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The present article investigates the impact of muons on core-collapse supernovae, with particular focus
on the early muon neutrino emission. While the presence of muons is well understood in the context of
neutron stars, until the recent study by Bollig et al. [Phys. Rev. Lett. 119, 242702 (2017) the role of muons
in core-collapse supernovae had been neglected—electrons and neutrinos were the only leptons considered.
In their study, Bollig et al. disentangled the muon and tau neutrinos and antineutrinos and included a variety
of muonic weak reactions, all of which the present paper follows closely. Only then does it becomes
possible to quantify the appearance of muons shortly before stellar core bounce and how the postbounce
prompt neutrino emission is modified.
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I. INTRODUCTION

A core-collapse supernova (SN) determines the final fate
of all stars more massive than about 8 M⊙. The associated
stellar core collapse is triggered due to deleptonization by
nuclear electron capture in the core and the subsequent
escape of the electron neutrinos produced, lowering the
degenerate electron density responsible for supporting the
core against gravity, and to the photo-disintegration of
heavy nuclei in the core, sapping thermal, pressure-pro-
ducing energy as well. The collapse halts when the central
density exceeds normal nuclear density. The repulsive
short-range nuclear force reverses the collapse, and the
stellar core rebounds. An expanding shock wave forms,
which stalls when crossing the neutrinospheres, the surfa-
ces of last scattering for the neutrinos produced and trapped
during core collapse. A large number of electron captures
on the newly liberated protons from the dissociation of
nuclei by the shock releases the deleptonization burst after
the shock passes the neutrinospheres. This happens on a
timescale of about 5–20 ms after core bounce [1,2]. The
central compact object comprising a cold, unshocked core
and a hot, shocked mantle is the protoneutron star (PNS).
The so-called SN problem poses the question: How is the
stalled bounce shock revived? Several scenarios have been
proposed: the neutrino heating [3], magneto-rotational [4],
and acoustic [5] mechanisms, as well as a mechanism

associated with a high-density phase transition in the core
[6–8]. Studies of the multiphysics, multiscale core-collapse
SN phenomenology require large-scale computer models,
which are based on neutrino radiation-hydrodynamics. For
a recent review about the various scales and conditions of
relevance, as well as the SN equation of state (EOS), cf.,
Ref. [9,10].

During a core-collapse SN, the neutrinos propagate
through regions that are diffusive, semitransparent, and
transparent (where the neutrinos simply stream freely).
Thus, the neutrinos are not fluidlike everywhere, and a full
Boltzmann kinetic treatment of neutrino transport is ulti-
mately necessary. This has been achieved in the context of
general relativistic models in spherical symmetry [11,12]
and in axisymmetry [13], as well as nonrelativistic and
relativistic axisymmetric models with Newtonian gravity
[14,15]. While pioneering and already advancing with
respect to treating separately νμ=τ and ν̄μ=τ, all of these
studies suffer from a draw back: They assume equal
distributions of μ and τ neutrinos and antineutrinos.
This simplification can only be justified in the absence of

muons. However, it is well known for cold neutron stars,
where, due to the condition of β equilibrium, muons and
electrons have equal chemical potentials (μμ ¼ μe). Hence,
when μe > mμ ≃ 106 MeV, the muon fraction can be as
large as Yμ ≃ 0.02–0.05 (depending on the nuclear EOS)
above a rest-mass density of about half the saturation
density (2.5 × 1014 g cm−3). The presence of muons has*tobias.fischer@uwr.edu.pl
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important consequences for the long-term cooling of
neutron stars; e.g., it modifies the direct-Urca threshold
[16]. Muons have to be produced at some point during the
evolution of the PNS from a hot lepton rich object to the
cold β-equilibrium object discussed above. However, this
aspect has only been recently studied in Ref. [17], including
the possibility of muons decaying to axions [18]. Muons
can be produced in non-negligible abundances during a
core-collapse SN. The present article extends this study to
consider the muonization of SN matter shortly before core
bounce and discusses the impact of the presence of muons
on the neutrino emission up to shortly after core bounce.
Therefore, the Boltzmann neutrino transport scheme is
extended to treat μ and τ neutrinos and antineutrinos
separately, include an extended set of weak processes with
muons in the collision integral on the right-hand side of the
Boltzmann equation, and add the muon abundance as an
additional independent degree of freedom in the radiation-
hydrodynamics scheme.
The present article is organized as follows. In Sec. II, the

SN model is briefly reviewed, with special emphasis placed
on the updates to the neutrino transport scheme. Section III
discusses our SN simulation results in close proximity of
stellar core bounce, with a focus on the muonization of SN
matter and on the enhanced muon-neutrino luminosity. In
Sec. IV, we consider the possibility for convection to occur
due to the presence of what will now be an additional lepton
number gradient. The manuscript closes with a summary
in Sec. V.

II. CORE-COLLAPSE SUPERNOVA MODEL

The core-collapse SN model employed in this study,
AGILE-BOLTZTRAN, is based on general relativistic
neutrino radiation-hydrodynamics in spherical symmetry
[19–21], in comoving coordinates [22,23] with a Lagrangian
mesh featuring an adaptive mesh refinement method [24].
In the present study, 207 radial mass zones are used. A recent
global-comparison core-collapse SN study in spherical
symmetry, including AGILE-BOLTZTRAN, can be found
in Ref. [25].

A. Equation of state

AGILE-BOLTZTRAN has a flexible EOS module treat-
ing separately the nuclear part [26] and the electron,
positron, photon, Coulomb EOS; the latter is collectively
denoted as EPEOS [27]. In addition to the temperature, T,
and rest mass density, ρ, the EOS depends also on the
nuclear composition with mass fractions Xi, atomic mass
Ai, and charge Zi. The latter determines the charge fraction
of the baryons, which balances the combined charge
fractions of electrons, Ye, and muons, Yμ. Here, for high
temperatures where nuclear statistical equilibrium holds—
corresponding to temperatures T≳0.45MeV—the nuclear
EOS of Ref. [28] is employed. It is based on the modified
nuclear statistical equilibrium approach for several 1000

nuclear species and the density-dependent relativistic
mean-field model DD2 [29] for the unbound nucleons.
At temperatures T < 0.45 MeV, we switch to the silicon-
gas EOS for the baryonic part, which represents the silicon-
sulfur layer of the progenitor star.
In the present study, a muon EOS is implemented in

AGILE-BOLTZTRAN. Therefore, the following muon
EOS quantities are tabulated: Particle density nμ ¼ YμnB,
internal energy density eμ�, pressure Pμ� , and entropy per
particle sμ� , as a function of the muon chemical potential
ranging μμ ¼ 0;…; 500 MeV for a large range of temper-
atures from T ¼ 0;…; 200 MeV. The Fermi integrals are
performed numerically with a 64-point Gauss quadrature.
This ensures thermodynamic consistency. Since muons are
massive leptons, their rest mass cannot be neglected, and
the relativistic dispersion relation must be employed,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

μ

q
, unlike electrons and positrons, which

are ultrarelativistic (E ≃ p). In the SN simulations, where
the muon abundance becomes the degree of freedom for
the muon EOS, in addition to temperature and rest mass
density, a linear interpolation is used to find the corre-
sponding muonic thermodynamic state, μμðT; ρYμÞ,
eμ�ðT; ρYμÞ, Pμ�ðT; ρYμÞ, and sμ�ðT; ρYμÞ, respectively.
These quantities, except μμ, are then added to the corre-
sponding quantities for baryons (B) and EPEOS, in order to
obtain the total quantities,

etot ¼ eBðT; ρ; YpÞ þ eEPEOSðT; ρYe; fXi; Ai; ZigÞ
þ eμ�ðT; ρYμÞ; ð1Þ

P ¼ PBðT; ρ; YpÞ þ PEPEOSðT; ρYe; fXi; Au; ZigÞ
þ Pμ�ðT; ρYμÞ; ð2Þ

s ¼ sBðT; ρ; YpÞ þ sEPEOSðT; ρYe; fXi; Ai; ZigÞ
þ sμ�ðT; ρYμÞ: ð3Þ

Note that the baryon EOS contributions depend on the
hadronic charge fraction via the charge-neutrality condi-
tion, Yp ¼ Ye þ Yμ, where electron and muon abundances
are associated with their corresponding net particle den-
sities, such that Ye ¼ Ye− − Yeþ and Yμ ¼ Yμ− − Yμþ .

