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The interplay of optical driving and hyperfine interaction between an electron confined in a
quantum dot and its surrounding nuclear spin environment produces a range of interesting physics
such as mode-locking. In this work, we go beyond the ubiquitous spin 1/2 approximation for
nuclear spins and present a comprehensive theoretical framework for an optically driven electron
spin in a self-assembled quantum dot coupled to a nuclear spin bath of arbitrary spin. Using a
dynamical mean-field approach, we compute the nuclear spin polarization distribution with and
without the quadrupolar coupling. We find that while hyperfine interactions drive dynamic nuclear
polarization and mode-locking, quadrupolar couplings counteract these effects. The tension between
these mechanisms is imprinted on the steady-state electron spin evolution, providing a way to
measure the importance of quadrupolar interactions in a quantum dot. Our results show that
higher-spin effects such as quadrupolar interactions can have a significant impact on the generation
of dynamic nuclear polarization and how it influences the electron spin evolution.

I. INTRODUCTION

Spins in self-assembled quantum dots (QDs) are under
intense investigation for a variety of quantum information
applications, including quantum information processing,
quantum communication, and quantum transduction [1–
4]. The relatively long coherence times, fast control-
lability [5–7], and good photon emission properties of
these systems [8–11] make them promising candidates
for achieving high-quality spin-photon interfaces and for
producing large-scale multi-photon entangled states [12–
15]. The deterministic generation of these multi-photon
entangled states has been demonstrated experimentally
using the dark excitonic states of QDs [16].

While optically controlled quantum dot spins offer a
wide range of technological possibilities, hyperfine (HF)
interactions between the confined spin and its surround-
ing nuclear spin bath have been a major impediment.
This interaction is the main source of decoherence in
these systems, and it also causes spectral wandering
and inhomogeneities in quantum dot ensembles, aspects
that have been researched extensively over the past two
decades [17–52]. However, many works have shown that
the state of the bath, and consequently its deleterious
effects, can be influenced by driving the electron spin.
For example, several experiments have shown that driv-
ing can generate dynamic nuclear polarization (DNP), an
effect that has been observed in self-assembled QDs [53–
64] and also in other systems such as gated QDs [65–
68], quantum wires [69] and in bulk materials [70, 71],
findings that have been supported by a number of the-
ory works [72–84]. An important example of DNP in
self-assembled QDs is the mode-locking experiment of
Ref. [54], where an ensemble of QD electron spins be-
comes synchronized with a periodic train of optical pulses
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as a consequence of DNP. Continuous-wave laser driving
of the electron has been shown to create DNP in QDs as
well, leading to interesting phenomena such as the line-
dragging effect, i.e. the locking of an optical QD transi-
tion to the frequency of the laser [59, 61, 62, 76, 85]. Ow-
ing to the long coherence times of nuclear spins, DNP has
been proposed for applications such as quantum memo-
ries [86, 87], which has recently been demonstrated ex-
perimentally [88].

Although most of the fully quantum mechanical the-
oretical treatments of the hyperfine decoherence prob-
lem allow for nuclei with spin greater than 1/2 [22–
24], studies of the driven, hyperfine-induced genera-
tion of DNP have mostly focused on spin 1/2 nuclei
to reduce the computational complexity of the problem
[54, 72, 74, 81, 82, 89]. The latter works typically rely on
either stochastic equations or rate equations to solve for
the nuclear polarization distribution. While solving the
feedback problem for spin 1/2 nuclear baths can yield
qualitative insights about DNP experiments, the quan-
titative accuracy of such models is limited by the fact
that the most commonly studied semiconductor QDs are
in materials such as InAs or GaAs, which contain nu-
clei of spin I > 1/2. In addition to artificially reducing
the size of the bath Hilbert space, assuming spin 1/2 nu-
clei also ignores effects such as quadrupolar interactions,
which are only present for I > 1/2. There do exist a
few theoretical works that allow for I > 1/2 [18, 39, 73].
Specifically, Huang and Hu [18] studied DNP arising from
hyperfine interactions with the spin 3/2 arsenic nuclei
in InGaAs by making use of Fermi’s golden rule; how-
ever, only qualitative agreement with experiment was
achieved due to the need to introduce phenomenologi-
cal parameters. Yang and Sham [73] presented a gen-
eral framework for nuclei of arbitrary total spin by uni-
fying the stochastic and rate-equation approaches. In
this work they focused on a drift feedback loop (which
allows for a possible bias in nuclear spin-flip processes)
and obtained a Fokker-Planck equation for the polariza-
tion of the bath. Although this framework captures line-
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dragging and other DNP phenomena seen in experiments,
it has only been established for continuous-wave driving,
and so it is not immediately applicable to experiments
with periodic driving such as the mode-locking experi-
ment of Ref. [54]. Theoretical works that have specifically
focused on mode-locking type experiments have either
assumed I = 1/2 nuclear baths [72, 74] or utilized semi-
classical methods [37, 38]. While such approaches have
been successful in reproducing qualitative features seen in
experiments including dynamic nuclear polarization and
mode-locking, it remains an outstanding challenge to de-
velop a more quantitatively accurate description of the
driven electron-nuclear spin system. Allowing for higher
spin is also important for capturing additional qualitative
behavior that can arise from quadrupolar interactions.

In this paper, we develop a quantum, non-perturbative
framework to solve the dynamics of an optically driven
electron spin coupled to a bath of I > 1/2 nuclear spins.
We focus on DNP feedback mechanisms that arise from
driving the electron with a periodic train of optical pulses
while it is subject to hyperfine interactions with a nuclear
spin bath, as in the mode-locking experiment [53, 54].
Here, we also consider the effect of quadrupolar interac-
tions. To compute DNP and its effect on the evolution of
the electron spin, we use an approach based on dynamical
maps and kinetic equations introduced in Refs. [72, 74],
but, importantly, we generalize the formalism to higher
nuclear spin and treat the problem non-perturbatively.
Our framework provides a self-consistent description of
the feedback loop between the driven electron and DNP.

We compute the nuclear spin polarization distribution
and its influence on the electron spin evolution for spin
1 and spin 3/2 baths and compare the results to the
I = 1/2 case. Our approach is able to treat bath sizes of
up to thousands of nuclear spins in the I = 1/2 and I = 1
cases, and up to several hundred spins in the I = 3/2
case. Although evidence of mode-locking is seen in all
three cases, we find that quadrupolar interactions act to
suppress mode-locking for I > 1/2, especially when the
angle between the principal strain axis and the applied
magnetic field is large. We also find that while HF inter-
actions can produce a significant bath polarization that
grows linearly with the number of nuclei for I > 1/2,
quadrupolar interactions work to counteract this buildup
of DNP. We further show that the relative importance of
quadrupolar effects grows as the magnitude of the applied
magnetic field is increased. The competition between HF
and quadrupolar interactions imprints clear signatures in
the steady-state electron spin evolution, providing an ex-
perimental tool to measure the strength of quadrupolar
couplings in a QD. Our results show that accounting for
higher nuclear spin is important not only for quantita-
tive accuracy, but also for capturing important qualita-
tive features of the DNP process in driven QD systems.

The paper is structured as follows. In Sec. II, we
present an overview of our framework and briefly describe
each step of the calculation. In Sec. III, we lay out the
approach in detail for arbitrary nuclear spin I and con-
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FIG. 1. Schematic depiction of the self-consistent formalism
we use to model DNP with feedback. We exploit a hierarchy of
timescales to first solve for the joint evolution of the electron
coupled to a single nuclear spin. Under a Markovian approxi-
mation, the electron spin state is reset after each drive period.
The resulting nuclear spin evolution yields nuclear spin-flip
rates that are then fed into a kinetic equation governing the
dynamics of the multi-nuclear spin polarization distribution.
The flip rates depend on the effective electron spin precession
frequency, including the Overhauser field contribution for self-
consistency. The solution to the kinetic equation is then used
to update the electron steady state, closing the feedback loop.

struct the equations that govern DNP for I = 1/2, 1, and
3/2 nuclear spin baths. We present an analytical solution
for the steady-state nuclear spin polarization distribution
for I = 1/2. In Sec. IV, we numerically compute steady-
state polarization distributions for I = 1 and 3/2 and
compare the results to the I = 1/2 solution for various
parameter choices. We also study the effect of DNP on
the electron spin evolution. We conclude in Sec. V.

II. OVERVIEW OF THE THEORETICAL
FRAMEWORK

Before we describe our approach in detail, we first
give an overview of the general strategy and main in-
gredients. This will hopefully better orient the reader
for what follows and also highlight the generality of the
approach, which could potentially be adapted to other
time-dependent many-body problems. We still, how-
ever, frame this overview in the context of the electron-
nuclear problem in QDs for the sake of concreteness and
to make it readily apparent how the discussion here fits
with the rest of the paper. Our framework is summarized
in Fig. 1. It closely follows the approach introduced in
Refs. [72, 74], but we outline each step in detail to keep
the discussion self-contained and to make it clearer which
parts must be modified to allow for higher nuclear spin.

Our focus in this work is on developing a theory that



3

describes QD experiments in which a single electron is pe-
riodically pumped by a train of optical pulses [54, 55, 90].
Each pulse excites the electron to a trion state (a bound
state of an electron and an exciton), which then decays
back to the electronic ground state manifold via sponta-
neous emission. The underlying physical mechanism be-
hind the formation of DNP can be understood as follows.
Imagine that the electron spin starts in a pure (polarized)
state and the nuclear spins are in a totally mixed (unpo-
larized) state. The HF interaction then transfers angular
momentum from the electron onto the nuclei, creating
DNP. In the absence of driving, this would lead to only
a modest nuclear spin polarization, and this polariza-
tion would be short-lived because it would eventually be
transferred back to the electron via the HF interaction.
However, the laser pulses periodically reset the electron
spin to a polarized state, enabling a net transfer of angu-
lar momentum from the laser, through the electron, and
onto the nuclei. It is this transfer process that we aim to
describe with our framework.

