inertial scale, down to the
(numerical) dissipation scale. However, a consensus has not yet
been reached as to what, in terms of angular resolution, is
required to adequately capture the turbulent energy cascade. In
particular, Radice et al. (2015), Abdikamalov et al. (2015), and
Casanova et al. (2020) suggest that resolutions much lower
than 1° may be necessary (due to the numerical dissipation of
the scheme, which creates a “bottleneck” for energy transfer at
a scale set by the scheme), but recently Melson et al. (2020)
argued that 1° resolution is sufficient to obtain a clear

distinction between the inertial and dissipation scales. Addi-
tionally, Endeve et al. (2012) showed that turbulence from the
SASI can amplify magnetic fields, and more recently, Müller &
Varma (2020) found that turbulently amplified magnetic fields
can aid neutrino-driven explosions, even in slowly rotating
progenitors. See Radice et al. (2018) for a recent review of
turbulence in CCSNe.
In addition to the hydrodynamic instabilities occurring in the

shocked mantle, the PNS undergoes convection and potentially
other instabilities due to entropy and electron fraction gradients
(Bruenn et al. 2004), which has an effect on the luminosity of
heavy flavored neutrinos as well as the mean energies of all
neutrino flavors (Buras et al. 2006). This may not directly affect
the shock dynamics, but it does give rise to the recently
discovered lepton number emission self-sustained asymmetry
(Tamborra et al. 2014), which may hold implications for the
composition of the ejecta. For more detailed discussions on the
role of hydrodynamic instabilities in CCSNe, we refer to the
recent review by Müller (2020).
Insight into hydrodynamic phenomena can often be gained

by treating the fluid as polytropic (in the CCSN context, see,
e.g., Yahil 1983; Blondin et al. 2003); i.e., the fluid pressure p
is assumed to be proportional to a power law of the mass
density ρ, which gives rise to the polytropic EoS, p∝ ρΓ, where

G =
r

¶
¶

pln

ln( ) is the adiabatic index.6 However, relating the state

variables by this expression ignores the nuclear interactions and
compositions in stellar collapse; e.g., the polytropic EoS fails to
capture the response in pressure due to the thermal or
compositional changes that are typical in a stellar environment.
For the conditions prevalent in stellar interiors, particularly in
the high-density regimes of stellar collapse, a simple analytic
form for the EoS likely does not exist. Instead, an EoS for this
case is often created by minimizing a thermodynamic potential
—e.g., the Helmholtz free energy—for a system of particles
under stellar conditions (see, e.g., Swesty 1996; Fryxell et al.
2000; Timmes & Swesty 2000). Once the free energy is known,
other relevant quantities, such as pressure, internal energy, and
entropy, can easily be obtained.
The task of developing an equation of state for realistic

CCSN simulations has remained a pertinent objective for
several decades. Important contributions toward this effort
include the Lattimer & Swesty (1991, LS) and Shen et al.
(1998, STOS) EoSs. The LS EoS used a compressible liquid-
drop model (see, e.g., Lattimer et al. 1985), while STOS used a
relativistic mean-field (RMF) model with the TM1 parameter
set (see, e.g., Sugahara & Toki 1994). However, due to the
importance of including light nuclei in CCSN simulations, a
notable drawback for both the LS and STOS EoSs was their
exclusion of all light nuclei other than alpha particles (Hempel
et al. 2012; Steiner et al. 2013b). Further advances include the
hadronic EoSs from G. Shen (Shen et al. 2011a, 2011b), which
build upon the NL3 (Lalazissis et al. 1997) and FSUgold
(Todd-Rutel & Piekarewicz 2005) parameter sets. Additionally,
unlike the LS and STOS EoSs, the statistical model of Hempel
et al. (2012, HS; see also Steiner et al. 2013b) does not use the
single-nucleus approximation for heavy nuclei, but includes a
more realistic compositional distribution of nuclei.
Moreover, recent neutron star observations (see, e.g., Steiner

et al. 2013a; Greif et al. 2020) and observations of other

6 Contrary to a realistic model, the adiabatic index for a polytropic model
remains constant through space and time.
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astronomical phenomena (see, e.g., Greif et al. 2020 and
references therein), experiments in nuclear physics (see, e.g.,
Greif et al. 2020), and experiments in relativistic heavy-ion
collisions (see, e.g., Oertel et al. 2017 and references therein)
have led to the development of multiple EoSs for dense nuclear
matter that are applicable to CCSN simulations (see, e.g.,
Steiner et al. 2013a, 2013b). These equations of state provide
thermodynamic quantities as functions of density, temperature,
and electron fraction. The SHFo/SFHx EoSs from Steiner et al.
(2013a, 2013b) build upon the statistical model used in HS and
constrain properties of nucleonic matter with an RMF model
(see, e.g., Shen et al. 1998, 2011a, 2011b). The most probable
mass–radius relationship derived from neutron star (NS)
observations was used to build the “optimal” SFHo EoS, while
the “extreme” SFHx EoS is built around a minimized radius
model for low-mass NSs (Steiner et al. 2010, 2013a). For our
purposes, the importance of these equations of state lies in their
ability to resolve various physical regimes in CCSNe, including
the phase transition from nuclei and nucleons to bulk nuclear
matter at high densities (ρ∼ 1014 g cm−3; Steiner et al. 2013b)
and the high-density rebound of the core, which determines the
initial strength of the shock (Shen et al. 1998). We note that
these EoSs do not include lower-density/temperature regimes,
i.e., they do not describe matter out of nuclear statistical
equilibrium (NSE); but see, e.g., Bruenn et al. (2020) for the
treatment of non-NSE regions in CCSN models.

Clearly, multidimensional, multiphysics models of CCSNe
require advanced simulation tools and massive computational
resources, and to that end, there are several production codes in
existence; e.g., Aenus-Alcar (Just et al. 2015), Castro (Almgren
et al. 2010), Chimera (Bruenn et al. 2020), CoCoNuT-
Vertex (Müller et al. 2010), FLASH (Fryxell et al. 2000; Dubey
et al. 2009; O’Connor & Couch 2018), Fornax (Skinner et al.
2019), Prometheus-Vertex (Rampp & Janka 2002), and
Zelmani (Ott et al. 2009; Roberts et al. 2016), and the codes
of Sumiyoshi & Yamada (2012), Nagakura et al. (2014), and
Kuroda et al. (2016). To solve the equations of hydrodynamics
—with the aim of capturing shocks and resolving turbulent
flows—these codes use variations of either the finite-difference
or the finite-volume high-resolution shock-capturing method,
in either an Eulerian or semi-Lagrangian framework. In
particular, the finite-volume method divides the computational
domain into finite cells (or volumes), formulates the hydro-
dynamics equations in integral form, and solves for physical
quantities (e.g., mass density) in terms of cell averages. The
cell averages are updated by accounting for (1) fluxes through
the surface enclosing each cell and (2) volume sources (e.g.,
due to gravity). The integral formulation leads naturally to
good conservation properties and allows for discontinuous
solutions (e.g., shocks). In computing the surface fluxes, local
polynomials are reconstructed using cell averages of the local
cell and its neighbors. The local polynomials are then used to
assign left and right states at each cell interface as inputs to a
Riemann solver, which provides the numerical flux. To avoid
nonphysical oscillations around shocks, limiters are applied to
the reconstructed polynomial to enforce some degree of
monotonicity, which can degrade the formal order of accuracy
of the hydrodynamics scheme. (We refer to the above citations
for further details on the hydrodynamics algorithms imple-
mented in the specific codes listed.)

As discussed above, turbulence is ubiquitous in the super-
nova environment and plays a role in the explosion mechanism.

It is therefore desirable to maintain good spectral resolution to
resolve as much of the turbulent spectrum as possible for a
given spatial resolution, and this motivates the use of accurate
Riemann solvers and high-order methods. On the other hand, due
to their multiphysics nature, CCSN simulations with neutrino
transport are computationally expensive, and must run efficiently
on distributed memory architectures; e.g., using message passing
interface (MPI). Furthermore, because of the high number of
degrees of freedom involved in neutrino transport computations
(a momentum space is attached to each spatial point), memory
limitations require the number of spatial cells assigned to any
given MPI process to not be large. For a code to scale well, the
number of ghost cells should be limited relative to the number of
compute cells to manage the communication overhead, because
each MPI process will have a halo region composed of ghost
cells populated with data from neighboring processes. While
finite-difference and finite-volume methods can achieve high-
order accuracy, the computational stencil width increases with
increasing order of accuracy, thereby increasing the size of the
halo region and the ratio of ghost cells to compute cells, thus
impeding good scalability (e.g., Miller & Schnetter 2017).
The discontinuous Galerkin (DG) method (e.g., Cockburn &

Shu 2001) is an alternative approach to solving the system of
hydrodynamics equations (and many other systems). Similar to
finite-volume methods, DG methods divide the computational
domain into cells (or elements) and formulate the equations in
integral form. However, contrary to finite-volume and finite-
difference methods, in the DG method, the solution is
approximated by a local polynomial within each element,
which implies that more local information is tracked in the
solution process (i.e., not just the cell average). Because the full
polynomial representation in each element is evolved, the
reconstruction step needed in the finite-volume approach is not
necessary. Meanwhile, Riemann solvers developed in the context
of finite-volume methods can readily be used with DG methods
to evaluate numerical fluxes on element interfaces. The DG
method is a finite-element method, but does not demand
continuity of the local polynomial approximation across element
boundaries, and consequently, is well suited to capture shocks
and other discontinuities. To prevent nonphysical oscillations in
the vicinity of a discontinuity, limiters are applied to the local
polynomial to enforce monotonicity. More recently, so-called
structure-preserving discretizations, which maintain fundamental
physical properties of the system under consideration (e.g.,
positive mass density and pressure), have been developed within
the DG framework (e.g., Zhang & Shu 2011). Another advantage
offered by the DG method is high-order spatial accuracy on a
compact stencil. Only information from nearest neighbors is
needed, independent of the order of accuracy. This makes the
DG method well suited for application on massively parallel
architectures, because increasing the order of accuracy does not
increase the communication overhead as much as other high-
order methods (e.g., Miller & Schnetter 2017). The desired
combination of shock-capturing capabilities, high-order accuracy
in smooth flows, and good scalability make DG methods an
appealing choice. Additionally, DG methods are also amenable
to hp-adaptivity (Remacle et al. 2003), wherein refinement of
either the spatial mesh (h-refinement) or the local degree of the
polynomial approximation (p-refinement) can be used to improve
the accuracy of the method near shocks while maintaining high-
order accuracy in regions of smooth flow. DG methods are also
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well suited for problems involving curvilinear coordinates
(Teukolsky 2016).

The DG method was introduced already in the 1970s by
Reed & Hill (1973) to solve the steady-state neutron transport
equation, and the initial framework for solving time-dependent
problems with explicit Runge–Kutta time integration (com-
monly referred to as RKDG methods) was established in a
series of papers by Cockburn & Shu (Cockburn & Shu 1989,
1991, 1998; Cockburn et al. 1989, 1990). Today, DG methods
are widely used in science and engineering applications and are
rapidly gaining popularity in the computational astrophysics
community (see, e.g., Radice & Rezzolla 2011; Schaal et al.
2015; Teukolsky 2016; Kidder et al. 2017; Fambri et al. 2018,
and references therein), but have so far not been applied to
multiphysics CCSN simulations.

The toolkit for high-order neutrino radiation hydrodynamics7

(thornado) is being developed with the goal of realizing
multiphysics simulations of CCSNe and related problems with
high-order methods. To this end, the hydrodynamics and
neutrino transport algorithms in thornado are based on the
DG method (see, e.g., Chu et al. 2019; Endeve et al. 2019; Laiu
et al. 2020). It should be noted that, in addition to exhibiting
favorable parallel scalability, DG methods are also an attractive
choice for discretizing the neutrino transport equations because
they recover the correct asymptotic behavior in the so-called
diffusion limit (e.g., Larsen & Morel 1989; Adams 2001),
which is characterized by frequent neutrino–matter interactions.
Then, because the matter and neutrinos are strongly coupled in
the CCSN environment, employing the DG method also for the
hydrodynamics is most natural, as this enables the treatment of
the coupled physics in a unified mathematical framework.
Currently, thornado is being developed as a collection of
modules, focusing on single-node performance for updating
structured data blocks using CPUs and/or GPUs, with the
future aim of leveraging an external framework—e.g.,
AMReX8 (Zhang et al. 2019)—to support mesh adaptivity.

This paper describes the DG algorithms for nonrelativistic
hydrodynamics in thornado. We adapt a three-covariant
formalism that is sufficiently general to accommodate Carte-
sian, spherical-polar, and cylindrical spatial coordinates.
Although we presented preliminary results obtained with
similar algorithms for nonrelativistic and relativistic hydro-
dynamics in the context of an ideal EoS in Endeve et al. (2019),
this paper provides a more comprehensive description of the
methods in thornado, and, more important, develops the
algorithms further in order to accommodate a nuclear EoS.
Introducing a nuclear matter EoS leads to more realistic models
but also complicates the numerical procedure. For instance,
when solving the conservation equations for mass, momentum,
and energy, the implementation of a nuclear EoS requires an
additional conservation law for electrons, (see, e.g., Colella &
Glaz 1985; Zingale & Katz 2015, for similar modifications).
Moreover, on-the-fly numerical evaluation of a realistic EoS is
computationally expensive (Swesty 1996); thus, for computa-
tional expediency, EoSs are provided in tabulated form, and
interpolations are used to access quantities away from table
vertices, where a thermodynamically consistent interpolation
scheme may be required (see, e.g., Swesty 1996; Fryxell et al.
2000; Timmes & Swesty 2000, for a discussion of such

interpolation schemes). To limit the scope of this paper, we
exclusively consider the SFHo EoS (Steiner et al. 2013a),
which is provided in tabulated form by CompOSE.9 In
thornado, the interface to the tabulated EoS is through the
WeakLib library,10 which provides auxiliary functionality
needed for computations (e.g., input/output and interpolation).
As such, the EoS is currently treated as a black box.
The Euler equations in curvilinear coordinates, extended to

accommodate a nuclear EoS and self-gravity, are listed in
Section 2. Then, in Section 3, we present the RKDG method in
thornado. Sections 3.1 and 3.2 provide the spatial and
temporal discretizations, respectively, which are based on the
standard framework from Cockburn & Shu (2001). More
specifically, we employ a nodal DG method (e.g., Hesthaven &
Warburton 2008) and adopt the spectral-type nodal collocation
approximation investigated by Bassi et al. (2013). Sections 3.3
and 3.4 discuss the slope limiter (to prevent nonphysical
oscillations) and the bound-enforcing limiter (to prevent
nonphysical states), respectively. The extension of these
limiters to the case with a tabulated nuclear EoS is nontrivial.
First, because slope limiting is most effective when applied to
characteristic variables, we provide the characteristic decom-
position of the flux Jacobian matrices for a nuclear EoS
(Appendix A). Second, because the domain of validity of the
nuclear EoS is more complex than the ideal case, we develop
an enhanced version of the bound-enforcing limiter of Zhang &
Shu (2010a). Section 3.5 describes the Poisson solver for use in
spherically symmetric problems with self-gravity, which uses
the finite-element method. Section 3.6 provides details on the
interpolation methods used to evaluate the tabulated EoS. We
use basic trilinear interpolation, which is commonly employed
in supernova simulation codes (e.g., Bruenn et al. 2020). In
Section 4, to demonstrate the efficacy of the algorithms, we
present numerical results from basic test problems (advection
and Riemann problems) in idealized settings in one and two
spatial dimensions. We also include a test of the Poisson solver.
Then, in Section 5, we apply the DG method to the problem of
adiabatic collapse, shock formation, and shock propagation in
spherical symmetry, using a 15Me progenitor. Here we focus
on aspects of the limiters, resolution dependence, and total
energy conservation. Our major goals in this paper are to (1)
present the key algorithmic components of the hydrodynamics
in thornado, (2) assess the implementation given the initial
set of algorithmic choices, and (3) identify potential areas for
improvement. This will clear the way for incorporating DG
methods for neutrino transport and future neutrino radiation-
hydrodynamics simulations with thornado.

2. Physical Model

2.1. Euler Equations

In this paper, we adopt the nonrelativistic Euler equations of
gas dynamics in a coordinate basis (e.g., Rezzolla &
Zanotti 2013), supplemented with a nuclear equation of state
(EoS), which are given by the mass conservation equation

r
g

g r¶ + ¶ =v
1

0, 1t i
i( ) ( )

7 https://github.com/endeve/thornado
8 https://amrex-codes.github.io

9 https://compose.obspm.fr
10 https://github.com/starkiller-astro/weaklib
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the momentum equation

r
g

g g r¶ + ¶ P = P ¶ - ¶ Fv
1 1

2
, 2t j i j

i ik
j ik j( ) ( ) ( )

the energy equation

g
g r¶ + ¶ + = - ¶FE E p v v

1
, 3t i

i i
i( [ ] ) ( )

and the electron conservation equation

g
g¶ + ¶ =D D v

1
0, 4t i

i
e e( ) ( )

where ρ represents the mass density, v i the components of the
fluid three-velocity, r dP = +v v pj

i i
j j

i the stress tensor, p the
fluid pressure, De= ρYe, where Ye is the electron fraction,

r r= +E v1

2
2 the total fluid energy density (internal plus

kinetic), and ò the specific internal energy. The Euler equations
are closed with the EoS, where the pressure and specific
internal energy are given functions of density, temperature T,
and the electron fraction; e.g., p= p(ρ, T, Ye). Thus,
Equation (4) is necessary for the inclusion of a nuclear EoS.
(Unless stated otherwise, we use the Einstein summation
convention where repeated Latin indices run from 1 to 3.)
Included on the right-hand sides of Equations (2) and (3) are
gravitational sources from the Newtonian gravitational poten-
tial Φ, which is obtained from the Poisson equation

g
g g p r¶ ¶ F = G

1
4 , 5i

ij
j( ) ( )

where G is Newton’s constant.
The use of curvilinear coordinates is enabled through the

spatial metric tensor γik, which gives the squared proper spatial
interval

g=ds dx dx . 6x ik
i k2 ( )

The determinant of the spatial metric is denoted γ. The metric
tensor is also used to raise and lower indices on vectors and
tensors, e.g., vi= γik v

k. In this paper, we only consider the
commonly adopted Cartesian, cylindrical, and spherical-polar
coordinate systems (see Table 1 for relevant quantities
associated with each of these systems). Thus, the metric tensor
is diagonal, and we assume that it is time independent. Note
that we also list the scale factors h1, h2, and h3 in Table 1. By
specifying the scale factors, components of the spatial metric
are obtained from γ11= h1h1, γ22= h2h2, and γ33= h3h3, and
the square root of the metric determinant is g = h h h1 2 3.

For the discussion of the numerical method in Section 3, we
rewrite Equations (1)–(4) in a more convenient way as a system

of hyperbolic balance equations:

g
g¶ + ¶ = FU F U S U

1
, , 7t i

i( ( )) ( ) ( )

where

r
r

r

g r

r

= =
P

+

F =
P ¶ - ¶ F

- ¶F

U F U

S U

v

E
D

v

E p v

D v

v

, , and

,

0

0
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i

j
i

i
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ik
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i
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e
e

1

2
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⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦
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⎡

⎣
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⎤

⎦
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are the vector of the evolved quantities, the flux vectors, and
the source vector, respectively. We split the source vector
further as S(U, Φ)= Sγ(U)+ SΦ(U, Φ), where

g r= P ¶ F = -
¶ F

¶F
g FS U S U

v

0

0
0

and ,

0

0

.