B. Boltzmann neutrino transport

The neutrino transport scheme has to be extended in
order to be able to treat individually the distributions for all
three flavors, ffνe ; fνμ ; fντg and their respected antineu-
trinos ffν̄e ; fν̄μ ; fν̄τg. BOLTZTRAN employs an operator-
split method to solve the evolution equations for the
neutrino distribution functions, as described in detail in
Ref. [23] (steps 1.–3. outlined in Sec. 3.5). Each implicitly
finite differencing update of the transport equation includes
the update of the evolution of the temperature and the
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electron and muon fraction due to weak interactions, as
well as corrections due to advection. A Newton-Raphson
scheme is implemented to solve the implicitly finite
differencing nonlinear equations. Beginning with (νe; ν̄e),
this procedure is repeated for (νμ; ν̄μ) and (ντ; ν̄τ). As was
outlined already in Ref. [23], this cycling ensures that the
neutrino distribution functions are in accurate equilibrium
with matter after obtaining the solution of the transport
equation and updating temperature and electron fraction
accordingly. However, it introduces a mismatch of the
radial grid of the new hydrodynamics variables due to the
corrections of the advection equation. Note further that for
the weak processes, νe þ ν̄e ⇆ νμ=τ þ ν̄μ=τ, where initial
and final state neutrino distributions belong to different
species [30], in the collision integral of the Boltzmann
transport equation, we assume equilibrium distributions as
was outlined in Ref. [31]. This approach is inadequate for
the purely leptonic weak processes involving muons, which
will be introduced below, for which also initial and final
state neutrino distributions belong to different species.
Here, we implement the actual neutrino distributions from
the previous cycling, which introduces a slight mismatch
that we monitor carefully with an increased accuracy
required for the neutrino transport convergence.
Note further that BOLTZTRAN employs the transport

equation in conservative form; i.e., with the specific
neutrino distribution function, Fν ≔ fν=ρ [19,20]. All
neutrino species are discretized in terms of six momentum
angles bins cosϑ ∈ f−1;þ1g [32]—the angle between the
radial motion and the momentum vector—and 36 neutrino
energy bins, Eν ∈ f0.5; 300g MeV following the setup of
S. Bruenn [33]. Appendix A compares two SN simulations,
both without muonic weak reactions, comparing the tradi-
tional Boltzmann transport scheme for four neutrino
species (νe, ν̄e, νμ=τ, ν̄μ=τ) and the full six neutrino species
transport (νe, ν̄e, νμ, ν̄μ, ντ, ν̄τ). While the extension to six-
species Boltzmann neutrino transport is straightforward,
the inclusion of weak interactions and the associated
extensions of the collision-integral involving weak reac-
tions with (anti)muons will be discussed in the next
sections. Further details are given in Appendix B.

C. Muonic weak processes

In the following subsections, all new weak reactions
involving (anti)muons, which are being implemented in
AGILE-BOLTZTRAN, will be discussed. Table I lists all
processes considered here. Further details, about the reaction
rates are provided in Appendix B, see also Ref. [34], and
details about their implementation inAGILE-BOLTZTRAN,
are provided in Appendix B of the present paper.

1. Charged-current absorption and emission

For the emissivity ½jνμðEνμÞ; jν̄μðEν̄μÞ� and absorptivity
½χνμðEνμÞ; χν̄μðEν̄μÞ� for the muonic charged-current (CC)

reactions (1a) and (1b) in Table I, the fully inelastic and
relativistic rates are employed. These rates were developed
in Ref. [34], Section III A, which is based on the same
treatment as for the electronic CC rates [35]. Reference [36]
consider correlations at the level of the random-phase
approximation but neglect scontributions from weak
magnetism, which we take self-consistently into account.
Furthermore, the rate expressions of Ref. [34] consider
pseudoscalar interaction contributions.
Equations (27)–(33) in Ref. [34], as well as their

Appendix (B), summarize the entire algebraic expressions.
Since the transition amplitudes—the spin averaged and
squared matrix elements—are identical for electronic and
muonic charged-current reactions, the only difference is the
remaining phase space. Hence, the only replacements for
the muonic charged-current rates are the different muon rest
mass and the muon Fermi distribution function with the
corresponding muon chemical potential. These fully inelas-
tic charged-current absorption rates are shown in Fig. 1
(solid lines) for νμ (left panel) and ν̄μ (right panel) at two

TABLE I. Set of muonic weak processes considered.

Label Weak process Abbreviation

(1a) νμ þ n ⇆ pþ μ− CC
(1b) ν̄μ þ p ⇆ nþ μþ CC

(2a) νμ þ μ� ⇆ μ0� þ ν0μ NMS
(2b) ν̄μ þ μ� ⇆ μ0� þ ν̄0μ NMS

(3a) νμ þ e− ⇆ μ− þ νe LFE
(3b) ν̄μ þ eþ ⇆ μþ þ ν̄e LFE
(4a) νμ þ μþ ⇆ eþ þ νe LFC
(4b) ν̄μ þ μ− ⇆ e− þ ν̄e LFC

50 100 150 200 250

10-4

10-3

10-2

10-1

100

(a)

(b)

full kinematics
elastic

50 100 150 200 250

(a)

(b)

FIG. 1. Neutrino (νμ) and antineutrino (ν̄μ) opacity for the
muonic charged-current reactions (1a) and (1b) in Table I,
comparing the fully inelastic rates {Eq. (33) in Ref. [34]} (solid
lines) and the elastic approximation (B1) (dashed lines), at two
selected conditions referred to as (a) and (b), for which the
corresponding thermodynamic state is given in Table II.
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selected conditions, in comparison with the CC rates in the
elastic approximation (see Appendix B 1). For the elastic
rates, we include the approximate treatment of inelasticity
and weak magnetism corrections [37] via (ν̄μ)νμ-energy
dependent multiplicative factors.
For νμ and ν̄μ energies below theQ values ofmμ− ðmn−

mpÞ− ðUn−UpÞ andmμþðmn−mpÞþðUn−UpÞ, respec-
tively, there can be no contribution to the opacity within the
elastic treatment (details about the elastic rate expression
are given in Appendix B 1), as illustrated in Fig. 1 (dashed
lines) at two selected conditions (a) and (b), which are listed
in Table II. This strong opacity drop is modified when
taking into account inelastic contributions within the full
kinematics approach, as illustrated in Fig. 1 (solid lines).
Since these muonic CC processes are expected to be
responsible for the muonization of SN matter, from
Fig. 1, it becomes evident this channel requires νμ of high
energy in order to produce final state muons in non-
negligible amounts.

2. Neutrino–muon scattering

For neutrino–muon scattering (NMS), reactions (2a) and
(2b) in Table I, the approach for neutrino–electron scatter-
ing (NES) is employed here following the detailed deri-
vation provided in Refs. [21,33,38,39], which is equivalent
to the recent derivation in Ref. [34], Section II A, and
Appendix A. Mapping the algebraic expressions of NES to
NMS is straightforward due to the similarity of the
transition amplitudes and hence, of the scattering kernels
between NES and NMS. It requires the replacement of
electron rest mass and chemical potential with those of the
muons. However, the vector and axial-vector coupling
constants are different for NES and NSM, which are listed
in Table III. Details about the scattering amplitudes and in

and out scattering kernels for NMS,Rin=out
NMS , are provided in

Appendix B 2, together with their implementation in the
collision integral of AGILE-BOLTZTRAN.
In Fig. 2, we compare the opacity for neutrino–e�

scattering (dashed lines) and neutrino–μ� scattering (solid
lines) at two selected conditions (a) and (b), for which the
thermodynamic conditions are listed in Table II. In order to
obtain the neutrino-scattering opacity, the following inte-
gration is performed of the outscattering kernel, Rout

NMS,
over the final-state neutrino phase space,

χνðEνÞ ¼
1

ð2πℏcÞ3
Z

dEν0E2
ν0

Z
dðcosϑ0Þ

Z
dðcosϑÞ

×RoutðEν; Eν0 ; ϑ; ϑ0Þ; ð4Þ

i.e., assuming a free-final state neutrino phase space (more
details can be found in Ref. [40]). The scattering kernel
depends on the incoming and the out-going neutrino
energies, Eν and E0

ν, as well as the incoming and outgoing
relative angles, ϑ and ϑ0 (see Appendix B).
Note that neutrino trapping and thermalization of μ and τ

neutrinos occurs roughly at the conditions between (a) and
(b) of Table II. Hence, neutrino–muon scattering may be an
important source for the thermalization and trapping of
heavy lepton-flavor neutrinos. Furthermore, from the com-
parison in Fig. 2, it becomes evident that at high densities,
muon-neutrino scattering on muons dominates over scat-
tering on electrons. This is mostly attributed to the high
electron degeneracy due to which the final-state electron
phase space is occupied. Note also that, at such conditions
(b), neutrinos are trapped.
Since the opacity shown in Fig. 2 does not reveal insights

into the inelasticity of the processes, in Fig. 3, we show in
addition the angular-averaged outgoing scattering kernels
defined as follows,

hRiðEν; Eν0 Þ ¼
1

ð2πℏcÞ3 E
2
ν0μ

Z
dðcosϑ0Þ

Z
dðcosϑÞ

×RoutðEν; Eν0 ; ϑ; ϑ0Þ; ð5Þ

as a function of the outgoing neutrino energy, Eν0 , for three
different incoming neutrino energies, Eν, evaluated at the
two conditions (a) and (b) listed in Table II shown in
Figs. 3(a) and 3(b), respectively. Low incoming neutrino
energies (left panels in Fig. 3), both NMs (solid lines) and

TABLE II. Thermodynamic state for two selected conditions.

