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Abstract
The proposal that core collapse supernovae are neutrino driven is still the subject of
active investigation more than 50 years after the seminal paper by Colgate and White.
The modern version of this paradigm, which we owe to Wilson, proposes that the
supernova shock wave is powered by neutrino heating, mediated by the absorption
of electron-flavor neutrinos and antineutrinos emanating from the proto-neutron star
surface, or neutrinosphere. Neutrino weak interactions with the stellar core fluid, the
theory of which is still evolving, are flavor and energy dependent. The associated neu-
trinomean free paths extend overmany orders ofmagnitude and are never always small
relative to the stellar core radius. Thus, neutrinos are never always fluid like. Instead,
a kinetic description of them in terms of distribution functions that determine the
number density of neutrinos in the six-dimensional phase space of position, direction,
and energy, for both neutrinos and antineutrinos of each flavor, or in terms of angular
moments of these neutrino distributions that instead provide neutrino number densi-
ties in the four-dimensional phase-space subspace of position and energy, is needed.
In turn, the computational challenge is twofold: (i) to map the kinetic equations gov-
erning the evolution of these distributions or moments onto discrete representations
that are stable, accurate, and, perhaps most important, respect physical laws such as
conservation of lepton number and energy and the Fermi–Dirac nature of neutrinos
and (ii) to develop efficient, supercomputer-architecture-aware solution methods for
the resultant nonlinear algebraic equations. In this review, we present the current state
of the art in attempts to meet this challenge.
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1 Preface

At this stage in the development of the theory of core-collapse supernovae two possible
explosion mechanisms are most often discussed: neutrino-driven and magneto-
rotationally-driven. The state of the theory is not sufficiently well developed to
determine whether or not there is a clear break between these two cases or whether
they represent limiting cases of a continuum. Nonetheless, in any scenario, the physics
discussed here is relevant. It either dominates, leading to a neutrino-driven explosion,
or sets the stage for a magneto-rotationally-driven supernova. That is, core-collapse
supernova theorists have no choice but to first master and, more important, implement
realistic models of neutrino transport in core-collapse supernova environments. What
is meant by “realistic” will hopefully become clear as we progress through this review,
but what will also hopefully become clear: Challenges to achieving realism will be
faced on multiple fronts: physical, numerical, and computational.

When charged to write this review, we were asked not to provide an encyclopedic
review of past work in the field but, rather, to present the current issues and challenges
faced by the core-collapse supernovamodeling community, particularly as they pertain
to what is arguably the most difficult aspect to model: neutrino transport. Thus, with
this charge in mind, we have written our review with an emphasis on the future, on
what modelers must and will face to develop realistic models of these most important
events.

2 Setting the stage

The idea that core-collapse supernovae could be neutrino driven was first proposed
more than 50 years ago by Colgate andWhite (1966) in their seminal numerical study.
This work set neutrinos front and center in core-collapse supernova theory, which has
remained the case ever since. The Colgate and White studies were followed by the
early studies of Wilson (1971) that cast doubt on the efficacy of their proposal. But the
development of the electroweak theory, which predicted the existence of weak neutral
currents,would change all that.Givenweak neutral currents, Freedman recognized that
it would be possible for neutrinos to scatter off of the nucleons in a nucleus collectively.
The cross sections for such scattering would be proportional to the nuclear neutron
number, N , and would consequently be large. Shortly thereafter, Wilson (1974), using
the newweak interaction cross sections for this process, demonstrated that the Colgate
andWhite proposal was in fact viable. The recognition of this intertwined relationship
between core-collapse supernova physics and neutrinoweak interaction physics drives
continued research to this day. Nearly 40 years of further study in the context of the
assumption of spherical symmetry was set in motion by this early and foundational
work, which traversed a range of descriptions of neutrino transport in stellar cores,
a range of sophistication of the treatment of the microphysics input included in the
models, which includes the neutrino weak interaction physics and the equations of
state describing a stellar core’s nuclear, leptonic, and photonic degrees of freedom.

Neutrino mediation of core-collapse supernova dynamics in its modern instanti-
ation is through charged-current absorption of electron neutrinos and antineutrinos
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on neutrons and protons, respectively. The nucleons become available as the stalled
supernova shock wave dissociates the nuclei in the infalling stellar core material as
the material passes through it. The neutrino absorption heats the material, depositing
energy behind the shock. The shock loses energy initially to dissociation and neu-
trino losses. When sufficient energy is deposited by neutrino heating, the shock again
becomes dynamical, propagates outward in radius, and reverses the infall of mate-
rial passing through it, to disrupt the star in a core-collapse supernova (Wilson 1985;
Bethe andWilson 1985). This modern instantiation of neutrinos’ role in the supernova
mechanism relies on the developments surrounding the large neutrino–nucleus scat-
tering cross sections discussed earlier. Arnett (1977) was the first to show that such
cross sections led to the trapping of the electron neutrinos produced during stellar
core collapse through electron capture on nuclei and protons. He demonstrated that,
despite their nature as weakly interacting particles, the densities in the stellar core rise
sufficiently rapidly to render the electron neutrino mean free paths smaller than the
size of the stellar core. Neutrino trapping gives rise to a trapped degenerate sea of
electron neutrinos in the inner stellar core that emerge after stellar core bounce and
the launch of the supernova shock wave from the proto-neutron star on diffusive time
scales.