We are dealing with a system that is both open and
driven. An efficient way to treat non-unitary evolution is
to use dynamical maps [72, 74, 91–93]. In this approach,
the non-unitary evolution of a system from an initial state
ρ to a final state ρ′ is implemented by applying a set of
operators and summing the results:

ρ′ =
∑
k

EkρE
†
k. (1)

The operators Ek are known as Kraus operators, and
they constitute a generalization of the usual unitary op-
erators that evolve closed quantum systems to the case
of non-unitary evolution in open systems. The condi-

tion
∑
k E
†
kEk = 1 ensures that the trace of the density

matrix is always unity. The advantage of Kraus opera-
tors is that they allow one to incorporate effects due to
the transient occupation of excited states using opera-
tors that live purely in the ground space of the system.
In the present problem, we use these operators to de-
scribe the effect of each optical pulse on the electron spin
state. The entire process of optical excitation, subse-
quent decay, and rotation is captured by an appropriate
set of Kraus operators (given in the next section) without
having to explicitly include excited states or a photonic
bath into the formalism. The dynamical map description
works well so long as the population returns regularly to
the electron spin ground states, as is the case for the
periodic driving used in the mode-locking experiments.

Given a set of Kraus operators that describe the evolu-
tion of the driven electron, the next step in our theoretical
framework is to find the steady-state of the electron spin.
Of course, we are interested in the case where the electron
spin is coupled to a nuclear spin bath through HF interac-
tions (which are described in detail in the next section)
while it is being driven. Under the condition that the
electron is being pumped fast enough (which indeed is
the case for the mode-locking experiments [54]), the elec-
tron reaches its steady state on a much faster timescale

compared to the electron-nuclear interaction dynamics
and the electron spin decoherence time. This allows us
to use a Markovian approximation in which we first solve
for the driven electron steady state and then incorporate
the effects due to the electron-nuclear couplings on top
of this.

To bring the nuclei into the framework, we first solve
for the joint evolution of one nuclear spin coupled to the
driven electron spin. Although the HF interaction gen-
erates unitary dynamics, this is disrupted periodically
by the pulses, and this in turn leads to an effective non-
unitary dynamical map for the nuclear spin that depends
on the electron steady state under the Markovian ap-
proximation. We extract nuclear spin-flip rates from this
effective nuclear spin evolution operator; these rates pro-
vide information about the movement of population be-
tween the different nuclear spin levels.

We calculate the steady state of the entire nuclear spin
bath using a rate equation that depends on the spin-
flip rates obtained from the single-nucleus solution. A
critical step is that we build in self-consistent system-
environment feedback by modifying the flip rates. To un-
derstand this, we first need to describe the Overhauser ef-
fect [94], which is the main feedback mechanism between
the electron and nuclei. A polarized nuclear spin bath
acts as an effective magnetic field and therefore shifts
the Zeeman frequency of the electron. However, the in-
teraction between the electron and the nuclear spin bath
is reciprocal; not only will the state of the electron change
under the Overhauser field, but the nuclear spins will also
be affected by the Knight field [95], i.e., the effective mag-
netic field due to polarization of the electron. The Knight
field is given by the electron steady state spin vector, and
so it enters into the nuclear spin flip rates, as explained
above. The electron steady state (and hence the Knight
field) in turn depends on the total magnetic field, which
includes the Overhauser field due to nuclear polarization.
These interdependencies constitute a complete feedback
loop that must be treated self-consistently. We do this
by making the nuclear spin-flip rates depend on the net
nuclear polarization of the bath. The steady-state of the
rate equation then gives the polarization distribution of
the nuclear spin bath with feedback included. Finally, we
use this nuclear polarization distribution to perform the
Overhauser shift on the Zeeman frequency of the elec-
tron and update the nuclear-bath-averaged electron spin
steady-state self-consistently.

The framework we have just outlined can be thought
of as a self-consistent dynamical mean-field approach. In
the following section, we describe each step of our for-
malism as it applies to the periodically driven electron-
nuclear problem in full detail. Our method is quite gen-
eral and can be applied to baths of any nuclear spin. We
focus on the cases I = 1/2, 1, and 3/2 to illustrate the
various steps.
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FIG. 2. The relevant level structure in the mode-locking ex-
periments. |x〉 and |x̄〉 are the electron spin states along the
optical axis. These states are coupled by an external magnetic
field along the z direction. Circularly polarized light excites
the ground electron spin states to excited trion levels |T 〉 and∣∣T̄〉 with angular momentum projections +3/2 and −3/2, re-
spectively. The selection rules are such that each ground state
couples to only one excited state. The trion states decay via
spontaneous emission with rate γe. In this work, we focus on
left-circularly polarized driving.

III. SELF-CONSISTENT DYNAMICAL
MEAN-FIELD FORMALISM AND RESULTS

The full Hamiltonian of the nuclear spin bath and the
driven electron is given by

H(t) = H0,e +H0,n +Hc(t) +Hres +HHF +HQ. (2)

Here, H0,e describes the electronic degrees of freedom in
the QD in the absence of driving:

He,0 = ωeŜz + ωT̄ |T̄ 〉〈T̄ |, (3)

where ωe is the electron spin Zeeman frequency, Ŝz is the
spin operator in the electronic ground space, and ωT̄ is
the energy of the trion state |T̄ 〉. We take the magnetic
field to be oriented along the z direction, while the optical
axis lies in the x direction (see Fig. 2). We neglect the
second trion level |T 〉 in H0,e because it is not excited by
the laser polarization we are considering. This driving is
described by the Hamiltonian

Hc(t) = Ω(t)|x̄〉〈T̄ |+ h.c., (4)

where we assume the drive laser is left-circularly polar-
ized (red arrow in Fig. 2) with periodic temporal profile
Ω(t+TR) = Ω(t), so that each pulse couples the electron
spin state |x̄〉 to the trion state

∣∣T̄〉. The latter decays via
spontaneous emission with rate γe. This process arises
from interactions with a photonic bath, which is repre-
sented by the term Hres. We do not give an explicit ex-
pression for this term as it is not explicitly considered in
what follows. The Zeeman splitting of the nuclear spins
is given by H0,n = ωn

∑
i Î
i
z.

The HF interaction is given by the contact term:

HHF =

N∑
i=1

AiŜz Î
i
z +

N∑
i=1

Ai/2(Ŝ+Î
i
− + Ŝ−Î

i
+), (5)

where N is the number of nuclei that interact appre-
ciably with the electron. The first term is referred to
as the Overhauser term, and it gives rise to an effec-
tive magnetic field seen by the electron spin in the case
of nonzero nuclear spin polarization. The second term
generates flip-flop interactions under which the electron
spin flips with a nuclear spin. These terms are responsi-
ble for transferring angular momentum from the electron
onto the nuclei, while the Overhauser term is the pri-
mary mechanism for feedback between the nuclear spin
polarization and the electron spin evolution. The HF
couplings Ai are determined by the magnitude of the elec-
tronic wave function at the location of the nuclear spin
Ii. However, on timescales short compared to N/A ∼ µs,
where A is the total HF interaction energy, the variations
in these couplings do not significantly affect the electron
spin evolution [96]. Here, we focus on fast optical driving
where the electron reaches a steady state over a timescale
of about 100 ns [74], which allows us to make the “box
model” approximation in which all the HF couplings are
taken equal: Ai = A ≡ A/N [96, 97].

The quadrupolar interaction is given by [98, 99]

HQ =

N∑
i=1

νiQ
2

(
Îiz′

2 − I(I + 1)

3

)
. (6)

This interaction occurs due to the coupling of the nuclear
quadrupole moment to electric field gradients caused by
strain in the semiconductor lattice, and it is only present
for I > 1/2. The presence of quadrupolar interac-
tions has lead to striking phenomena in various types
of experiments conducted in QDs. A few examples in-
clude the anomalous Hanle effect [46] and suppression of
spin diffusion [44]. Line-dragging phenomena have also
been associated with the presence of quadrupolar inter-
actions [61, 62, 73]. The coupling strength νQ is referred
to as the nuclear quadrupole resonance frequency, which
is estimated to be around 2.8 MHz for As [44]. The
quadrupole resonance frequency generally depends on the
local strain in the vicinity of each nuclear spin, and so
it generally varies across the material. Here, we assume
that the strain remains roughly constant over the QD,
and so we take all the frequencies to be equal: νiQ = νQ.

The operator Îz′ in Eq. (6) is the component of the nu-
clear spin operator along the principal axis of the electric
field gradient. Our focus will be on the case of QDs with
cylindrical symmetry in which the electric field gradient
makes an angle θ with the magnetic field. Therefore, we
have Îz′ = Îz cos θ + Îx sin θ, which then gives [98]:

HQ =
νQ
2

N∑
i=1

[
(Îiz)

2 cos2 θ − I(I + 1)

3

+ (Îiz Î
i
x + ÎixÎ

i
z) sin θ cos θ + (Îix)2 sin2 θ

]
. (7)

When θ = 0, HQ creates non-uniform energy spacings
between the nuclear spin levels. For θ 6= 0, HQ has the
additional effect of driving ∆mI = ±1 and ∆mI = ±2
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nuclear spin-flip transitions, where mI is the eigenvalue
of Îz. Notice that the rate for ∆mI = ±1 transitions
is maximal at θ = π/4, while the rate for ∆mI = ±2
transitions is largest for θ = π/2, which is also the value
of θ where the non-uniformity in the energy level spacings
is zero. Thus, we see that the role of HQ changes as θ
varies from 0 to π/4, and from π/4 to π/2. Because
HQ is π-periodic in θ, it suffices to focus on the range
0 ≤ θ ≤ π/2.