T ρ Ye Yμ μe μμ Un − Up
a

[MeV] [g cm−3] [MeV] [MeV] [MeV]

(a) 10 5 × 1013 0.2 10−4 108.1 51.7 13.9
(b) 25 2 × 1014 0.15 0.05 147.4 132.8 31.5

aUn=p are the neutron and proton single-particle potentials, which are given by the DD2 EOS

TABLE III. NMS vector and axial-vector coupling constants.

Scattering process CV
a CA

νe þ μ� −0.5þ 2 sin2 θW �0.5
ν̄e þ μ� −0.5þ 2 sin2 θW ∓0.5
νμ þ μ� 0.5þ 2 sin2 θW ∓0.5
ν̄μ þ μ� 0.5þ 2 sin2 θW �0.5
ντ þ μ� −0.5þ 2 sin2 θW �0.5
ν̄τ þ μ� −0.5þ 2 sin2 θW ∓0.5

asin2 θW ≈ 0.23
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NES (dashed-dotted lines), are dominated by downscatter-
ing, due to the electrons being degenerate, and, since
muons are never degenerate under SN conditions, the high
muon rest mass. With increasing Eνμ (middle and right
panels in Fig. 3), the rest mass contribution becomes less
important, and the differences between NMS and NES are
due to the different degeneracy.
In addition, Fig. 4 shows the dependence of the scatter-

ing kernel on the total scattering angle, cos θ for the
conditions (a) in Table II (left panels) and the conditions
(b) in Table II (right panels), assuming thermal energies for
the initial neutrinos; i.e., Eν ¼ Eν0 ¼ 3.15T and for differ-
ent outgoing neutrino energies Eν0μ Therefore, the top panel
in Fig. 4 assumes outscattering energies, which are equal to

the peak of the scattering kernel; i.e., Eν0μ ¼ 31 MeV
(NMS) and Eν0μ ¼ 24 MeV (NES) for Eνμ ¼ 31 MeV cor-
responding to conditions (a) in Table II (T ¼ 10 MeV),
from where it becomes evident that NES is mainly forward
peaked at an angle of about 30 degrees, while NMS is more
isotropic. Note that the scale in Figs. 4(a) and 4(b) are
logarithmic. At the conditions illustrated in Fig. 4(c), which
correspond to outscattering energies being equal to the peak
of the scattering kernels plus the half-width [see the left
panel in Fig. 3(a)], both NMS and NES are strongly
forward peaked. This situation is reversed in Fig. 4(e)
where the outscattering energy is equal to the peak of the
scattering kernel minus the half-width, when both NMS
and NES are backscattering dominated with NMS being

0 50 100 150 200 250 300
10-8

10-7

10-6

10-5

10-4

10-3

10-2

50 100 150 200 250 300 50 100 150 200 250 300

10-4

10-3

10-2

0 50 100 150 200 250 300
10-5

10-4

10-3

10-2

10-1

FIG. 2. Neutrino scattering opacity, Eq. (4), for νμ (left panels) and ν̄μ (right panels) on muons (solid lines) and on electrons
(dash-dotted lines), in both cases assuming a free final-state neutrino according to expression (4), at two selected conditions referred to
as (a) and (b), which are listed in Table II.
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0.8

1

50 100 100 200 300 0 50 100
0

0.2

0.4

0.6

0.8

1

50 100 150 200 100 200 300

FIG. 3. Angular averaged outscattering kernel, hRi Eq. (5), normalized to unity, for three different incoming neutrino energies, Eν,
comparing NMS (solid lines) and NES (dash-dotted lines) as a function of the outgoing neutrino energy, Eν0 , for the conditions (a) and
the conditions (b) according to Table II.
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more isotropic. This situation remains the same at higher
density and Eνμ ¼ 78 MeV (T ¼ 25 MeV) corresponding
to the conditions (b) in Table II, illustrated in Figs. 4(b) 4(d)
and 4(f) [for the scattering kernel, see the middle panel in
Fig. 3(b)].

3. Purely leptonic reactions—(i) lepton
flavor exchange

A new class of weak processes, known as lepton flavor
exchange (LFE) reactions [17], is added to AGILE-
BOLTZTRAN, reactions (3a) and (3b) of Table I. The close
analogy of the scattering amplitudes of NMS and LFE
enables the direct comparison between these two processes,
which simplifies the calculation of the in- and outscattering
kernels, provided in detail in Appendix B 3 a where the
nomenclature of Ref. [21] is followed closely. It is equivalent
to the recent derivation in Ref. [34], Section II A and
Appendix A.
The main difference between NMS and LFE is the

appearance of a new energy scale since initial- and

final-state leptons are different; one has to take the rest
mass energy difference between muon and electron into
account. This gives rise to additional terms in the scattering
amplitudes (they are provided in Appendix B 3 a), which
can be large.
Figure 5 compares the set of the LFE processes (3a) and

(3b) in Table I, for each channel individually at the two
selected conditions (a) and (b), corresponding to Table II.
For the calculation of the opacity, the same approach is
implemented here as for neutrino-muon scattering Eq. (4);
i.e., assuming a free final-state neutrino. These rates are in
agreement with those obtained in Ref. [34] with a detailed
comparison of the LFE rates and the muonic CC rates.

4. Purely leptonic reactions—(ii) lepton
flavor conversion

There is a second class of purely leptonic processes
involving (anti)muons, known as lepton flavor conversion
reactions (LFC) [17], reactions (4a) and (4b) in Table I. The
derivation of the in- and outscattering kernels is given in
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FIG. 4. Angular distribution for θ in degrees [cos θ is defined in Eq. (B10)] of the outscattering kernel, RðEν; E0
ν; cos θÞ, in arbitrary

units, comparing νμ scattering on muons, Rνμμ
− , and on electrons, Rνμe− , for incoming neutrino energies, Eνμ ¼ 3.15T; i.e., Eνμ ¼

31 MeV for T ¼ 10 MeV (left panels) and Eνμ ¼ 78 MeV for T ¼ 25 MeV (right panels), for the conditions (a) of in Table II in 4(a),
4(c), and 4(e), and the conditions (b) of Table II in 4(b), 4(d), and 4(f), and varying outscattering energies Eν0μ , corresponding to the peak
of the scattering kernel and the half-width (see text for details).
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Appendix B 3 b, again in close analogy to Ref. [34].
Figure 5 compares the rates for the LFC processes, at
the same two selected conditions (a) and (b) of Table II, as
before. This comparison is in agreement with the analysis
of Ref. [34].
All these weak reaction rates involving muons, i.e.,

muonic CC rates and NMS as well as the LFE and LFC
processes, are implemented in AGILE-BOLTZTRAN
within the six-species setup, in order to simulate and study
the impact of the muonization of SN matter. In the
following, these results will be discussed as the reference
case and compared to the simulations where all muonic

weak rates are set to zero. Note that we omit here the
(inverse) muon decay.

III. CORE-COLLAPSE SN SIMULATIONS

The core-collapse SN simulations discussed in the
following are launched from the 18 M⊙ progenitor from
the stellar evolution series of Ref. [41]. Besides the muonic
weak processes introduced in Sec. II above, the standard set
of nonmuonic weak reactions employed here is given in
Table (1) of Ref. [35]. A comparison of these nonmuonic
weak rates in the minimal setup of S. Bruenn [33] and
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Table II.
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major updates [37,42–45], including the impact in spheri-
cally symmetric and axially symmetric SN simulations, is
provided in Refs. [46,47].