The proto-neutron star comprises the inner cold unshocked core and a hot shocked
mantle of material above it that is not ejected by the shock. Electron degeneracy is
lifted in the hot mantle, leading to a significant population of electron–positron pairs,
which in turn leads to the production of neutrinos and antineutrinos of all three flavors
via electron–positron annihilation. The densities in the mantle are sufficiently high
that neutrinospheres for all three flavors of neutrinos and antineutrinos exist, all lying
within kilometers of each other, as a function of flavor and energy, in the density cliff
that defines the proto-neutron star surface. The post-bounce stratification of the core,
setting the stage for neutrino shock revival is shown in Fig. 1. Neutrinos of all three
flavors emerge from their respective neutrinospheres at the proto-neutron star surface.
Between the proto-neutron star surface and the shock, neutrino heating and cooling
take place through charged-current electron neutrino and antineutrino absorption on
and emission by nucleons, respectively. The different radial dependencies of neutrino
heating and cooling lead to net heating above the “gain radius” and net cooling below
it. The region between the gain radius and the shock, where net neutrino heating takes
place, is known as the gain region.

The energy deposition rate per gram of material in the gain region can be expressed
in terms of the electron neutrino and antineutrino luminosities, squared rms energies,
and inverse flux factor as

ε̇ = Xn

λa0

Lνe
4πr2

〈
E2
νe

〉 〈 1

Fνe

〉
+ X p

λ̄a0

L ν̄e
4πr2

〈
E2
ν̄e

〉 〈 1

Fν̄e

〉
, (1)

where ε is the internal energy of the stellar core fluid per gram, Xn,p are the neutron
and proton mass fractions, respectively, Lνe,ν̄e are the electron neutrino and antineu-
trino luminosities, respectively, Fνe,ν̄e are the inverse flux factors for the electron
neutrinos and antineutrinos, respectively, and λa0, λ̄

a
0 are constants related to the weak

interaction coupling constants. Thus, knowledge of the neutrino luminosities, spec-
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Fig. 1 Schematic showing the characteristic structure after stellar core bounce and the stall of the supernova
shock wave seen in all core-collapse supernova models. All three flavors of neutrinos, together with their
antineutrino partners, emanate from the proto-neutron star. Here, a single surface characterizes the proto-
neutron star surface and the “neutrinosphere,” the surface of last scattering for the neutrinos. In reality, there
aremultiple surfaces, although they are very close together. The neutrino interaction cross sections are flavor
and energy dependent. Consequently, there is a neutrinosphere for each neutrino flavor and energy “group”
in core-collapse supernova models. Between the proto-neutron star surface and the stalled shock wave is the
so called gain radius, separating the region of net neutrino cooling (below the gain radius) from net neutrino
heating (above the gain radius). Neutrino heating is mediated by charged-current absorption of electron
neutrinos (antineutrinos) on neutrons (protons) below the shock, liberated by shock dissociation of nuclei
as they pass through it. Cooling is mediated by the inverse weak interactions. Neutrino heating in the “gain
region” between the gain radius and the shock is central to the neutrino-driven core-collapse supernova
mechanism. Given this neutrino heating, the gain region becomes convectively unstable. Neutrino-driven
turbulent convection in this region assists neutrino heating to generate a supernova. The goal is to reverse
the infall of the material ahead of the shock and for the shock itself to propagate outward. The neutrino
heating in the gain region is sensitive to the neutrino luminosities, spectra, and angular distributions there,
all of which depend on the transport of neutrinos through the semitransparent neutrinospheric region, where
the neutrinos are neither diffusive nor free streaming
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tra, and angular distributions are needed to compute the neutrino heating rates. This
requires knowledge of the neutrino distribution functions, fνe,ν̄e (r , θ, φ, E, θp, φp, t),
from which these quantities can be calculated. The neutrino distribution functions are
determined by solving their respective Boltzmann kinetic equations, which will be
discussed later. Thus, the core-collapse supernova problem is a phase space problem,
in the end involving 6 dimensions plus time. The common parlance, dividing core-
collapse supernovamodels between “1D” (spherical symmetry), “2D” (axisymmetry),
or “3D” models is quite misleading. In reality, the dimensionality is 3D for spherical
symmetry, involving 1 spatial dimension (radius) and 2 momentum-space dimensions
(neutrino energy and a single direction cosine), 5D for axisymmetry, involving 2 spa-
tial dimensions (radius and θ ) and 3 momentum-space dimensions (neutrino energy
and 2 direction cosines), and 6D, involving 3 spatial dimensions (radius, θ , and φ) and
3 momentum-space dimensions (neutrino energy and 2 direction cosines).

The central densities of the proto-neutron star reach values between 1014 and
1015 g cm−3. Itsmass,which isO(1)M�, is initially containedwithin a radiusO(100)
km. Such conditions are not Newtonian. Detailed comparisons made in the context
of spherically symmetric models of core-collapse supernovae (Bruenn et al. 2001)
between Newtonian and general relativistic models revealed the dramatic differences
in the overall “compactification” of the postbounce core configuration defined by
the neutrinosphere, gain, and shock radii, as well as the dramatic difference between
the magnitudes of the infall velocities through the gain region. Moreover, neutrino
luminosities and rms energies were increased in the general relativistic case due to
the higher core temperatures. These studies made obvious the fact the core-collapse
supernova environment is a general relativistic environment.

Models that assume spherical symmetry reached the needed level of sophistication
only fairly recently, with fully general relativistic models that included Boltzmann
neutrino transport, an extensive set of neutrino weak interactions, and, at the time,
an industry-standard equation of state (Liebendörfer et al. 2001; Lentz et al. 2012b).
The outcomes of these models were quite discouraging. In all cases, the shock radius
reaches a maximum and then recedes with time until the simulations are terminated.
Explosion does not occur, and the end outcome of each simulation would be the
formation of a stellar-mass black hole.

With the exception of the lowest-mass massive stars (Kitaura et al. 2006) it became
clear the Colgate and White proposal was doomed to fail without the aid of additional
physics. Specifically, the assumption of spherical symmetry had to be eliminated. In
retrospect, it is now obvious why: Neutrino emission by the proto-neutron star, driving
the explosion above, is fueled by the accretion of stellar corematerial onto it. Explosion
in spherical symmetry would cut off such accretion entirely once initiated, cutting off
the fuel that drives the neutrino emission that drives the explosion. Unless accretion
and explosion can occur simultaneously, we are presented with a Goldilocks problem:
Enough energy has to be deposited behind the shock before explosion occurs. But for
sufficiently energetic explosions, an explosion cannot occur too soon. And given that
the accretion rates decrease with time, due to stellar core density profiles, an explosion
also cannot occur too late.