9

ik
j ik j

i
i

1

2( ) ( )

( )

⎡

⎣
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⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

2.2. Equation of State

The EoS provides thermodynamic quantities such as
pressure, internal energy, and entropy (dependent variables)
as functions of the independent variables, e.g., density,
temperature, and electron fraction. (Other choices for the
independent variables—e.g., density, entropy, and electron
fraction—are of course also possible, but in the nuclear
astrophysics modeling community, it is perhaps most common
to use ρ, T, and Ye.) These dependent variables, and in some
cases their derivatives, are crucial for modeling hydrody-
namics, nuclear reactions, and neutrino transport in CCSNe. Of
particular importance for numerical methods for hydrody-
namics is the relationship between the EoS and the well
posedness of the system given by Equation (7). Specifically,
the system is said to be hyperbolic if the Jacobian matrices
∂Fi/∂U can be diagonalized with a set of real eigenvalues
l l¼, ,i i
1 6{ } and has a set of linearly independent right

eigenvectors ¼r r, ,i i
1 6{ } such that (see LeVeque 1992; Rezzolla

& Zanotti 2013)

l¶ ¶ = = ¼F U r r j, for 1, , 6. 10i
j
i

j
i

j
i( ) ( )

(In Equation (10), repeated indices do not imply summation,
but rather that it must hold for each of the three flux vectors.)
For the system in Equation (7), the eigenvalues are given by

Table 1
Metric Quantities for Cartesian, Cylindrical, and Spherical-polar Coordinate Systems

Coordinates x1 x2 x3 h1 h2 h3 γ11 γ22 γ33 g g
g¶

¶x

1

22

22
1 g

g¶

¶x

1

33

33
1 g

g¶

¶x

1

33

33
2

Cartesian x y z 1 1 1 1 1 1 1 0 0 0
Cylindrical R z f 1 1 R 1 1 R2 R 0 2/R 0
Spherical r θ f 1 r qr sin 1 r2 qr sin2 2 qr sin2 2/r 2/r q2 cot
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g g- +v c v v v v v c, , , , ,i ii i i i i i ii
s s{ }, where cs is the sound

speed: r= ¶ ¶c p s Ys
2

, e( ) , where s is the entropy per baryon. A
fundamental property of hyperbolic equations is that they are
well posed, which makes them suitable for a numerical solution
(see, e.g., Rezzolla & Zanotti 2013 for a discussion). Thus, a
necessary condition for our system to be suitable for a
numerical solution is >c 0s

2 . When the independent variables
are chosen to be ρ, T, and Ye, the square of the sound speed can
be written explicitly in terms of thermodynamic derivatives as

r r

r

=
¶
¶
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¶
¶
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¶
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¶
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c
p p s
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The sound speed, or a related quantity, is typically included
with a tabulated EoS. In addition, advanced numerical methods
make use of the eigenvectors in Equation (10), e.g., for the
characteristic limiting described in Section 3.3. These eigen-
vectors in turn depend on additional thermodynamic deriva-
tives, whose estimation from the EoS table is discussed in
Section 3.6. For use in computations, thornado has been
developed to use the EoS infrastructure provided by the
WeakLib library. (Specifically, WeakLib supplies trilinear
interpolation and derivatives computed by analytic differentia-
tion of the trilinear interpolation formula.)

3. Numerical Method

3.1. Discontinuous Galerkin Method

In thornado, we employ the Runge–Kutta discontinuous
Galerkin (RKDG) method to solve the Euler equations given
by Equation (7). (We refer to Cockburn & Shu 2001 for an
excellent review on the RKDG method and to Shu 2016 for a
summary of more recent developments.) To this end, the d-
dimensional computational domain Ì D d is subdivided into
the union  of nonoverlapping elements K such that

È= Î KD K . We take each element to be a logically Cartesian
box

= Î = ¼K x x K x x i d: , , 1, , , 12i i i i
L H{ ≔ ( ) } ( )

where x iL and x
i
H are the low and high boundaries of the element

in the ith dimension. We also define the surface elements
= ´ ¹K Ki

j i
d j˜ (so that = ´K K Ki i˜ ), then set =x xx ,i i{ ˜ } to

distinguish coordinates parallel and perpendicular to the ith
dimension, and the element width D = -x x xi i i

H L( ) and center

= +x x xi i i
C

1

2 L H( ). We also define =  D=K xi
d i

1∣ ∣ and

=  D= ¹K xi
j j i
d j

1,∣ ˜ ∣ . We let the volume of an element be
denoted

ò g= =
=

V dV dV dx, where , 13K
K

h h h
i

d
i

1

( )

where γh is the determinant of the approximate spatial metric
gh ij( ) . We will discuss the approximation to the spatial metric in
more detail below.

On each element, we define the approximation space
consisting of functions ψh

y y= Î " Î   K K: , , 14Kh
k

h h
k{ ∣ ( ) } ( )

where k is the tensor product space of 1D polynomials of
maximal degree k. In the DG method, the functions in h

k can
be discontinuous across element interfaces. In thornado, we
use Lagrange polynomials,

x
x x

x x
=

-

-=
¹

ℓ , 15p
i

q
q p

N i
q
i

p
i

q
i

1
( ) ( )

where N= k+ 1 and the polynomials ℓp are defined on the unit

reference interval x x= Î -I : ,i i i 1

2

1

2{ }( ) (i= 1,K, d). The

physical coordinate x i is related to the reference coordinate ξ i

by the transformation x x= + Dx x xi i i i i
C( ) . For the Lagrange

polynomials, we define the set of interpolation points
x x= ¼ ÍS I, ,N

i i
N
i i

1{ } . Note that for x Î Sq
i

N
i , we have

x d=ℓp q
i

pq( ) , where δpq is the Kronecker delta. As an example,

the multidimensional basis function xf Î xi h
k( ( )) takes the

form

xf f x x x x= ¼ = ´¼´¼ ℓ ℓ, , , 16i i i
d

i i
d

, ,
1 1

d d1 1( ) ( ) ( ) ( ) ( ){ }

where we have introduced the multi-index = ¼ Î i i i, , d d
1{ }

(a d-tuple) to achieve a more compact notation. To further
illustrate, in each element K, we approximate the solution to
Equation (7) by Uh, which is given by an expansion of
functions in h

k of the form

å å åxf

x x

= = ¼

´ ´¼´
= = =

¼

U x U x

U

t t

t ℓ ℓ

,

, 17

i

N

i ih
i

N

i

N

i i i i
d

1 1 1

, ,
1

d

d d

1

1 1

( ) ( ) ( ( ))

( ) ( ) ( ) ( ){ }

where Î N d is the d-tuple {N,K,N}. The DG method does
not require the approximate multidimensional solution to be
constructed from 1D polynomials of the same degree k in each
dimension, but we make this choice. In the multidimensional
setting, we denote the set of interpolation points in element
K by = Ä =S SN i

d
N
i

1 . For ξj ä SN, we have fi(ξj)= δij =
d d´¼´i j i jd d1 1

, which follows from the Kronecker delta
property of the Lagrange polynomials emphasized above.
Therefore, for ξj ä SN, a direct evaluation in Equation (17)
shows that Uh(x(ξj))=Uj(t); i.e., the expansion coefficients in
Equation (17)—the unknowns to be determined by the DG
method—are simply the evolved quantities evaluated in the
interpolation points on each element.
We are now ready to state the DG formulation, which forms

the basis for the DG method implemented in thornado. The
semidiscrete DG problem is to find Î Uh h

k , which approx-
imates U in Equation (7), such that

y y y
y

á ¶ ñ = + á F ñ
º F




U U S U
U

, , , ,
, , 18

K K K

K

t h h h h h h h h

h h h h

( ) ( )
( ) ( )

Flx
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holds for all test functions y Î h h
k and all elements Î K . In

Equation (18),

òy yá ¶ ñ = ¶U U dV, , 19K
K

t h h t h h h ( )

and we have defined the contributions from the fluxes as

ò

ò
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F U x F Ud dV
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( ) ( ( ) ∣
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Flx

and the contributions from the sources as

òy yá F ñ = FS U S U dV, , , . 21K
K

h h h h h h h( ) ( ) ( )

The approximation to the Newtonian gravitational potential,
denoted Φh (not to be confused with the basis functions fi in
Equation (17)), is obtained by solving Equation (5) using a
finite-element method. We discuss this in Section 3.5.

In Equation (20), the numerical flux F Ui h( ) is introduced to
define a unique flux in the ith surface of K. This numerical flux
is computed from a numerical flux function (obtained, e.g.,
from solving an approximate Riemann problem),

= - +F U x f U x U xx x x; , , , , , 22i
h

i i i
h

i i
h

i i, ,( ˜ ) ( ( ˜ ) ( ˜ )) ( )

where the superscripts −/+ in the arguments of - +U xx ,h
i i,( ˜ )

indicate that the approximation is evaluated to the immediate
left/right of the interface located at x i. In thornado, we have
implemented the Harten–Lax–van Leer (HLL; Harten et al.
1983) and HLL-Contact (HLLC; Toro et al. 1994) flux
functions, but in the numerical experiments in Sections 4 and

5, we use exclusively the HLL flux function given by

a a a a
a a

=
+ - -

+

- +

+ - - + - + + -

- +

f U U

F U F U U U

,

,

23

i
h h
i i

h
i i

h
i i

h h
i i

, , , ,

, ,

( )
( ) ( ) ( )

( )

where = U U xx ,h h
i i,( ˜ ), and where α i,− and α i,+ are wave

speed estimates for the fastest (in absolute value; α i,±� 0) left-
and right-propagating waves, respectively. For these estimates,
we simply use (Davies 1988)

a l l

a l l

= - -

= + +

-

Î ¼

- +

+

Î ¼

- +

U U

U U

max 0, , and

max 0, , , 24

i

j
j
i

h j
i

h

i

j
j
i

h j
i

h

,

1, ,6

,

1, ,6

( ( ) ( ))

( ( ) ( )) ( )
{ }

{ }

where lj
i are the eigenvalues of the flux Jacobian introduced in

Equation (10).
Motivated by results presented by Bassi et al. (2013), we

employ a spectral-type collocation nodal DG method in
thornado. To this end, we use Legendre–Gauss (LG) points
to construct the interpolation points comprising SN. See the left
panel of Figure 1 for the distribution of the interpolation points
SN in the 2D case with k= 2 (black, filled circles). In the
collocation nodal DG method, these interpolation points are
also used as quadrature points to evaluate integrals in
Equation (18). One of the benefits of this collocation method
is computational efficiency because, even when using curvi-
linear coordinates, the mass matrix associated with the term in
Equation (19) is diagonal and easily invertible. On the other
hand, demanding exact evaluation of integrals—e.g., by using
an extended quadrature set—results in mass matrices that are
nondiagonal and vary from element to element because of the
spatially dependent metric determinant in dVh in Equation (19).
The use of LG points, as opposed to Legendre–Gauss–Lobatto
(LGL) points, provides better accuracy in evaluating the
integrals. In the 1D setting, the N-point LG quadrature
evaluates polynomials of degree up to 2N− 1 exactly, while

Figure 1. Reference elements with interpolation and quadrature points used in the DG method implemented in thornado for the 2D case (d = 2) with polynomials
of degree k = 2 (N = 3). In the left panel, interpolation points are shown for the hydrodynamics variables (SN (based on LG quadrature points; black, filled circles))
and the geometry scale factors and the Newtonian gravitational potential SN( ˆ (based on LGL quadrature points; gray, open circles)). In the right panel, quadrature
points associated with volume integrals (black, filled circles) and surface integrals (gray, open squares) are shown. Note that in the collocation nodal DG method, the
interpolation points in the left panel, SN, coincide with the quadrature points in the right panel. The quadrature points on the surface of the element are obtained as the
projection of the quadrature points inside the element onto each surface.
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the corresponding LGL quadrature evaluates polynomials of
degree up to 2N− 3 exactly. Let QN

i denote the 1D N-point
LG quadrature on the interval I i with abscissas x =q

i
q
N

1{ } and

weights =wq
i
q
N

1{ } , normalized so that å == w 1q
N

q
i

1 . (Note that
quadrature points and weights defined on the commonly used
reference interval [−1, 1] (e.g., Cockburn & Shu 2001) must be
scaled by a factor of 1/2 before use on the reference interval
-1 2, 1 2[ ]/ / used in thornado.) Multidimensional integrals
are evaluated by the tensorization of 1D quadratures. For
volume integrals over the multidimensional reference element
= ´=I Ii

d i
1 , we let = Ä =Q QN i

d
N
i

1 denote the tensorization of
1D N-point LG quadrature rules with abscissas x =q q

N
1{ } and

weights =wq q
N

1{ } , where = ¼ Î q q q, , d
d

1{ } , x x x= ¼, ,q q q
d1
d1

{ },
and = ´¼´w w wq q qd1

, so that the integral of a polynomial
Î xP h

k( ) in element K is evaluated as
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Similarly, for surface integrals over the reference surface
element = ´ = ¹I Ii

j j i
d j

1,
˜ , we let = Ä = ¹Q QN

i
j j i
d

N
j

1,
˜ denote the

tensorization of 1D N-point LG quadrature rules with abscissas

x =q q
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1
i i
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1,
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{ } , and =  = ¹w wq j j i
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q1,i j˜ , so that for

Î xP x ,i i
h
k( ˜ ) , the integral over the surface element K i˜ is

evaluated as
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where the specific case with i= 1 is given in the second line.
The points used to evaluate volume integrals with the QN

quadrature rule for the case with d= k= 2 are shown as black,
filled circles in the right panel in Figure 1. (Note that these
points are identical to the interpolation points displayed as
black, filled circles in the left panel in Figure 1.) The quadrature
points used to evaluate surface integrals with Q1˜ and Q2˜ are
shown as the gray, open squares on the boundary of the
element.

By inserting the expansion in Equation (17), letting ψh= fp,
where fp is one of the basis functions in the expansion in
Equation (17), and using the quadrature rule in Equation (25),

we can evaluate Equation (19) as

f gá ¶ ñ ¶U K Uw, , 27p K p p pt h t≔ ∣ ∣ ( )

where gKwj j∣ ∣ are the elements of the diagonal mass matrix
and γj= γh(xj). Similarly, using the quadrature in Equation (26),
the contributions from fluxes can be written as

å

å å

f g

g

g
x

x

-

´

-

+
¶

¶

=

-

+

= =

 U K x

F x

x F x

K x F x

w x

x ℓ x

x x ℓ x

w w x x
ℓ

, ,

,

, ,

, , .

28

p K p p

p

p p

p p p

h h
i

d
i

h
i i

i i i
p

i

h
i i i i i

p
i

i

d
i

q

N

q h q
i i i

q
i i p

i q
i

1
H

H H
,

L L L
,

1 1

i i

i i

i i i

i

i

i i i i i

i

i

( ) ≔ ∣ ˜ ∣( ( ˜ )

( ˜ ) ( )

( ˜ ) ( ˜ ) ( ))

∣ ˜ ∣ ( ˜ ) ( ˜ ) ( )

( )

˜ ˜

˜

˜ ˜

˜ ˜ ˜





Flx

Finally, the source term becomes

f gá F ñS U K Sw, , , 29p K j p ph h( ) ≔ ∣ ∣ ( )

where Sp is the source vector in Equation (8), evaluated in xp.
Combining Equations (27)–(29), we can now write the
spectral-type collocation DG approximation to the semidiscrete
DG problem in Equation (18) in terms of an evolution equation
for the expansion coefficient Up in element K as
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(For an example of Equation (30) in the simpler 1D setting, see
Endeve et al. 2019, their Equation (11).)
The cell averages in element K, defined as

ò
å
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play an important role in the analysis and implementation of the
DG method given by Equation (30). (Examples of the use of
the cell averages are given in Sections 3.3 and 3.4, where we
discuss limiting techniques.) From the definition of the cell
average in Equation (31) and from Equation (30), the equation
for the cell average can be written as

å g

g
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- D +
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Q x F x
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



where we used the quadrature rule in Equation (26) to represent
the surface integrals, while the source term can be written in
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terms of the quadrature rule in Equation (25)

g=S
K

Q x S x
V

. 33K
K

N h
∣ ∣ [ ( ) ( )] ( )

To arrive at Equation (32), we used the property of the Lagrange
polynomial in Equation (15) that xå == ℓ 1p

N
p

i
1 ( ) for any ξ iä I i.

Equation (32) exhibits the expected conservation form, with
quadrature rules replacing integrals over the surface of K. In the
absence of sources, the DG discretization in Equation (30) is
conservative for mass, momentum, energy, and electron number.
We also note that Equation (32) is familiar from the literature on
finite-volume (FV) methods, which only evolve the cell averages.
The DG and FV methods are in fact equivalent in the first-order
case, when k= 0. However, for the extension to higher orders, FV
methods reconstruct a local polynomial using cell averages in
neighboring elements, while DG methods evolve all the degrees of
freedom in the local polynomial representation, so that the
reconstruction step is not needed. Thus, one benefit of avoiding
the reconstruction step becomes clear in the high-order case: while
the FV stencil width increases with increasing spatial order of
accuracy, the DG method only requires data from the local element
and its nearest neighbors, independent of the order of accuracy.

We complete the specification of the basic DG method
implemented in thornado by discussing the source terms due
to the use of curvilinear coordinates and gravitational fields. In
particular, we write (see Equation (9))

= +g FS S S . 34p p p ( )

3.1.1. Geometric Source Terms

For the sources due to curvilinear coordinates, gSp , the only
nonzero components appear in the components of the
momentum equation, which can be written in terms of the
scale factors where, due to the diagonal metric, γii= hihi and
γ ii= 1/γii,

g g g gP ¶ = P ¶ + P ¶ + P ¶

= P
¶
¶

+ P
¶
¶

+ P
¶
¶h

h

x h

h

x h

h

x

1

2

1

2

1

2

1

2
1 1 1

.

35

ik
j ik j j j

j j j

11
11

22
22

33
33

1
1

1

1
2

2

2

2
3

3

3

3

( )

For the coordinate systems we consider here, the scale factors are
independent of x3, and only the first and second components of
Equation (35) are nonzero (i.e., j= 1, 2; see Table 1). Note that
h1= 1 for all the coordinate systems; therefore, spatial derivatives
of h1 vanish. For Cartesian coordinates, the scale factors are unity,
and all the components of gSp vanish. For cylindrical coordinates,
only h3=R contributes, while for spherical-polar coordinates
both h2= r and q=h r sin3 contribute. In thornado, we
approximate the scale factors by polynomials in each element. To
this end, we define =h h h h, ,1 2 3

T( ) and let the scale factors in K
be given by the expansion

å f= Î
=

h x h x , 36
i

N

i ih h
k

1

( ) ˆ ( ) ( )

where f xiˆ ( ) are basis functions, similar to those defined in
Equation (16). However, we demand that the scale factors be

continuous across element interfaces. To achieve this, we let

x x= ¼ ÍS I, ,N
i

N

i i
1

ˆ {ˆ ˆ } denote the set of LGL points in the unit
reference interval, because the LGL points include the end
points of I i. For the scale factors (and, as discussed below, the
Newtonian gravitational potential), we then let the interpolation
points on K be given by = Ä =S SN i

d
N
i

1
ˆ ˆ . The distribution of the

interpolation points SNˆ , used for the scale factors and the
Newtonian gravitational potential, for the 2D case with k= 2
are shown in the left panel of Figure 1 (gray, open circles).
Hence, f xiˆ ( ) is defined as in Equation (16), but with the
Lagrange polynomials in Equation (15) constructed with the
LGL points SNˆ , and the expansion coefficients hi are given by
the exact value of the scale factors in the LGL points. Scale
factors in the LG points xi= SN, which are needed, e.g., to
compute the determinant of the spatial metric, are obtained
from the direct evaluation of Equation (36), hh(xi), so that
γi= γh(xi) := γ(hh(xi)). Derivatives of the scale factors, needed
for the source terms in Equation (35), are evaluated by analytic
differentiation of Equation (36). Because in the present case the
metric is time independent, the needed scale factors and their
derivatives can be precomputed at program startup and stored
for later use. Note that scale factors are polynomials and at
most linear functions of the spherical-polar or cylindrical
radius, so the representation is exact in the x1 dimension if
N� 2. However, for spherical-polar coordinates, h3 is a
trigonometric function in the x2 dimension, and the representa-
tion in Equation (36) is only approximate.
Next, we consider a special case where the geometric source

terms, gP ¶ik j ik
1

2
, and the divergence of the stress tensor,

g¶ P
g i j

i1 ( ), appearing in the components of the momentum

equation, Equation (2), must balance each other. Specifically, for
a fluid associated with an isotropic and spatially homogeneous
stress tensor, i.e., dP = pk

i
k
i

0 ( =p constant0 ), the divergence
of the stress tensor must balance the geometry source exactly to
prevent inducing spurious flows.
Considering Equation (32), with Equations (33) and (35), in

spherical-polar coordinates and in the absence of gravity,
assuming an isotropic and spatially homogeneous stress tensor,
the equation for the first component of the momentum density
(see Equation (8)), in the sense of the cell average, can be
written as

r g

g g

q

¶ =-

- -

= - - -

K
Q x

x Q x

K
Q

v p
V

x

x x

p
V

r r Q r

,

, 2

sin 2 ,

37

K
K

K

t N h

h N h

N h N

1 0

1
1

H
1 1

L
1 1 1

0

1
1

H
2

L
2 1

( ) ∣ ˜ ∣ { ˜ [ ( ˜ )

( ˜ )] [ ( ) ]}

∣ ˜ ∣ ˜ [( ) (( ) [ ])]

( )

where qsin h( ) is the polynomial approximation to qsin .
Because the stress tensor is isotropic and spatially homo-
geneous, the numerical flux in the first component of the

momentum equation is simply d=rF pv
i i

0 11( ) . The right-hand
side of Equation (37) vanishes because the LG quadrature, with
N� 1, is exact for the radial integral; i.e., = -Q r r r2 N

1
H
2

L
2[ ] ( ).