In the following subsections, we carry out the various
steps of the formalism as outlined above in Sec. II. In
Sec. III A, we introduce the Kraus operators that describe
the optical pumping process and subsequent spontaneous
emission generated by each pulse. In Sec. III B, we then
combine these with the Larmor precession between pulses
to construct a dynamical map that evolves the electron
spin vector over one complete driving cycle (with du-
ration TR). This dynamical map is used to obtain the
steady state of the electron spin vector. In Sec. III C,
we derive a dynamical map that describes the effective
evolution of a single nuclear spin hyperfine-coupled to
the electron and subject to quadrupolar effects, where
we use the Markovian approximation to freeze the elec-
tron in its steady state as described above. We use this
dynamical map to compute the nuclear spin-flip rates
in Sec. III D. We obtain non-perturbative analytical ex-
pressions for these flip rates for an I = 1/2 bath and for
I = 1 and I = 3/2 baths in the case of no quadrupolar
interactions. Results with the quadrupolar interaction
included are obtained numerically. We take into account
multinuclear effects in Sec. III E by constructing kinetic
equations for I = 1/2, 1, and 3/2 that govern the time
evolution of the nuclear spin polarization distribution of
the entire bath. In these equations, we include Over-
hauser shifts in the flip rates to incorporate dynamical
feedback effects between the electron and nuclei. The
steady states of these equations describe the DNP that
is created through the combination of optical pumping
of the electron and hyperfine flip-flops. These equations
are then solved in various cases in Sec. IV, where we also
describe how the resulting polarization distributions in
turn modify the evolution of the electron spin.

A. Kraus operators for optical pumping of the
electron

The existence of a hierarchy of timescales in mode-
locking experiments allows us to first solve for the elec-
tron spin dynamics without having to include nuclear
spin effects. This is due to the fact that the nuclear
spin dynamics are slow compared to those of the elec-
tron. Given that the nuclear spins are the main source of
decoherence for the electron, this means we can also ne-
glect electron spin decoherence effects. In addition, the
optical pumping and spontaneous emission are fast com-
pared to the pulse period, γeTR � 1, which ensures that
the excited population returns fully to the ground state

before the next pulse comes. This allows us to treat the
evolution of the electron over each period in terms of a
dynamical map that acts only on the electron spin ground
state subspace, as in Eq. (1).

The Kraus operators, Ek, that make up the dynami-
cal map can be found by explicitly computing the non-
unitary part of the evolution for an arbitrary initial den-
sity matrix and comparing the initial and final density
matrices. To compute the non-unitary part of the evo-
lution due to the sequence of pulses Hc(t), we only need
the electronic parts of the full Hamiltonian in Eq. (2):
He(t) = H0,e + Hc(t). The fact that the pulse is much
shorter than the spin precession period allows us to ignore
the precession during the action of the pulse. Therefore
|x̄〉 and

∣∣T̄〉 can be considered as an effective two-level
system, where the evolution operator due to the pulse in
the |x〉, |x̄〉,

∣∣T̄〉 basis is

Up =

 1 0 0
0 ux̄x̄ −u∗T̄ x̄
0 uT̄ x̄ u∗x̄x̄

 . (8)

After the pulse, a fraction |uT̄ x̄|2 of the population re-
mains in the trion state. We can describe the decay of
this population due to spontaneous emission using the
Liouville-von Neumann equation with appropriately cho-
sen Lindblad operators L: ρ̇ = i[ρ,H0,e]+L(ρ), where the
first term includes the Larmor precession of the ground
spin states during the decay. Solving this equation for
an arbitrary initial state then yields the following Kraus
operators in the |x〉, |x̄〉 basis [74]:

E1 =

[
1 0
0 q

]
, E2 =

[
0 a1

0 −a2

]
, E3 =

[
0 0
0 κ

]
, (9)

where q = ux̄x̄ ≡ qoe
iφ, a1 = ωe

√
(1− q2

o)/2(4γ2
e + ω2

e),

a2 = iγe
√

2
√

(1− q2
o)/(4γ2

e + ω2
e), and κ =√

1− q2
o − a2

1 − |a2|2. These Kraus operators guar-
antee the unity of the trace of the density matrix by

satisfying
∑
k E
†
kEk = 1. The parameter qo quantifies

the amount of population remaining in the spin state |x̄〉
after the pulse is applied, and φ is the angle about the x
axis by which the pulse rotates the electron spin. These
two parameters can be computed given a specific pulse
shape, but in the following we leave these parameters
arbitrary.

B. Electron spin steady state

We can use the Kraus operators from above to compute
the electron spin steady state. Rather than work directly
with the Kraus operators, it is more convenient to switch
to the spin vector (SV) representation, especially since
finding the steady state requires applying the Kraus op-
erators an infinite number of times. In general, a SV S
transforms under non-unitary evolution as follows:

S′ = Y S +K, (10)
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where Y is a matrix that generally both rotates and
shrinks the SV, while K corresponds to the non-unital
part of the evolution (i.e., a loss or gain of population in
the subspace described by S). If K is nonzero, then a
nontrivial steady state is possible. As shown in Ref. [74],
for spin 1/2 these quantities can be obtained from the
Kraus operators using the following formulas:

Ki =
1

2
Tr
∑
k

σ̂iEkE†k, (11)

Yij =
1

2
Tr
∑
k

σ̂iEkσ̂jE†k, (12)

where the σ̂i are Pauli matrices. In the case of the mode-
locking experiment, the Kraus operators Ek evolve the
electron spin over one period, that is, they include both
the non-unitary dynamics (Ek) generated by a pulse and
also the unitary precession under the magnetic field over

time TR: Ek = Eke
−iωeTRŜz . To find the steady state,

it is convenient to combine both Y and K into a single
4× 4 matrix:

Ye =

 1 0 0 0
Kx Yxx Yxy Yxz
Ky Yyx Yyy Yyz
Kz Yzx Yzy Yzz

 , (13)

where the evolution of the electron SV over one period
is now given by S ′e = YeSe. Here, the first component
of the 4-component SV Se is always fixed to 1, while the
remaining three components constitute the usual spin 1/2
SV. In this representation it is easy to see that the steady
state Ssse = (1, Ssse,x, S

ss
e,y, S

ss
e,z) is the eigenvector of 1−Ye

with eigenvalue zero. Transforming the Kraus operators
of Eq. (9) from the x basis to the z basis, plugging the
result into Eq. (13), and computing the null vector of Ye
leads to the following steady state electron SV [74]:

Ssse,x=
a1 (a1qo (qo − cosφ) cos (ωeTR)− ia2 (qo cosφ− 1) sin (ωeTR)− a1qo cosφ+ a1)

(a2
1 + q2

o − 1) cos (ωeTR)− a1qo cosφ [ia2 sin (ωeTR) + a1 cos (ωeTR) + a1] + ia1a2 sin (ωeTR) + (a2
1 − 1) q2

o + 1
,

Ssse,y=
a1 (a1qo (cosφ− qo) sin (ωeTR)− ia2 (qo cosφ− 1) (cos (ωeTR)− 1))

(a2
1 + q2

o − 1) cos (ωeTR)− a1qo cosφ [ia2 sin (ωeTR) + a1 cos (ωeTR) + a1] + ia1a2 sin (ωeTR) + (a2
1 − 1) q2

o + 1
,

Ssse,z=
a1qo sinφ (a1 sin (ωeTR)− ia2 (cos (ωeTR)− 1))

(a2
1 + q2

o − 1) cos (ωeTR)− a1qo cosφ [ia2 sin (ωeTR) + a1 cos (ωeTR) + a1] + ia1a2 sin (ωeTR) + (a2
1 − 1) q2

o + 1
.

(14)

These are the components of the electron SV immedi-
ately after each pulse. The steady state at other times
during the driving period can be obtained by rotating
this vector about the z axis by angle ωeTR (to account
for the Larmor precession).

C. Effective dynamical map for one nuclear spin

Now that we have the electron spin steady state
(Eq. (14)), we can proceed to construct an effective dy-
namical map for a single nuclear spin. We do this by first
constructing the evolution operator in the SV represen-

tation that describes the joint evolution of the electron
and nuclear spins over one driving period. We then apply
the Markovian approximation and reset the electron spin
to its steady state at the end of the period. Tracing out
the electron then leaves an effective dynamical map for
the nuclear spin.