The first two-dimensional core-collapse supernova simulations by Herant et al.
(1992, 1994) demonstrated that accretion and explosion naturally coexist in the post-
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Fig. 2 Snapshot of neutrino-driven convection at 25ms after bounce in the two-dimensional core-collapse
supernova model of Herant et al. (1994) initiated from a 25M� progenitor. Image reproduced with permis-
sion, copyright by AAS

shock flow. Heating by the proto-neutron star from below generates convection in
the gain region. Such “neutrino-driven” convection allows continued accretion while
some of the material is heated, expands, andmoves outward. Lower-entropy, accreting
fingers are evident in Fig. 2, as well as higher-entropy rising plumes. The Herant et
al. studies opened the next, much-needed chapter in core-collapse supernova theory.
As with spherically symmetric modeling, axisymmetric modeling continues to this
day. (See Müller 2020 for a focused and comprehensive review on convection and
other fluid instabilities in core collapse supernova environments that are integral to
the supernova explosion mechanism.)

The core-collapse supernova modeling community has not yet produced general
relativistic axisymmetricmodelswithBoltzmann neutrino transport andwith industry-
standard weak interaction physics and equations of state, but significant progress has
been made. The first simulations to evolve both the neutrino spectra and their angular
distributions were performed by Ott et al. (2008). Included were the spatial advec-
tion terms on the left-hand side of the Boltzmann equation (corresponding to neutrino
transport in each of the spatial dimensions) and the collision term on the right-hand
side of the equation (corresponding to neutrino sources and sinks due to emission,
absorption, and scattering) with a subset of the weak interactions considered com-
plete today. The simulations were purely Newtonian. Neglected were all relativistic
effects in the Boltzmann kinetic equations, describing special relativistic Doppler
shift of neutrino energies, general relativistic blue and red shift of neutrino energies,
angular aberration of neutrino propagation, etc. Outcomes from their multi-angle,
multi-frequency approach were compared with outcomes from a similar simulation
performed with multigroup flux-limited diffusion. Notable differences were obtained
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between the two transport approaches in the results obtained for neutrino radiation
field quantities entering the expression for neutrino heating, Eq. (1)—specifically, the
inverse flux factors and rms energies—, which translated into notable differences in
neutrino heating, which were up to a factor of 3 for rapidly rotating cores. More recent
studies assuming axisymmetry by Nagakura et al. (2018) implemented special rela-
tivistic Boltzmann neutrino transport with a subset of the neutrino weak interactions
regarded as essential in today’s leading multi-physics models, coupled to Newtonian
hydrodynamics and gravity. In light of their Boltzmann implementation, these authors
were able to make assessments regarding the fundamental assumption at the heart of
the most commonly used closure prescription—the so-called M1 closure—currently
in use in most multi-dimensional supernova studies deploying multidimensional neu-
trino transport in a moments approach we will discuss shortly. Nagakura et al. find
that the assumption that the neutrino radiation field is not in fact axisymmetric about
the outward radial direction, reflected in non-negligible off-diagonal components of
the Eddington tensor—specifically, krθ . The authors emphasize how such compo-
nents play a non-negligible role in the evolution of the neutrino fluxes, increasing the
neutrino luminosities by ∼10%. The neutrino heating rate, Eq. (1), is then increased
commensurately. Experience has shown that corrections at this level in any or all of
the quantities entering the neutrino heating rate are noteworthy and warrant contin-
ued exploration, perhaps for all models, but especially in light of marginal cases of
explosion for some, perhaps many, progenitors.

Not unexpectedly, given the physical complexity and the computational cost,
no simulations have been performed to date that deploy three-dimensional general
relativistic Boltzmann neutrino transport in general relativistic core-collapse super-
nova models—i.e., including general relativistic hydrodynamics and gravity. This
is a long-term goal and, as made clear by what we have learned in the context of
studies in spherical and axisymmetry, a needed goal. Nonetheless, three-dimensional
core-collapse supernova modeling of increasing sophistication is ongoing. The first
three-dimensional core-collapse supernova models were performed by Fryer and
Warren (2004) using gray (neutrino angle- and energy-integrated) radiation hydrody-
namics. The first spectral (neutrino-angle integrated) three-dimensional models were
performed by Hanke et al. (2013). The current stable of spectral three-dimensional
models fall under two categories. Both implement spectral (but not multi-angle) neu-
trino transport in a one- or two-moment approach. In one category, the so-called
“ray-by-ray” approximation is used. In the other, the neutrino transport is three dimen-
sional. (A clarifying remark: The simulations by Hanke et al. used a Boltzmann solver
in the context of their ray-by-ray approach. As such, some angular dependence was
kept. However, three-dimensional models require two angles to describe a neutrino’s
propagation direction, and in the ray-by-ray approach the angular dependence in one
of the angles is approximate in the sense that it is computed assuming spherical sym-
metry.)