A. Production of muons at core bounce

There could be two mechanisms for the production of
muons. One is driven by electromagnetic pair processes,
such as e− þ eþ → μ− þ μþ, which are fast but require
high temperatures that are not reached in the simulation.
Furthermore, this process would always result in a zero net
muon abundance. The second mechanism is due to weak
processes starting from the production of muon (anti)
neutrinos that are converted later into muons. The latter
is the dominant channel here. Furthermore, due to the
largely different CC opacity for νμ and ν̄μ, a net muonic
abundance can be created. However, the muonic CC
processes can only operate once a large enough fraction
of high-energy νμ and ν̄μ are produced, which only occurs
shortly before bounce. The origin of high-energy muon-
(anti)neutrinos are pair processes, mainly electron–positron
annihilation, when the temperature is sufficiently high that
positrons are present in the stellar plasma, and N–N
bremsstrahlung processes. This situation is illustrated in
Fig. 6 (bottom panels) at a few tenths of a millisecond
before core bounce, when the average energies for νμ and
ν̄μ reach as high as 50–70 MeV, due to temperatures on the
order of about 15 MeV. For the leading weak processes that
give rise to the muonization, the CC reactions (1a) and (1b)
in Table I, the medium modifications of the mean-field
potentials can be as high as Un −Up ≃ 20–30 MeV (see
Fig. 7). This, in turn, enables the net production of muons
when the average energy of the muon neutrinos is sub-
stantially lower than the muon rest mass energy (see,
therefore, expression (B3) in Appendix B 1 corresponding
to the elastic rate approximation). Already at core bounce,
this leads to a non-negligible muon abundance on the order
of Yμ ≃ 10−3 (blue lines in Fig. 7), in comparison to the
simulation setup without muonic weak processes (red
lines). This, in turn, feeds back to substantially different
neutrino abundances νμ and ν̄μ which is not observed for
the simulation without muonic weak processes (see, there-
fore, the bottom panels in Fig. 7), where the origin of
differences between νμ and ν̄μ originates from different
coupling constants in neutrino-electron scattering. On the
other hand here, the large difference between the abun-
dances of νμ and ν̄μ with Yνμ > Y ν̄μ indicates the net
muonization; i.e., a substantially higher abundance of μ−

then μþ. Otherwise, the evolution is in quantitative agree-
ment with the simulation without muonic weak processes,
since such a muon abundance has a negligible impact on
the PNS structure (see Fig. 7).

Note that the spectra of νμ and ν̄μ are thermal, roughly
matching the corresponding temperature profile. Con-
sequently, the muon abundance, and the muon chemical

potential accordingly, follow the same temperature profile
even though their leading production processes (1a) and
(1b) in Table I have no purely thermal character, unlike
neutrino-pair production from e−–eþ annihilation. It is
important to notice that the muonization is a dynamical
process. It is determined by the muonic weak rates and the
thermodynamic conditions obtained in the PNS interior.
Muonic weak equilibrium is not established instantane-
ously: The muon chemical potential is significantly
lower, μμ ≃ 40–90 MeV, than that of the electrons, μe ≃
100–200 MeV (see Figs. 6 and 7) This situation remains
during the entire postbounce evolution, as illustrated in
Figs. 8(a) and 8(b), for selected times corresponding to
the early postbounce phase. Furthermore, the temperature
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FIG. 6. Radial profiles of selected quantities as a function of the
enclosed baryon mass, showing the electron and muon fractions
(Ye, Yμ), rest mass density (ρ), temperature and entropy per
baryon (T, s), electron and muon chemical potentials (μe, μμ), as
well as the average neutrino energies for μ and τ (anti)neutrino
flavors. The conditions correspond to a few tenths of a milli-
second before core bounce. The CC rates employed here are
within the full kinematics treatment.
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profile is nonmonotonic, which is well known due to the
fact that the bounce shock forms at a radius of about 10 km.
The highest temperature increase as well as the maximum
temperature obtained during the postbounce evolution is
not at the very center of the forming PNS. Hence, the

thermal production of muon (anti)neutrinos from pair
processes results in high average energies corresponding
to the maximum temperatures [see the bottom panel in
Fig. 8(b)], which, in turn, gives rise to a high and
continuously rising muon abundance off center [see the
top panels in Figs. 8(a) and 8(b)] during the later post-
bounce evolution. The presence of a finite abundance of
muons at the PNS center, ranging from Yμ ≃ 10−4 to a few
times 10−3, corresponding to densities in excess of few
times 1012 g cm−3, results in substantially higher muon-
neutrino abundances than muon antineutrinos also during
the entire postbounce evolution [see the bottom pannels in
Figs. 8(a) and 8(b)], which is not observed in the reference
simulation without muonic charged current processes.
Consequently, also the average energy of νμ is substantially
higher than for ν̄μ in that domain due to the presence of a
finite muon chemical potential [see Fig. 8(b)], similarly as
for electrons and electron neutrinos. However, the overall
postbounce evolution, in terms of the gross hydrodynamics
evolution, is not affected by the presence of muons and
associated muonic weak reactions after shock breakout.
It is important to emphasise here the importance of the

inelastic CC rates; i.e., with their full kinematics imple-
mentation. A test simulation, in which we used the elastic
CC rates instead (not shown here for simplicity), gave rise
to a substantially lower muon abundance, by nearly a factor
of 2, in the off-center muon production region associated
with the highest temperatures.

B. Launch of the muon neutrino burst

The continuously rising muon abundance, in turn, enables
the release of a νμ burst (blue solid line in the middle panel of
Fig. 9), relative to the simulation without muonic weak
processes (red curve), associated with the shock break out.
Similar to the νe deleptonization burst [solid curve in the top
panel of Fig. 9(a)], when the shock wave crosses the muonic
neutrinosphere, muon captures on protons are enabled,
μ− þ p → nþ νμ, due to the escape of the muon neutrinos
produced. It results not only in the substantial rise of the
muon-neutrino luminosity, relative to the case without
muonic weak processes, but is also associated with the
continuous rise of the off-central muon abundance. The later
increase by a factor of about 10during the first 10–30msafter
core bounce (see Fig. 8). However, the magnitude of the
associated luminosity of the νμ burst is lower by a factor of
more than 5 than that of the νe burst [see Fig. 9(a)], due to the
generally lower muon abundance (see Fig. 8), which is
related to the slower CC rates for νμ than for νe. The
corresponding integrated CC rates, defined as follows,

hjνi¼
2πc
ðhcÞ3

mB

ρ

Z
dðcosϑÞdEνE2

νjνðEνÞ½1−fνðcosϑ;EνÞ�;

ð6Þ
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FIG. 7. The same quantities are shown as in Fig. 6 but at core
bounce, comparing the reference simulation with (blue lines) and
without muonic weak processes (red lines). In addition to the
electron and muon chemical potentials, we show the charged
chemical potential denoted as μ̂ ¼ μn − μp and the mean-field
potential difference △U ¼ Un − Up, as well as the neutrino
abundances Yν for μ and τ (anti)neutrinos.
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hχνi ¼
2πc
ðhcÞ3

mB

ρ

Z
dðcosϑÞdEνE2

νjχνðEνÞjfνðcos ϑ; EνÞ;

ð7Þ
are illustrated in Fig. 10. The conditions in Fig. 10 corre-
sponding to the two situations illustrated in Figs. 8(a) at 5 ms

postbounce and 8(b) at 30 ms postbounce. Note further that
the NLS as well as LFE and LFC rates are omitted in Fig. 10,
which are negligible compared to the CC rates.
Furthermore, the ν̄μ luminosity is also affected by a finite

net muon abundance and associated muonic weak proc-
esses. However, while the νμ experience a sudden rise, as
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discussed above, the ν̄μ luminosity is reduced [see the blue
dash-dotted curves in the middle panel of Fig. 9(a)] relative
to the simulation without muonic weak processes [red
dash-dotted curve in the middle panel of Fig. 9(a)]. Here,
for ν̄μ, the net charged-current rates are dominated by ν̄μ
absorption on neutrons, and hence, the expression (B5) is
overall negative at densities below 1012 g cm−3, as shown
in the bottom panels of Fig. 10. This gives rise to antimuon
production, in contrast to (B4), which is overall positive,
acting mostly as a muon sink (see Fig. 10).
As aforementioned, the fully inelastic muonic CC rates

result in a substantially higher muon abundance than when
the elastic CC rates are employed. Consequently, the
magnitude of the luminosity of the νμ burst is somewhat
higher for the fully inelastic rates. The same holds for the
magnitude of the reduced ν̄μ luminosity. Therefore, it is
important to implement the muonic CC rates in their full-
kinematics treatment.