To start, we define the nuclear SV using a basis of

Hermitian matrices λ̂k of dimension 2I + 1, where k =
1, . . . , (2I + 1)2. We choose the first 2I + 1 of these ma-
trices to be diagonal, each with a single nonzero compo-
nent equal to one. The remaining 2I(2I + 1) matrices
each have two nonzero components, and these matrices
are purely real or purely imaginary. For example, in the
case of I = 3/2, we have 16 basis matrices:

λ̂k,ab = δakδbk, k = 1 . . . 4,

λ̂5,ab = 1√
2
(δa1δb2 + δa2δb1), λ̂6,ab = −i√

2
(δa1δb2 − δa2δb1), λ̂7,ab = 1√

2
(δa1δb3 + δa3δb1),

λ̂8,ab = −i√
2
(δa1δb3 − δa3δb1), λ̂9,ab = 1√

2
(δa1δb4 + δa4δb1), λ̂10,ab = −i√

2
(δa1δb4 − δa4δb1),

λ̂11,ab = 1√
2
(δa2δb3 + δa3δb2), λ̂12,ab = −i√

2
(δa2δb3 − δa3δb2), λ̂13,ab = 1√

2
(δa2δb4 + δa4δb2),

λ̂14,ab = −i√
2
(δa2δb4 − δa4δb2), λ̂15,ab = 1√

2
(δa3δb4 + δa4δb3), λ̂16,ab = −i√

2
(δa3δb4 − δa4δb3). (15)

These matrices are normalized such that Tr[λ̂j λ̂k] = δjk. Denoting the nuclear spin density matrix as ρn, the com-
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ponents of the nuclear SV Sn are then given by

Sn,k = Tr[ρnλk]. (16)

Note that the populations, ρn,ii, are the first four com-
ponents of Sn. We will see that this feature simplifies the
process of computing flip rates.

Let us denote the density matrix that describes the
total electron-nuclear spin state at the beginning of a
driving period by %. We expand this in terms of an op-
erator basis formed from tensor products of the nuclear

spin operators λ̂k with the electron spin Pauli matrices
σ̂j :

Ĝ(2I+1)2j+k = σ̂j ⊗ λ̂k, (17)

with j = 0, .., 3, k = 1, ..., (2I + 1)2, and where we define
σ̂0 = 12×2. We use this set of 4(2I + 1)2 operators as a

basis for the SV of the joint system: S` = Tr(%Ĝ`). This
SV evolves over one driving period according to S ′ = YS,
where the SV evolution operator Y is given by

Y``′ =
1

2
Tr
[
Ĝ`UĜ`′U†

]
, (18)

where U = exp{−i(ωeŜz+ωnÎz+HN=1
HF +HN=1

Q )TR} de-
scribes the joint evolution of the electron spin and single
nuclear spin under precession and the HF and quadrupo-
lar interactions. At this point, we invoke the Markovian
approximation: Because the electron reaches its steady
state, Ssse , quickly compared to the timescales for nuclear
spin and HF dynamics, we reset the electron SV to its
steady state value at the beginning/end of each period:
S = Ssse ⊗ Sn. We then obtain an effective nuclear spin
dynamical map, Yn, by acting with the full evolution op-
erator, Y, on the tensor product Ssse ⊗Sn and reading off
the coefficients of the components of the nuclear SV, Sn,

from the resulting S ′:

Yn,jk =
d

dSn,k
[Y(Ssse ⊗ Sn)]j . (19)

Here, j, k = 1, ..., (2I + 1)2, that is, we only retain the
components of S ′ that correspond to the basis opera-

tors Ĝk = 12×2 ⊗ λ̂k, i.e., the components that corre-
spond to purely nuclear spin degrees of freedom. Note
that although the joint evolution operator Y describes
unitary evolution, the nuclear spin dynamical map, Yn,
implements non-unitary evolution. This non-unitarity is
a consequence of the Markovian approximation, which is
itself due to the non-unitary driving of the electron spin.

D. Single-nucleus flip rates

We can use the nuclear spin dynamical map, Yn, that
we found in the previous subsection to find the flip rates
for a single nuclear spin interacting with the electron
spin. These flip rates govern the movement of population
from one nuclear spin state to another. Such processes
are described by the following kinetic equation:

dpm
dt

=
∑
n 6=m

wm
n pn −

∑
n 6=m

wn
mpm, (20)

where pm is the population of level m, and wm
n is the

rate to flip from state n to m, which in general differs
from the rate to flip from m to n, wn

m. Which transitions
are allowed depends on the type of interactions present
in the Hamiltonian. For instance, the HF flip-flop terms
only cause ∆mI = ±1 transitions, while the quadrupolar
interaction also drives ∆mI = ±2 transitions. We can
combine the rate equations (20) into a matrix equation.
We exemplify this in the I = 3/2 case, where we denote
the four states |+3/2〉, |+1/2〉, |−1/2〉, |−3/2〉, by the
shorthand {++,+,−,−−}. The matrix equation is then

Ṗ =MP, where P = (p++, p+, p−, p−−), and

M =


−(w

+

++ + w
−
++ + w−−++) w

++

+ w
++

− w++
−−

w
+

++ −(w
++

+ + w
−
+ + w

−−
+ ) w

+

− w
+

−−

w
−
++ w

−
+ −(w

++

− + w
+

− + w
−−
− ) w

−
−−

w−−++ w
−−
+ w

−−
− −(w

+

−− + w
−
−− + w++

−−)

 . (21)

It is clear that this equation satisfies the condition that
the sum of the components of the probability vector P
should be unity at all times. This is guaranteed by the
property that the sum of the rows of M vanishes.

To determine the flip rates, we need to connect the
generic kinetic equation, Eq. (20), to the nuclear spin
evolution operator, Eq. (19), derived earlier. This can
be done by starting from the evolution over one driving

period:

Sn(t+ TR) = YnSn(t). (22)

The fact that the nuclear spin evolution is much slower
than the driving period TR allows us to coarse-grain this
equation to arrive at a continuous evolution equation:

d

dt
Sn =

1

TR
(Yn − 1)Sn. (23)
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FIG. 3. Single-nucleus spin-flip rates for (a,b) I = 1/2, (c,d) I = 1, (e,f) I = 3/2 as a function of the magnetization m of the
nuclear spin bath. Flip rates are shown in (a), (c), (e), while flip rate differences are shown in (b), (d), (f). The parameter
values are TR = 13.2 ns, NA = 10 GHz, N = 1000, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2. For
(c-f), we set the quadrupolar parameters to νQ = 2.8 MHz and θ = 0. Only the nonzero flip rates are shown.

Because we have defined Sn such that its first four compo-
nents are just the populations of the nuclear spin states,
we can identify this equation with Ṗ = MP and there-
fore read off the flip-rate matrix components from the
nuclear spin evolution matrix:

Mij =
1

TR
(Yn − 1)ij , i, j = 1...2I + 1. (24)

This allows us to read off the flip rates from the nuclear
spin dynamical map. It is worth noting that Yn contains
not only terms that mix the populations of the different
nuclear spin levels but also terms that mix populations
and nuclear spin coherences. Here, we are neglecting the
influence of the latter on the late-time populations. In
numerical simulations, we find that these terms have a
negligible effect on the flip rates. Moreover, they will
be further suppressed by nuclear spin dephasing [7, 32],
which happens quickly compared to nuclear spin flips.

In the case of I = 1/2 nuclei, the flip rates can be
obtained analytically following the above procedure:

w± =
A2(1± Ssse,z) sin2(TR

√
(ωe − ωn)2 +A2/2)

2TR[(ωe − ωn)2 +A2]
, (25)

where we use the shorthand notation w+ ≡ w
+1/2
−1/2 and

w− ≡ w
−1/2
+1/2. The flip rates for I = 1 and I = 3/2

can also be obtained analytically in the case of zero
quadrupolar coupling, νQ = 0. In this case, there are

four nonzero flip rates for I = 1:

w0
−1 =

A2(1 + Ssse,z) sin2(TRΩ
(1)
− /2)

TR(Ω
(1)
− )2

,

w−1
0 =

A2(1− Ssse,z) sin2(TRΩ
(1)
− /2)

TR(Ω
(1)
− )2

,

w+1
0 =

A2(1 + Ssse,z) sin2(TRΩ
(1)
+ /2)

TR(Ω
(1)
+ )2

,

w0
+1 =

A2(1− Ssse,z) sin2(TRΩ
(1)
+ /2)

TR(Ω
(1)
+ )2

, (26)

with

Ω
(1)
± =

√
(ωe − ωn)2 ±A(ωe − ωn) + 9A2/4, (27)

while there are six nonzero flip rates for I = 3/2:

w++
+ =

3A2(1 + Ssse,z) sin2(TRΩ
(3/2)
+1 /2)

2TR(Ω
(3/2)
+1 )2

,

w+
++ =

3A2(1− Ssse,z) sin2(TRΩ
(3/2)
+1 /2)

2TR(Ω
(3/2)
+1 )2

,

w+
− =

A2(1 + Ssse,z) sin2(TRΩ
(3/2)
0 /2)

TR(Ω
(3/2)
0 )2

,

w−+ =
A2(1− Ssse,z) sin2(TRΩ

(3/2)
0 /2)

TR(Ω
(3/2)
0 )2

,

w−−− =
3A2(1 + Ssse,z) sin2(TRΩ

(3/2)
−1 /2)

2TR(Ω
(3/2)
−1 )2

,

w−−− =
3A2(1− Ssse,z) sin2(TRΩ

(3/2)
−1 /2)

2TR(Ω
(3/2)
−1 )2

, (28)
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with

Ω(3/2)
η =

√
(ωe − ωn)2 + 2ηA(ωe − ωn) + 4A2. (29)

In the absence of quadrupolar interactions, only ∆mI =
±1 transitions (i.e., transitions between adjacent spin
levels) are allowed, as follows directly from the form of
the HF flip-flop interaction. When the quadrupolar cou-
pling is nonzero, we can no longer obtain an analytical
expression for the flip rates, but these are still easily ob-
tained numerically by computing Yn for specific param-
eter values.