The earliest three-dimensional models—e.g., those of Hanke et al.–implemented
ray-by-ray transport. In the ray-by-ray approach, the three-dimensional neutrino trans-
port problem is broken up into N = Nθ × Nφ spherically symmetric problems, where
Nθ,φ are then number of θ , φ zones used in the simulation. The ray-by-ray approxi-
mation follows lateral neutrino transport under the assumption of spherical symmetry,
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meaning there is lateral transport of individual neutrinos, but the net lateral flux is
zero. (For example, neutrinos can propagate along the segment between A and B in
Fig. 3, but an equal number of neutrinos must propagate along the path between C
and B, such that the net flux at point B is purely radial.) Moreover, as illustrated by
Fig. 3, neutrino heating at a point in the gain region may be over- or under-estimated.
Consider the point B in the heating region. The backward cone emanating from point
B subtends a portion of the neutrinosphere, between points A and C, that is the source
of the neutrinos that heat the material at point B. The ray-by-ray approximation, which
assumes spherical symmetry for each ray, assumes that the thermodynamic conditions
across the neutrinosphere between points A and C are the same as those at point D. If
point D is a hot spot, the ray-by-ray approximation will compute the heating at point
B assuming the neutrinosphere between points A and C is hot. For neutrino heating
at point F, and assuming that point H is not a hot spot, the ray-by-ray approximation
will assume that conditions at point H are mimicked across the portion of the neutri-
nosphere between points E and G, regardless of the fact that point D is hot and within
that portion of the surface. Thus, the neutrino heating at point B will be overestimated,
whereas the neutrino heating at point F will be underestimated.Whether or not the ray-
by-ray approximation leads to significant over- or under-estimations of the neutrino
heating over the course of the shock reheating epoch will of course depend on whether
or not such variations in the thermodynamic conditions across the neutrinosphere per-
sist, which requires a comparison taking into consideration the time dependence of
such thermodynamic conditions. Comparisons between ray-by-ray and non-ray-by-
ray approaches in the context of axisymmetric core-collapse supernova models found
notable differences in, among other outcomes, the time to explosion (Skinner et al.
2016). However, more recent comparisons in the context of three-dimensional mod-
els found no significant differences between the two approaches (Glas et al. 2019).
Of course, without three-dimensional transport implementations, it would be difficult
to assess the efficacy of using the ray-by-ray approach, or other approximations. In
the end, such approximations must be removed, if only just to check them. The ray-
by-ray approach of the Oak Ridge group is based on one-moment closure through
flux-limited diffusion (Bruenn et al. 2020). They follow the evolution for the low-
est angular moment of the neutrino distribution: the number density. The Max Planck
group’s ray-by-ray implementation is based on two-moment closure (Rampp and Janka
2000). They solve an approximate Boltzmann equation for the purposes of computing
the variable Eddington factor needed to close the system of equations describing the
evolution of the first two moments of the neutrino distribution (in spherical symmetry,
there is only one first moment, corresponding to the radial number flux, together with
the zeroth moment, the neutrino number density).

For both two- and three-dimensional core-collapse supernovamodels that attempt to
include general relativity at some level of approximation, if not exactly, Newtonian or
general relativistic hydrodynamics, and two- or three-dimensional neutrino transport
are all based on the solution of the neutrinomoments equations describing the evolution
of the lowest angular moments of the neutrino distribution function. For example, in
terms of the neutrino distribution function, the number moments (spectral number
density, spectral number flux) are defined as
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Fig. 3 Schematic showing the key characteristics of the ray-by-ray neutrino transport approximation. Along
each radial ray (e.g., along segments DB or HF), a complete solution to the spherically symmetric neutrino
transport equations is obtained assuming spherical conditions given by the conditions along each ray. This
approximation afforded the ability to implement sophisticated transport solvers that had been developed in
the context of models of core-collapse supernovae assuming spherical symmetry, at the expense of ignoring
net lateral transport that would occur in multiple spatial dimensions. In spherical symmetry, neutrinos can
propagate along the segment AB, which is clearly not a purely radial segment. Therefore, there is lateral
transport. However, in spherical symmetry, every neutrino propagating along AB is matched by a neutrino
propagating along CB, and the net flux at point B is purely radial. The lateral fluxes cancel exactly. Focusing
on neutrino heating at point B, the ray-by-ray approach assumes that the thermodynamic conditions across
the proto-neutron star surface (i.e., the neutrinosphere) between points A and C are uniform and given by
the thermodynamic conditions at point D. Given a temporary hot spot at point D on the surface, the neutrino
heating at point B would be overestimated. Moreover, were point H significantly cooler, relatively speaking,
at the same instant, heating at point F would be underestimated because the hot spot at point D would be
ignored even though it is within the cone of neutrino trajectories contributing to the neutrino heating at F.
Thus, the ray-by-ray approximation may lead to larger angular variations in the neutrino radiation field than
would be present were three-dimensional transport used—particularly if the hot spots on the proto-neutron
star surface persist
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N (r , θ, φ, E, t) ≡
∫ 2π

0
dφp

∫ +1

−1
dμ f (r , θ, φ, μ, φp, E, t), (2)

F i (r , θ, φ, E, t) ≡
∫ 2π

0
dφp

∫ +1

−1
dμni f (r , θ, φ, μ, φp, E, t), (3)

where μ ≡ cos θp is the neutrino direction cosine defined by θp, one of the angles
of propagation defined in terms of the outward pointing radial vector defining the
neutrino’s position at time t . In three dimensions, two angles are needed to uniquely
define a neutrino propagation direction. The angle φp provides the second. ni is the
neutrino direction cosine in the i th direction, whose components are given as functions
ofμ and φp. E is the neutrino energy. E, θp, φp can be viewed as spherical momentum
space coordinates. Above, N and F i are the number density and number fluxes,
respectively. In three dimensions, there is of course a number flux for each of the
three spatial dimensions, delineated by the superscript i . Integration of the neutrino
Boltzmann equation over the angles θp and φp, weighted by 1, ni , nin j , . . . defines an
infinite set of evolution equations for the infinite number of angular moments of the
distribution function, which is obviously impossible to solve. In a moments approach
to neutrino transport, the infinite set of equations is rendered finite by truncation,
after the equation for the zeroth moment in the case of one-moment closure (e.g.,
flux-limited diffusion) or after the equations for the first moments in the case of two-
moment closure (e.g., M1 closure). In the latter case, closure can be “prescribed” (e.g.,
M1 closure) or computed (e.g., through a variable Eddington tensor approach). We
will discuss these approaches in greater detail later in our review. It is important to
understand the essence of the approximations being made in moments approaches to
neutrino transport in core-collapse supernova models. One does not integrate out all
of the angular information contained within the neutrino distribution function. Some
angular information remains. The higher the closure is made in the order of moment
equations, the more angular information is kept. For example, two-moment closure
keeps the fundamental angular dependencies. The ratio of the number flux in any
of the three dimensions to the number density, at any spacetime point, is a measure
of how forward peaked the neutrino angular distribution is in that dimension at that
point. Thus, a moments approach retains much of the information of the neutrino
radiation field contained within the neutrino distribution functions, while providing
a sophisticated modeling path forward that is achievable on present leadership-class
computing systems. Direct Boltzmann solutions for the neutrino radiation field will
have to wait until sustained exascale computing platforms become available over the
next decade.