In the region of νμ, losses during the release of the
νμ burst, corresponding to densities between ρ ¼ 1011 –
1013 g cm−3; i.e., in the location of the νμ neutrinosphere,
there is a slight feedback on the PNS structure resulting in
slightly lower temperatures [see Fig. 8(b)] compared to the
simulation without muons. These lower temperatures affect
also the electron (anti)neutrino luminosities and average
energies, however, only marginally (see the top panels in
Fig. 9). Moreover, the τ (anti)neutrino luminosities and
average energies are affected from the slightly higher
compactness achieved due to the additional losses asso-
ciated with the νμ burst. Related is the presence of muons
at the highest densities, which results in a slight temper-
ature increase [see Fig. 8(b)]. This implies a softening
of the high-density EOS, since muons are significantly
more massive than electrons, and electrons are effectively
replaced by muons. This feeds back partly to higher
average energies of ντ and ν̄τ, which are produced thermally
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from pair processes, at the highest densities in the PNS
interior trapping regime [see the bottom panel in Fig. 8(b)].
Note further that after about 50 ms postbounce, the

magnitude of the νμ and ν̄μ luminosities will have settled
back to about 3.0–3.5 × 1052 erg s−1 that corresponds to
the value without muonic reactions. The later postbounce
evolution with the influence of muons and associated
muonic weak processes has been discussed in Ref. [17],
where the potential role with respect to neutrino heating and
cooling contributions as well as on the revival of the stalled
bounce shock was explored.

IV. ROLE OF CONVECTION

In order to study the potential role of convection induced

due to the presence of negative lepton number gradients, it

has been convenient to estimate the Brunt-Väisälä fre-

quency [30,48–52]
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ωBV ¼ signfCLeodouxg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ρ−1jCLeodouxj

q
; ð8Þ

with gravitational acceleration, g, rest mass density, ρ, and
the Ledoux-convection criterion CLedoux. The latter can be
related to derivatives of thermodynamics quantities as
follows,

CLedoux ¼
�∂P
∂s

�
ρ;YL

ds
dr

þ
� ∂P
∂YL

�
ρ;s

dYL

dr
. ð9Þ

The thermodynamic derivatives of the pressure, P, are
evaluated at constant rest mass density, ρ, and constant
lepton number, YL, in the case of the entropy derivative,
and constant entropy, s, in the case of the lepton-number
derivative. Then, convective instability is inferred when
ωBV > 0. Note that for the thermodynamic derivative,
ð∂P=∂YLÞρ;s, finite differencing is employed based on
the tabulated EOS, while the lepton-number gradient,
dYL=dr, is obtained by finite differencing of the SN
simulation data.
According to the standard model, the lepton number is

conserved among its flavor. The situation of lepton-number
violating processes, which belong to the physics beyond
the standard model, are not considered here. In the presence
of more than one conserved and nonzero lepton number,
the electronic and muonic lepton numbers, denoted as YLe

and YLμ
, and in particular when μμ ≠ μe, the total pressure

(2) can be rewritten as the sum of all partial pressures
as follows, P ¼ PB þ PLe

þ PLμ
. Consequently, the den-

sity depends explicitly on both lepton numbers, ρ ¼
ρðP; s; YLe

; YLμ
Þ, which, in turn, following the derivation

of Ref. [52], modifies the Ledoux criterion as follows,

CLedoux ¼
�∂P
∂s

�
ρ;YLe ;YLμ

ds
dr

þ
� ∂P
∂YLe

�
ρ;s;YLμ

dYLe

dr

þ
� ∂P
∂YLμ

�
ρ;s;YLe

dYLμ

dr
. ð10Þ

Since the present article’s concern is the impact of
muons, and associated muonic weak processes, on the
SN dynamics, the focus is on the lepton numbers and the
associated second and third term in Eq. (10), in particular,
since it has been shown that the presence of muons has a
negligible impact on the PNS structure and the entropy
profile. Because of the separation of muonic and electronic
lepton numbers, here the following question shall be
addressed: Can a negative muonic lepton number gradient
drive convection? Here, we consider electonic and muonic
lepton number gradients separately in order to be able to
identify whether the regions where convection is driven by
negative electonic and muonic lepton number gradients
might be spatially separated. Figure 11 shows the lepton
numbers (left panel) and the lepton-number gradient terms

of ωBV (right panel), at 30 ms after core bounce. Note that,
in the case without muons and associated weak reactions
that give rise to a finite muon abundance, the muonic lepton
number is given by Yνμ − Y ν̄μ ≃ 0 (see Figs. 7–8) and,
hence, suppressed by several orders of magnitude, such
that its gradient is effectively zero. In contrast, here one
can identify already shortly after core bounce the presence
of the additional and non-negligible muon lepton number
and associated ωBV contributions (solid lines in Fig. 11).
The region with ωBV > 0 for YLμ

corresponds to the
PNS interior from intermediate to highest densities, on
the order of ρ ¼ 1012 g cm−3 to a few times 1014 g cm−3

[see Fig. 8(b)], unlike for YLe
, for which ωBV > 0 at lower

densities, at the PNS surface. The region with ωBV > 0 for
YLe

at large radii, between the SN shock and the PNS
surface, is relevant for the development of convection. This
is essential to the neutrino heating and cooling of matter in
this region. The region with ωBV > 0 for YLμ

indicates the
occurance of convection in the PNS interior. It is interesting
to note that the Ledoux-convection criterion has the same
magnitude for YLe

and YLμ
(see Fig. 11). This remains true

during the entire postbounce evolution. The magnitude of
the impact remains to be determined in detailed multidi-
mensional studies, preferably in three spatial dimensional
simulations. This might have interesting implications for
the emission of gravitational waves stemming from high
densities [53–58].

V. SUMMARY

In the present article, the extension of AGILE-
BOLTZTRAN to treat six-species neutrino transport was
introduced, overcoming the previous drawback of assum-
ing equal μ and τ (anti)neutrino distributions. This enables
a variety of muonic weak processes. These include muonic
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FIG. 11. Lepton number (left panel) and lepton number
gradient (right panel) for both lepton flavors, muon (solid lines),
and electron (dashed lines), at about 30 ms postbounce [see
Fig. 8(b)].
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charged-current emission and absorption reactions involv-
ing the mean-field nucleons, as well as purely leptonic
flavor-changing reactions. All these muonic rates have
significant inelastic contributions. Hence, it is important to
treat the corresponding phase space properly. In addition to
the disentanglement of μ- and τ (anti)neutrinos in the
transport scheme, the presence of muonic weak processes
gives rise to a finite and rising muon abundance. Therefore,
together with its corresponding evolution equation, the
muon abundance was added as an additional independent
variable to the neutrino radiation-hydrodynamics state
vector of AGILE-BOLTZTRAN.
With these updates, stellar core collapse was simula-

ted and studied in detail with a particular focus on the
appearance of muons, muonic weak reactions, and possible
consequences for SN phenomenology. It had been clai-
med previously that muons and their associated weak
reactions may enhance the neutrino heating efficiency in
multidimensional SN simulations under certain circum-
stances during the postbounce evolution [17]. Beginning
with our first focus, muonization of SN matter, we find that
it starts shortly before core bounce in two steps: first, from
the production of high-energy muon (anti)neutrinos from
neutrino-pair processes, and second, from the absorption of
these high-energy muon neutrinos as part of the muonic
charged-current and lepton-flavor changing processes.
Here, we conclude that the importance of the charged-
current reactions exceed the latter by far for the muoniza-
tion. We find that the muon abundance rises by more than
one order of magnitude during the first few 10 milliseconds
postbounce, reaching values of Yμ ≃ 10−4 to a few times
10−3—in particular, off center associated with the increas-
ing temperature there. With regard to SN phenomenology:
the presence of muons leads to a muon-neutrino burst
shortly after core bounce, which is due to the shock pro-
pagation across the muon neutrinosphere, similar to what
happens with regard to the electron-neutrino burst when
the shock passes the electron neutrinosphere. However, the
muon-neutrino burst has a lower magnitude due to the
significantly lower muon abundance and muonic charged-
current weak rates, relative to the abundances and rates
associated with electrons. With regard to the evolution of
the PNS: it is interesting to note that muons and muon (anti)
neutrinos are not in weak equilibrium instantaneously,
unlike the electrons and positrons with their neutrino
species. That is, the electron chemical potentials by far
exceed the muon chemical potentials at the PNS interior.
Only toward low densities near the neutrinospheres at the
PNS surface, where the abundance of trapped neutrinos
drops to zero, are the electron and muon chemical poten-
tials equal during the postbounce evolution. It remains to
be explored in future studies how the muons approach
equilibrium during the later PNS deleptonization phase,
i.e., after the onset of the SN explosion on a timescale
of several 10 seconds. Furthermore, the presence of an

additional muon lepton-number gradient may impact con-
vection at high densities in the PNS interior. To confirm this
requires multidimensional simulations, which cannot be
investigated here. We find that the presence of a finite and
continuously rising muon abundance in the PNS interior
has a softening impact on the high-density equation of
state. This, in turn, is known to result in smaller PNS and
shock radii during the long-term postbounce supernova
evolution on the order of several hundreds of milliseconds,
confirming the findings of Ref. [17], which has the
potential of enhancing the neutrino heating efficiency
through higher neutrino energies and luminosities. The
latter is also known from multidimensional simulations
comparing stiff and soft hadronic equations of state [59].
Moreover, the finite muon abundance may also give rise to
weak processes involving pions [60], which remains to be
explored in future studies.
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APPENDIX A: AGILE-BOLTZTRAN—EXTENSION
TO SIX-SPECIES BOLTZMANN