Fig. 3 shows the dependence of the flip rates on the
net magnetization m of the entire nuclear spin bath for
I = 1/2, 1, and 3/2. This dependence comes from the
Overhauser effect in which nuclear spin polarization acts
as an effective magnetic field seen by the electron spin.
We incorporate this effect by adding a magnetization-
dependent shift to the precession frequency of the elec-
tron:

wji (m) = wj
i (ωe → ωe0 +mA), (30)

where ωe0 denotes the contribution to the precession fre-
quency due purely to the external magnetic field, and
where we use wji (m) to denote the rate to flip from state
i to state j in the presence of nuclear spin magnetization
m. For nuclei of spin I, we can express this magnetiza-
tion in terms of occupation numbers, N`, for each of the
nuclear spin states:

m =

I∑
`=−I

` N`. (31)

In Fig. 3, results for zero quadrupolar angle, θ = 0, are
shown in the I > 1/2 cases. Even though the quadrupo-
lar coupling is nonzero, νQ > 0, only ∆mI = ±1 transi-
tions are permitted in this case because when θ = 0, the
only effect of the quadrupolar interaction is to modify
the energy splittings between nuclear spin levels, and so
the selection rules are still determined solely by the HF
interaction. We discuss the effect of nonzero θ below.

Several salient features are evident in Fig. 3. First of
all, the flip rates are strongly peaked at magnetization
m ≈ −ωe0/A. In the spin 1/2 case, the precise loca-
tion of the peak is the value of m at which the argument
of the sine in Eq. (25) vanishes since the flip rates are
essentially given by squared sinc functions. For low to
moderate external magnetic field strengths and large N ,
the terms involving ωn and A2 can be neglected, leaving
m ≈ −ωe0/A. Similar statements hold for I = 1 and
I = 3/2 in the absence of quadrupolar effects, as is clear
from Eqs. (26) and (28). The fact that the flip rates
are maximal at m ≈ −ωe0/A can be understood from
energy conservation: At these values, the effective Zee-
man energy of the electron is almost zero, and thus so is
the energy mismatch between the electron and nucleus.
This in turn reduces the energy penalty for flip-flops, ac-
celerating the transfer of polarization. Conversely, the

overall decay of the flip rates away from m ≈ ωe0/A is
due to the HF interaction becoming inefficient at over-
coming the large energy mismatch between the electronic
and nuclear spin splittings.

It is also evident in Fig. 3 that the flip rates vanish
periodically as a function of m. The periodicity is also
controlled by the arguments of the sine functions in the
flip rates. These zeros correspond to values of ωe for
which complete flip-flops between the electronic and nu-
clear spins occur—polarization is transferred back and
forth between the electron and nucleus an integer number
of times within a single drive period TR. Because there
is no net polarization transfer, the flip rate vanishes. For
I > 1/2, the locations of these zeros depend on which
pair of adjacent spin levels we consider, although this de-
pendence fades away in the large N limit, where A→ 0.
In the next section, we show that these flip-rate zeros
play a central role in the phenomenon of mode-locking.

Each pair of flip rates describing transitions between
the same two spin levels are almost equal [see panels (b),
(d), (f) of Fig. 3]. As can be seen from Eqs. (25)-(28), the
differences of these flip rates are proportional to Ssse,z(m),
and this component of the electron steady state is sup-
pressed near m ≈ −ωe0/A because it is proportional to
ωe (see Eq. (14)). This is a reflection of the fact that
when ωe = 0, the electron steady state becomes polar-
ized along the optical pulse axis (the x direction), where
it is no longer affected by the pulses and is thus sta-
bilized. In the figure, we see that this combination of
accelerated flip-flops and the suppression of Ssse,z(m) near
m ≈ −ωe0/A results in flip rate differences that are more
than two orders of magnitude smaller than the flip rates
themselves.

The effect of a nonzero quadrupolar angle θ on the flip
rates is shown in Figs. 4 and 5 for I = 1 and 3/2, re-
spectively. In the case I = 1, it is evident that θ has
a negligible effect on the ∆mI = ±1 flip rates. On the
other hand, sufficiently large values of the angle, θ & π/4,
give rise to ∆mI = ±2 transitions that are not otherwise
present. Although the rates for these transitions are two
orders of magnitude smaller than those of the ∆mI = ±1
transitions, they are still large enough to affect the polar-
ization distribution of the nuclear spin bath, as we show
in Sec. IV. Similar but somewhat more prominent effects
are evident for I = 3/2 in Fig. 5. Here, larger values of θ
produce small but noticeable changes in ∆mI = ±1 flip
rates, significant ∆mI = ±2 transition rates, and even
∆mI = ±3 transitions. A striking feature evident in both
Figs. 4 and 5 is that the flip rates for ∆mI = ±2 transi-
tions do not decay as m moves away from m = −ωe0/A.
This is consistent with the fact that spin flips caused by
the quadrupolar interaction do not require the electron
and nuclear spin Zeeman energies to be equal. Unlike HF
spin flips, quadrupolar spin flips depend weakly on the
bath magnetization. On the other hand, the ∆mI = ±3
flip rates are sensitive to m (see Fig. 5(b)), because these
arise from a higher-order process that combines HF and
quadrupolar spin flips.
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FIG. 5. Single-nucleus spin-flip rates as a function of nuclear spin bath magnetization m for I = 3/2 and for different values of
the quadrupolar angle θ. (a) Flip rate for the ∆mI = 1 transition |−1/2〉 → |+1/2〉. (b) Flip rate for the ∆mI = 3 transition
|−3/2〉 → |+3/2〉. (c) Flip rate for the ∆mI = 1 transition |−3/2〉 → |−1/2〉. (d) Flip rate for the ∆mI = 2 transition
|−3/2〉 → |+1/2〉. (e) Flip rate difference for the |−3/2〉 ↔ |−1/2〉 transitions. (f) Flip rate difference for the |−3/2〉 ↔ |+1/2〉
transitions. The parameter values are TR = 13.2 ns, NA = 10 GHz, N = 1000, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz,
q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

E. Kinetic equations for multi-nuclear spin
polarization distributions

In this section, we use the flip rates obtained in the
previous section to construct kinetic rate equations that
govern the evolution of the polarization distribution of
the entire nuclear spin bath. We do this for each of the
three values of nuclear total spin I considered in this
work. Although the kinetic equation for I = 1/2 has been
discussed in detail elsewhere [72, 74], here we present an
analytical solution to this equation that was not previ-
ously known. The kinetic equations for I = 1 and 3/2
will be solved numerically in the next section to obtain
nuclear spin polarization distributions in these cases. De-
tailed comparisons of the polarization distributions that
result in all three cases for various parameter values are
given below in Sec. IV. In that section, these distributions

are then used to compute the effect on the electron spin
evolution with and without quadrupolar interactions.

1. Kinetic equation for spin I = 1/2 nuclei

The polarization of a spin 1/2 nuclear bath in a defi-
nite configuration with occupation numbers N+ and N−
(the number of spins in the |+1/2〉 and |−1/2〉 states,
respectively) is given by m = (N+ − N−)/2. The total
number of spins is N = N+ + N−. Knowledge of the
polarization m is sufficient to determine the two occupa-
tion numbers, N+ and N−. This in turn means that the
probability of each bath configuration is equal to the po-
larization probability distribution P (m). We may write
down a kinetic equation governing the dynamics of this
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distribution [72, 74]:

d

dt
P (m) = −

∑
±

[
w±(m)

N ∓ 2m

2

]
P (m) (32)

+
∑
±
w∓(m± 1)

[
N ± 2m

2
+ 1

]
P (m± 1).

A close look at this kinetic equation reveals that the
right-hand side is comprised of two terms that are re-
lated to each other by shifting m→ m+ 1:

d

dt
P (m) = F (m+ 1)− F (m), (33)

where F (m) = w−(m)(m+N/2)P (m)−w+(m−1)(−m+
1 +N/2)P (m− 1). Therefore, in the steady state where
dP (m)/dt = 0, we find F (m) = F (m + 1) = constant.
Since we must have P (N + 1) = 0, it follows that this
constant is zero. The equation F (m) = 0 then yields a
two-term recursion relation [72, 74]:

P (m) =
N − 2m+ 2

N + 2m

w+(m− 1)

w−(m)
P (m− 1). (34)

This relation can easily be solved iteratively starting from
an arbitrary value for P (−N) and then imposing the nor-
malization condition

∑
m P (m) = 1. This approach was

used to produce numerical results for the polarization
distribution in Refs. [72, 74].

Here, we obtain an analytical solution for P (m) by
exploiting the explicit, non-perturbative expressions we
obtained for the flip rates in Eq. (25). First of all, an
expression for P (m) follows immediately from Eq. (34):

P (m) = N−1
m∏

k=1−N/2

N − 2k + 2

N + 2k

w+(k − 1)

w−(k)

=
N−1N !

(N/2 +m)!(N/2−m)!

m∏
k=1−N/2

w+(k − 1)

w−(k)
,

(35)

where N is a normalization factor. Next, we use the fact
that the two flip rates only differ by the sign in front
of Ssse,z(m), which leads to a cascade of cancellations be-
tween the numerator and denominator in the product.
We are left with

P (m) =
N−1

(N/2 +m)!(N/2−m)!

m∏
k=1−N/2

1 + Ssse,z(k − 1)

1− Ssse,z(k)

× (ωe0 − ωn +Am)2 +A2

sin2(TR
√

(ωe0 − ωn +Am)2 +A2/2)
, (36)

where we have absorbed additional constants into N .
The first, combinatoric factor in P (m) corresponds to a
Gaussian-like envelope that quickly approaches a Gaus-
sian as N increases: [(N/2)!]2/[(N/2+m)!(N/2−m)!]→

e−2m2/N as N →∞. The second factor in Eq. (36) pro-
duces sharp spikes at values of m that correspond to the
zeros of the flip rates. These values of m satisfy√

(ωe0 − ωn +Am)2 +A2 ≈ 2πp

TR
, (37)

where p is an integer. The concentration of proba-
bility near these special values of m produces mode-
locking: Nuclear polarization shifts the electron Zeeman
frequency to values where HF flip-flops stop transferring
polarization between the electronic and nuclear spins.
This happens because an integer number of flip-flops oc-
cur during each drive period. Using that ωn � ωe0 and
assuming N is sufficiently large that A� ωe0, these val-
ues of m correspond to the electron precession becoming
commensurate with the pulse train: ωe = ωe0 + Am ≈
2πp/TR, which is the primary signature of mode-locking
seen in experiments [54].