Three-dimensional models that include an approximation to general relativistic
gravity in the form of an “effective potential,” Newtonian hydrodynamics, ray-by-ray
one- or two-moment neutrino transport with some corrections for special relativity
(O(v = c)) or general relativity (gravitational redshift of neutrino energies), and a
state-of-the-art set of neutrino weak interactions have been performed by the Max
Planck and Oak Ridge groups (Hanke et al. 2013; Lentz et al. 2015; Melson et al.
2015a, b; Summa et al. 2018). Three-dimensional models that include general rela-
tivistic hydrodynamics and gravity, and three-dimensional, general relativistic, O(1)
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or fully relativistic (special and general) two-moment neutrino transport with an
extensive set of neutrino weak interactions have been performed by Roberts et al.
(2016) and Kuroda et al. (2016), respectively. Three-dimensional models that cou-
ple Newtonian hydrodynamics and approximate general relativistic gravity, as above,
to three-dimensional two-moment neutrino transport with corrections for special and
general relativity, as above, and an extensive set of neutrino weak interactions were
performed by O’Connor and Couch (2018); Vartanyan et al. (2019); Burrows et al.
(2019).

It is clear the core-collapse supernovamodeling state of the art in three dimensions is
evolving, with some models classifiable as more complete macrophysically—i.e., that
implement three-dimensional, general relativistic gravity, hydrodynamics, and neu-
trino transport—and some models classifiable as more complete microphysically—
i.e., that include state-of-the-art microphysics.

Neutrino mass, albeit small in relation to the neutrino energies attained in core
collapse supernovae, leads to neutrinoflavor transformations. There is growing, though
still inconclusive, evidence that such transformations may play a role in neutrino
shock reheating (e.g., see Tamborra et al. 2017; Abbar et al. 2019; Delfan Azari et al.
2019). The existence of so called “fast” flavor transformations, which can exist even
in the baryon-laden environment below the supernova shock wave, was first brought
to the attention of the supernova modeling community by Sawyer (2005). Prior to
this work, it was assumed that quantum mechanical coherence among the neutrinos
in the region beneath the shock would de-cohere due to neutrino–matter collisions,
thereby rendering such effects unimportant to neutrino shock reheating. However, fast
modes operate on scales much shorter than a neutrino mean free path and, in fact,
are not wiped out by collisions and beg to be considered. As in the classical case, the
story boils down to capturing the neutrino angular distributions for all three flavors
of neutrinos, as a function of space and time during the evolution of the supernova.
The neutrinospheres for the three neutrino flavors are distinguished first and foremost
by their interactions with the stellar fluid, with electron neutrinos and antineutrinos
interacting through both charged and neutral currents and the muon and tau neutrinos
interacting only through neutral currents. Moreover, the preponderance of neutrons
over protons reduces the opacity of the stellar fluid to electron antineutrinos, and
a hierarchy sets in, with the muon and tau neutrinospheres at the highest densities,
followed by the neutrinosphere associated with the electron antineutrinos, followed
in turn by the neutrinosphere associated with the electron neutrinos, at the lowest
densities, relatively speaking. Given the layering of the neutrinospheres, at a given
time during neutrino shock revival, the neutrino angular distributions at a given spatial
location in the cavity between the neutrinospheres and the shock will differ by flavor.
It is the differences between the angular distributions of each flavor that sets the stage
for fast flavor transformation.

Thus, the need, in the classical case, for a Boltzmann description of the neutrino
radiation field is multifold: (1) Moments approaches are approximations, whose effi-
cacy cannot be known a priori and must be checked against the exact (classical) result.
Examples of this will be discussed here. (2) The development of closure prescriptions
formomentmodels is rifewith difficulty, partially because of nonlinearities introduced
by the closure procedure. For example, a numerical method for two-moment, multi-
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frequency, general relativistic neutrino transport that respects Fermi–Dirac statistics
does not yet exist and will be difficult to develop. Furthermore, the development of
nonlinear moment models beyond the two-moment approximation, to capture more
kinetic effects, will be even more challenging. (3) Boltzmann and low-order moments
approaches can be used together to accelerate convergence of the solution to the
Boltzmann equation, potentially becoming competitive, in terms of speed and mem-
ory use, with nonlinear, high-order moments approaches. (4) The exploration of fast
flavor transformations on the core collapse supernova mechanism will require precise
knowledge of the neutrino angular distributions for all three flavors across spacetime
of a supernova model. Such information can be obtained only through a solution of
the classical Boltzmann kinetic equations for each neutrino flavor in association with
simulation of the coherent quantum effects—i.e., through a solution of themulti-angle,
multi-frequency neutrino quantum kinetics equations for all neutrino flavors.