Similarly, the second component of the momentum equation

9

The Astrophysical Journal Supplement Series, 253:21 (44pp), 2021 March Pochik et al.



can be written as

r q q

q

¶ =- -

- ¶x

K
Qv p

V
r

Q

sin sin

sin . 38

K
K

t N

N h

2 0

2
2 2

H L

2
2

( ) ∣ ˜ ∣ ˜ [ ( )

[ ( ) ])] ( )

Because qsin h( ) is approximated by a polynomial of degree
k= N− 1, the N-point LG quadrature in the θ direction is
evaluated exactly, so that q¶xQ sinN h

2
2[ ( ) ] = q q-sin sinH L( ),

which implies that the right-hand side of Equation (38)
vanishes. Note that these properties hold for polynomial
approximations with k� 1. The first-order accurate scheme
(k= 0) requires special treatment and is not discussed here.
(See, e.g., Mönchmeyer & Müller 1989 and Blondin & Lufkin
1993 for finite-volume schemes and associated challenges
when using spherical-polar coordinates.)

In cylindrical coordinates, the source term in Equation (35)
contributes only to the first component of the momentum
equation. In this case, the equation for the cell average can be
written as

r¶ = - - - ¶x
K

Qv p
V

R R Q R . 39K
K

t N N1 0

1
1

H L
1

1( ) ∣ ˜ ∣ ˜ [( ) [ ] ] ( )

Again, because the quadrature in the R direction is exact,
¶ = -xQ R R RN

1
H L1[ ] ( ), and the right-hand side of

Equation (39) vanishes, as is desired under the conditions of
an isotropic and spatially homogeneous stress tensor.

3.1.2. Gravitational Source Terms

For the gravitational source terms appearing in the
momentum and energy equations, our approach is similar to
that used for the geometric sources discussed above. The
gravitational potential in element K is approximated by the
polynomial

å fF = F
=

x x , 40
i

N

i ih
1

( ) ˆ ( ) ( )

constrained to be continuous on the element interfaces, so that

F = F+ -x xx x, , . 41h
i i

h
i i, ,

L H L H( ˜ ) ( ˜ ) ( )

(Continuity of the potential on the element interfaces is
guaranteed by the finite-element method in Section 3.5.) We
then compute derivatives of the gravitational potential by
analytic differentiation of the expansion in Equation (40), and
write the momentum and energy sources in the interpolation
point xpä SN as

år r= - ¶ F = - ¶ Fr
F F

=

S S vand ,

42

p p p p p pv j h E
j

d
j

j h
1

j
( ) ( ) ( ) ( ) ( )

( )

where, ρp, rv p
j( ) , and ¶ F pj h( ) are, respectively, the mass density,

momentum density, and the derivative of Equation (40),
evaluated in xp. We note that the source terms in Equation (42)
are not well balanced, i.e., designed specifically to capture steady
states (e.g., hydrostatic equilibrium), which would require special
treatment (see, e.g., Käppeli & Mishra 2016; Li & Xing 2018).

3.2. Time Integration

After application of the DG spatial discretization, Equation (18)
can be viewed as a system of ordinary differential equations
(ODEs), which can be written as

y yá ñ = FU U
d

dt
, , , . 43K Kh h h h h h( ) ( )

This system of ODEs is evolved with the explicit strong
stability-preserving Runge–Kutta (SSP-RK) methods of Shu &
Osher (1988; see also Cockburn & Shu 2001; Gottlieb et al.
2001). Denoting the fluid fields and the gravitational potential
at time t n by Uh

n and Fh
n, respectively, the time-stepping

algorithm advancing the solution from t n to t n+1= t n+Δt n

with s stages is y" Î h h
k and " Î K ,

Algorithm 1. Algorithm for SSP-RK Time Integration

1 y yá ñ L L á ñU U, ,K Kh h h
n

h
0 be tvd≔ { { }}( )

2 F Fh h
n0 ≔( )

3 for = ¼i s1, , do

4 y a yá ñ L L å á ñ + D
b

a=
- U U t, ,K Kh

i
h j

i
ij h

j
h

n
h
jbe tvd

0
1 ij

ij{ }( )≔( ) ( ) ( )⎧⎨⎩
⎫⎬⎭,

5 where yF  U , ,h
j

h h
j

h
j

h≔ ( )( ) ( ) ( ) , with F F Uh
j

h
j≔ ( )( ) ( )

6 F F Uh
i

h
i≔ ( )( ) ( )

7 end
8 y yá ñ á ñ+U U, ,K Kh

n
h h

s
h

1 ≔ ( )

9 F F+ +Uh
n

h h
n1 1≔ ( )

Note that line 6 in Algorithm 1 invokes the Poisson solver
for the gravitational potential. Details about the coefficients αij

and βij can be found in Cockburn & Shu (2001). In order for
the evolution of the cell average of the solution to be stable, the
time step must satisfy the Courant–Friedrichs–Lewy (CFL)
condition,

l
D

+
´

D
Î ¼

t C

d k

x

2 1
min , 44

i d

i

i
CFL

1, ,( ) ∣ ∣
( )

{ }

⎛
⎝⎜

⎞
⎠⎟

where d is the number of spatial dimensions, k is the maximal
degree of the 1D polynomials comprising h

k , CCFL 1 is the
CFL number, and λ i is the largest (in magnitude) eigenvalue of
the flux Jacobian in Equation (10), corresponding to the fastest
moving wave in the ith spatial dimension.
In principle, one would also need an additional restriction on

the time step to guarantee that the solution remains in the set of
physically admissible states (see Section 3.4). However, we do
not enforce such a condition because in practice we find the
CFL condition given by Equation (44) to be sufficient.
The operators Λtvd and Λbe invoked in lines 1 and 4 in

Algorithm 1 represent the slope and bound-enforcing limiters,
respectively, and play an important role in RKDG methods. In
particular, the slope limiter is required in order for the SSP-RK
method to guarantee stability when applied to nonlinear
problems (Cockburn & Shu 2001).

3.3. Slope Limiting

To improve the stability of the RKDG algorithm and prevent
unphysical oscillations in the solutions around discontinuities,
it is necessary to implement a limiting procedure for the
polynomial Uh. To this end, we use the basic minmod-type
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total variation diminishing (TVD) slope limiter (see, e.g.,
Cockburn & Shu 1998) in conjunction with the troubled-cell
indicator (TCI) proposed by Fu & Shu (2017). The TCI
prevents excessive limiting by only flagging elements where
limiting is needed. When using the basic TVD limiter one
assumes that any spurious oscillations are evident in the part of
the solution that is represented by piecewise linear functions,
and under- and overshoots of the higher-order solution at
intercell boundaries are detected by comparing local slopes
with slopes constructed using cell averages of the target cell
and its neighbors. Our implementation follows closely the
description in Schaal et al. (2015) for the case of an ideal EoS.
Recall from Equation (17) that in each cell the solution is
expressed in the nodal form. It is convenient, however, for
limiting purposes to express the solution in K using a modal
representation

å f=
=

U x C xt t, , 45
i

N

i ih
1

( ) ( ) ˜ ( ) ( )

where the multidimensional modal basis functions
xf Î xi h

k˜ ( ( )) are constructed from 1D Legendre polynomials
x =

-Pℓ i
ℓ
N

0
1{ ( )} by tensorization, i.e.,

xf f x x x x= ¼ = ´¼´¼ - -P P, , . 46i i i
d

i i
d

, ,
1

1
1

1d d1 1
˜ ( ) ˜ ( ) ( ) ( ) ( ){ }

The Legendre polynomials are orthogonal in the unit interval I i,
and in thornado, we use a normalization such that P0(ξ

i)= 1
and P1(ξ

i)= ξ i (i.e., the polynomials are orthogonal, but not
orthonormal with respect to the standard L2 inner product on I i).
Note that the case with i= {i1,K,id}= {1,K,1}= 1 corresponds
to f x x= ´¼´ =x P P 1;d

1 0
1

0
˜ ( ) ( ) ( ) therefore, the expansion

coefficient C1 is equal to the cell average when Cartesian
coordinates are used (γh= 1), i.e.,

ò=C
K

U xd
1

. 47
K

h1 ∣ ∣
( )

In our multi-index notation, we define = å =i ij
d

j1∣ ∣ , so that the

basis functions fi˜ with i satisfying |i|= d+ 1 are linear in one
of the coordinates. For example, for the 3D case (d= 3), we
have exactly three basis functions satisfying |i|= d+ 1= 4,

f x x x x x= ´ ´ = =x P P P P , 482,1,1 1
1

0
2

0
3

1
1 1˜ ( ) ( ) ( ) ( ) ( ) ( ){ }

f x x x x x= ´ ´ = =x P P P P , and

49
1,2,1 0

1
1

2
0

3
1

2 2˜ ( ) ( ) ( ) ( ) ( )
( )

{ }

f x x x x x= ´ ´ = =x P P P P , 501,1,2 0
1

0
2

1
3

1
3 3˜ ( ) ( ) ( ) ( ) ( ) ( ){ }

which are linear in the reference coordinates ξ1, ξ2, and ξ3,
respectively. From orthogonality of the Legendre polynomials,
we can identify the expansion coefficients satisfying |i|= 4 in
the modal representation in Equation (45) as the average
derivative of Uh with respect to the reference coordinates ξ

1, ξ2,

and ξ3, respectively, i.e.,

ò

ò

ò

= ¶

= ¶

= ¶

x

x

x

C
K

U x

C
K

U x

C
K

U x

d

d

d

1
,

1
, and

1
. 51

K

K

K

h

h

h

2,1,1

1,2,1

1,1,2

1

2

3

∣ ∣
( )

∣ ∣
( )

∣ ∣
( ) ( )

{ }

{ }

{ }

These coefficients are here obtained by taking the derivative of
Equation (45) with respect to ξ1, ξ2, and ξ3, respectively, and
integrating over the element.
We demand the representations of the solution in

Equations (17) and (45) be equivalent in the least-squares
sense,

òå f f y

y

- =

" Î
=



U x C x x xt t d 0,

, 52
i

N

K
i i i i h

h h
k

1

( ( ) ( ) ( ) ˜ ( )) ( )

( )

which provides a change of basis between Lagrange and
Legendre polynomial representations, and relates the coeffi-
cients of nodal and modal representations by linear transforma-
tions. Setting ψh= fj in Equation (52) gives the nodal
coefficients in terms of the modal coefficients

å xf=
=

U C , 53j
i

N

i j i
1

˜ ( ) ( )

while setting y f= jh
˜ in Equation (52) gives the modal

coefficients in terms of the nodal coefficients

ò òå åx x x x x xf f f f=
= =

C Ud d , 54
i

N

I
j i i

i

N

I
j i i

1 1

˜ ( ) ˜ ( ) ˜ ( ) ( ) ( )

where the matrix on the left-hand side is diagonal and easily
invertible. The matrix on the right-hand side is the same for all
elements and can be precomputed at program startup and stored
with minimal storage requirements. As illustrated in Equations (47)
and (51), the representation in terms of Legendre polynomials

=
-Pℓ ℓ

N
0
1{ } is more convenient for limiting because the polynomial

degree increases with increasing ℓ, and the identification of the
expansion coefficients with average values and average derivatives
is more straightforward. In the Lagrange basis, all of the basis
functions have the same polynomial degree.
We perform slope limiting by comparing the weights

Ci—which for |i|= d+ 1 and appropriate normalization of the
Legendre polynomials are equal to the first derivatives of the
solution in the cell—with the limited weights

~
Ci, computed from

b
b

= -
-

" = +

~ +

-
  



C C C C
C C

i i d

minmod , ,
,

satisfying 1 , 55

i i 1 1

1 1

Tvd

Tvd

( ( )
( )

( ∣ ∣ ) ( )

where the multivariate minmod function is defined as

=
´ = = =

a a a

s a a a s a a a

minmod , ,

min , , , if sign sign sign
0, otherwise.

56

1 2 3

1 2 3 1 2 3

( )
{∣ ∣ ∣ ∣ ∣ ∣} ( ) ( ) ( ) ( )

⎧⎨⎩
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The minmod function returns the minimum argument if they all
have the same sign, and zero otherwise. In three spatial
dimensions, we estimate limited slopes independently for all the
coefficients in Equation (51), and limiting is applied to a
component of Uh whenever the corresponding linear coefficient
in the modal expansion in Equation (45) exceeds a given threshold
value. Here we apply slope limiting when - >

~ -C C C10i i i
6∣ ∣ ,

for any i satisfying |i|= d+ 1. (Ci and
~
Ci are arbitrary components

of the vectors Ci and
~
Ci, respectively.) In Equation (55), the

parameter βTvd takes values in the closed interval 1, 2[ ] and
determines how aggressively to apply limiting. The minimal
βTvd corresponds to a TVD scheme, which is more dissipative than
a scheme with the maximal βTvd, which is potentially more
oscillatory. Increasing βTvd puts more weight on the neighboring
cell averages, making the minmod function more likely to
set =

~
C Ci i, which results in no limiting being applied. The

superscripts −/+ on the C1 coefficients in the minmod function in
Equation (55) indicate that the coefficient belongs to the expansion
in the previous/next element in the coordinate direction of the
slope to be limited. Figure 2 illustrates how the minmod limiter
works in the 1D case when applied to a scalar field U(x). The
transformation matrix is included in Equation (55) to allow for
limiting in characteristic fields (see discussion below). For
componentwise limiting,  is set to the identity matrix. Thus,
when slope limiting is applied, the local solution is truncated as

å f=
~~

=
+

U x U x C xt t t, , , 57
i

i

N

i ih h

d
1
1

( ) ≔ ( ) ( ) ˜ ( ) ( )
∣ ∣

where =
~
C 0i for all i with |i|> d+ 1, and

òå f-
~ ~

=
= +

C U x C
V

dV
1

. 58K
K i

i

N

K
i i

d

h1
1
1

≔ ˜ ( ) ( )
∣ ∣

Thus, the minmod limiter reduces the local polynomial degree
to at most k= 1. If the arguments in the minmod function in
Equation (55) have different signs, the minmod limiter further
reduces the polynomial degree to k= 0. Because of this, we use
the TCI as discussed below. Although not considered for
thornado yet, we note that it is possible to generalize or
improve the limiting strategy to maintain a higher order of
accuracy; see, e.g., Biswas et al. (1994), Krivodonova (2007),
Dumbser et al. (2014).
The readjustment of

~
C1 in Equation (58), which occurs after

computing the limited slopes in Equation (55), is necessary to
preserve the cell average as defined in Equation (31) and is due
to the use of curvilinear coordinates (see also related discussion
by Radice & Rezzolla 2011, their Section C1). Preservation of
the cell average in the limiting procedure is needed, e.g., to
conserve mass. Without the “conservative correction” in
Equation (58), the limiter preserves the cell average defined in
Equation (47), which is undesirable in curvilinear coordinates.
Note that the second term on the right-hand side of
Equation (58) vanishes in Cartesian coordinates because of
the orthogonality of the Legendre polynomials. However, in
curvilinear coordinates, this term does not vanish because the
Legendre polynomials are not orthogonal with respect to the
inner product weighted by gh . In practice, we have found that
the conservative correction is small but necessary to maintain
conservation to machine precision.
We note that, in order to improve the evolution of the

electron fraction, Ye=De/ρ, we also apply the minmod limiter
directly to the electron fraction, and enforce limiting of both ρh
and De,h whenever oscillations in Ye are detected by the
minmod function.
In order to determine where slope limiting is necessary, we

use the TCI of Fu & Shu (2017) to prevent excessive limiting.
For example, it is well known that the minmod limiter is overly
diffusive around smooth extrema, where =

~
C 0i , which kills off

all the high-order accuracy. We note in passing that other TCIs
have been proposed (see, e.g., Qiu & Shu 2005), but we have
chosen the one by Fu & Shu (2017) for its relative ease of
implementation. This TCI is based on the function

å
=

-
I G

G G

G Gmax max ,
, 59K

K K

K K
h

j
j

j

j
j

( )
∣ ∣

( ∣ ∣ ∣ ∣ )
( )

( )

( )
( )

where GhäGh⊆Uh is in the subset of fields used to detect
troubled cells. In Equation (59), the sum in the numerator is
taken over all the neighboring elements K( j) sharing a boundary
with the target element K, while the max in the denominator is
taken over neighboring elements K( j) and the target element K.
The cell average of Gh in K is denoted GK, and is here given by
the right-hand side of Equation (47)—i.e., without the
weighting factor gh used in the proper definition of the cell

average in Equation (31). Computed in the same way, GK
j( ) is

the corresponding cell average computed by extrapolating the
polynomial representation from the neighboring elements K( j)

into the target K, and G
K
j
j

( )
( ) is the cell average native to the

neighbor element K( j). An illustration of the TCI is given in
Figure 3 for the 1D case applied to a single field G(x).
An element is flagged for limiting if, for any GhäGh,

IK(Gh)> CTCI(G), where CTCI(G) is a user-defined threshold,
which can be set differently for each G. In the numerical results

Figure 2. Illustration of how the minmod slope limiter works when applied
to a 1D scalar field U(x). The original, high-order polynomial =U xh ( )

få = C xi
N

i i1
˜ ( ) is represented by the thick solid black curve, while its constant

and linear contributions, fC x1 1
˜ ( ) and fC x2 2

˜ ( ), are represented by solid and
dashed–dotted black lines, respectively. The slopes D = -+ +C C C1 1 1( ) and
D = -- -C C C1 1 1( ) —the second and third argument in the minmod function in
Equation (55), respectively—are represented by the blue and red dashed lines,
respectively. In this example, all three slopes have the same sign. Then,
because D < D <- +C C C1 1 1( ) ( ) , D

~ -C C2 1≔ ( ) .
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presented in Section 4, we use the mass density, fluid energy,
and electron fraction as the variables to detect troubled cells;
i.e., r=G E Y, , e

T( ) .
When solving a system of hyperbolic conservation laws,

experience has shown that the slope limiting described above is
more efficient when performed on the so-called “characteristic
variables,” as opposed to the conserved variables Uh (see, e.g.,
Cockburn & Shu 1998, for a description). Because the Euler
equations form a system of hyperbolic partial differential
equations (see, e.g., LeVeque 1992), the flux Jacobian in
Equation (10) can be decomposed as

¶
¶

= L = ¼- 
F U
U

i d1, , , 60
i

i i i 1( ) ( ) ( ) ( )

where the columns of the 6× 6 matrix i contain the right
eigenvectors of the flux Jacobian, the rows of -i 1( ) contain
the left eigenvectors, and Λi is a diagonal matrix containing
the eigenvalues of the flux Jacobian. For hyperbolic systems, the
eigenvalues are real and the eigenvectors form a complete set (see
e.g., LeVeque 1992). At this point, we introduce the characteristic
variable = -w U1 . Recall in Equation (55) that we introduced
the transformation matrix. If we let = - i 1( ) , limiting is
performed on the characteristic variables. (For linear systems, the
characteristic variables evolve independently, and limiting of one
characteristic variable does not affect the others.) Once

~
 Ci is

estimated in the characteristic variables as in Equation (55),
the limited slopes in the conserved variables are obtained by
left multiplication with - 1 (see e.g., Cockburn & Shu 1998;
Schaal et al. 2015), and the limiting process proceeds as in

Equations (57) and (58). It should be noted thati and -i 1( ) are
computed using cell averages of the conserved and metric
variables.
While this process of characteristic limiting has been done

for an ideal EoS and shown (e.g., Schaal et al. 2015) to give
superior results when compared to componentwise limiting
(especially for the high-order case; k� 1), the extension to the
tabulated nuclear EoS case is nontrivial. The reasons for this
are (1) the increased complexity and dimensionality of the
system due to the added electron conservation equation in
Equation (4), and (2) the additional care that must be taken
when computing the thermodynamic derivatives associated
with the flux Jacobian. In the case of an ideal, or other
simplified EoS, the necessary thermodynamic derivatives (such
as derivatives of pressure) are analytically defined. For a
nuclear EoS, the derivatives do not have analytic expressions
and the necessary eigenvectors must be constructed generally.
We provide the characteristic decomposition of the flux
Jacobian for the Euler system with a nuclear EoS in
Appendix A.