NEUTRINO TRANSPORT

Here, a comparison is presented between the reference
run employing the six-species neutrino transport scheme
(blue lines) and the run based on the traditional four-species
(red lines), where besides the inclusion of electron and
muon neutrino flavors, it is assumed that the tau (anti)
neutrino distributions are equal to the muon-(anti)neutrino
distributions. No muonic weak processes are considered
here. All muonic weak rates are set (numerically) to zero.
Figure 12 compares the evolution of the neutrino

luminosities in Fig. 12(a) and the average neutrino energies
in Fig. 12(b) for the two SN simulations, respectively.
Otherwise, both simulations employ an identical set of
input physics, as introduced in Secs. II A and II B. The
relative change between the two runs in terms of neutrino
losses is on the order of less than a few tenths of one
percent, attributed mostly to a slightly different converged
solution of the radiation-hydrodynamics equations [23]
with the implementation of the muon abundance as addi-
tional independent degree of freedom. Furthermore, the
entire SN hydrodynamics—i.e., shock formation, shock
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evolution, and postbounce mass accretion—shows no
quantitative differences.

APPENDIX B: IMPLEMENTATION OF MUONIC
WEAK PROCESSES

1. Muonic charged-current processes—elastic rates

The CC rates within the full kinematics approach, includ-
ing self-consistent contributions from weak magnetism, are

provided in Ref. [35] for the electronic CC processes. They
have been reviewed recently for the muonic reactions (1a)
and (1b) of Table I in Ref. [34]. For the comparison with this
full kinematics treatment, it is convenient to provide CC
muonic rates in the elastic approximation; i.e., assuming
a zero-momentum transfer, for which the absorptivity
(νμ þ n → pþ μ−), is given by the following analytical
expression:

χνμðEνμÞ ¼
G2

F

π
ðg2V þ 3g2AÞE2

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mμ

Eμ

�
2

s
½1 − fμðEμÞ�

nn − np
1 − expfφp−φn

T g ; ðB1Þ

with Fermi constant, GF, vector and axial-vector coupling
constants, gV ¼ 1.0 and gA ¼ 1.27, as well as with
equilibrium Fermi–Dirac distribution functions for the
muons, fμðEμ; fμμ; TgÞ, neutron and proton number
densities, and the latter free Fermi gas chemical potentials,
nn=p and φn=p, respectively. The latter are related to
the nuclear EOS chemical potentials, μi, as follows:

φn=p ¼ μn=p −m�
n=p −Un=p, with neutron and proton sin-

gle-particle vector-interaction potentials Un=p and effective
masses m�

n=p [43,44], both of which are given by the
nuclear EOS. Inelastic contributions and weak-magnetism
corrections are approximately taken into account via
neutrino-energy-dependent multiplicative factors to the
emissivity and opacity [37]. A similar expression as
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FIG. 12. Neutrino luminosities and average energies, sampled in the comoving frame of reference, comparing the reference run
employing the actual three-flavor neutrino transport scheme (blue lines) and mimicking three-flavor (red lines).
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(B1) is obtained for ν̄μ by replacing the muon Fermi
distribution with that of antimuons and replacing n ↔ p
for the neutron and proton number densities and free gas
chemical potentials.
The emissivity and absorptivity are related intimately via

detailed balance,

jνμðEνμÞ ¼ exp

�
−
Eνμ − μeqνμ

T

�
χνμðEνμÞ; ðB2Þ

with muon-neutrino equilibrium chemical potential given
by the expression, μeqνμ ¼ μμ − ðμn − μpÞ.

For this limited kinematics, assuming zero-momentum
transfer, one can relate the muon and νμ energies as follows,

Eμ� ¼ Eðν̄μÞνμ ∓ ðmn −mpÞ ∓ ðUn −UpÞ; ðB3Þ

with the medium-modified Q value, mμ � ðmn −mpÞ �
ðUn − UpÞ [43,44,61]. Note that, as for the electron-flavor
neutrinos, the nuclear medium modifications for the
charged-current rate at the mean-field level modify the
opacity substantially with increasing density [62]. In
particular, at densities in excess of ρ ¼ 1013 g cm−3, where

muons can be expected, the opacity drop can differ
significantly from the vacuum Q value, mμ � ðmn −mpÞ,
due to the large difference of the single particle potentials
can well be on the order of Un −Up ¼ 40–80 MeV,
depending on the nuclear EOS [62,63].
The presence of high-energy νμ and ν̄μ enables the

production of μ�. The collision integrals for νμ and ν̄μ for
the reactions (1a) and (1b) of Table I take the following
form:

∂Fνμ

c∂t ðEνμ ; ϑÞ
���
CC

¼ jνμðEνμÞ
ρ

− χ̃νμðEνμÞFνμðEνμ ; ϑÞ ðB4Þ

∂Fν̄μ

c∂t ðEν̄μ ; ϑÞ
���
CC

¼ jν̄μðEν̄μÞ
ρ

− χ̃ν̄μðEν̄μÞFν̄μðEν̄μ ; ϑÞ; ðB5Þ

with effective opacity defined as follows, χ̃ν ¼ χν þ jν
[19,20]. Expressions (B4) and (B5) are equivalent to those
for the electron (anti)neutrinos with electronic charged-
current emissivity and opacity [40]. The muon abundance,
Yμ, is then added as an independent variable to the AGILE
state vector, for which the following differential-integral
evolution equation is solved,

∂Yμ

∂t
����
CC

¼ 2πmB

ðhcÞ3
�Z

dEν̄μdE
2
ν̄μdðcos ϑÞ

∂Fν̄μ

∂t ðEν̄μ ; ϑÞ
���
CC

−
Z

dEνμdE
2
νμdðcosϑÞ

∂Fνμ

∂t ðEνμ ; ϑÞ
���
CC

	
; ðB6Þ

with baryon mass mB ¼ 938 MeV. Equation (B6) is similar to the evolution equation for Ye (see Eqs. (17)–(25) in
Ref. [20]), where, instead, the electronic charged-current neutrino emissivity and opacity are used (see expressions (6) and
(7a)–(7d) in Ref. [40]).