While the justification for deploying Boltzmann kinetics in the classical case can
be made, it is through a combination of Boltzmann and moments approaches that
progress will be made in both the near and the long term.We are attempting to address
myriad science questions, and past experience already tells us that the answer to
these questions will vary with characteristics of the massive progenitors in which core
collapse supernovae occur. How do massive stars explode? Which explode and which
do not? Among those that explode, what elements do they produce? How do they
contribute to galactic chemical evolution? And the list goes on. At present, there is no
foreseeable time at which all of these questions will be addressable with Boltzmann
methods, let alone quantumkinetics.An uncountable number ofmodelswill ultimately
be required to understand the death of the diverse population of stars we are presented
with in nature, as well as the death of any one of them. Our understanding of stellar
death will not come from a single “hero” simulation, but from many simulations.
Thus, it is in the application of both Boltzmann (classically) and moments approaches
and, through this, the development of ever more realistic moments approaches that we
will be able to advance our knowledge of one of the most important phenomena in the
Universe. This is already clear from themodeling history to date.We have come a long
way since Colgate and White’s seminal work through precisely the hybrid approach
discussed here. Hence, this review will focus on both approaches, as well as point to
potentially efficacious hybrid approaches that could be developed and deployed in the
future.

3 Design specifications

There have been many lessons learned during the 54 years that have passed since the
first numerical simulations of core-collapse supernovae were performed by Colgate
and White. These lessons can now be used to construct a list of design specifications
for models of neutrino transport that will be used in future core-collapse supernova
models:
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1. Ultimately, definitive simulations of core-collapse supernovae in the classical limit
will require a Boltzmann kinetic description of neutrino transport for all three
flavors of neutrinos and their antineutrino partners.

2. In the event sufficient evidence points to the need to consider in greater detail the
impact of neutrino quantum kinetics on the supernova explosion mechanism, a
quantum kinetics description of neutrino transport would be required. A classical
Boltzmann description would be the natural, and required, starting point for the
development of a such a quantum kinetics treatment.

3. The simulations must be general relativistic. They must include special and general
relativistic effects such as Doppler and red/blue shifts of neutrino energy, respec-
tively, and angular aberration in both cases, due to fluid motion and spacetime
curvature.

4. These simulations must include all of the neutrino weak interactions that have been
to date demonstrated to be important, and the description of the interactions must
be state of the art.

5. The quality of core-collapse supernova simulations will ultimately be gauged by,
among other things, the degree to which lepton number and energy are conserved.
More specifically, the discretizations of the integro-partial differential Boltzmann
equations must conserve lepton number and energy simultaneously.

6. Thediscretizations of theBoltzmann equations—inparticular, the collision terms—
must accommodate both small- and large-energy scattering.

7. The numerical methods must also accommodate realistic equations of state for the
nuclear, leptonic, and photonic components. In cases where the neutrino opacities
depend on the nuclear force model, the neutrino opacities and the equation of state
must be consistent.

8. In the interim when moments approaches to neutrino transport must be used until
Boltzmann approaches become feasible, all of the above design specifications still
hold.

9. For moments models, the closures used must respect the Fermi–Dirac statistics
of neutrinos, reflecting the fact that the neutrino distribution functions are
bounded.

4 The equations of neutrino radiation hydrodynamics

In core-collapse supernova models, the stellar fluid is modeled as a perfect fluid,
augmented by an equation for the electron density in order to accommodate a nuclear
equation of state. (For brevity of presentation, we will not include effects due to
electromagnetic fields.) The relevant equations are then

∇ν J νB = 0, (4)

∇νTμνfluid = −Gμ( fνe , fν̄e , . . .), (5)

∇ν J νe = −mB L( fνe , fν̄e , . . .), (6)
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where the baryon rest-mass density current is

J νB = ρ uν, (7)

where ρ = mB nB is the baryon rest-mass density,mB the average baryon (rest) mass,
nB the baryon density, and uν is the fluid four-velocity. The fluid energy-momentum
tensor is

Tμνfluid = ρ h uμ uν + p gμν, (8)

where h = 1 + (e + p)/ρ is the specific enthalpy, e the internal energy density, and
p the pressure. The electron density current is given by

J νe = ρ Ye uν, (9)

where Ye is the electron fraction. The electron density (technically electron minus
positron density) is ne = ρ Ye/mB. To close the system given by Eqs. (4)–(6), the
pressure p is given by an equation of state (EOS); e.g., p = p(ρ, e,Ye).

The source terms on the right-hand sides of Eqs. (5) and (6), −Gμ and −L ,
describe four-momentum and lepton exchange between the fluid and neutrinos.
These terms depend on the neutrino distribution functions (or moments of the
neutrino distribution functions), as already noted in Sect. 2 , as well as on thermo-
dynamic properties of the stellar fluid. This nonlinear coupling is the key to the
supernova mechanism, and associated observables, and is the topic of the present
review.