3.4. Bound-enforcing Limiting

When solving the Euler equations of gas dynamics with an
ideal EoS, the mass density ρ and pressure p (or, equivalently,
internal energy density e) must remain positive. However, this
property is not guaranteed by the basic DG method, which
encourages the use of a more advanced procedure (Zhang &
Shu 2010a). The internal energy density is given in terms of the
conserved quantities as

r
= -Ue E

m

2
, 61

2
( ) ( )

where m2=mjm
j, E is the fluid energy density, and mj= ρvj

are the components of the momentum density. For the ideal
EoS case, the set of physically admissible states is given by

r r= = > > U m UE e, , 0 and 0 . 62T˜ { ( ) ∣ ( ) } ( )

If the mass density is positive, the internal energy density is a
concave function of U, and ̃ is a convex set (Zhang &
Shu 2010a). For many EoSs (including the ideal EoS), where
the pressure only depends on the mass density and internal
energy density, U must remain in ̃ as defined in Equation (62),
otherwise, the initial value problem is ill posed. To maintain

Î U ˜ , the combination of a suitable time-step restriction, a
strong stability-preserving time integrator, and a bound-
enforcing limiter is used (e.g., Zhang & Shu 2010a). The
time-step restriction is derived as a sufficient condition to
ensure that the updated cell average satisfies Î+ UK

n 1 ˜ and
requires Î Uh

n ˜ pointwise within each element, while the
limiter, which relies on Î+ UK

n 1 ˜ and the convexity of ̃ , is
used to again enforce pointwise Î+ Uh

n 1 ˜ within each element.
(We do not attempt to derive a sufficient time-step restriction
for the present setting in this paper and simply use the condition
in Equation (44).) We note here that for two arbitrary elements

Î U U,a b
˜ , because the set ̃ is convex, the convex combination

Uc := ϑUa+ (1− ϑ)Ub, where ϑä [0, 1], is also in ;˜ i.e.,
Î Uc ˜ . Moreover, e(U) in Equation (61) is concave because

Jensen’s inequality—e(Uc)� ϑ e(Ua)+ (1− ϑ)e(Ub)—holds.
The property of convex combinations is commonly used to

Figure 3. Illustration of how the troubled-cell indicator works in the 1D case
on a scalar field G(x) to determine if limiting is needed in the target element K,
where the polynomial representation is given by Gh(x) (solid black curve), and
the cell average is GK (solid gray line). The polynomial representation in the
left element, K(1), is given by G xh

1 ( )( ) (solid red curve), with cell average G
K
1
1

( )
( )

(solid light red line). Similarly, the polynomial representation in the right
element, K(2), is given by G xh

2 ( )( ) (solid blue curve), with cell average G
K
2
2

( )
( )

(solid light blue line). The extrapolations of G xh
1 ( )( ) and G xh

2 ( )( ) into the target
element are given by the dashed red and blue curves, respectively. Finally, the
cell averages of the extrapolations of G xh

1 ( )( ) and G xh
2 ( )( ) , computed over

the target cell, are denoted GK
1( ) (dashed light red line) and GK

2( ) (dashed light
blue line), respectively. The element is flagged for limiting if the difference in
the cell averages, -G GK K

2∣ ∣( ) and/or -G GK K
2∣ ∣( ) , becomes too large.
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design constraint-preserving numerical methods for systems
where—for physical reasons—the dynamics is constrained to a
convex set (see, e.g., Xing et al. 2010; Olbrant et al. 2012;
Endeve et al. 2015; Wu & Tang 2015; Chu et al. 2019, for
examples beyond the nonrelativistic Euler equations with an
ideal EoS).

To maintain physically admissible states in the present
setting with thornado, we draw inspiration from the limiting
strategy proposed for an ideal EoS by Zhang & Shu (2010a),
which we have modified to work satisfactorily with a tabulated
nuclear EoS. Specifically, thermodynamic quantities, including
the specific internal energy ò= e/ρ, are tabulated in terms of
mass density, temperature, and electron fraction, which cover
finite extents, i.e., r r rÎ ,min max[ ], ÎT T T,min max[ ], and

ÎY Y Y,e ee ,min ,max[ ]. We use some of the table bounds to define
the set of admissible states as

r r
r

= = Î
º  

 


U m

U
E D D
T Y

, , , , and
, , , 63

ue
T

e
T

min min e

{ ( ) ∣ ( )
( ) ( )} ( )

where we have defined the subset

r r r r= = >  
 

u
u

D D

Y Y Y

, , 0, and

,
64

u e
T

min max e

e,min e e,max

{ ( ) ∣
( ) }

( )

and seek to maintain Î Uh .
First, we note that it is straightforward to show that

the subset u is convex. To do this, it is sufficient to show
that a convex combination of two arbitrary elements of u
also belongs to u. To this end, let rºu D,a a ae,

T( ) ä
rº Î u D, ,u ub b be,( ) , and define the convex combination

uc= ϑ ua+ (1− ϑ)ub, where ϑ ä [0, 1]. Then the first comp-
onent of uc is ρc= ϑ ρa+ (1− ϑ)ρb. Because, by assumption,
r r r rÎ, ,a b min max[ ] and ϑ ä [0, 1], it follows that
r r rÎ ,c min max[ ]. Similarly, the second component of uc is
De,c= ϑDe,a+ (1− ϑ)De,b. Then, because De,a, De,b> 0, it
follows that De,c> 0. Finally, we can write

r
J J
J r J r

a
r

a
r

a a

= =
+ -
+ -

= + -

= + -

u

u u

Y
D D D

D D

Y Y

1

1

1

1 , 65

c
c

c

a b

a b

a

a

b

b

a b

e
e, e, e,

e, e,

e e

( ) ( )
( )

( )

( ) ( ) ( ) ( )

where

a
J r

J r J r
=

+ -1
. 66a

a b( )
( )

Because r r r >, 0a b min and ϑä [0, 1], we have α� 0. We
also have α� 1. Therefore, α ä [0, 1], which implies

ÎuY Y Y,ce e,min e,max( ) [ ] and Î u uc . Thus, the subset u is
convex.

While, strictly speaking, the Euler equations in Section 2 are
valid for any mass density ρ> 0, we note that there are
physical reasons for maintaining the mass density within the
finite table bounds, which are r » ´1.66 10min

3 g cm−3 and
r » ´3.16 10max

15 g cm−3 for the tables used in this paper.
Indeed, in CCSN simulations, it is possible for the cell-
averaged mass density to evolve outside these limits, which
would require extending the table bounds. However, when
the mass density approaches the upper bound, a relativistic

description should be adopted, and when the mass density
approaches the lower bound, the nuclear EoS adopted here is
invalid because the matter is not in NSE. These bounds must,
however, also be enforced to avoid algorithm failure. For the
purpose of the bound-enforcing limiter, the finite bounds on the
mass density in Equation (63) are included in case the bounds
are violated for certain points within an element, e.g., in the
vicinity of a shock, while the cell-averaged mass density is still
inside the table bounds. (The limiter developed here will not
work if the cell-averaged mass density exceeds the table
bounds.) We have also equipped the set of admissible states 
with the bounds Î ÍY Y Y, 0, 1e e,min e,max[ ] [ ], which are also
required to avoid algorithm failure. (In this work, =Y 0.01e,min
and =Y 0.7e,max ). We note, however, that for the test problems
in Section 4 and the application in Section 5, we did not
encounter a situation in which the mass density or the electron
fraction exceeded their respective table bounds.
On the other hand, a complication that frequently arises in

gravitational collapse simulations is that the specific internal
energy falls below the minimum tabulated value (i.e., < min)
—especially around core bounce and shock formation, which
we discuss in further detail in Section 5. When this happens,
the EoS is not invertible for the temperature when given the
state vector r  Y, , e

T( ) , and the algorithm fails because the
temperature is needed to compute the pressure as well as other
thermodynamic quantities. It is not feasible to merely generate
tables with lower Tmin, because—particularly for high mass
densities—the specific internal energy does not tend to zero as
T→ 0 due to the degeneracy (or zero temperature) contribution
to the internal energy, as can be seen in Figure 4. In CCSN
simulations, where the iron core is degenerate at the onset of
collapse, the initial specific internal energy is already close to
the minimum value. Then, around core bounce and shock

Figure 4. Relationship between specific internal energy and temperature from
the SFHo EoS for select values of mass density and electron fraction. (Note that
the electron fraction is only sampled from the narrow range encountered in the
adiabatic simulations discussed in Section 5.) Due to degeneracy, the specific
internal energy for all profiles demonstrates asymptotic behavior for low
temperatures. Thus, the lower boundary on ò would not change if the table was
reconstructed with a lower temperature limit.
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formation, where steep gradients in the evolved fields form,
conditions with Ï Uh can easily arise within certain elements,
and a limiting strategy is needed. Fortunately, we have
observed that Î UK is always satisfied (although we do not
seek to establish sufficient conditions to guarantee this here).
This allows us to pursue the limiting strategy proposed by
Zhang & Shu (2010a), which we detail below.

There is, however, an additional complication that may cause
the limiting strategy of Zhang & Shu (2010a) to fail: the surface
of specific internal energy at the minimum temperature Tmin—

that is, r rº Y T Y, , ,min e min e( ) ( )—is not globally convex in
the sense that the second derivatives r¶ ¶ Y

2
min

2
e( ) and

¶ ¶ r Y2
min e

2( ) are not strictly positive everywhere, which
implies that the set  in Equation (63) is not strictly convex.
We illustrate this in Figure 5, which shows r T Y, ,min e( ) as a
function of ρ and Ye for the SFHo EoS (Steiner et al. 2013b).
Therefore, adopting the limiting procedure from the ideal EoS
case to enforce Î Uh —even if Î UK —can compromise the

robustness of the limiter. The reason is that the amount of
limiting applied to the polynomial Uh is determined by finding
the intersection point of the boundary of  and the straight line
connecting the cell average UK and a nonphysical point value

Ï Uq . If  is not convex, there may be multiple intersection
points, which can cause the limiter to fail. However, the issue
of a globally nonconvex  is avoided if the limiter is only
activated in regions for which  is locally convex. That is, for
the elements that require limiting, the cell average UK and the
DG solution Uh, evaluated in the required quadrature points
within each element K, are in a locally convex region and
sufficiently close to each other in  . The latter is typically the
case in regions of the flow characterized by small gradients but
may not be the case in the vicinity of a shock. Fortunately, as
discussed further in Section 5, we do not encounter any
situations in which the nonconvexity of  causes the limiter to
fail, but this needs to be further investigated in the context of
multidimensional models with higher physical fidelity (i.e.,

Figure 5. The minimum specific internal energy, r=  T Y, ,min min e( ) for the SFHo EoS, is displayed in the top panel as a function of ρ and Ye. (Because the specific
internal energy can be negative, we have added an offset of about 2.8 × 1017 erg g−1 to the actual value returned by the EoS.) The vertical lines (constant Ye)
correspond to lines plotted in the lower-left panel, while horizontal lines (constant ρ) correspond to lines plotted in the lower-right panel. To further highlight the
topology of the min surface, we plot min vs. mass density for select values of Ye in the lower-left panel. Similarly, we plot min vs. electron fraction for select values of
ρ in the lower-right panel. These traces are selected to illustrate the nonconvexity of  . The red dots indicate nonconvex regions, i.e., where the second derivative of
the specific internal energy with respect to either ρ (left) or Ye (right) is less than zero. From visual inspection, the constant Ye profiles (lower left) appear to be convex;
i.e., r¶ ¶  0Y

2
min

2
e( ) . However, the dashed line is not, and the dotted and solid lines are nonconvex around ρ = 1014 g cm−3. Meanwhile, the constant ρ profiles

(lower right) are clearly not all convex because ¶ r Y2
min e

2( ) can be negative (see dashed and dashed–dotted curves).
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models that include neutrino transport), which sample a larger
part of the EoS than the simulations discussed in this paper.

The bound-enforcing limiter is completely local to each
element and can thus be discussed in terms of a single element
K. As in (Zhang & Shu 2010a), we define a point set S+, which
includes the volumetric nodal points in an element K, as well as
the points on the interface of K. For the 2D case with k= 2, the
point set is given by the union of all the points displayed in the
right panel in Figure 1. Thus, S+ comprises the points where
Uh is evaluated to construct the update for each Up in
Equation (30). Using Equation (17), the solution is evaluated at
all the points xqä S+, and limiting is applied if, for any point
xqä S+, º Ï U U xq qh ( ) . The step-by-step procedure for
bound-enforcing limiting is described next, where it is assumed
that the cell average satisfies Î UK .

3.4.1. Step 1: Mass Density and Electron Density

The first step is to enforce r r rÎ ,q min max[ ] and
d >D 0q De, e for all xqä S+, where dDe is arbitrarily small.

(The bound De,q> 0 is needed in Step 2 below.) Following
Zhang & Shu (2010b), we use the linear scaling limiter from
Liu & Osher (1996), and replace the polynomial =u xh ( )
r x xD,h he,

T( ( ) ( )) with the limited polynomial

J J J- + Îu x u u x1 0, 1 , 67Kh h
1

1 1 1( ) ≔ ( ) ( ) ( [ ]) ( )( )

where the limiter parameter ϑ1ä [0, 1] is found by a simple
backtracing algorithm. Specifically, for any point xqä S+ with

= Ï u u xq q uh ( ) , we start with ϑ1,q= 1, which is recursively
reduced (by 5%) until

J J= - + Î u u u1 . 68q q K q q u
1

1, 1,( ) ( )( )

(In practice, to reduce the number of iterations, we set ϑ1,q= 0
whenever the backtracing algorithm has brought the value
below 0.01.) We then set J Jminq q1 1,≔ , where the minimum
is taken over all the points within the element where uh was
found to violate the bounds associated with Step 1. The limiter
in Equation (67) simply scales uh as evaluated in the points
within the element toward the cell average, and the value for ϑ1
is determined in order to scale the solution in the points just
enough to ensure that the bounds are satisfied for all xqä S+. In
the worst-case scenario, ϑ1= 0, and the DG solution is set
equal to the cell average everywhere within the element. Note
that this step is conservative and does not change the cell
averages; i.e., =u uK K

1( ) . Also note that if the bounds on the
mass density and electron density are not violated, then ϑ1= 1
and =u x u xh h

1 ( ) ( )( ) .

3.4.2. Step 2: Electron Fraction

In the second step, we enforce Ye,q ≡ De,h(xq)/ρh(xq) ä
Y Y,e,min e,max[ ] for all xqä S+. To do this, we follow a procedure
similar to the previous step, and replace u xh

1 ( )( ) with the limited
polynomial

J J J- + Îu x u u x1 0, 1 , 69Kh h
2

2 2
1

2( ) ≔ ( ) ( ) ( [ ]) ( )( ) ( )

where

J
a r

a r a r
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=
+ -

=
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-
-
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1
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and where we have defined

r

= =

=
Î Î+ +

u x u xM Y m Y

Y D

max , min , and

.
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K K K

Y h Y he
1

e
1

e, e,

e e( ( )) ( ( ))

( )

( ) ( )

and with the cell average for mass density and electron density
computed according to the definition in Equation (31), i.e.,

å
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( )

respectively. In the expression for ϑ2 in Equation (70), we
simply set r r=a Î + xmax Sx h

1 1 ( )( ) ( ) , which is sufficient, but may
not give the optimal value for ϑ2 (i.e., this choice may not give
the largest ϑ2 while still maintaining Î u uh

2( ) ).
Step 2 is also conservative and does not change the cell

averages; i.e., = =u u uK K K
2 1( ) ( ) . Also, if the bounds on

the electron fraction are not violated, ϑ2= α= 1 and
=u x u xh h

2 1( ) ( )( ) ( ) . After the completion of Steps 1 and 2, we
have ensured Î u xq uh

2 ( )( ) for all xqä S+.

3.4.3. Step 3: Specific Internal Energy

In the third, and final, step, we enforce  q qmin, for all
xqä S+. To this end, we define r=U m E D, , ,h h h h h

2 2
e,
2 T( )( ) ( ) ( ) ,

which is the full solution vector after steps 1 and 2. Using Uh
2( ),

the specific internal energy and electron fraction in each point
xqä S+ are computed as

r
r

r

= = -

= =

  U x

U x

E
m

Y Y D

2
and

, 73

q q q
q

q
q

q q q q

h

h

2 2
2

2
2

e,
2

e
2

e,
2 2

( ( ))

( ( )) ( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

respectively. Then, if < q q
2

min,
2( ) ( ) ≡ r T Y, ,q q

2
min e,

2( )( ) ( ) for any

xqä S+, we replace Uh
2( ) with the limited polynomial

J J J- + ÎU x U U x1 0, 1 . 74Kh h
3

3 3
2

3( ) ≔ ( ) ( ) ( [ ]) ( )( ) ( )

Here, the polynomial representation of the full solution is
written as a convex combination of the cell average and the
polynomial representation after Step 2. Because we assume

Î UK , setting ϑ3= 0 will ensure Î U xh
3 ( )( ) . However,

setting ϑ3= 0, so that =U UKh
3( ) , kills off all the high-order

accuracy of the polynomial representation, which is undesir-
able. Instead, one would want to find the largest value for ϑ3 to
retain as much high-order accuracy as possible and enforce

Î U xh
3 ( )( ) for all xqä S+. As discussed above, this is

complicated by the fact that is not strictly convex. It is further
complicated by the fact that the surface r Y,min e( ) is only
available at discrete points from the EoS table. Because of this,
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we will assume that  is locally convex and first obtain ϑ3,q by
solving

J J J= - +  s 1 , 75q q K q q3, 3, min, 3, min,
2( ( )) ( ) ( )( )

for each xq where < q q
2

min,
2( ) ( ) . On the left-hand side of

Equation (75), we have defined

J J J= - +s U U1 , 76q q K q q3, 3, 3,
2( ) ( ) ( )( )

while on the right-hand side of Equation (75), we have defined
r=  T Y, ,K K Kmin, min e,( ). Then, we set

J Jmin , 77
q

q3 3,≔ ( )

where the minimum is taken over all the points in S+ where the
specific internal energy fell below the minimum value.

We note that the limiter in Equation (74) is conservative in
all the fields in the sense that the cell average is preserved, i.e.,

ò òJ J

J J

= - +

= - + =

U U U

U U U
V

dV
V

dV
1

1
1

1 . 78
K K

K
K K

K K K

h h h h
3

3 3
2

3 3

( )

( ) ( )

( ) ( )

The motivation for solving Equation (75) is as follows (see
Zhang & Shu 2010a, for the ideal EoS case): s(ϑ3,q) is the
parameterized straight line connecting the cell average UK and
the point value Uq

2( ). Because Î UK , we know that

r
rº - E

m

2
. 79K K

K

K
K K

2

min, ( )
⎛
⎝⎜

⎞
⎠⎟

On the other hand, if Ï Uq
2( ) , there is at least one intersection

point of the line s(ϑ3,q) and the boundary of ; i.e., the surface
r Y,min e( ). (If  is convex, which we assume in this step,

there is exactly one intersection point.) Because we do not
know the exact shape of the surface, we approximate it by the
line segment connecting the boundary points  Kmin, and  qmin,

2( ) ,
and by the convexity assumption, this line lies above the
surface r Y,min e( ). Thus, in Equation (75), the solution ϑ3,q
provides the intersection point between the line connecting
the points òK and  q

2( ) and the line connecting the points

 ,K qmin, min,
2( ) . See Figure 6 for an illustration.