The middle factor (the product) in Eq. (36) is primarily
responsible for the average magnetization of the nuclear
spin bath, 〈m〉 =

∑
mmP (m). This factor is also where

additional pulse parameters such as the rotation angle φ
and the residual ground state population q0 influence the
polarization distribution. If φ is equal to 0 or π or if q0

is zero, then Ssse,z(k) = 0 for all k, in which case the final
factor in Eq. (36) reduces to 1. In this case, the combi-
natoric factor, which is centered about m = 0, ensures
that the average magnetization will be small, 〈m〉 ≈ 0.
On the other hand, if φ 6= 0 and the external magnetic
field is sufficiently large, then 〈m〉 can be significant, and
its sign depends on the sign of φ and on the orientation
of the external field. If φ > 0, then Ssse,z(m) is more often
positive than negative for m < −ωe0/A, which in turn

means that
1+Sss

e,z(m−1)

1−Sss
e,z(m) is biased toward values larger

than 1, and so the product grows as m increases. Once
m passes −ωe0/A, Ssse,z(m) now tends to more negative
values, and the product shrinks as m increases. Thus,
we see that for φ > 0, the product in Eq. (36) is peaked
at m ≈ −ωe0/A, and so the average magnetization will
lie between 0 and −ωe0/A. On the other hand, if φ < 0,
then the same reasoning leads to the conclusion that the
product in Eq. (36) has a dip at m ≈ −ωe0/A, and thus
the net magnetization is driven away from this point and
will have a sign that coincides with that of ωe0. These
features are borne out in plots of Eq. (36), as shown be-
low in Sec. IV.

2. Kinetic equation for spin I = 1 nuclei

Before we write down the kinetic equation for I = 1 nu-
clei, we first introduce the notation we use to distinguish
different bath configurations. We denote the occupation
numbers of the three spin states by N−1, N0, and N1.
The bath polarization for a given configuration is then
m = +1×N1 + 0×N0 − 1×N−1. We see immediately
that there is an important difference compared to the
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I = 1/2 case considered above: The polarization does
not uniquely specify a configuration of the bath. For in-
stance, in the case of two I = 1 spins with m = 0, we can
have either N1 = 1 = N−1 and N0 = 0 or N1 = 0 = N−1

and N0 = 2. This is in contrast to the I = 1/2, where
each value of m corresponds to a unique configuration.
As the number of spins increases, the number and orders
of such “degeneracies” grow quickly. Because the po-
larization does not uniquely specify a configuration, we
must combine it with one of the occupation numbers to
uniquely label different configurations. We choose to use
N0 and express the probability of a given configuration
by P (m,N0). Unlike in the spin 1/2 case, this quantity is
now distinct from the polarization probability distribu-
tion; the latter is obtained by summing over all possible
values of N0 that are consistent with the given value of
m:

P (m) =
∑
N0

P (m,N0). (38)

We can write down a kinetic equation for P (m,N0):

d

dt
P (m,N0) = F (m,N0) +G(m+ 1, N0 − 1)

−G(m,N0)− F (m+ 1, N0 + 1), (39)

where

F (m,N0) = −w−1
0 P (m,N0)N0 (40)

+w0
−1(m− 1)P (m− 1, N0 − 1)N−(m− 1, N0 − 1),

G(m,N0) = w0
1P (m,N0)N+(m,N0)

−w1
0(m− 1)P (m− 1, N0 + 1)(N0 + 1). (41)

Here N±(m,N0) ≡ (1/2)(N ± m − N0). In the kinetic
equation above we have only considered the ∆mI = ±1
transitions. Including transitions that change the an-
gular momentum by more than 1 (for instance due to
quadrupolar interactions) leads to additional terms not
shown above. Such terms are illustrated for the case of
I = 3/2 nuclei in the next section. Returning to the spin
1 case, the steady state of the above kinetic equation,

F (m,N0)−G(m,N0) = F (m+1, N0+1)−G(m+1, N0−1),
(42)

does not yield a recursion relation as in the I = 1/2 case.
We solve this equation (and its generalization for nonzero
quadrupolar interactions) numerically in Sec. IV.

3. Kinetic equation for spin I = 3/2 nuclei

We again adopt the notation {++,+,−,−−} to la-
bel quantities associated with the four spin quantum
numbers mI = {+3/2,+1/2,−1/2,−3/2} of a spin 3/2
nucleus. For a nuclear spin bath comprised of N =
N++ + N+ + N− + N−− spins, the magnetization of the
system (Eq. (31)) is m = (3N++ +N+ −N− − 3N−−)/2.
In the I = 3/2 case, we need two more quantities in
addition to m to uniquely label different multi-spin con-
figurations. We choose these to be N++ and N−−. The
remaining two occupation numbers are then determined
by these three quantities for a fixed total number of spins:

N+ =
1

2
(2m+N − 4N++ + 2N−−), (43)

N− =
1

2
(−2m+N + 2N++ − 4N−−). (44)

The probabilities P (m,N++ , N−−) that the nuclear spin
bath is in the various configurations labeled by m, N++ ,
and N−− obey the following set of kinetic equations:

d

dt
P (m,N++ , N−−) = F (m,N++ , N−−) +G(m,N++ , N−−) +H(m,N++ , N−−)

+I(m,N++ , N−−) + J(m,N++ , N−−)

−F (m+ 1, N++ + 1, N−−)−G(m+ 1, N++ , N−− − 1)−H(m+ 1, N++ , N−−)

−I(m− 2, N++ − 1, N−−)− J(m+ 2, N++ , N−− − 1), (45)

where
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F (m,N++ , N−−) = +w
++

+ (m− 1)P (m− 1, N++ − 1, N−−)N+(m− 1, N++ − 1, N−−)

−w+

++(m)P (m,N++ , N−−)N++ , (46)

G(m,N++ , N−−) = +w
−
−−(m− 1)P (m− 1, N++ , N−− + 1)(N−− + 1)

−w−−− (m)P (m,N++ , N−−)N−(m,N++ , N−−), (47)

H(m,N++ , N−−) = +w
+

−(m− 1)P (m− 1, N++ , N−−)N−(m− 1, N++ , N−−)

−w−+ (m)P (m,N++ , N−−)N+(m,N++ , N−−), (48)

I(m,N++ , N−−) = +w
−
++(m+ 2)P (m+ 2, N++ + 1, N−−)(N++ + 1)

−w++

− (m)P (m,N++ , N−−)N−(m,N++ , N−−), (49)

J(m,N++ , N−−) = +w
+

−−(m− 2)P (m− 2, N++ , N−− + 1)(N−− + 1)

−w−−+ (m)P (m,N++ , N−−)N+(m,N++ , N−−). (50)
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FIG. 6. Structure of the matrix R defining the linear sys-
tem of equations governing the steady-state solution of the
multi-nuclear kinetic equation for spin I = 1 for (left) N = 3
spins and (right) N = 20 spins in the absence of quadrupolar
interactions.

Here, we have included ∆mI = ±1 and ∆mI = ±2
transitions. Although ∆mI = ±3 transitions cannot
be directly driven by either the HF interaction or the
quadrupolar interaction to first order in their respec-
tive coupling strengths, they can potentially arise from
higher-order effects as we saw from the flip rates in Fig. 5.
Now that we have the kinetic equations governing the nu-
clear polarization, the next step is to solve them.

IV. NUCLEAR POLARIZATION
DISTRIBUTION AND FEEDBACK

A. Steady-state polarization distributions

For I = 1 and I = 3/2, we solve the respective kinetic
equations numerically to obtain steady-state polariza-
tion distributions. This is done by first setting the time
derivatives to zero: d

dtP (m,N++ , N−−) = 0. The result-
ing algebraic equations are then collected together and
written as a matrix R acting on a vector V of the prob-
abilities P (m,N++ , N−−) such that RV = 0. Thus, the

steady-state polarization distribution is the unique null
vector of R. The matrix R depends on the Overhauser-
shifted flip rates and occupation numbers for each con-
figuration. The linear dimension of this matrix is equal
to the number of distinct multi-spin configurations. For
N spins of total spin I, the number of configurations is
given by the simplicial polytopic numbers

(
N+2I

2I

)
. For

I = 1/2, 1, and 3/2, this gives N + 1, (N + 1)(N + 2)/2,
and (N + 1)(N + 2)(N + 3)/6, respectively. Therefore, in
the case of I = 1, we must compute the null vector of a
matrix that grows quadratically with the number of nu-
clei, while for I = 3/2, we must do the same for a matrix
that grows like N3. The matrix R is quite sparse in both
cases (see Fig. 6), especially in the absence of quadrupo-
lar interactions. This allows us to employ the Arnoldi
method to compute the steady-state polarization distri-
bution for hundreds of spins with I = 3/2 and thousands
of spins with I = 1.