4.1 The need for a kinetic description of neutrinos

Figure 4 shows the magnitude of the neutrino transport mean free paths for the
electron neutrino, electron antineutrino, and heavy-flavor neutrinos (muon and tau
neutrinos and their antineutrinos). The mean free paths are given at a time of 100 ms
after bounce, during the critical shock reheating epoch, in the context of a Chimera
supernova simulation of a 12M� star. They are given as a function of radius, for
select neutrino energies. Also shown are the neutrinospheres for the select energies,
as well as the radius of the stalled shock wave. For all neutrino flavors and ener-
gies, the mean free paths exceed the respective neutrinosphere radii, as well as the
shock radius, at some radius as we move outward. That is, the neutrino mean free
paths exceed the scale of the proto-neutron star, as well as the shock radius scale,
before we reach the shock radius. Under these circumstances, the neutrinos are not
well described as components of the proto-neutron star fluid everywhere within it,
and therefore, they are certainly not well described as a fluid in the critical heat-
ing layer between the proto-neutron star and the shock. A kinetic description of
the neutrinos is required. Such a description, based on the Boltzmann kinetic equa-
tions, would supply the neutrino distributions functions, f (r , θ, φ, μ, φp, E, t), for
each species of neutrino and antineutrino, where μ is a the direction cosine taken
with respect to the outward radial direction, φp is the corresponding second angle
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Fig. 4 Plots of the neutrino and antineutrino mean free paths at 100 ms after bounce, during the neutrino
shock reheating epoch, for all three flavors of neutrinos at select energies. The upper left and right panels
show plots of the electron-neutrino and anti-neutrino mean free paths, respectively. The lower left and right
panels show plots of the heavy-flavor (μ and τ ) neutrinos and antineutrinos, respectively. The data used
to generate the plots are taken from a supernova model beginning with a 12M� progenitor and evolved
with the Chimera supernova code. To set the correct physical scale against which the mean free paths can
be compared, we indicate the location of the various neutrinospheres and the shock wave. All four plots
demonstrate that, as we move out in radius to lower densities, all of the mean free paths plotted vary from
being much less than to much greater than the neutrinosphere radii—i.e., to the characteristic spatial scale
of the proto-neutron star. Consequently, the neutrinos will not behave in a fluid-like manner everywhere,
and a kinetic rather than a fluid description of them is necessary

describing the neutrino propagation direction in these momentum-space spherical
polar coordinates, and E = |p| is the neutrino energy. Deep in the proto-neutron
star, neutrinos and the proto-neutron star fluid are in weak-interaction equilibrium.
The distribution functions are then given by their equilibrium counterparts and the
neutrinos are well described as an additional component of the fluid. Of course,
the neutrinos fall out of weak equilibrium as the neutrinospheres are approached,
and beyond them stream freely. Thus a fluid description of them would be limited
to only a small portion of the simulation domain and would be of equally lim-
ited utility. The nature of the weak interactions demands the greater computational
challenge and the higher computational cost of a kinetic description of neutrino
transport in the proto-neutron star and above it in the cavity between it and the
shock.
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4.2 The choice of phase-space coordinates

The expansion from the four dimensions of spacetime to the seven dimensions
of relativistic phase space brings with it additional choices. Now, in addition
to making what will hopefully be optimal choices for spacetime coordinates,
we will also need to consider optimal choices for momentum-space coordinates.
And this is not without some give and take. Simplification in some respects
afforded by one choice is always accompanied by complexification in other
respects.

There is, however, an overarching consideration that guides the typical choice
made by most modelers: Neutrino–matter interactions are most naturally and, con-
sequently, most easily described in the frame of reference of the inertial observer
instantaneously comoving with the fluid. (The fluid is accelerating, but the instanta-
neously comoving observer is not.) In this frame, the matter is instantaneously at
rest, and the neutrino four-momentum components that enter the expressions for
the neutrino weak interaction rates are the components measured by the comoving
observer. However, while the description of neutrino–matter interactions are simpli-
fied in this picture, the choice to use four-momenta measured by instantaneously
comoving observers introduces additional terms on the left-hand side of the Boltz-
mann equation that correspond to relativistic angular aberration and Doppler shift
due to the fact that two spatially-adjacent instantaneously-comoving observers do not
necessarily have the same velocity—in general, they will measure different neutrino
angles of propagation and energies. In the context of Newtonian gravity, this would
certainly add considerable complexity to the left-hand side of the Boltzmann equa-
tion. But in the general relativistic case, such momentum-space advection terms that
involve derivatives with respect to the neutrino angles of propagation (or their direc-
tion cosines) and the neutrino energy are already there in light of general relativistic
angular aberration and frequency shift in curved spacetime. While the character of
the physical effects—special versus general relativistic—is different and, as such,
presents different numerical challenges, the relative additional complexity of adding
terms corresponding to special relativistic effects—e.g., relativistic Doppler shift
and angular aberration—to the left-hand side of the Boltzmann equation versus the
significant simplification of the collision term when comoving-frame neutrino four-
momenta are used has led most modelers to choose comoving frame neutrino four
momenta as phase-space coordinates. With regard, then, to the difficulties associated
with the terms/effects added to the advection of neutrinos in phase-space, as we will
see in this review, very different numerical approaches have been taken to describe
them.

In what follows, we will adopt the following notation: We will designate the
neutrino four-momentum components measured by an inertial observer instanta-
neously comoving with the fluid as pμ̂. Neutrino four-momentum components
measured by an Eulerian observer will be designated as pμ̄. Finally, the neu-
trino four-momentum components in the coordinate basis will be designated as
pμ.
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4.3 The general relativistic Boltzmann equation

In light of the need to conserve simultaneously both energy and lepton number,wewish
to beginwith a version of theBoltzmann equation that ismanifestly conservative across
all phase-space dimensions.Aswewill show, this is not true of the standard formulation
of the general relativistic Boltzmann equation. In this section, we outline the derivation
of both as presented by Cardall and Mezzacappa (2003) to illustrate the differences
and, of course, to arrive at a form of the Boltzmann equation that is better suited to
numerical application. Beforewe begin, we emphasize the following:While spacetime
is endowed with a natural metric, gμν , which is determined by Einstein’s equations
given the stress–energy content of spacetime, phase space is not. Consequently, the
development of general relativistic neutrino radiation hydrodynamics requires the
full machinery of the metric-free language of the differential and integral calculus of
forms. That is, the derivation we present below is not a matter of taste. Treatments
of non-relativistic kinetic theory typically assume that phase space is endowed with a
Euclidean metric. This can serve as a bookkeeping device at best, and it is important
to interpret the theory accordingly.