Equation (75) is solved for ϑ3,q with a simple bisection
algorithm, using the end points ϑ3,q= 0 and ϑ3,q= 1 as starting
points. We note that, in practice, the solution to Equation (75)
does not have to be accurate to many significant digits, and the
bisection algorithm can be terminated after a few iterations. We
also note that because r Y,min e( ) is not strictly convex, as is
shown in Figure 5, Equation (75) can have multiple roots, and
the bisection algorithm may result in a limited solution that is
still outside  . We have, however, not encountered a situation
where this happens. On the contrary, in the numerical examples
presented in Section 4, we find that the limiting procedure
discussed in this section significantly improves the robustness
of the DG algorithm. As can be seen by looking ahead to
Figure 20 in Section 5, the bound-enforcing limiter is
continuously activated, with ϑ3ä [0.4, 1], in a short time
interval around core bounce in an adiabatic collapse simulation.

Finally, we have assumed that the cell average satisfies
Î UK when the limiter is applied. If this assumption does not

hold, the bound-enforcing limiter will fail. By considering the
equation for the cell average in Equation (32), in combination
with forward Euler time stepping, it may be possible to derive a

sufficient restriction on the time step such that Î+ UK
n 1 ,

provided Î UK
n and Î Uq

n (possibly with additional points
included in the set S+). We do, however, not pursue this
endeavor here. Instead, we use the time-step restriction given in
Equation (44), which may not be sufficient. In the absence of
an explicit expression for a sufficient time-step restriction
(assuming one exists), one may design a time-step control
algorithm where the step size is recursively reduced, and the
time step retaken, until a physically admissible cell average is
obtained. On the other hand, we have yet to encounter an
application in which a solution with cell average Ï UK is
passed to the bound-enforcing limiter.

3.5. Poisson Solver

In thornado, the approximate Newtonian gravitational
potential, Φh, is obtained using the Poseidon code (N. Roberts
et al. 2021, in preparation). Poseidon solves Equation (5) on a
spherical-polar grid with a combination of an angular spectral
expansion using spherical harmonics and a radial finite-element
solution method. Here, we discuss the case of spherical
symmetry and thus limit the angular expansion to the monopole
harmonic function. Therefore, we will focus only on the finite-
element method (Larson & Bengzon 2013) used in the radial
expansion. Because the Newtonian gravitational potential is
expected to be continuous in space, we require the approximate
solution, Φh, to be C0 continuous across element interfaces. To
enforce this continuity, Poseidon uses the continuous Galerkin
(CG) finite-element method instead of the DG method to solve
the Poisson equation. However, we note that the DG method

Figure 6. Illustration of the bisection problem used to find ϑ3,q in Equation (75)
to determine the extent of limiting needed to ensure that the specific internal
energy does not fall below the table boundary min (dashed black curve). In the
example depicted here, ò(Uq), the right end point of the blue curve, is below the
table boundary, and limiting is needed. We find ϑ3,q as the intersection point
between the blue curve connecting ò(UK) and ò(Uq), and the red curve
connecting  Kmin, and  qmin, . In this case, ϑ3,q ≈ 0.87.
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can also be used to solve elliptic equations (e.g., Rivière 2008;
Vincent et al. 2019).
The CG method expresses the approximate solution, Φh, to

Equation (5) as a continuous expansion of functions of the form

åF = F
=

r t t v r, , 80h
i

N

i i
1

D

( ) ( ) ( ) ( )

where ND is the total number of interpolation nodes on the
domain D, and Φi(t) are spatially constant expansion
coefficients. As the method used to solve the Poisson equation
is purely spatial in nature, we will omit the time parameter, t,
for the rest of this section. The basis functions vi(r) belong to
the approximation space, Vh, defined by

y y= Î = ¼V P K j N: , 1, , , 81h h h K
k j

ej{ ∣ ( ) } ( )( )( )

where Pk is a space of 1D piecewise polynomials of degree k,
and K( j) are the radial elements of the same decomposition of
the computational domain as expressed in Section 3.1. Given
this choice of approximation space and domain decomposition,
ND is given by ND= Nek+ 1, where Ne is the number of radial
elements on the domain.

Continuity is achieved through the choice of interpolation
points and approximation space polynomials. Within a specific
element K( j), the interpolation points, x x= ¼S , ,j j j m,1 ,

ˆ { , K,

x Ì = -+ I ,j k, 1
1

2

1

2
} ⎡⎣ ⎤⎦, are chosen to be the LGL points. The

physical coordinate r is related to the reference coordinate ξ ä I
by the transformation

x x= + Dr r r , 82j jc,( ) ( )

where rc,j is the physical coordinate for the center of element
K( j) and is such that

x x=+ +r r . 83j k j, 1 1,1( ) ( ) ( )

The inverse relationship,

x =
-

D
r

r r

r
, 84

j

j

c,( )
( )

( )

allows us to express the chosen approximation space
polynomials vi(r) ä Vh as

x
=

Î
v r

ℓ r r Kfor

0 else,
85i

j m
j

,( ) ( ( )) ( )
( )⎧⎨⎩

where ℓj,m are the Lagrange polynomials in Equation (15)
constructed with the LGL points, Sĵ. Each approximation
function vi(r) is associated with a node ξj,m such that

x =v r 1i j m,( ( )) by the Kronecker delta property of the Lagrange
polynomials. This choice of interpolation points and approx-
imation functions enforces the C0 continuity of the solution.
See Figure 7 for an illustration of elements and associated basis
functions in the CG method for the case with k= 2.
The CG method seeks to find Φhä Vh, which approximates

Φ in Equation (5) such that

y p r yá F ñ = á ñG, 4 , 86h h D h D
2 ( )

holds for all test functions ψhä Vh. In Equation (86),

òy p yá F ñ =  F r dr, 4 , 87h h D
R

R

h h
2 2 2

L

H

( )

and

òp r y p r yá ñ =G G r dr4 , 16 , 88h D
R

R

h
2 2

L

H

( )

where RL and RH are the low and high radial boundary
locations of the domain, respectively. Using integration by
parts on Equation (87), Equation (86) becomes the weak form
of Equation (5),

y y p r y-á¶ F ¶ ñ + ¶ F = á ñG, 4 , . 89r h r h D r h h R
R

h DL
H( ) ∣ ( )

For the gravitational collapse problem discussed in
Section 5, we impose the Neumann boundary condition,

¶ F =R 0, 90r h L( ) ( )

on the inner boundary (RL= 0) to preserve the symmetry of the
solution, and the Dirichlet boundary condition,

F = -R
GM

R
, 91h H

enc

H
( ) ( )

on the outer boundary, where Menc is the total enclosed mass
given by

òp r=M r r dr4 . 92
R

R

henc
2

L

H

( ) ( )

The Neumann condition in Equation (90) reduces
Equation (89) to

y y p r y-á¶ F ¶ ñ + ¶ F = á ñR R G, 4 , . 93r h r h D r h h h DH H( ( )) ( ) ( )

Figure 7. Illustration of the basis functions, vi, used in the CG solution method of Poseidon for the case k = 2. Each function is associated with a specific element K( j)

and a node ξj,m within that element, such that x =v r 1i j m,( ( )) . Outside of the associated element, vi = 0, and is therefore not depicted.
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Next, the expansion in Equation (80) and ψh= vj are substituted
into Equation (93) to give

å p rF -á¶ ¶ ñ + ¶ = á ñ

=
=

v v v R v R G v

j N

, 4 , ,

1, , .
94

i

N

i r i r j D r i j j D

D

1
H H

D

( ( ( )) ( ))

( )


To enforce the Dirichlet condition, the expansion coefficient
ΦN is set to the boundary value given by Equation (91), and the
dimensionality of the problem is reduced to ND− 1, eliminat-
ing the ¶ v R v Rr i jH H( ( )) ( ) term as vj(RH)= 0, ∀ j≠ ND.
Equation (94) then becomes

å p r- F á¶ ¶ ñ = á ñ = -
=

-

v v G v j N, 4 , , 1, , 1.

95
i

N

i r i r j D j D D
1

1D

( )



Defining the stiffness matrix as

= = -á¶ ¶ ñ=
-S s s v v, , , 96ij i j

N
ij r i r j D, 1

1D{ } ( )

the load vector as

p r= á ñ =
-L G v4 , , 97j D j

N
1
1D{ } ( )

and the unknown coefficient vector as

= F =
-C , 98i i

N
1
1D{ } ( )

the system in Equation (95) can then be written in matrix
form as

=SC L. 99( )

The matrix S is a sparse symmetric band matrix, with
bandwidth equal to k. When k= 1, the matrix S is tridiagonal.
When k> 1, an overlapping block structure occurs within the
diagonal band of S; see Figure 8.

The sparsity of the matrix is given by

=
- +
+ +

N k N

N k N k
Sparsity

1

2 1
. 100e e

e e

2

2 2
( )

To reduce memory overhead, S is stored in compressed column
storage (CCS) format. The system is then solved using a CCS-
compatible Cholesky factorization. Once these coefficients are
known, the approximate solution can be reconstructed any-
where within the domain using Equation (80).

3.6. Table Interpolation

As in Bruenn (1985), Mezzacappa & Messer (1999), and
Bruenn et al. (2020), we obtain a thermodynamic quantity F
and its derivatives from the tabulated EoS through trilinear
interpolation in the space spanned by r T Ylog , log ,10 10 e( ( ) ( ) ).
The software to compute these are provided by the WeakLib
library, and, for completeness, we restate formulas here. To
simplify the notation, let r=X log10( ), =Y Tlog10( ), and
Z= Ye. Then, =F F X Y Z, ,¯ ¯ ( ), where F̄ is related to the
thermodynamic quantity by = -F F10F offset

¯ . That is, trilinear
interpolations are performed on logged quantities, and the
offset is used to ensure that F̄ is well defined when F is
negative. Obtaining F first requires the eight points (Xa, Yb,
Zc): a, b, c ä {0, 1} from the table that make up the corners of a
“cube” of the points closest to X Y Z, ,( ). These points then
satisfy

- = - = - =
r

X X
N

Y Y
N

Z Z
N

1
,

1
, and

1
,

101
T Y

1 0 1 0 1 0
e

( )

where Nρ and NT are the number of the points per decade in ρ

and T, respectively, and NYe is the number of points per unit
interval in Ye. F̄ is then given by the trilinear interpolation
formula, e.g., found in Equation (32) in Mezzacappa & Messer
(1999), which, in multi-index notation, can be written
compactly as

å=
=

X XF w F , 102
i

i i
0

1
¯ ( ) ( ) ¯ ( )

where X= (X, Y, Z). In this context, the weights wi(X) are
given by

=Xw B X B Y B Z , 103i i i i1 2 3( ) ( ) ( ) ( ) ( )

where B Xi1( ) (i1ä {0, 1}) are linear Lagrange polynomials,

=
-
-

=
-
-

B X
X X

X X
B X

X X

X X
and , 1040

1

1 0
1

0

1 0
( ) ( ) ( )

and B Yi2 ( ) and B Zi3( ) are similarly defined by replacing X with
Y or Z, respectively.
As in Mezzacappa & Messer (1999), derivatives with respect

to ρ, T, and Ye are calculated directly from this expression, i.e.,

å

r r

r

¶
¶

=
+ ¶

¶

=
+ ¶

¶=

F F F F

X

F F w

X
F , 105

i

i
i

T Y Y Z

0

1

,

offset

,

offset

e

( ) ¯

( ) ¯ ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Figure 8. Nonzero structure of the matrix S used in Poseidon for the case of
k = 2, and Ne = 4. The diagonal lines denote the band structure of the matrix.
The squares denote the overlapping block structure within the band. The single
overlapping element shared by the consecutive blocks comes from the shared
interpolation node at element interfaces.
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We note that this interpolation scheme does not, by
construction, satisfy the Maxwell relations of thermodynamics.
While this may impact the ability to resolve adiabatic flows
(see Swesty 1996 and Timmes & Swesty 2000 for further
discussion), we do not observe any clear evidence of this being
a problem in our computations. In addition, while we believe
that the low-order accuracy of the trilinear interpolation scheme
may play a role in both the convergence rates observed with the
high-order RKDG scheme in Section 4.1 and the issues with
characteristic limiting around the phase transition observed in
Section 5, additional investigations are required.

4. Numerical Results

In this section, we present results obtained with the DG
method as implemented in thornado for various test problems
relevant to CCSNe and other astrophysical phenomena. With
the exception of a few reference calculations obtained using an
ideal EoS in Section 4.1.1, all of the results were obtained
using a tabulated version of the SFHo EoS of Steiner et al.
(2013b), which covers the ranges ρ ä [1.66× 103, 3.16× 1015]
g cm−3, with Nρ= 25, Tä [1.16× 109, 1.84× 1012] K, with
NT= 50, and Ye ä [0.01, 0.7], with =N 100Ye . (See, however,
Endeve et al. 2019 for a documentation of results obtained with
thornado using an ideal EoS.) In the first two subsections,
we begin by presenting results from 1D advection tests using
Cartesian coordinates and 1D and 2D Riemann problems
using Cartesian, spherical-polar, and cylindrical coordinates
(Sections 4.1 and 4.2, respectively). These tests serve as an
initial gauge of the implementation of the DG algorithm in
thornado with a nuclear EoS. Using Riemann problems with
initial conditions adapted from their ideal EoS counterparts, we
aim to investigate the performance of our implementation in
curvilinear coordinates, as well as the slope limiter presented
in Section 3.3 and the bound-enforcing limiter presented in
Section 3.4. The Poisson solver is tested in Section 4.3. Then,
in Section 5, our focus turns to the main application, adiabatic
gravitational collapse in spherical symmetry, where we
investigate the performance of thornado’s DG algorithm
by investigating various aspects of the solver with an eye
toward future spherically symmetric—and eventually multi-
dimensional—supernova simulations with neutrino transport.
In all of the tests, the CFL number in Equation (44) is set to
CCFL= 0.5.

4.1. Advection Tests

4.1.1. Rate of Convergence

The accuracy of the DG method can be manipulated by
changing the number of nodes per cell N= k+ 1 and/or the
total number of cells K. The number of nodes per cell (or
element) governs the expected order of accuracy of the method.
(Nth order spatial accuracy is expected with N nodes.) This

section covers the rate at which changing the number of
degrees of freedom nDOF= (k+ 1)×K impacts the accuracy,
i.e., the convergence rate. Inspired by Suresh & Huynh (1997),
this test is performed over the 1D computational domain
D= [−100, 100] km, with smooth initial conditions and
periodic boundary conditions. The initial state for the tabulated
EoS case is set with the primitive state vector P as

r r p= = +P u p Y x L v p, , , 1 0.1 sin , , , 0.3 ,e
T

0
4

0 0
T( ) ( ( ( )) )

where ρ0= 1012 g cm−3 is the background density, v0= 0.1c is
the velocity, p0= 0.01 ρ0 c

2 the background pressure, and
L= 200 km is the domain length. In this test, the mass density,
a quartic sine wave, is advected for one period without any
limiting, while the velocity, pressure, and electron fraction
remain constant. The error in mass density between the initial
and final states is then calculated in the L1 error norm,

å r rº -
=

L . 108
j

n

j j1
1

,final ,initial

DOF

∣ ∣ ( )

In Figure 9, we plot this quantity, scaled by both nDOF and a
background density ρ0, versus nDOF (crosses). (For reference,
we also plot results obtained with an ideal EoS case with
Γ= 1.4; open circles.) The solutions are obtained using N= 2
(black symbols) and N= 3 (red symbols) nodes with second-
and third-order time-integration schemes, respectively. For
each N, we use seven different values of K: 8, 16, 32, 64, 128,
256, and 512. For this smooth problem, we always observe that
for a fixed nDOF, the scheme with N= 3 is significantly more
accurate than the scheme with N= 2. For the nuclear EoS case,
the L1 error for the second-order scheme (N= 2) crosses zero

Figure 9. L1 error between the initial and final states of an advected quartic sine
wave, adopted from Suresh & Huynh (1997). The results are scaled by the
number of degrees of freedom to obtain the average error per node. For the
tabulated EoS results, the background density ρ0 = 1012 g cm−3 is also used to
scale the error, but ρ0 = 1 for the ideal case, which is run in dimensionless
mode. The solid lines are proportional to +n kDOF

1 and serve as references for the
convergence rates of solutions represented by polynomials of degree k = 1
and k = 2.
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and generates a cusp at nDOF= 512. Otherwise, the results
obtained with the second-order method agree well with the
expected convergence rate for both the tabulated and ideal EoS
cases. For N= 3, the ideal EoS case exhibits third-order
accuracy throughout. However, for nDOF> 96, the results for
N= 3 with the tabulated EoS appear to undergo a transition
from third-order to second-order accuracy. We suspect that the
trilinear interpolation method discussed in Section 3.6 may be
the cause of the loss of accuracy for large nDOF, but this
requires further investigation.

4.1.2. Discontinuous Multiwave

This test from Suresh & Huynh (1997) involves the
advection of a discontinuous initial state for mass density,
which includes a Gaussian wave, a square wave, a triangular
wave, and a semiellipse (see light red lines in Figure 10). This
test is performed over a periodic 1D domain D= [−100, 100]
km, with the initial state given as

r r= =P u p Y x v p, , , , 0 , , , 0.3 ,e
T

0 0
T( ) ( ( ) )

Figure 10. Mass density profiles for the discontinuous multiwave advection test adopted from Suresh & Huynh (1997). In each panel, we plot the initial condition (t/
tgrid = 0; light red), the solution after 1 period (t/tgrid = 1; medium red) and after 10 periods (t/tgrid = 10; dark red). (tgrid is the physical time required for one grid
crossing.) In the top panels, we plot results obtained with the second-order method (k = 1 and second-order SSP-RK time stepping) using 192 (left panel) and 384
(right panel) elements. In the bottom panels, we plot results obtained with the third-order method (k = 2 and third-order SSP-RK time stepping) using 128 (left panel)
and 256 (right panel) elements. Increasing the number of nodes and/or elements results in better resolution around sharp peaks.
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where v0 and p0 are given the same values as in the previous
test, and r x, 0( ) is a piecewise function defined as

r r

r r

r r

r r

r r
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where L= 100 km.
We compare the performance of second- and third-order

schemes in this test. Thus, a second- and third-order SSP-RK
time-integration scheme was used for k= 1 and k= 2,
respectively. This test used the characteristic limiting procedure
described in Section 3.3 with a TCI threshold CTCI= 1.0×
10−3 and a TVD parameter βTVD= 1.5. Figure 10 shows the
initial density profile (light red lines) along with four different
cases of the mass density being evolved 1 (medium red lines)
and 10 (dark red lines) times across the periodic domain.
Results obtained with the second-order method are displayed in
the top panels, while results obtained with the third-order
method are displayed in the bottom panels. Note that the results
displayed in the top-left and top-right panels were obtained
using the same total number of degrees of freedom as the
results displayed in the bottom-left and bottom-right panels,
respectively. Analytically, the evolved solution should match
up exactly with the initial condition after each full domain
crossing. However, the numerical solution is distorted by
dissipation and dispersion. For fixed nDOF, the third-order
method appears to provide more accurate results. As the
solution is evolved in the k= 1 case, accuracy is lost primarily
around sharp edges, namely, for the Gaussian and triangular
waveforms. For the k= 1 case with 384 elements, the solution
is not well resolved around the base of each waveform, but
some accuracy is gained around the maxima. Loss of accuracy
around sharp edges is also observed with the third-order
method using 128 elements (bottom-left panel). However, as is
seen in the bottom-right panel, the features of the solution are
better captured with the third-order method using 256 elements.
For the third-order method, we note that most of the distortion
of the initial profile occurs in the first domain crossing, as the
profiles after 1 and 10 crossings are almost on top of each
other. This is not so much the case for the second-order
scheme, where the results after 1 and 10 crossings are more
easily distinguished. However, there is a trade-off between
numerical accuracy and computational expense.