2. Neutrino-muon scattering

For neutrino–lepton scattering (NLS), νþ l� ⇆ l0� þ ν0, distinguishing here between neutrinos, ν ∈ fνe; νμ; ντg, and
leptons, l� ∈ fe�; μ�; τ�g, the collision integral is given by the following integral expression,

∂Fν

c∂t
����
NLS

ðEν; ϑÞ ¼
�
1

ρ
− FνðEν; ϑÞ

	
1

ðhcÞ3
1

c

Z
E2
ν0dEν0

Z
dðcosϑ0Þ

Z
dϕRin

NLS;νðEν; Eν0 ; cos θÞFν0 ðEν0 ; ϑ0Þ

− FνðEν; ϑÞ
1

ðhcÞ3
1

c

Z
E2
ν0dEν0

Z
dðcosϑ0Þ

Z
dϕRout

NLS;νðEν; Eν0 ; cos θÞ
�
1

ρ
− Fν0 ðEν0 ;ϑ0Þ

	
ðB7Þ

with the following definition for the in- and outscattering kernels,

Rin
NLS;νðEν; Eν0 ; cos θÞ ¼

Z
d3pl

ð2πℏcÞ3
d3pl0

ð2πℏcÞ3 2fl0 ðEl0 Þ½1 − flðElÞ�
P

sjMj2νþl←l0þν0

16EνElEν0El0
ð2πÞ4δ4ðpν þ pl − pl0 − pν0 Þ; ðB8Þ

Rout
NLS;νðEν; Eν0 ; cos θÞ ¼

Z
d3pl

ð2πℏcÞ3
d3pl0

ð2πℏcÞ3 2flðElÞ½1 − fl0 ðEl0 Þ�
P

sjMj2νþl→l0þν0

16EνElEν0El0
ð2πÞ4δ4ðpν þ pl − pl0 − pν0 Þ; ðB9Þ

with equilibrium Fermi-Dirac distribution functions flðElÞ for initial- and final-state leptons. In addition to the energy
difference between incoming and outgoing neutrinos, Eν0 − Eν, the scattering kernels depend on the total momentum
scattering angle between the incoming and outgoing neutrino, defined as follows,
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cos θ ¼ cos ϑ cos ϑ0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cosϑÞð1 − cosϑÞ

p
cosϕ; ðB10Þ

with lateral momentum angles ðϑ; ϑ0Þ and relative azimuthal angle ϕ ¼ φ − φ0 (for illustration, see Fig. (1) in Ref [19]).
Here, for neutrino–muon scattering (NMS), the approach for neutrino–electron scattering (NES) is extended following

the Refs. [21,33,38,39]. As an example, in the following neutrino–muon scattering, νþ μ ⇆ μ0 þ ν0, will be considered,
which contains neutral-current Z0 boson and charged-current W− boson interactions, similar to νe − e− scattering (see
Fig. 1 in Ref. [38]). The matrix element,M, for νe − e− scattering can be obtained from the literature, cf., Eqs. (C46)–C(48)
in Ref. [33], by replacing the electron and νe spinors, ðueðpeÞ; uνeðpνeÞÞ, with those of the muon and νμ, ðuμðpμÞ; uνμðpνμÞÞ,
respectively,

Mνμþμ→μ0þν0μ ¼
GFffiffiffi
2

p ½ūνμðp0
ν0μ
Þγkð1 − γ5ÞuνμðpνμÞ�½ūμðp0

μÞγkðCV − CAγ5ÞuμðpμÞ�; ðB11Þ

The matrix element depends on the particle’s four-momenta, pi, and the dash denotes final states. The quantities CV and CA
are the vector and axial-vector coupling constants. After spin averaging and squaring, the transition amplitude takes the
following form, X

s

jMj2νμþμ→μ0þν0μ
¼ β1M1 þ β2M2 þ β3M3 ðB12Þ

¼ 16G2
Ffβ1ðpμ · pνμÞðp0

μ · p0
νμÞ þ β2ðp0

μ · pνμÞðpμ · p0
νμÞ þ β3m2

μðpνμ · p
0
νμÞg ðB13Þ

with β1 ¼ ðCV þ CAÞ2, β2 ¼ ðCV − CAÞ2 and β3 ¼ C2
A − C2

V , where the values for CV and CA are listed in Table III.
The individual kinematic integral expression, denoted as I1 − I3, which correspond to the muon initial- and final-state

momentum integrals ofM1 −M3, can be obtained from Eq. (10b) in Ref. [38] by replacing the electron with the muon four-
momenta. The remaining integrals are solved numerically following the approach developed in Ref. [21] for neutrino-
electron scattering, such that

Rout
NMS;νμ

ðEνμ ; Eν0μ ; cos θÞ ¼
G2

F

2π2
1

EνμEν0μ
fβ1I1ðEνμ ; Eν0μ ; cos θÞ þ β2I2ðEνμ ; Eν0μ ; cos θÞ þ β3I3ðEνμ ; Eν0μ ; cos θÞg: ðB14Þ

The definition of the remaining integrals, IiðEνμ ; Eν0μ ; cos θÞ,
is given in Eqs. (11)–(27) in Ref. [21], based on the
polylogarithm functionals, which are used to perform the
remaining Fermi integrals.
In order to eliminate the remaining dependence on the

relative azimuthal angle ϕ in the scattering kernels (B8) and
(B9), a numerical 32-point Gauss quadrature integration is
employed, which is identical to the one of BOLTZTRAN for
neutrino–electron scattering (see Eq. (32) in Ref. [21]),
such that the scattering kernels depend only on incoming
and outgoing neutrino energies, as well as on the incoming
and outgoing neutrino lateral angles,Rin=outðEνμ ;Eν0μ ;ϑ;ϑ

0Þ.
For the procedure to avoid singular forward scattering,
expressions (37)–(43) in Ref. [21] are employed here for
neutrino–muon scattering.

For muon-antineutrino scattering on muons, the expres-
sions are a cross channel of muon–neutrino scattering
introduced above (similar to the relationship between
electron-antineutrino scattering on electrons and electron-
neutrino scattering on electrons [33]), given by the sub-
stitution pνμ ↔ p0

νμ in the matrix element. It has been

realized for neutrino–electron scattering, this corresponds
to the replacement of CA ↔ −CA in the expressions for the
scattering kernels [33]. Therefore, it is straightforward to
obtain the corresponding scattering kernelRout

NMS;ν̄μ
. Similar

replacements are done for electron-(anti) neutrino scatter-
ing on muons, Rout

NMS;νeðνeÞ [33]. Table III summarizes the

values of CV and CA for all neutrino-(anti)muon scattering
reactions. Furthermore, since the collision integral of the
Boltzmann equation (B7) has an identical form for NMS
and NES, the general neutrino–lepton scattering kernel in
the module for the inelastic scattering processes of
Boltztran is defined as follows,

Rout
NLS;ν ≔ Rout

NES;ν þRout
NMS;ν; ðB15Þ

for each pair of neutrino specie ν.
Note that, due to detailed balance, the transition ampli-

tudes for in- and outscattering are equal,
P

s jMj2νþl→l0þν0 ¼P
s jMj2νþl←l0þν0 (the degeneracy factors cancel), such that

the scattering kernels (B8) and (B9) are related via,
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Rin
NLS;νðEν; Eν0 ; ϑ; ϑ0Þ ¼ Rout

NLS;νðEν; Eν0 ; ϑ; ϑ0Þ exp
�
−
Eν − E0

ν

T

�
; ðB16Þ

which is the case for both, NES and NMS.

3. Purely leptonic lepton flavor changing processes

a. Lepton flavor exchange (LFE)

As an example, in the following, the focus will be on the reaction: νμ þ e− ⇆ μ− þ νe. In close analogy to (B7), the
collision integral of the Boltzmann transport equation is given by the following integral expression,

∂Fνμ

c∂t
����
LFE

ðEνμ ; ϑÞ ¼
�
1

ρ
− FνμðEνμ ; ϑÞ

	
1

ðhcÞ3
1

c

Z
E2
νedEνe

Z
dðcosϑ0Þ

Z
dϕRin

LFE;νμ
ðEνμ ; Eνe ; cos θÞFνeðEνe ; ϑ

0Þ

− FνμðEνμ ; ϑÞ
1

ðhcÞ3
1

c

Z
E2
νedEνe

Z
dðcosϑ0Þ

Z
dϕRout

LFE;νμ
ðEνμ ; Eνe ; cos θÞ

�
1

ρ
− FνeðEνe ; ϑ

0Þ
	
; ðB17Þ

with the in- and outscattering kernels, again in close analogy to (B8) and (B9), given as follows,

Rin
LFE;νμ

ðEνμ ; Eνe ; cos θÞ ¼
Z

d3pμ

ð2πℏcÞ3
d3pe

ð2πℏcÞ3 2fμðEμÞ½1 − feðEeÞ�

×

P
sjMj2νμþe−←μ−þνe

16EνμEeEμEνe

ð2πÞ4δ4ðpνe þ pμ − pe − pνμÞ ðB18Þ

Rout
LFE;νμ

ðEνμ ; Eνe ; cos θÞ ¼
Z

d3pμ

ð2πℏcÞ3
d3pe

ð2πℏcÞ3 2feðEeÞ½1 − fμðEμÞ�

×

P
sjMj2νμþe−→μ−þνe

16EνμEeEμEνe

ð2πÞ4δ4ðpνμ þ pe − pμ − pνeÞ: ðB19Þ

The similarity to the expressions for neutrino–muon scattering, introduced above, is striking. However, unlike νμ–μ
−

scattering, which has neutral-current Z0-boson and charged-current W−-boson contributions, this process is given by
a W−-boson exchange only, with the following matrix element:

Mνμþe−→μ−þνe ¼
GFffiffiffi
2

p ½ūνμðpνμÞγkð1 − γ5ÞueðpeÞ�½ū0μðp0
μÞγkð1 − γ5Þu0νeðp0

νeÞ�; ðB20Þ

with the spinors, ui, depending on the corresponding four-momenta, pi, where the dash denotes final states. After
summation and spin-averaging, the transition amplitude takes the following form,

X
s

jMj2νμþe−→μ−þνe
¼ 64G2

Fðpνμ · peÞðp0
μ · p0

νeÞ; ðB21Þ

such that

Rout
LFE;νμ

ðEνμ ; Eνe ; cos θÞ ¼ 4
G2

F

2π2
1

EνμEνe

I1ðEνμ ; Eνe ; cos θÞ; ðB22Þ

with the same definition of the remaining phase-space integral I1ðEνμ ; Eνe ; cos θÞ as for the case of neutrino–muon
scattering discussed above. However, due to different initial-state electron and final-state muon rest masses, there are
additional terms, which scale with the rest-mass energy difference, △mμe ≔ ðm2

μ −m2
eÞc4=2. Comparing these terms with

those for neutrino–muon scattering (see Eqs. (11)–(18) in Ref. [21]) and using the same nomenclature as in Ref. [21], the
following modifications arise,
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I1ðEνμ ; Eνe ; cos θÞ ¼
2πTfγðEνe − EνμÞ

△5

× fE2
νμE

2
νeð1− cos θÞ2fAT2½G2ðy0Þ þ 2y0G1ðy0Þ þ y20G0ðy0Þ� þ BT½G1ðy0Þ þ y0G0ðy0Þ� þCG0ðy0Þg

þ△mμeð1− cos θÞJ0T½G1ðy0Þ þ y0G0ðy0Þ� þ△mμeEνμð1− cos θÞJ1G0ðy0Þ
þ△m2

μeJ2G0ðy0Þg: ðB23Þ

The functions△, A, B, C, fγðxÞ, as well as the integral functionals Gnðy0; η0Þ, are defined in Ref. [21], see Eqs. (14)–(20).
The latter are related to the Fermi integrals, which depend on the degeneracy parameter, η0, which is related to η ¼ μe=T,
and defined as follows,

η0 ¼ η −
ðEνμ − μμÞ − ðEνe − μeÞ

T
; ðB24Þ

in contrast to Eq. (22) in Ref. [21], since electrons and muons can have rather different Fermi energies under SN conditions.
Furthermore, the argument, y0, of the Fermi-integrals, Gnðy0; η0Þ, also has an explicit dependence on the electron–muon
rest-mass energy difference as follows,

y0 ¼
1

T

�
−
1

2

�
Eνμ − Eνe −

�
△mμe

Eνμð1 − cos θÞ
�	

þ△

2

�
1þ 2ðmec2Þ2

EνμEνeð1 − cos θÞ þ
2△mμe

EνμEνeð1 − cos θÞ þ
�

△mμe

EνμEνeð1 − cos θÞ
�

2
	
1=2

�
: ðB25Þ

The additional phase-space terms, J0, J1, and J2, are given by the following expressions,

J0 ¼ E3
νμ þ E2

νμEνeð2þ cos θÞ − EνμE
2
νeð2þ cos θÞ − E3

νe ; ðB26Þ

J1 ¼ E3
νμ − E2

νμEνe cos θ þ EνμE
2
νeðcos2θ − 2Þ þ E3

νe cos θ; ðB27Þ

J2 ¼ E2
νμ cos θ −

1

2
EνμEνeð3þ cos θÞ þ E2

νe cos θ: ðB28Þ

Note also, in order to eliminate the azimuthal dependence of the scattering kernels, the same 32-point Gauss quadrature
numerical integration is performed as in the case of neutrino-lepton scattering. Note further that the relation of detailed
balance holds here as well for the transition amplitudes of the lepton-flavor exchange processes. However, due to the
presence of two different leptonic chemical potentials, the phase-space distributions for electrons and muons give rise to an
additional contribution to the relation of detailed balance for the scattering kernels, as follows,

Rin
LFE;νμ

ðEνμ ; Eνe ; ϑ; ϑ
0Þ ¼ Rout

LFE;νμ
ðEνμ ; Eνe ; ϑ; ϑ

0Þ exp
�
−
Eνμ − Eνe þ μe − μμ

T

�
: ðB29Þ

Note that, since the transition amplitudes for the processes
involving eþ and μþ are the same as for the processes
involving e− and μ−, the scattering kernels are given by the
same expression I1 (B23), with the replacement of the
chemical potentials, μe=μ → −μe=μ, and Eνe=μ → Eν̄e=μ .
For the implementation of the LFE processes, (3a) and

(3b) in Table I, in the collision integral, the scattering
kernels are computed on the fly as part of the inelastic
scattering module of BOLTZTRAN. However, contrary
to neutrino-lepton scattering, here the initial- and final-
state neutrinos belong to different flavors. A new
module for this class of inelastic processes had to be

introduced according to (B17), RLFE;ν for (anti)muon and
(anti)electron neutrinos.

b. Lepton flavor conversion (LFC)

For LFC reactions (4a) and (4b) of Table I, the collision
integral of the Boltzmann equation takes the same form
as (B17), though changing initial- and final-state neutrino
distributions respectively. Also in- and outscattering ker-
nels have the same algebraic structure as for the lepton
flavor exchange processes (B18) and (B19), i.e., converting
(positron)electron into (anti)muon and vice versa. How-
ever, the matrix elements for LFC reactions are different.
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In the following, the process, ν̄e þ e− ⇆ μ− þ ν̄μ, will be
discussed as an example, for which the matrix element can
be directly read off from (B21), replacing the νμ spinor with
that of ν̄e neutrino and the νe spinor with that of ν̄μ neutrino.
Then, the transition amplitude takes the following form,X
s

jMj2ν̄eþe−→μ−þν̄μ
¼ 64G2

Fðp0̄
νμ · peÞðp0

μ · pν̄eÞ; ðB30Þ

such that the outscattering kernel becomes,

Rout
LFC;ν̄e

ðEν̄μ ; Eν̄e ; cos θÞ ¼ 4
G2

F

2π2
1

Eν̄μEν̄e

I2ðEν̄μ ; Eν̄e ; cos θÞ;

ðB31Þ

with the same remaining phase-space integral, I2ðEν̄μ ; Eν̄e ;
cos θÞ, as for the case of neutrino-muon scattering dis-
cussed above (see also Eq. (12) in Ref. [21]), with the
replacements Eνμ → −Eν̄e and Eνe → −Eν̄μ , as well as the
inclusion of the muon-electron rest-mass energy scale

△mμe. Then, applying the same nomenclature as in
Ref. [21] and as in (B23), the resulting additional terms,
J0, J1, and J2, can be computed straightforwardly with the
aforementioned replacements. Note that the scattering
kernels for the processes involving eþ and μþ are obtained
by the replacement of the chemical potentials as follows,
μe=μ → −μe=μ.
Since in- and outscattering LFC kernels have the same

algebraic structure as in- and outscattering LFE kernels,
respectively, the reverse LFC processes are related through
detailed balance in the sameway the LFE kernels are (B29).
Hence, it is convenient to define the total lepton flavor
exchange and conversion scattering kernel,

Rout
ν ¼ Rout

LFE;ν þRout
LFC;ν: ðB32Þ

Note that LFE and LFC reactions change the abun-
dance of muons and electrons. Their contributions have
to be taken into account by modifying the evolution
equations (B4) and (B5) as follows,

∂Yμ

∂t ¼ ∂Yμ

∂t
����
CC

−
2πmB

ðhcÞ3
�Z

dEνμdE
2
νμdðcos ϑÞ

∂Fνμ

∂t ðEνμ ; ϑÞ
���
LFEþLFC

−
Z

dEν̄μdE
2
ν̄μdðcosϑÞ

∂Fν̄μ

∂t ðEν̄μ ; ϑÞ
���
LFEþLFC

	
:

ðB33Þ

Similarly, the Ye evolution equation has to be modified, as well,

∂Ye

∂t ¼ ∂Ye

∂t
����
CC

−
2πmB

ðhcÞ3
�Z

dEνedE
2
νedðcosϑÞ

∂Fνe

∂t ðEνe ; ϑÞ
���
LFEþLFC

−
Z

dEν̄edE
2
ν̄edðcosϑÞ

∂Fν̄e

∂t ðEν̄e ; ϑÞ
���
LFEþLFC

	
:

ðB34Þ
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