Fig. 7 compares results for the steady-state nuclear
spin polarization for N = 200 for all three values of I.
In the I > 1/2 cases, we set the quadrupolar angle to
zero, θ = 0; however, the nonzero quadrupolar interac-
tion νQ > 0 still modifies the energy splittings between
the nuclear spin levels. In all three cases, the polarization
distribution exhibits multiple narrow peaks at values of
m that correspond to the mode-locking frequencies, i.e.,
these values of m are such that ωe0 + Am = 2πp/TR
where p is an integer (for an analytical derivation of
the I = 1/2 case see Section III E 1). As discussed in
Sec. III D, the flip rates approximately vanish at these
values of m. (Note that the spacing of the peaks in Fig. 7
is five times smaller than the spacing of the flip-rate zeros
in Figs. 3, 4, and 5 because this spacing is proportional to
1/A = N/A, and N is five times smaller in Fig. 7.) The
steady-state probabilities P (m,N++ , N−−) are largest at
these magnetization values because they are multiplied
by nearly vanishing flip rates in the kinetic equations;
the probabilities must compensate for the smallness of
the flip rates such that the product of the two is finite
and comparable to terms of similar size in the kinetic
equations. This trend can be seen explicitly from the an-



14

-40 -20 0 20 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Magnetization m

P
ro
ba
bl
ity
P
(m

)

Spin-1/2

<m>=2.99

-60 -40 -20 0 20 40 60
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Magnetization m

P
ro
ba
bl
ity
P
(m

)

Spin-1

<m>=17.85

-50 0 50
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Magnetization m

P
ro
ba
bl
ity
P
(m

)

Spin-3/2

<m>=25.44
Spin-1/2 Spin-1 Spin-3/2(a) (b) (c)

FIG. 7. Steady-state nuclear spin polarization distribution of a bath with N = 200 nuclear spins for (a) I = 1/2, (b) I = 1,
and (c) I = 3/2. The parameter values are TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz,
q0 = 0.3, φ = −π/2, νQ = 2.8 MHz. In the case of I = 3/2 and I = 1 the quadrupolar angle is θ = 0.
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FIG. 8. Extrapolation of the average nuclear spin bath po-
larization 〈m〉 to larger bath sizes N for two values of total
spin: I = 1 (red circles) and I = 3/2 (blue diamonds). The
points are obtained by solving the respective kinetic equa-
tions, Eqs. (39) and (45). The lines are linear fits. The param-
eter values are TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz,
ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2,
νQ = 2.8 MHz, θ = 0.

alytical solution in the I = 1/2 case, Eq. (36), where it
is evident that P (m) depends inversely on the flip rates.
In Fig. 7, we see that this also occurs for I > 1/2. For all
values of I, we can physically understand the formation
of probability peaks at flip-rate zeros as resulting from
the fact that, at these magnetization values, the joint
electron-nuclear spin evolution under the HF interaction
becomes commensurate with the driving pulses. Conse-
quently, the pulses do not cause a net polarization trans-
fer between the electron and nuclear spins. Thus, these
values of the magnetization m provide a point of stability
in the electron-nuclear feedback mechanism. We also see
from Fig. 7(a), and to some degree from Fig. 7(b), that
the polarization distribution is suppressed in the vicinity
of m = −ωe0/A (which corresponds to m = −10 for the
parameters used in the figure). This is due to the fact
that the flip rates are largest near these magnetization
values and therefore drive population away from these

values.

Another striking feature of the polarization distribu-
tions in Fig. 7 is that the distributions for I > 1/2 exhibit
broad envelopes in addition to the mode-locking peaks.
This is a consequence of the fact that there are multiple
distinct flip rates for I > 1/2, as shown in Eqs. (26) and
(28). These flip rates oscillate with ωe at distinct frequen-
cies that differ from each other by an amount propor-
tional to A. Therefore, they do not all vanish at the same
values of ωe, dulling the sharpness of the mode-locking
peaks. This effect becomes diminished at larger N , be-
cause in this limit A decreases, and all the flip-rate zeros
approach the values of m at which ωe0 +Am = 2πp/TR,
where p is an integer, producing a more comb-like dis-
tribution. The broadening of the distribution at smaller
values of N is an important feature that is missed when
I = 1/2 spins are used to model I > 1/2 spin baths.
In the example of Fig. 7, we see that it also leads to an
increase in the average magnetization 〈m〉 due to the en-
hanced weight of the distribution at positive magnetiza-
tions. This enhancement is more pronounced for I = 3/2
compared to I = 1. Fig. 8 examines the behavior of 〈m〉
as a function of N . The points are obtained by solving
the respective kinetic equations, Eqs. (39) and (45). In
the I = 1 case, it is possible to obtain results for much
larger bath sizes because the R matrix is much smaller
in this case. For both I = 1 and I = 3/2, the points are
well described by a linear relationship between 〈m〉 and
N , as shown in the figure. We find that for the parame-
ters considered and for large N , the average polarization
for I = 3/2 is approximately two times larger compared
to that of an I = 1 bath, with the net polarization in this
case approaching 9%.

The effects of nonzero quadrupolar angle on the polar-
ization distribution for I = 1, 3/2 are illustrated in Fig. 9.
Here, we set N = 150, because nonzero θ reduces the
sparsity of the R matrix, making the numerical compu-
tation more intensive than before, especially for I = 3/2.
From Fig. 9(a), we see that for I = 1, nonzero θ leads to
quantitative changes in the heights of the mode-locking
peaks, along with a slight redistribution of the proba-
bility to negative magnetizations for intermediate values
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FIG. 9. Steady-state nuclear spin polarization distribution of a bath with N = 150 nuclear spins for four different values of the
quadrupolar angle θ for (a) I = 1 and (b) I = 3/2. The parameter values are TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz,
ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.
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FIG. 10. Steady-state nuclear spin polarization distribution
of a bath with N = 1000 I = 1 nuclear spins for four different
values of the quadrupolar angle θ. The other parameter values
are TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz, ωn =
−0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

of θ. Similar behavior occurs for I = 3/2, as shown in
Fig. 9(b). The redistribution can be understood from
the fact that, in the absence of the HF interaction, the
quadrupolar coupling produces a Gaussian distribution
centered around m = 0. This is discussed in more detail
below. The fact that this redistribution is strongest near
θ = π/4 suggests that the ∆mI = ±1 quadrupolar-driven
transitions play an important role in this process. This
effect constitutes another way in which the quadrupolar
interaction can make the DNP process for I > 1/2 depart
significantly from what is predicted for an I = 1/2 bath.
Also notice that in both panels of Fig. 9, the polarization
distributions are still suppressed near m = −ωe0/A even
for θ > 0. This indicates that the HF contributions to
the flip rates remain an important factor in shaping the
overall distribution.

FIG. 11. The average polarization 〈m〉 of a nuclear spin bath
with N = 1000 nuclei of total spin I = 1 for several values of
the quadrupolar angle in the range of 0 ≤ θ ≤ π/2. The inset
color map shows the steady-state nuclear spin polarization
distribution over the same range of quadrupolar angles. The
other parameter values are TR = 13.2 ns, NA = 10 GHz,
ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3,
φ = −π/2, νQ = 2.8 MHz.

Fig. 10 again shows the effect of nonzero θ for I = 1,
but now for a bath of size N = 1000. For θ = 0, there
is a distinct comb-like structure that is the hallmark of
mode-locking. However, for θ > 0, this structure quickly
disappears and is replaced by an almost Gaussian distri-
bution centered around zero magnetization. A Gaussian
distribution is in fact what occurs in the absence of the
HF interaction, because the flip rates are then purely
due to the quadrupolar coupling, which means that they
are independent of m and are equal for ∆mI > 0 and
∆mI < 0. This shows that the quadrupolar interaction
plays a much more important role compared to the HF
interaction for the case considered in Fig. 10. This is
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FIG. 12. The feedback effect of N = 1000 I = 1 nuclear spins on the x component of electron spin steady state as a function
of time over one drive period TR = 13.2 ns. Here the quadrupolar angles θ = 0 and θ = π/2 are considered for different bare
electron Zeeman frequencies of (a) 0.5 GHz, (b) 2.45 GHz and (c) 15.19 GHz. The electron Zeeman frequencies chosen for
(b) and (c) correspond to the local minima shown in Fig. 13 and the nuclear spin polarization distribution for (a) is shown in
Fig. 10. The parameter values are NA = 10 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

because the larger value of N corresponds to a reduc-
tion in the HF coupling A, and hence in the magnitude
of the flip rates (see Eq. (26)). This in turn increases
the relative importance of the quadrupolar interaction.
This can be seen from Fig. 4, where it is evident that
as θ increases, the flip rate for the ∆mI = 2 transition
quickly surpasses the difference in the flip rates for the
∆mI = ±1 transitions. As a consequence, the proba-
bility distribution is no longer sensitive to the detailed
features of the ∆mI = ±1 transitions, which are respon-
sible for both the comb-like mode-locking structure and
the suppression near m = −ωe0/A. This shows that even
small values of θ can have a dramatic effect on the DNP
process for large numbers of nuclei. This is quantified in
Fig. 11, which shows how the nuclear spin polarization
distribution and average magnetization, 〈m〉, depend on
θ. The latter quickly decays with increasing θ. As is
evident from the inset in Fig. 11, the distribution it-
self exhibits mode-locking fringes at small θ that become
blurred at larger θ. The sensitivity of mode-locking to the
quadrupolar interaction suggests that it could be used as
a diagnostic tool to estimate the size of the quadrupolar
coupling strength and angle in experiments. This is fur-
ther supported in the next section, where we show how
the steady-state electron spin vector in the presence of
DNP feedback depends on the quadrupolar angle.