4.2. Riemann Problems

4.2.1. Sod Shock Tube: Cartesian Coordinates

This test is based on the classic Riemann problem from Sod
(1978). It involves an initially stationary fluid with a
discontinuity separating two states—left and right—with high
pressure and density on the left and low pressure and density on
the right. This initial state evolves into a shock propagating into
the low-density region, followed by a contact discontinuity and

a rarefaction wave propagating back into the high-density state.
Shock-tube problems such as this stress a method’s ability to
capture shocks and contact discontinuities without smearing or
introducing unphysical oscillations. Given the importance of
shocks in CCSNe, this serves as a critical first test for any
method designed to model these explosions.
Here, the problem is modified to use physical units in a

regime realizable in simulations of CCSNe. The computational
domain is = -D 5, 5[ ] km with the discontinuity initially at
x= 0 km, separating the left and right states

r= = -

-

P v p Y, , , 10 g cm , 0,

10 erg cm , 0.4 109
L e L

T 12 3

32 3 T

( ) (
) ( )

r= = ´ -

-

P v p Y, , , 1.25 10 g cm , 0,

10 erg cm , 0.3 . 110
R e R

T 11 3

31 3 T

( ) (
) ( )

(Note that the initial Ye profile is also discontinuous.)
The problem is evolved until t= 0.021 ms, using 100

uniform elements with βTvd= 1.75, and no TCI (CTCI= 0), so
that limiting is applied everywhere. We use third-order spatial
discretization (k= 2) and third-order temporal integration
(SSP-RK3). The main focus of this test is to compare results
obtained with componentwise and characteristic limiting
(discussed in Section 3.3). Figure 11 shows results for mass
density (upper left), pressure (upper right), velocity (lower left),
and electron fraction (lower right), using both characteristic
(blue) and componentwise limiting (red), compared to a
reference solution (black) computed using the first-order
accurate spatial method (k= 0), third-order time integration,
and 10,000 elements. We note that both limiting schemes
capture the general nature of the solution, including the
rarefaction wave, which extends from about −3 to 0 km, the
contact discontinuity, which is located at about 2 km, and
the shock, located at about 4 km. The scheme based on
characteristic limiting, however, is better at suppressing
oscillations, and is less dissipative across the contact
discontinuity. These observations are consistent with those
made by Schaal et al. (2015) in the ideal EoS case.

4.2.2. Sod Shock Tube: Spherical-polar and Cylindrical Coordinates

As a test of thornado’s ability to work with non-Cartesian
coordinate systems, we also solve a spherically symmetric
version of the Sod shock-tube problem in 1D spherical-polar
and 2D cylindrical coordinates. For spherical-polar coordinates,
the domain is =D 0, 10[ ] km, with the initial discontinuity
placed at r= 5 km, while, for cylindrical coordinates, our
domain is =D 0, 10[ ] km ´ -10, 10[ ] km, and the dis-
continuity is placed at = + =r R z 52 2 km. For the initial
left and right states, we use those given in the 1D Cartesian Sod
test in Equations (109)–(110), with the exception that the
electron fraction is given a constant value of Ye= 0.4 across the
entire domain. We evolve both tests until t= 0.025 ms using
100 elements in the spherical case and 100× 200 elements in
the cylindrical case. Both tests use the third-order methods
(k= 2 and SSP-RK3), characteristic limiting with βTvd= 1.75,
and no TCI (CTCI= 0). We note that for the 2D test with
cylindrical coordinates, we used thornado’s interface to
AMReX to take advantage of AMReX’s MPI infrastructure.
Results are shown in Figure 12. In the left panel of

Figure 12, we show the 2D density distribution for the
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cylindrical test. In the right panel of Figure 12, we show the
density, velocity, and pressure profiles of the spherical-polar
test (solid lines), along with scatter plots of the corresponding
quantities from the cylindrical test versus spherical-polar radius
r for comparison. We note that the characteristics of the
solution profiles are similar to those obtained by others using
an ideal EoS (e.g., Omang et al. 2006). There is also good
agreement between the results obtained with spherical-polar
and cylindrical coordinates. As in the Cartesian test, we note
the clear resolution of the shock and contact discontinuity with
no discernible oscillations. Furthermore, we note some spread
in the scatter plots from the cylindrical solution, most notably
in the velocity profile across the contact discontinuity.
However, despite the truly multidimensional setup in the
cylindrical case, there is decent preservation of the spherical
symmetry inherent in the test.

4.2.3. Shock Tube Provoking the Bound-enforcing Limiter

This test, performed in 1D with Cartesian coordinates, is
similar to the Sod shock tube discussed in Section 4.2.1, but
with initial conditions tuned to provoke the bound-enforcing
limiter developed in Section 3.4. The goal is to demonstrate
that the limiter keeps the solution within the set of admissible
states (specifically that   min) while also conserving the
total mass, energy, and electron number in time, given,
respectively, by

ò r x t E x t D x t dx, , , , , . 111
D

h h he,{ ( ) ( ) ( )} ( )

The computational domain is = -D 5, 5[ ] km, and a
discontinuity is placed at x= 0 km, which separates the left

Figure 11. Numerical solution of the Sod shock tube at t = 0.021 ms using 100 elements and third-order accurate methods with characteristic (blue) and
componentwise limiting (red) for density (upper left), pressure (upper right), velocity (lower left), and electron fraction (lower right), compared to a reference solution
(black) using 10,000 elements, obtained with first-order spatial discretization and third-order time integration.
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and right states of the Riemann problem
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The numerical solution is evolved to t= 0.2 ms, using 256
elements with polynomial degree k= 2 and SSP-RK3 time
integration. To fully test the bound-enforcing limiter, we run
this test without the slope limiter discussed in Section 3.3.
Moreover, it is possible to design an initial state for the Sod
shock-tube problem that does not place the solution close to or
below the minimum table boundary. An example of this is seen
in Section 4.2.1, where the bound-enforcing limiter is not
required to keep the solution within the set of admissible states.
However, we note that this particular test (using the initial
condition described immediately above) fails without the
bound-enforcing limiter, regardless of whether or not the slope
limiter is implemented.11 Thus, the bound-enforcing limiter
allows for a wider selection of initial states that would
otherwise cause the algorithm to fail.

Numerical results from this test are displayed in Figure 13.
In the left panel, we plot the specific internal energy versus
position at the end of the simulation (solid black curve). We
also plot the minimum internal energy r Y,min e( ) (dashed red
curve). Around the shock, ò is very close to the minimum
value, as can be seen in the inset in the left panel of Figure 13.
In fact, the specific internal energy remains very close to the

minimum value throughout this test. The middle panel displays
a spacetime plot of the limiter parameter ϑ3(x, t) in
Equation (74), and shows the activation sites for the bound-
enforcing limiter, where the average value for ϑ3 when limiting
is required is 0.9 and it ranges from 0.60< ϑ3< 0.99. The
bound-enforcing limiter is activated due to small oscillations
slightly ahead of the shock, and produces a trace of the shock
trajectory as seen in the middle panel in Figure 13. The slope of
the prominent trace in ϑ3(x, t) indicates a shock velocity of
vshock≈ 1800 km s−1. Finally, the right panel in Figure 13
shows the relative change in the conserved quantities versus
time. The change in these quantities are due to machine
roundoff, indicating that the bound-enforcing limiter is
sufficiently conservative for this test.

4.2.4. Shu–Osher Shock Tube

This test adopted from Shu & Osher (1988) involves
a Mach= 3 shock interacting with a lower-density region with a
sinusoidal perturbation. As the shock propagates and interacts
with the density perturbations, the perturbations move upstream,
forming high-frequency oscillations just behind the shock. This
problem tests the ability of a shock-capturing method to limit
unphysical oscillations without destroying physical, small-scale
features of the post-shock flow. We note that small-scale features
resulting from hydrodynamical instabilities, such as turbulence
and convection, are crucial to CCSN explosion dynamics (e.g.,
Murphy & Meakin 2011; Murphy et al. 2013; Couch & Ott
2015; Radice et al. 2016; Mabanta & Murphy 2018; Couch et al.
2020) and many other astrophysical applications.
Here, the problem is modified to use physical units in a

regime relevant to CCSNe. The computational domain is
= -D 5, 5[ ] km, with a discontinuity initially located at x= 1

Figure 12. Two-dimensional density distribution (left panel), along with radial density, velocity, and pressure profiles (right panel) for the spherically symmetric Sod
shock-tube problem evolved to t = 0.025 ms using both 1D spherical-polar and 2D cylindrical coordinates: solid lines and scatter plots, respectively.

11 Even when slope limiting is used, the bound-enforcing limiter is required
for this test, but we decide to deactivate the slope limiter to provoke the bound-
enforcing limiter even more.
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km separating the left and right states
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The fluid is evolved until t= 0.0625 ms, using 256 uniform
elements and βTvd= 2.0. We use third-order spatial discretiza-
tion (k = 2) and third-order temporal integration (SSP-RK3). In
this test, we compare results obtained with characteristic and
componentwise limiting, and, for each limiting method, we
show results for various values of the TCI threshold.

In Figure 14, we show the density obtained using
characteristic (top) and componentwise (bottom) limiting for
various values of the TCI threshold CTCI: 0.0 (full limiting, red),
0.03 (green), 0.3 (magenta), and 3.0 (blue), i.e., the same values
that were used in Endeve et al. (2019) for the ideal EoS case.
Larger values of CTCI imply less slope limiting. These results
are compared to a reference solution obtained using 2048
elements (black), with third-order spatial and temporal
discretization, and CTCI= 0.0. In both limiting schemes, full
limiting washes out the density variations behind the shock,
while increasing the TCI threshold allows for these features to
be better captured. The results obtained with CTCI= 3.0 are
very close to the reference solution. However, for reasons
discussed in Section 5.5, we do not recommend using such a
high value for CTCI in general, because some amount of limiting
—even in smooth regions—seems to be required. For all values
of the threshold (except perhaps the case with CTCI= 3.0,
which applies little limiting away from the shock), the
characteristic limiting scheme better captures the shape and
amplitude of the oscillations behind the shock (see insets in
each panel, focusing on the higher-frequency oscillations just
behind the shock).

4.2.5. Two-dimensional Riemann Problem

Here we consider a 2D Riemann problem, adapted from Lax
& Liu (1998), which involves a fluid with a different initial

state in each quadrant given by
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on a domain =D 0, 1.0[ ] km´ 0, 1.0[ ] km. This test, which
corresponds to “Configuration 12” in Lax & Liu (1998),
involves two shocks moving into the northeastern quadrant and
contact discontinuities (or slip lines) at the northern and eastern
boundaries of the southwestern quadrant. It is adapted from the
original works to use physical units in a regime relevant to
CCSNe with a nuclear EoS. The initial configuration presented
here is one of many possible configurations of 2D Riemann
problems presented in Lax & Liu (1998). The fluid is evolved
until t= 0.0025 ms using 4002 uniform elements, βTvd= 1.75,
and CTCI= 0 (i.e., limiting is applied everywhere). We use
third-order spatial discretization (k= 2) and third-order tem-
poral integration (SSP-RK3). To run this test, we used
thornado’s interface to AMReX in order to take advantage
of AMReX’s MPI parallelization.
Figure 15 shows the density (top panels) and pressure

(bottom panels) at t= 0.0025 ms from a run with component-
wise limiting (left panels) and a run with characteristic limiting
(right panels). Black lines on each plot show logarithmically
spaced contours to highlight solution features. Overall, the
morphology of the solutions obtained with thornado—using
a nuclear EoS—agree well with the results displayed by
Lax & Liu (1998). Moreover, the use of characteristic limiting
presents a tremendous improvement over componentwise
limiting, particularly as the higher dimensionality of the
problem allows for more complex flow patterns and disconti-
nuity geometries. Notably, the density and pressure contours in
the componentwise limiting case reveal more oscillations and

Figure 13. Numerical results for the shock tube provoking the bound-enforcing limiter. In the left panel, we plot the specific internal energy (solid black line) and the
minimum specific internal energy (dashed red line) vs. position x. The middle panel shows the activation sites of the bound-enforcing limiter as indicated by a
spacetime plot of ϑ3(x, t). The solution is closest to the boundary just ahead of the shock, as indicated by the inset in the left panel. In the right panel, we plot the
relative change in the conserved quantities, i.e., total fluid energy (black), mass (red), and electron number (blue).
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deformities. These oscillations are particularly prominent near
the boundary of the curved shock surface. There appear to be
no oscillations present in the run performed with characteristic
limiting. Similarly, the jet-like feature seen in the southwest
quadrant of the density plots appear less resolved and are
somewhat asymmetric in the componentwise limiting case.

4.3. Poisson Solver Test

The accuracy of the CG method used by Poseidon to solve
Equation (5) is determined by the total number of degrees of
freedom used to solve the system. The number of degrees of
freedom can be changed by either the p-method or the h-
method. The p-method varies the degree k of the polynomials
used in the approximation of the solution and requires k+ 1
nodes per element. The h-method increases the number of
elements Ne used to discretize the system. These two methods
are used together in the hp-method where both the refinement
of the mesh and the degree of the approximation polynomials

can be varied. In the hp-method, the number of degrees of
freedom is given by nDOF= (k+ 1)× Ne. The accuracy of the
hp-method increases with increasing nDOF, and the error should
decrease with increasing nDOF as +n1 k

DOF
1.

We test the accuracy of Poseidon’s Poisson solver using the
density profile of a centrally condensed sphere of radius R. This
test, from Stone & Norman (1992), was chosen because it has a
nonpolynomial analytic solution, thus allowing us to better
explore the convergence properties of the solver. (Problems
with polynomial solutions are solved exactly for sufficiently
high k.) The density profile and analytic solution for the test are
given by
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Figure 14. Numerical solution of the Shu–Osher shock tube with the nuclear EoS at t = 0.062 ms, using 256 elements and third-order-accurate methods with
characteristic (top) and componentwise (bottom) limiting. In each panel, we plot the mass density vs. position, obtained with various values of the troubled-cell
indicator threshold CTCI: 0.0 (full limiting, red), 0.03 (green), 0.3 (magenta), and 3.0 (blue), compared to a reference solution (black) obtained using 2048 elements,
third-order spatial discretization, and third-order time integration.
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respectively, where ρc and rc are the central density and core
radius, respectively. For this test, we choose ρc= 150 g cm−3,
rc= 0.2Re, and R= Re, and perform the calculations over the
1D computational domain D= [0, 2 Re]. We compute the L1
and L∞ error norms as

åº F - F
=

L r r 114
j

n

j h j1
1

DOF

∣ ( ) ( )∣ ( )

and

º F - F Î ¼¥L r r j nmax for 1, , . 115
j

j h j DOF(∣ ( ) ( )∣) { } ( )

In Figure 16, we plot the L1 error norm (scaled by nDOF; left
panel) and the L∞ error norm (right panel) versus nDOF. The
numerical solutions were obtained using k= 1 (black symbols) and

k= 2 (red symbols). For each value of the polynomial degree k,
seven values of Ne (8, 16, 32, 64, 128, 256, and 512) were used to
create uniform grids. From these plots, we see that for a specific
value of Ne, the higher-order method always provides a more
accurate solution. The rate of convergence observed for the third-
order method is as expected (or better) in both error norms (see red,
dashed reference lines). The second-order method converges at a
rate somewhat slower than expected when the error is measured in
the L1 error norm, but the L∞ error decreases roughly at the
expected second-order rate (see black, dashed reference lines).

5. Adiabatic Collapse, Core Bounce, and Shock
Propagation

In this section, we employ the DG method implemented in
thornado to evolve a nonrotating progenitor through

Figure 15. Numerical solution of a 2D Riemann problem (adopted from “Configuration 12” of Lax & Liu 1998) with a nuclear EoS at t = 0.0025 ms using 4002

elements and third-order spatial and temporal discretization for density (top panels) and pressure (bottom panels). We compare results obtained with componentwise
(left panels) and characteristic (right panels) limiting. Black lines on each plot show logarithmically spaced contours to highlight structures in the solutions.
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adiabatic collapse, core bounce, and post-bounce shock
propagation. The initial conditions are provided by a 15Me
progenitor model from Woosley & Heger (2007). Overall, this
section will cover the chronological evolution of the stellar
collapse model in three stages: (1) adiabatic collapse of the
core, (2) core rebound and the formation of the shock shortly
after nuclear saturation, and (3) the propagation of the shock
through the outer core thereafter. In total, the evolution covers
about 800 ms of physical time, which is divided into about
300 ms for collapse and almost 500 ms of post-bounce
evolution, until the bounce shock reaches the outer boundary.

The following subsections will first discuss the physical
conditions of the adiabatic collapse application that challenge
any hydrodynamics method used for CCSN simulations. Then,
we focus on various features of the DG method in thornado,
such as (1) the performance of the bound-enforcing limiter
during bounce and shock formation, (2) the response of the
numerical solution to adjusting the TCI threshold parameter
CTCI, (3) resolution dependence in the inner core, (4) the
challenge of maintaining energy conservation when applying
limiters, and (5) difficulties associated with employing
characteristic limiting in the vicinity of the phase transition.
Of course, being spherically symmetric and without neutrino
transport, this adiabatic model does not describe a realistic
evolutionary trajectory for a CCSN progenitor. However, this
test does subject the numerical method to some of the physical
conditions encountered, and we deem it a necessary step
toward more realistic models.

Using spherical-polar coordinates, the domain D= [0, 8000]
km is divided into N= 512 elements. In the interest of
capturing important physical characteristics while maintaining
computational efficiency, this application implements a geo-
metrically progressing grid that uses a finer spatial resolution
in the inner core, which becomes progressively coarser
according to

D = ´ D = ¼-r z r i N, 2, , , 116i i 1 ( )

where z> 1 is the “zoom factor.” This emphasizes the inner
core, where most of the mass is concentrated after collapse,
while deemphasizing the outer regions. To begin constructing
the grid, the innermost cell width D = Dr r1 min, the length |D|
of the spatial domain, and the number of elements N are
defined. Then, the zoom factor is obtained by solving

h ´ - - - =z z1 1 0, 117N( ) ( ) ( )

where h = Dr Dmin ∣ ∣. The fiducial run in this section uses an
inner cell width ofD =r 0.5min km. Then, with |D|= 8000 km
and N= 512, this results in a zoom factor (in double precision)
of z= 1.009967685243838, and an outer cell width of
ΔrN= 79.45 km. Also, for the fiducial run, we use second-
order spatial (k= 1) and temporal (SSP-RK2) discretization,
combined with the componentwise limiting scheme discussed
in Section 3.3, βTvd= 1.75, and CTCI= 0.0. For all the runs, we
use reflecting boundary conditions at the inner boundary and
Dirichlet conditions (provided by the initial condition) at the
outer boundary. The gravitational potential is obtained with a
second-order accurate CG method as discussed in Section 3.5.

5.1. Stage 1: Collapse

Figure 17 illustrates the collapse phase prior to core bounce.
We scale such that bounce occurs at t− tb= 0 ms with
tb= 302.9 ms for this model, which is defined as the time when
the central density, ρc, reaches its maximum. We plot the mass
density (upper-left panel), velocity (upper-right panel), electron
fraction (lower-left panel), and entropy per baryon (lower-right
panel) versus radius for select times during collapse. We have
chosen to display the collapse profiles at the times coinciding
with each full decade in central density, i.e., ρc= 1010,11,K,14

g cm−3. The collapse dynamics is very similar to the self-
similar solutions obtained by Yahil (1983) using a polytropic
EoS. The central density increases with time and approaches
nuclear densities (1014 g cm−3) at t− tb=− 1 ms while the

Figure 16. L1 (left panel) and L∞ (right panel) errors between the analytic and numerical solution calculated by the Poseidon solver for the case of a centrally
condensed sphere. The L1 error norms are scaled by the number of degrees of freedom to obtain an average error per node. The dashed lines are proportional to +n1 k

DOF
1

and serve as references for the convergence rates of the numerical solutions.
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outer region rarefies as indicated by the steeper slope in density
outside the innermost core. Meanwhile, the infall velocity
increases linearly with radius in the inner core (consistent with
homologous collapse), and approaches freefall beyond the
maximum infall velocity, where it eventually falls off roughly
as r−1/2. The maximum infall velocity reaches 11%–12% of
the speed of light just before bounce. The electron fraction, Ye,
is a monotonically increasing function of radius, and its inner
profile shifts inward—in an approximately self-similar fashion
—with the decreasing core radius during collapse. Because this
test models adiabatic flows (i.e., no neutrino physics is
included), the electron fraction remains constant in the core.
Before core bounce and shock formation, the entropy profile
shifts inward due to the collapsing core. In fact, both the

electron fraction and entropy profiles remain constant in the
core throughout collapse, bounce, and shock propagation,
which we quantify further in Section 5.6.