B. Feedback on electron spin

Once we obtain the steady-state polarization distribu-
tion of the nuclear spin bath, the final step is to update
the steady state of the electron by applying the Over-
hauser shift to the Zeeman frequency:

S
ss

e,i(t, ωe0) =
∑
m

P (m)Ssse,i(t, ωe0 +mA). (51)

Here the summation is over all possible values of m, and
t is the time elapsed since the last pulse. We obtain the
time-evolved electron steady state by starting from the

Se,x
ss Se,x

ss Local Minima

Se,x
ss with θ=0

Se,x
ss with θ=π

2Se,x
ss with θ=π

4

Se,x
ss with θ=π

8

0 5 10 15 20
-0.5

0.0

0.5

1.0

ωe0 (GHz)

E
le
ct
ro
n
st
ea
dy

-
st
at
e
x
co
m
po
ne
nt

FIG. 13. The effect of the I = 3/2 nuclear feedback on the
x component of the steady-state electron spin vector. The
red filled circles indicate local minima of Sss

e,x (shown in gray)
for several values of the electron Zeeman frequency ωe0 with-
out nuclear feedback. The other points indicate the values of
S

ss
e,x(ωe0) at the same values of ωe0, but now with feedback

included as in Eq. (51). Results for four different values of
the quadrupolar angle θ are shown. Other parameter values
are N = 150, TR = 13.2 ns, NA = 10 GHz, ωn = −0.5 MHz,
γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

expression for the steady state immediately after a pulse,
Eq. (14), and evolving it under Larmor precession with
frequency ωe0 +mA for time t. Fig. 12 shows the result-
ing DNP-modified electron steady state over one drive
period for six different N = 1000, I = 1 polarization
distributions. Two of these are distributions shown in
Fig. 10—the ones corresponding to θ = 0 and θ = π/2.
The modified steady states for these two cases are shown
in Fig. 12(a), where it is evident that a large quadrupolar
angle suppresses oscillations, both in the vicinity of the
driving pulses and in the “echo” that occurs in the mid-
dle of the drive period near t = TR/2, which is 6.6 ns for
the chosen parameter values. Similar behavior occurs for
other values of the external magnetic field, as is demon-
strated in Figs. 12(b), (c). It should be noted that the
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FIG. 14. The nuclear spin polarization distributions corresponding to five of the electron Zeeman frequency values from Fig. 13
for quadrupolar angles (a) θ = 0, (b) θ = π/8, (c) θ = π/4, and (d) θ = π/2 for an I = 3/2 nuclear bath. Other parameter
values are N = 150, TR = 13.2 ns, NA = 10 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, φ = −π/2, νQ = 2.8 MHz.

amplitude of these oscillations are used to identify the
presence of mode-locking [54], and so the suppression of
these oscillations can provide an experimental indicator
of substantial quadrupolar effects.

The electron steady state, Eq. (14), is a rapidly oscilla-
tory function of the applied magnetic field. In Ref. [74],
it was found using perturbation theory that for I = 1/2,
nuclear feedback suppresses the amplitudes of these oscil-
lations. In particular, it was shown that the x component
of the electron steady-state SV approaches unity for all
values of the external magnetic field as a consequence of
mode-locking: The SV becomes synchronized with the
pulses such that it lies parallel to the optical axis at the
pulse times. Here, we examine how this effect is modi-
fied by the presence of quadrupolar interactions. This is
illustrated in the case of I = 3/2 in Fig. 13, where we
show the x-component of the electron steady state imme-
diately after a pulse, Ssse,x, for ten different values of the
electron Zeeman frequency with and without feedback.
We are primarily interested in the amplitude of the elec-
tron steady-state oscillations, so we choose the ten dif-
ferent Zeeman frequencies that correspond to minima of
the oscillations in the absence of feedback (red dots in
Fig. 13). To find how the envelope of the electron spin
oscillations is affected by the feedback process, we com-

pute the nuclear spin polarization distributions for each
of these minima. These distributions then alter the val-
ues of these minima according to Eq. (51) (with t = 0).
As can be seen from Fig. 13, the amplitude of the elec-
tron steady-state oscillations is suppressed (i.e., the min-
ima increase up toward unity) in the presence of DNP,
and the degree of this suppression varies weakly and non-
monotonically with the quadrupolar angle θ. To under-
stand this behavior better, in Fig. 14 we show the polar-
ization distributions for five of the minima from Fig. 13
for four different quadrupolar angles. It is clear that for
all values of θ, as the electron spin Zeeman frequency due
to the external magnetic field, ωe0, is increased, the po-
larization distributions gravitate toward m = 0. This is
because larger values of the electron Zeeman frequency
suppress HF flip-flops, as the violation of energy conser-
vation becomes more pronounced in this case. This is
why the θ = 0 curve in Fig. 13 monotonically decreases
with increasing ωe0. On the other hand, quadrupole-
induced nuclear spin flips do not depend on the electron
Zeeman frequency, and so these gradually begin to dom-
inate as both θ and ωe0 increase. This in turn causes the
curves in Fig. 13 to become essentially independent of
ωe0 as θ increases. This is another manifestation of how
quadrupolar interactions suppress mode-locking effects.
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V. CONCLUSIONS

In this work, we developed a general theoretical frame-
work to describe the dynamics of an electron trapped in
a self-assembled quantum dot that is driven by a periodic
train of optical pulses and coupled to a nuclear spin bath.
Using a dynamical, self-consistent, mean-field type ap-
proach, we calculated the steady-state dynamic nuclear
polarization, as well as its influence on the evolution of
the electron spin. Our framework is non-perturbative,
applies to nuclei of arbitrary total spin I, and includes
quadrupolar effects that arise for I > 1/2.

We showed that the phenomenon of mode-locking, or
DNP-induced frequency-focusing, seen in experiments
[53–57] emerges naturally from our formalism. It can
be understood as originating from the structure of the
rates for the electron and nuclear spins to flip with one
another under the hyperfine interaction. The flip rates
vanish when the effective electron precession frequency
(including the DNP-driven Overhauser shift) becomes
commensurate with the optical pulse train, because in
this case the pulses do not interrupt the joint electron-
nuclear evolution, and so no polarization is transferred
from the electron spin to the nuclei. The vanishing of
the flip rates then leads to sharp peaks in the nuclear po-
larization distribution at magnetization values that sat-
isfy the commensurability condition. Our exact result for
the nuclear spin probability distribution in the I = 1/2
case makes this connection explicit, since the distribution
depends inversely on the flip rates. In addition to mode-
locking, we showed that hyperfine flip-flops also give rise
to a net nuclear spin polarization that appears to grow
linearly with the number of nuclei.

Our formalism includes not only hyperfine-driven phe-
nomena, but also quadrupolar effects that can arise for
I > 1/2. We found that the importance of quadrupo-
lar interactions depends sensitively on the quadrupolar
angle θ between the applied magnetic field and the prin-
cipal axis of strain in the dot. For θ < π/8, hyperfine
interactions tend to dominate, leading to clear signatures
of mode-locking. However, for θ ≥ π/8, quadrupole-
induced nuclear spin flips begin to dominate, which leads
to a suppression of mode-locking and a reduction of the
net nuclear polarization. We also showed that quadrupo-

lar effects become more pronounced when the applied
magnetic field is increased, because hyperfine flip-flops
are suppressed by the increasingly large Zeeman energy
mismatch between the electron and nuclei. These effects
are clearly visible in the nuclear spin polarization distri-
butions for both I = 1 and I = 3/2, and they translate
to experimentally detectable signatures that are encoded
in the presence or absence of electron spin oscillations
in the steady state. Hyperfine flip-flops lead to coherent
oscillations in the vicinity of each pulse and halfway be-
tween pulses, while quadrupolar interactions act to sup-
press these oscillations. These signatures offer a potential
method to measure the strength of quadrupolar interac-
tions in quantum dots.

The framework we have presented constitutes an effi-
cient, quantitative approach to describing the dynamics
of a driven spin coupled to a spin bath. Going forward,
it would be interesting to see if some of the simplify-
ing assumptions made here can be relaxed to enhance
quantitative accuracy. For example, can we go beyond
the box model limit and allow for non-uniform hyper-
fine couplings, perhaps using a “wedding cake” model in
which the electronic wavefunction envelope is approxi-
mated by a piecewise-constant function? Such a gener-
alization would also allow for the inclusion of multiple
nuclear species, which is relevant for common semicon-
ductor QD compounds such as InGaAs. It would also be
interesting to extend this method beyond the indepen-
dent nuclei approximation, perhaps using a cluster-based
approach in which inter-nuclear interactions are included
gradually within clusters of increasing size [20, 100]. In
terms of applications, our framework could be employed
to design driving protocols to achieve desired bath po-
larization states to either mitigate decoherence or utilize
the bath as a quantum memory [86–88]. Finally, we note
that the theory we developed is quite general and could
be applied to other problems involving a driven system
coupled to a quantum bath.
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[23]  Lukasz Cywiński, Wayne M. Witzel, and S. Das Sarma,
“Electron spin dephasing due to hyperfine interactions
with a nuclear spin bath,” Phys. Rev. Lett. 102, 057601
(2009).
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“Nonperturbative master equation solution of central
spin dephasing dynamics,” Phys. Rev. Lett. 109, 140403
(2012).

[97] Edwin Barnes,  Lukasz Cywiński, and S. Das Sarma,
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