5.2. Stage 2: Core Bounce

Figure 18 captures core bounce and shock formation in the
inner core (r ä [0, 500] km). We plot the adiabatic index

G º
r

¶
¶

pln

ln( ) (upper left), velocity (upper right), electron

fraction (lower left), and entropy per baryon (lower right)
versus radius. In each panel, blue curves illustrate the dynamics
immediately before bounce (leading up to maximum ρc), while
red curves illustrate the dynamics immediately after bounce
(see color maps to the right of each panel). The bounce

Figure 17. Numerical solutions for the adiabatic collapse of a 15Me progenitor from Woosley & Heger (2007), obtained with thornado using 512 elements and a
second-order DG scheme with componentwise limiting. Plotted vs. radius are mass density (upper left), velocity (upper right), electron fraction (lower left), and
entropy per baryon (lower right) during collapse. The time slices were chosen to depict the central mass density increasing by factors of 10.
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dynamics is in response to the stiffening of the EoS, which is
illustrated by the evolution of the adiabatic index during the
transition to nuclear matter in the inner core. In the upper-left
panel, the adiabatic index is Γ≈ 4/3 at t− tb=−0.8 ms. Once
the core reaches nuclear densities and undergoes a phase
transition to bulk nuclear matter, the EoS stiffens and the
repulsive nuclear forces between the tightly packed nucleons
result in a jump in Γ to around 2.5 at the inner boundary. After
bounce, the inner core, r 10 km is characterized by Γ≈ 2.5,
while Γ 4/3 at larger radii. Notice the sharp transition
occurring around r= 10 km, which we refer to as the phase
transition. The velocity profiles provide a clear demonstration
of the genesis and evolution of the shock resulting immediately
after bounce. When the EoS stiffens, collapse is halted, and a
shockwave is formed in the region r ä [10, 20] km. Once
formed, the shock must push through the supersonically
collapsing outer core. In this adiabatic simulation, without
neutrinos, the shockwave propagates relatively unencumbered
through the outer core, and eventually reaches the outer
boundary. The constant value in electron fraction in the very
inner core is preserved through bounce and shock formation,

meanwhile, the profile in the outer region (around 10 km) shifts
as the shock travels through. There is no noticeable change in
central entropy during bounce, but, as the shock forms, there is
a large increase in the entropy across the shock, as expected.

5.3. Stage 3: Shock Propagation

Figure 19 shows the shock’s trajectory through the outer
core on its way toward the outer boundary. In this figure, we
plot the mass density (upper left), velocity (upper right),
electron fraction (lower left), and temperature (lower right)
versus radius for select times after bounce. As can be seen by
inspecting all panels, the inner core (inside about 50 km) settles
into an approximate hydrostatic equilibrium once the bounce
shock has cleared. Inside this region, the velocity is small
(compared with the sound speed), and the mass density,
electron fraction, and temperature profiles remain practically
unchanged for hundreds of milliseconds. This suggests that the
DG method is quite capable of capturing the adiabatic nature of
the flow (this is further supported by the results shown in the
left panel in Figure 23). In the velocity figure, the shock is seen

Figure 18. Numerical solutions of select quantities vs. radius for adiabatic collapse evolved through bounce: adiabatic index
r

G º
¶
¶

pln

ln

⎛
⎝⎜

⎞
⎠⎟ (upper left), velocity (upper

right), electron fraction (lower left), and entropy per baryon (lower right). A finer time resolution is used here to exhibit the characteristics of bounce and shock
formation, and the color map on the right of each panel is used to distinguish pre- and post-bounce profiles: blue and red, respectively.
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to reduce in amplitude as it propagates toward the outer
boundary. Early on, one can also observe secondary shocks,
produced by the ring-down of the core as it settles into
hydrostatic equilibrium, which later catch up with the main
shock. Rarefaction of the gas occurs in the outer core (beyond
100 km) as the shock pushes through the infalling matter,
notably at t− tb= 362 ms in the mass density profile. The
thermal energy behind the shock is partially used to dissociate
heavy nuclei and alpha particles in the supersonically infalling
outer core, causing the shock to lose energy while leaving
behind free nucleons in its wake. As the shock travels outward,
the electron fraction profile in the outer core is advected with the
flow; see the sharp gradient located around 100 km at t− tb= 2,
which has moved to about 1000 km when t− tb= 362 ms. The

temperature inherently rises across the shock, and a sharp rise in
temperature that traces the path of the shock is seen in the lower-
right panel.

5.4. Bound-enforcing Limiter

The microphysical conditions encountered in this test are
constrained by the nuclear EoS. However, some extreme
conditions encountered are difficult to resolve numerically and
thus may push the solutions beyond the boundaries of the
admissible state set. For example, when the core bounces and
launches the bounce shock, the discontinuity can generate
oscillations in the numerical solution. These oscillations are to
a certain degree suppressed by the slope-limiting procedure
described in Section 3.3, but the solution can still exceed the

Figure 19. Numerical solutions for mass density (upper left), velocity (upper right), electron fraction (lower left), and temperature (lower right) vs. radius at select
times for the adiabatic collapse simulation evolved for several hundred milliseconds post-bounce. This time domain partially captures the structure of the core as the
shock propagates from its origin to the outer boundary.
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limits of the tabulated EoS. Thus, the bound-enforcing limiting
procedure from Section 3.4 is required to ensure that the
numerical solution remains physically valid, mostly at bounce
and shock formation. When necessary, the bound-enforcing
limiter acts to constrain the mass density, electron fraction, and
specific internal energy. However, for the conditions encoun-
tered in the adiabatic collapse simulations discussed in this
section, only violations of the bounds on the specific internal
energy trigger limiting (see Step 3 in Section 3.4), namely,
during the early stages of shock formation. We note that,
without the bound-enforcing limiter, the specific internal
energy falls below the minimum possible value at certain
locations, which then implies that a valid temperature—
required, e.g., to compute the pressure—cannot be found, and
the algorithm fails. Therefore, the bound-enforcing limiter is a
critical component of the DG algorithm in thornado.

Figure 20 illustrates the action of the bound-enforcing limiter
during bounce in the fiducial run discussed in the previous
subsections. The left panel is a spacetime plot of the limiter
parameter ϑ3ä [0, 1] (see Equation (74)), and shows the
activation sites of the bound-enforcing limiter acting to
constrain the specific internal energy ò. Values of ϑ3< 1 imply
some amount of limiting. The region displayed in the figure
captures the brief moment around shock formation where ò
drops below the minimum value but is corrected by shifting the
DG solution toward the cell average by an amount determined
by ϑ3. The darker regions indicate more aggressive limiting,
and we find that ϑ3 can become as small as 0.4 in this case. In
the right panel in Figure 20, the specific internal energy is
plotted versus radius for select times during the initial shock
propagation (black lines). We also plot the minimum specific
internal energy r Y,min e( ), using the corresponding numerical
solutions for ρ and Ye (red lines). This figure captures ò being
very close to, but above, min—especially around the shock,
which is located at roughly r= 20, 40, and 70 km for the times
displayed.

Figure 21 shows the activation sites of the bound-enforcing
limiter in the ρYe plane (white dots). The majority of the
activation sites are seen at higher mass densities and

correspond to the formation of the shock. These points appear
to occupy a locally convex region of r Y,min e( ). However,
some points also appear at a low density and higher electron
fraction. These points correspond to a moment toward the end
of the simulation, specifically when the shock passes through
the outer boundary. This portion of the EoS table may also be
locally convex; thus, the limiting scheme is expected to operate
robustly in that region as well. Future work will involve an
investigation of the EoS surface at minimum temperature to
further challenge the robustness of our bound-enforcing limiter.
This work, however, will need to be carried out in the context
of neutrino radiation-hydrodynamics simulations of CCSNe,
which access different and/or larger regions of the ρYe plane.

Figure 20. Activation of the bound-enforcing limiter in the fiducial adiabatic collapse simulation. The left panel shows the value of the limiter parameter ϑ3 from
Equation (74) in space and time. In the right panel, we plot the solution for ò (black) and the minimum min (red), described in Section 3.4. Each profile captures a
moment in time briefly after bounce, when the bound-enforcing limiter is required to maintain > min.

Figure 21. Activation sites (white dots) of the bound-enforcing limiter during
the adiabatic collapse simulations in the ρYe plane, placed over a contour plot
of the surface defined by r=  T Y, ,min min e( ). The points in the mass density
range r Îlog 10, 1410( ) [ ] show the limiter being activated during bounce and
shock formation. The limiter is again briefly applied in the low-density region,

r Îlog 5, 610( ) [ ]. This corresponds to when the shock momentarily forces the
solution below the lower EoS table boundary as the shock passes through the
outer boundary of the spatial domain.
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5.5. Troubled-cell Indicator Threshold Dependence

In this section, we investigate the effect of varying the TCI
threshold CTCI on the adiabatic collapse simulations. The
numerical results discussed in the previous subsections applied
the slope limiter everywhere, i.e., the TCI threshold CTCI was
set to zero such that all elements are flagged for (component-
wise) limiting. As seen in Section 4.2.4, increasing the value of
CTCI prevents limiting at smooth extrema and preserves the
accuracy of the solution. However, in contrast to the shock-
tube problem, the solutions for the adiabatic collapse problem
exhibit nonzero slopes almost everywhere. This leads to more
areas that may require limiting, and it becomes more difficult to
find an optimal value for CTCI. Moreover, various quantities
vary by many orders of magnitude across the computational

domain, and it is not clear which variables are optimal for
detecting troubled cells. When using the mass density, the total
fluid energy density, and the electron fraction as the variables
to sense troubled cells, we find that if CTCI is set too high, some
areas that may require limiting are not flagged, and oscillations
can start to develop.
In general, we have found that thermodynamic quantities

such as the temperature and entropy per baryon demonstrate a
higher sensitivity to CTCI than the evolved quantities U. Thus,
this section will focus on the solution for the temperature and
its sensitivity to CTCI. Figure 22 shows the evolution of the TCI
IK (see Equation (59)) versus radius for adiabatic collapse
simulations with various values of CTCI: 0.01 (upper-left panel),
0.03 (upper-right panel), and 0.05 (lower-left panel). The

Figure 22. Troubled-cell indicator values for adiabatic collapse simulations with various thresholds CTCI (upper panels and lower-left panel). In each panel, the red
curve represents the time-averaged troubled-cell indicator value (averaged from tb to tend − tb = 497.1 ms of the simulation). The lighter gray-shaded regions represent
the extreme TCI values in each element (taken over all post-bounce times). The darker shaded region represents the positive TCI standard deviation. In the lower-right
panel, the temperature at the end of each simulation with different CTCI is plotted vs. radius. A higher threshold results in less slope limiting, which allows for some
oscillations to develop in the temperature profile.
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plotted quantities are derived from the maximum value across
all fields in each element; i.e.,

r= =
Î

GI I G E Ymax , where , , . 118K
G

K
G

e
T( ) ( ) ( )

In each panel, the red curve represents the time-averaged value
(from tb to tend− tb= 497.1 ms), while the maximum and
minimum values are given by the boundaries of the light gray-
shaded region, and the positive standard deviations (i.e.,
average plus one σ) are given by the upper boundary of the
dark gray-shaded region. We also plot CTCI in each panel
(dashed horizontal line). Recall that an element is flagged for
limiting whenever IK> CTCI. In the lower-right panel of
Figure 22, we plot the temperature versus radius at the end
of each simulation with a different value of CTCI. For
comparison, we also plot the temperature for the simulation
from the previous subsections, with CTCI= 0, which applies
limiting everywhere.

As can be seen in the lower-right panel in Figure 22, the
temperature profiles from all four runs display the same general
trend and fall on top of each other outside r= 50 km. The
simulations with CTCI= 0 and CTCI= 0.01 (magenta and black
lines, respectively) are practically indistinguishable every-
where. However, inside r= 50 km, the simulations with the
larger values of CTCI (0.03 and 0.05) exhibit some oscillations
about the temperature profile from the fiducial run with
CTCI= 0, and the amplitude appears to increase with increasing
CTCI. The TCI maxima (upper boundary of the light gray-
shaded region) are generally above the threshold in all cases,
which implies that limiting has been applied at least once in
most of the domains displayed. However, the average and the
1σ values serve as better indicators for where limiting occurs.
Although the IK values tend to be above the threshold inside the
first 100 km in the CTCI= 0.01 case, the solution is limited most
frequently inside r= 50 km, which corresponds to the region
where the temperature displays oscillatory behavior in the runs
with larger values of CTCI. As the threshold is increased, less of
this region receives limiting. And in particular, for the 0.03 and
0.05 threshold cases, oscillations have developed in this region.
Ideally, the limiting procedure should both preserve the original
order of accuracy and prevent the development of spurious
oscillations. However, for the adiabatic collapse simulations,
inside r= 50 km, there seems to be a trade-off between these
two features, which leaves little flexibility for selecting a large
value for CTCI.

5.6. Resolution Dependence

In this section, we investigate the effect of varying the spatial
resolution in the adiabatic collapse simulation. To do this, we
keep the number of elements fixed to N= 512 and vary the
innermost cell width Δr1 from 0.125 to 1.0 km. Table 2 lists
the inner- and outermost cell widths along with the cell widths
at r= 10 km and r= 100 km, and the corresponding zoom
factors z, in Equation (116). Because we keep the number of
elements fixed, the zoom factor increases with decreasing Δr1,
which also results in coarser resolution in the outer regions of
the computational domain. We find that the general features of
the solution—e.g., density and velocity profiles—are rather
insensitive to the numerical resolution. Instead, we focus on the
long term evolution (i.e., hundreds of milliseconds) of the
central density, electron fraction, and entropy per baryon. After

bounce, when the inner core settles into hydrostatic equili-
brium, the central density should remain relatively constant
with time. Similarly, because we do not include neutrinos and
the evolution is adiabatic, the central electron fraction and
entropy per baryon should also remain constant throughout the
simulation. Figure 23 shows results from varying the inner cell
width. In the left panel, we plot the central density ρc versus
time after bounce, i.e., the time when maximum central density
is achieved. (To better visualize with a logarithmic abscissa, we
have applied an arbitrary shift of 0.6 ms.) The right panel
displays the evolution of the central entropy per baryon Sc (top)
and electron fraction Ye,c. During collapse, these quantities are
plotted versus central density, while after bounce they are
plotted versus time. There is some spread in the central density
curves before bounce, but they all reach about the same
maximum, ρc≈ 4.2× 1014 g cm−3, and, after the core
stabilizes after bounce, ρc remains constant with time for all
resolutions. For the coarsest-resolution run (Δr1= 1 km), the
central density settles down to about 3.425× 1014 g cm−3,
while in the finer-resolution models, it settles down to about
3.475× 1014 g cm−3. Because the collapse is adiabatic and the
profiles are constant with radius in the very inner core (see
lower panels in Figure 17), Sc and Ye,c should remain constant
throughout the evolution. All of the simulations exhibit this
behavior before ρc≈ 1013 g cm−3; i.e., before the phase
transition into nuclear densities. (There is a slow increase in
Sc, from 0.73 to 0.74, during collapse.) Just before core bounce,
the profiles deviate somewhat from their constant values, and
the lower resolutions exhibit larger deviations. For both central
entropy and electron fraction, the profiles for the runs with
Δr1= 0.75 km and Δr1= 1.0 km undergo notably larger
changes than the higher-resolution profiles. Ye,c remains nearly
constant through bounce for the 0.125, 0.25, and 0.5 km
simulations. For both Ye,c and Sc, the two lowest resolution
profiles drop further down before maximum central density,
and then exhibit a slight drift with time after bounce. However,
both of these quantities remain relatively constant with time
after bounce in the higher-resolution cases. Thus, a threshold
resolution seems to be required to accurately capture the
physical behavior in the inner core. Considering the balance
between computational cost and physical fidelity, an inner cell
width of 0.5 km (as in the fiducial run) appears to be close to
the optimal choice among the tested resolutions. For example,
the central density for this run remains constant after bounce, as
desired. It also maintains approximately constant central
entropy and electron fraction through bounce. The central
entropy deviates by no more than 0.02 kB, while the electron
fraction changes by no more than about 10−6.

Table 2
Inner, r = 10 km, r = 100 km, Outer Cell Widths, and Zoom Factors for

Geometrically Progressing Grids with N = 512 Elements

Δr1 (km)
Δr10 km

(km)
Δr100 km

(km) ΔrN (km) Zoom Factor

0.125 0.258 1.430 1.048 × 102 1.013260722382225
0.25 0.366 1.401 9.225 × 101 1.011634298318296
0.5 0.598 1.489 7.945 × 101 1.009967685243838
0.75 0.835 1.630 7.185 × 101 1.008968091682754
1.0 1.077 1.821 6.641 × 101 1.008244905346311
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5.7. Energy Conservation

In this section, we investigate total energy conservation with
the DG method in thornado in the context of adiabatic
collapse simulations. The exact conservation of total energy is
nontrivial to achieve in simulations of self-gravitating flows
because of the adopted formulation of the fluid energy equation
given by Equation (3), which is in nonconservative form due to
the gravitational source term on the right-hand side. For
simplicity, we limit the discussion to the present context of
spherical-polar coordinates with spherical symmetry imposed.
Then, by combining Equations (1), (3), and (5), it is possible to
formulate a conservation law for the total energy,
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are the total energy density and total energy flux density,
respectively, v is the radial component of the fluid three-
velocity, and F = ¶ Ft . Because the corresponding RKDG
discretization of Equations (1) and (3), and the CG discretiza-
tion of Equation (5), do not combine exactly to form a discrete
equivalent to Equation (119), the conservation of total energy is
not expected to be exact in the adiabatic collapse simulations.
Although we find that the combination of RKDG and CG
discretizations exhibits surprisingly good energy conservation
properties, we find evidence that the application of the slope
and bound-enforcing limiters, mainly around core bounce,
compromise the conservation of total energy. As seen in Figure 13

for the Riemann problem invoking the bound-enforcing limiter, in
the absence of gravity, the total fluid energy (i.e., internal plus
kinetic) is by construction conserved to machine precision. The
slope limiter is also conservative with respect to the total fluid
energy. Conservation of total energy is more difficult to achieve
for self-gravitating flows such as in the adiabatic collapse
problem.
By integrating Equation (119) over the computational

domain D= [0, R], and from t0 to t, the total energy in the
system is given by
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and dV= 4πr2dr. Figure 24 shows energy conservation results
from adiabatic collapse simulations. In the left panel, we plot
the kinetic, gravitational, internal, and total energy versus time
for the fiducial run with Δr1= 0.5 km. Approaching core
bounce, the internal energy Ei and the gravitational energy Eg

grow rapidly in concert (with opposite signs), before stabilizing
after bounce with Ei≈ 157 B and Eg≈− 158 B, where
1 B= 1051 erg. The kinetic energy, Ek, peaks at approximately
10 B at bounce before decreasing again and is down to 1 B
when t− tb= 5.5 ms. The kinetic energy continues to decrease,
and reaches a minimum of about 0.55 B at t− tb≈ 40 ms.
Then, for t− tb 40 ms, the kinetic energy starts to increase
again and is back up to 1 B for t− tb= 200 ms.
The change in the total energy versus time, Etotal− Etotal,0, is

plotted in the middle panel of Figure 24 for the various spatial

Figure 23. Results from adiabatic collapse simulations where the innermost cell width has been varied. The left panel shows the central density as a function of time
for various Δr1. The right panel shows the central entropy (top) and central electron fraction (bottom) vs. central density (up to its maximum value). Beyond the
maximum central density, the entropy and electron fraction are plotted vs. time.
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resolutions investigated in Section 5.6. As can be seen, the total
energy remains relatively constant during collapse, makes an
almost discontinuous jump around bounce, before remaining
relatively constant again after bounce. (At t− tb≈ 375 ms, the
bounce shock reaches the outer boundary, and the total energy
starts to decrease due to the energy flux through the boundary;
see the second term on the right-hand side of Equation (121),
which has not been accounted for in the figure.) The magnitude
of the jump in total energy at bounce decreases with increasing
resolution in the core. Around t= tb, the total energy in the
fiducial run (Δr1= 0.5 km) increases by less than 0.5 B, as is
seen from the middle curve (after bounce) in the middle panel
in Figure 24. The difference Etotal− Etotal,0 ought to remain
zero throughout the simulation, but the extreme conditions
during core bounce—due to short time and length scales, and
the necessity of applying limiters around the region of shock
formation, which occurs at high energy densities—result in
energy conservation violations. The change in the total energy
in the fiducial run is less than 0.5% of the gravitational energy
at bounce and about 5% of the kinetic energy at bounce.
Without accounting for the energy flowing through the outer
boundary, the total energy changes by less than 1.5× 10−3 B
during collapse, until t− tb=−0.6 ms, when the central
density is about 1.5× 1014 g cm−3. Then, after bounce, from
t− tb≈ 50 ms to t− tb≈ 350 ms, the total energy changes by
less than 2.5× 10−3 B, which is small compared to any of the
individual components of the total energy.

We have found that the slope and bound-enforcing limiters
contribute to the violation of total energy conservation at
bounce. To investigate the impact of limiters on total energy
conservation, we restarted the fiducial run, which employs
slope and bound-enforcing limiters, at t− tb=− 1 ms, and ran
one model with the slope limiter turned off, and one model
with both the slope and bound-enforcing limiters turned off.
The right panel in Figure 24 shows the total energy
conservation versus time for these models. The largest violation
of total energy conservation is observed in the fiducial run (red

line). For the model where the slope limiter is turned off, but
the bound-enforcing limiter is still active, the change in the
total energy is noticeably reduced (black line). For example, the
black line demonstrates no noticeable change in the total
energy briefly before bounce, while the red line shows a minor
increase starting at t− tb=− 0.5 ms. Thus, the slope limiter
begins adding energy to the system shortly before bounce.
Meanwhile, the bound-enforcing limiter remains inactive until
about 0.2 ms before bounce. Once activated, the bound-
enforcing limiter breaks total energy conservation, but to a
lesser extent than when both limiters are active. The reason the
limiters contribute to total energy violation is the gravitational
potential energy, the third integral on the right-hand side of
Equation (122). While both limiters preserve the cell-averaged
fluid energy, and thus leave the first two integrals on the right-
hand side of Equation (122) unchanged, the cell-averaged
gravitational potential energy density is defined as a higher
moment of the mass density (Φ depends on position), which is
not preserved by any of the limiters. It is interesting to note that
the DG method manages to model core bounce and shock
formation without the slope limiter activated. When both
limiters are turned off, the run fails at bounce because ò may
fall below the minimum value required by the EoS. Until
then, the DG method maintains total energy conservation well.
For example, we find Etotal− Etotal(tb− 1 ms) = 8.6× 10−6 B
at the time when the run crashes, which occurs when
ρc= 3.65× 1014 g cm−3. In the future, we will investigate
ways of improving the conservation of total energy while
applying both limiters through bounce.

5.8. Characteristic Limiting

In contrast to the Riemann problems discussed in
Section 4.2, the adiabatic collapse application does not
currently benefit from characteristic limiting. As discussed
earlier, toward the end of collapse, the core undergoes a phase
transition from atomic nuclei and nucleons to bulk nuclear
matter. However, the tabulated nuclear matter EoS appears to

Figure 24. Energy conservation by the RKDG method in thornado for adiabatic collapse simulations. The left panel shows gravitational (red), kinetic (black),
internal (blue), and total (magenta) energy vs. time for the fiducial run with Δr1 = 0.5 km. Due to the relative magnitude of Ei and Eg, the details in the kinetic and
total energies are obscured. The middle panel shows the change in total energy vs. time for all the resolutions considered in Section 5.6. The decrease in the total
energies around t − tb ≈ 375 ms is due to the bounce shock reaching the outer boundary of the domain. The right panel shows the total energy vs. time for models with
various combinations of limiters enabled for the fiducial run. The red line represents the total energy when applying both the slope limiter and the bound-enforcing
limiter. The black line shows this quantity when only applying the bound-enforcing limiter. The blue line represents a model with both limiters off, which eventually
crashed at bounce.
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not be sufficiently smooth around this transition to enable
robust construction of the characteristic fields, which depends
on thermodynamic derivatives from the EoS (see Appendix B).
Moreover, the interpolation scheme discussed in Section 3.6 is
only C0 continuous, which implies that derivatives are
discontinuous across adjacent cubes in the table. As a result,
the thermodynamic derivatives are not smooth around the
phase transition, which appears to give rise to unphysical
perturbations. These perturbations manifest as acoustic noise,
in the characteristic and, eventually, the conserved fields, and
this is clearly evident by considering the pressure. Figure 25
displays spacetime plots of the logarithmic pressure gradient,
p rln ln( ), shortly after bounce from two simulations—one

employing componentwise limiting (left panel) and one
employing characteristic limiting (right panel). In both panels,
the dashed black line corresponds to the minimum in the
adiabatic index (see the upper-left panel in Figure 18), which
we refer to as the phase transition. The formation of the bounce
shock and subsequent acoustic waves during the ring-down
phase after bounce are clearly seen in the lower part of both
panels, which qualitatively agree. However, about 5 ms after
bounce, acoustic waves are seen to continuously emanate from
the core in the model with characteristic limiting. These waves
are absent in the model with componentwise limiting. The
acoustic waves in the model with characteristic limiting appear
to emanate from the vicinity of the phase transition, i.e.,
originate around the vertical dashed black line (see also
Figure 26). Another difference in the results obtained with the
two limiters is the behavior of the maximum logarithmic
pressure gradient. In the componentwise case, the peak in the
pressure gradient remains fixed at approximately 30 km for the
duration of the run after bounce. With characteristic limiting,
this peak has a slow trajectory, starting at about r= 15 km and
ending at r= 30 km.

Figure 26 shows a zoomed-in portion of the logarithmic
pressure gradient for the characteristic limiting case displayed

in the right panel in Figure 25. Spurious pressure waves appear
to be generated around the phase transition (or slightly ahead
of the dashed black line), which then propagate across the
entire domain. Prominent examples of this are seen around
t− tb= 0.5 ms, 1.65 ms, and 2.45 ms, where pairs of left- and
right-propagating waves emanate from the phase transition.
The left-going waves propagate toward the inner boundary and
are then reflected back out. These waves lead to the noisy
pattern seen in the right panel in Figure 25.
As discussed in Section 3.3, characteristic limiting relies on

transforming the set of conserved variables to the set of
characteristic variables by applying the matrix of left
eigenvectors from the eigendecomposition of the flux Jacobian.

Figure 25. Spacetime plots of the absolute value of the logarithmic pressure gradient for simulations employing componentwise (left) and characteristic (right)
limiting. The time domain extends over a brief period after bounce Î +t t t, 20 msb b[ ]. The vertical dashed line around 10 km, which traces the minimum of the
adiabatic index Gmin, represents the approximate position of the phase transition. Near the bottom of each figure, the black line extending from approximately 20 to
100 km for a duration of 1 ms traces the bounce shock. The lines that form after this are traces of secondary or tertiary “ripples” that propagate outward from the inner
core and follow the shock shortly after bounce. With componentwise limiting, the pressure gradient is relatively smooth at about 10 ms after bounce and thereafter.
With characteristic limiting, perturbations continue to develop in the solution after bounce, which is visible as noise in the pressure gradient. A high time resolution
was used in this case to better capture details of the dynamics around the phase transition, such as the formation of acoustic waves and their reflections off the inner
boundary.

Figure 26. Zoomed-in view of the logarithmic pressure gradient (to better
capture details of the dynamics around the phase transition) for the simulation
employing characteristic limiting shown in the right panel in Figure 25.
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The construction of this matrix involves thermodynamic
derivatives of the pressure and other quantities which, in the
case of the tabulated EoS, do not have analytic expressions.
Instead, these derivatives are obtained by differentiating the
trilinear interpolation formula used to obtain quantities from
the EoS table and are not necessarily smooth—especially
across the phase transition. The result is a discontinuity in
every characteristic variable around the location of the phase
transition. Because of this, it appears to no longer be beneficial
to employ characteristic limiting, as it results in the waves seen
in Figures 25 and 26, and destroys the accuracy gained from
characteristic limiting observed in Section 4.2. Moreover, the
expression for the sound speed given in Appendix A, obtained
from the eigendecomposition of the flux Jacobian, may
transiently become imaginary due to variations in the
derivatives. In this case, we default to constructing the sound
speed as provided by the EoS table. Future work will include
improving the fidelity of thornado’s interface with the EoS
table, especially around the phase transition, in order to
circumvent these problems.

6. Summary, Conclusions, and Outlook

6.1. Summary

We have extended the RKDG method for the Euler
equations to accommodate an EoS for dense nuclear matter;
to solve problems in Cartesian, spherical-polar, and cylindrical
coordinate systems in a three-covariant framework; and to
simulate adiabatic, spherically symmetric stellar collapse with
self-gravity. More specifically, we have implemented a
spectral-type nodal collocation DG approximation, which leads
to simplifications in the semidiscrete equations—especially for
problems that make use of curvilinear coordinates. In making
these extensions to the RKDG method, we extended various
limiters to maintain physically sound solutions:

1. We have supplemented the RKDG method with a
standard TVD slope limiter, combined with a TCI, to
maintain time-integration stability and to reduce spurious
oscillations around discontinuities. For our purposes, this
involved a nontrivial adaptation of the limiter to nuclear
EoSs, specifically when limiting the characteristic fields,
and we have provided the necessary characteristic
decomposition to achieve this in Appendix A.

2. We have designed a bound-enforcing limiter to prevent
the numerical solutions from becoming physically
inadmissible, i.e., exceeding bounds imposed by the
tabulated EoS. The tabulated EoS is supplied with strict
boundaries in which the solution must be confined.
However, critical thermodynamic quantities provided by
the EoS are not necessarily globally convex, and this
complicates the design of the bound-enforcing limiter,
which currently operates under the assumption of a
convex EoS.

We have developed thornado based on this extended
RKDG method. thornado is written in modern Fortran,
which is a general-purpose programming language for high-
performance scientific computing. Moreover, thornado is
intended for multiphysics CCSN simulations with high-order
methods, and to this end, the RKDG method for hydrody-
namics has been chosen, in part, for its ability to faithfully
capture discontinuities and its ability to maintain high-order

accuracy in smooth flows with a compact computational
stencil. Distributed parallel computing capabilities with MPI
are enabled through an interface with AMReX (Zhang et al.
2019). (The incorporation of AMReX’s adaptive mesh
refinement is deferred to future work.) We also mention that,
in addition to distributed parallelism with MPI, thornado has
been partially ported to utilize graphics processing units
(GPUs) through the OpenACC12 and OpenMP13 standards,
which will allow thornado to utilize heterogeneous archi-
tectures. Details on this progress will be reported in a future
publication.
We have tested thornado against a suite of diverse and

challenging problems incorporating a tabulated nuclear EoS in
one and two spatial dimensions (see Endeve et al. 2019 for
further tests in the ideal EoS case):

1. To test the formal order of accuracy of the RKDG method
with a nuclear EoS, we performed an advection test with
a smooth mass density profile using second- and third-
order methods and various degrees of freedom to
determine the rate of convergence. It was found that the
third-order method is significantly more accurate than the
second-order method, but the rate of convergence for the
third-order method deteriorates to second order at higher
resolution, possibly due to the use of trilinear EoS
interpolation. To further examine the efficacy of the high-
order RKDG method, a discontinuous multishaped mass
density profile was advected using characteristic limiting,
and the initial condition was compared with the numerical
solution after 1 and 10 periods. We compared results
obtained with second- and third-order methods using the
same total number of degrees of freedom by adjusting the
number of cells. The third-order method was found to be
superior to the second-order method in this case as well.

2. We conducted several well-known Riemann problem
tests—adapted to the nuclear EoS case—in Cartesian,
spherical-polar, and cylindrical coordinates, and one and
two spatial dimensions, to examine thornado’s ability
to resolve discontinuities with high-order RKDG meth-
ods, without introducing spurious oscillations. It was
demonstrated that results obtained with characteristic
limiting are far superior to corresponding results obtained
with componentwise limiting. Finally, a special version
of the Sod shock-tube test was constructed to examine the
efficacy of the bound-enforcing limiter. In this case, it
was demonstrated that the bound-enforcing limiter
maintains physically admissible solutions while at the
same time preserving the inherent conservation properties
of the RKDG method.

We have applied thornado to the problem of adiabatic
stellar core collapse of a realistic nonrotating progenitor in
spherical symmetry:

1. We modeled the critical phases of collapse, through
nuclear densities, the phase transition to bulk nuclear
matter, core bounce, shock formation, and the propaga-
tion of the shock through the outer stellar layers.

2. The complexity of this application necessitated additional
investigations to probe the features of the RKDG method
for hydrodynamics in thornado, such as the role of

12 https://www.openacc.org
13 https://www.openmp.org
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limiting and how it contributes to improved robustness of
these simulations, the dependence of the solution on the
TCI threshold and spatial resolution, and the conservation
of energy through challenging stages in the simulation,
such as stellar core bounce.

6.2. Conclusions and Outlook

1. We successfully evolved a nonrotating, spherically sym-
metric, 15Me progenitor with self-gravity through adiabatic
collapse, bounce, and several hundred milliseconds of shock
propagation past bounce, while maintaining adiabaticity
(e.g., the entropy and electron fraction profiles remained
constant in the core). The success of this application marks
an important step toward applying DG methods to more
realistic CCSN simulations, and given the results obtained,
we are in a position to develop thornado further toward
more physically complete CCSN simulations, e.g., by
incorporating neutrino transport.

2. In the adiabatic collapse application, the bound-enforcing
limiter is critical in allowing the solution to evolve
through bounce. Without this limiter, the solution
exceeds the limits of the EoS and the algorithm fails.
The bound-enforcing limiter is required to maintain a
physically valid solution for this application, but it, along
with the slope limiter, interferes with the inherently good
energy conservation properties of the RKDG scheme.
Before and after bounce, the change in total energy is
relatively low. However, when limiters are applied
through bounce, an artificial jump in the total energy
compromises energy conservation. The change in total
energy is less than 0.5 B for the fiducial run with an inner
cell width of 0.5 km and decreases with increasing spatial
resolution. While the change in total energy during
bounce is relatively small, when compared to any of the
individual energy components, future work focusing on
reducing this unphysical change in total energy is
warranted.

3. For standard hydrodynamics tests with shocks, such as
Riemann problems, we have shown that characteristic
limiting is superior to componentwise limiting for
resolving discontinuities while suppressing nonphysical,
oscillatory features. However, characteristic limiting
depends on derivatives of thermodynamic quantities,
which are estimated from the tabulated EoS, and may not
be sufficiently smooth. In particular, for the adiabatic
collapse application, we observed anomalous behavior in
the form of acoustic noise, which appears to originate
around the phase transition. Thus, characteristic limiting
currently does not provide the desired improvements for
the adiabatic collapse application or any problem that
may involve a phase transition. The issue associated with
these thermodynamic derivatives must be further inves-
tigated and resolved before our numerical method can be
extended more generally to employ more sophisticated
limiters, such as moment limiters (Krivodonova 2007) or
WENO-type limiters for DG (Zhu et al. 2020), which also
rely on limiting characteristic fields. This may involve an
improved EoS interpolation scheme that enforces thermo-
dynamic consistency.

4. As seen in the convergence tests, the RKDG method in
thornado gained accuracy over lower-order schemes

by implementing high-order discretization (N= 3) for a
fixed number of degrees of freedom. However, third-
order methods diminished to second-order accuracy for
higher degrees of freedom, and the interpolation of the
tabulated EoS may have been an agent in this loss of
accuracy, but further investigation is required to confirm
this. Moreover, for all the tests in Section 4, our method
reliably captured physical discontinuities and oscillations
with high-order instantiations of the RKDG scheme in
thornado. However, for the adiabatic collapse applica-
tion, we consistently employed a second-order accurate
approach. The main reason: transient spurious oscilla-
tions (or perturbations) developed when we employed
third-order discretization. Again, the interpolation of the
EoS may be impacting the performance of the high-order
scheme. We emphasize that the results for the gravita-
tional collapse application obtained with second-order
methods and componentwise limiting are satisfactory,
and provides the basis for incorporating neutrino
transport algorithms also based on DG methods. How-
ever, while the present paper represents a step toward our
goal, further work is required to realize CCSN simula-
tions with high-order DG methods.

5. All results presented here were obtained with the HLL
Riemann solver (Harten et al. 1983). While we have also
implemented the HLLC Riemann solver (Toro et al.
1994), which is designed to account for contact
discontinuities and has been shown to give superior
results (see, e.g., Cardall et al. 2014), we decided not to
use this Riemann solver here. The known “odd–even”
instability (Quirk 1994), which develops with the HLLC
Riemann solver in some multidimensional settings, is the
main reason for our decision. Future work includes the
development of a hybrid solver, with the capability of
applying the HLLC solver in regions of smooth flow
while switching to the HLL solver in the vicinity of
shocks by means of a shock detector.

6. Because CCSNe are general relativistic in nature, we are
extending the hydrodynamics in thornado to accom-
modate general relativity under the conformally flat
approximation (see, e.g., Wilson et al. 1996), some
details of which are given in Dunham et al. (2020).
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Appendix A
Characteristic Decomposition

In this appendix, we provide the characteristic decomposition of the flux Jacobians, which are needed for slope limiting in
characteristic fields. Recall that for the characteristic slope limiting described in Section 3.3, we require the eigendecomposition of
the flux Jacobian,

¶
¶

= L = ¼- 
F U
U

i d1, , . A1
i

i i i 1( ) ( ) ( ) ( )

In the following, we will express the pressure from the EoS as p= p(τ, ò, De), i.e., with independent variables τ= ρ−1, ò= e/ρ, and
De= ρ Ye, instead of the usual function of ρ, T, and Ye. This choice is arbitrary but follows the approach outlined in Colella & Glaz (1985)
for a general EoS without the addition of the conservation equation for electron number (see Equation (4)). The necessary transformations
of thermodynamic derivatives between these two sets of independent variables are given in Appendix B. From the state and flux vectors
given in Equation (7), we can calculate the following flux Jacobian matrices in each direction:
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where we have defined the specific enthalpy of stagnation H= τ(E+ p) and introduced the compact notation
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to express the necessary partial derivatives. The eigenvalues of the flux Jacobian are given by the diagonal matrix
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is the local sound speed. In the less general case where we ignore the electron contribution (i.e., =p 0De ), this reduces to the

expression given by Colella & Glaz (1985). The right eigenvectors are then given by the column vectors of the following matrices:
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The left eigenvectors are given by the row vectors of the inverse matrix = - i i 1( ) ,
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where fi= pò τ vi, f
i= pò τ v

i, ω= τ (pò(v
ivi− 2ò)− 2 pτ τ), and a tc= -Y p2i D ie e

.

Appendix B
Thermodynamic Derivatives

In Appendix A, to compute the flux Jacobian matrices, we expressed the pressure p= p(τ, ò, De) in terms of the independent
variables τ= ρ−1, ò= e/ρ, and De= ρ Ye. On the other hand, the tabulated EoS constructs thermodynamic variables in terms of ρ, T,
and Ye. Thus, we need to express the thermodynamic derivatives of pressure necessary for the characteristic decomposition in terms
of the independent variables from the EoS table. We start with the differential of pressure,

t= ¶ + ¶ + ¶t t t  dp p d p d p dD . B1D D D, , , ee e e( ) ( ) ( ) ( )
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Similarly, we may express the differentials of τ, ò, and De in terms of differentials of the table variables
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Inserting these differentials into Equation (B1), we find another expression for the pressure differential,
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On the other hand, we have the differential of pressure in terms of the table variables,
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Comparing Equations (B3) and (B4), we have the system of equations
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Solving, with some simplifications, we find the derivatives of the pressure with respect to τ, ò, and De in terms of the table variables
ρ, T, and Ye:
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We use these relations to relate derivatives needed for the characteristic decomposition in Appendix A to derivatives obtained from
table interpolations.
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