The one-particle phase space for particles of arbitrary mass is an eight-dimensional
space, whichwe labelM , of spacetime position x and four-momentum p. If we specify
a mass for the particle, m, which satisfies

m2 = −gμν p
μ pν, (10)

we confine ourselves to a hypersurface of M , which we write as Mm , which is the
phase space for particles of massm. The flow inMm defined by the particle trajectories
(x, p) is generated by the Liouville operator

Lm = pμ̂L μ
μ̂

∂

∂xμ
− Γ î

ν̂ρ̂ p
ν̂ pρ̂

∂

∂ pî
. (11)

L μ̂
μ is the composite transformation that takes us, first, from the coordinate basis to

the orthonormal frame of the Eulerian observer at rest with respect to the “laboratory”
and, second, via a Lorentz transformation, from the Eulerian frame to the frame of
reference comoving with the stellar core fluid:

L μ̂
μ = Λμ̂μ̄eμ̄μ. (12)

L μ
μ̂ is the inverse transformation. Γ μ̂ν̂ρ̂ are the Ricci Rotation Coefficients and are

given by

Γ μ̂ν̂ρ̂ = Γ μ̂μL ν
ν̂Γ

ρ̂
ρ Γ

μ
νρ + Γ μ̂μL ρ

ρ̂

∂L μ
ν̂

∂xρ
, (13)

whereΓ μνρ are theLevi-Civita connection coefficients corresponding to the spacetime
metric gμν .

For a given type of particle of mass m, the distribution function, f , gives the
density of such particles in phase space. An equation for the distribution function, the
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Boltzmann equation, is derived by considering a closed six-dimensional hypersurface
∂D bounding a region D in Mm . The net number of particles flowing through the
boundary of D is given by the generalized Stokes’ Theorem

N [∂D] =
∫

∂D
f ω =

∫

D
d( f ω), (14)

where the infinitesimal surface element ω normal to the flow across D is given by

ω = Lm ·Ω (15)

and Ω is an infinitesimal volume element in Mm . The product rule gives

d( f ω) = d f ∧ ω = d f ∧ (Lm ·Ω), (16)

where we have used the fact that dω = 0 (an expression of the general relativistic
Liouville’s Theorem that tells us that the phase-space flow is incompressible). But f ,
Lm , and Ω obey the identity

d f ∧ (Lm ·Ω) = Lm[ f ]Ω. (17)

Then

N [∂D] =
∫

D
Lm[ f ]Ω. (18)

Finally, the number of particles crossing the boundary ∂D of D in Mm is given by the
change in the number of particles in D due to emission, absorption, and scattering.
Defining the “collision term,” C [ f ], as the spacetime density of such events, we have

N [∂D] =
∫

D
C [ f ]Ω, (19)

and
Lm[ f ] = C [ f ]. (20)

Substituting for Lm using Eq. (11), we arrive at the Boltzmann equation in “standard”
form:

pμ̂L μ
μ̂

∂ f

∂xμ
− Γ ĵ

ν̂ρ̂ p
ν̂ pρ̂

∂uî

∂ p ĵ

∂ f

∂uî
= C [ f ]. (21)

Note that to obtain the Boltzmann equation, we had to consider integration on our
phase-space manifold Mm on which there is no natural metric. This necessitates the
use of the language of differential forms.

If we integrate over momentum space, we obtain the balance equation for particle
number

1√−g

∂

∂xμ
(√−gNμ

) =
∫

C [ f ]πm, (22)
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where

Nμ(x) =
∫

fL μ
μ̂ p
μ̂πm =

∫
f pμπm (23)

is the particle 4-current density and

πm = 1

E(p)

∣∣∣ det [∂p
∂u

]∣∣∣du1̂2̂3̂ (24)

is the invariant momentum-space 3-volume expressed in terms of the spherical

momentum-space coordinates: uî = (E = ‖p‖/c, μ ≡ cos θp, φp). But in light of the
fact that the Boltzmann equation is not expressed in manifestly conservative form it is
not obvious how we arrive at Eq. (22) by integrating over momentum space. We desire
to reexpress the Boltzmann equation in terms of spacetime and momentum-space
divergences so that it is manifestly conservative with respect to an integration over a
spacetime region, a momentum-space region, or both—i.e., a phase-space region.

Of course, the generalized Stokes’ Theorem, Eq. (14), is an expression of manifest
conservation, equating the change in a quantity within a volume of phase space in
terms of a surface term involving its flux on the volume’s boundary. The key insight
by Cardall and Mezzacappa (2003) was to recognize that the total exterior derivative
d( f ω) in Eq. (14) can instead be expressed as

d( f ω) = N [ f ]Ω, (25)

where

N [ f ] ≡ 1√−g

∂

∂xμ
(√−gL μ

μ̂ p
μ̂ f

)

−E(p)

∥∥∥∥det
[
∂p
∂u

]∥∥∥∥
−1

∂

∂uî

(
1

E(p)

∥∥∥∥det
[
∂p
∂u

]∥∥∥∥Γ ĵ
ν̂ρ̂ p

ν̂ pρ̂
∂uî

∂ p ĵ
f

)
.

(26)

Substituting Eq. (25) in Eq. (14) and using Eq. (19), we arrive at

1√−g

∂

∂xμ
(√−gL μ

μ̂ p
μ̂ f

)

−E(p)

∥∥∥∥det
[
∂p
∂u

]∥∥∥∥
−1

∂

∂uî

(
1

E(p)

∥∥∥∥det
[∂p
∂u

]∥∥∥∥Γ ĵ
ν̂ρ̂ p

ν̂ pρ̂
∂uî

∂ p ĵ
f

)

= C [ f ], (27)

which is the manifestly conservative formulation of the Boltzmann equation. It is now
obvious that upon integration over momentum space, for example, the momentum
derivative terms on the left-hand side of the Boltzmann equation in Eq. (27) will give
rise only to surface terms. The counterpart equation for 4-momentum conservation
can be derived in the same way (Cardall and Mezzacappa 2003) and is given by
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1√−g

∂

∂xν
(√−gT μν

)

−E(p)

∥∥∥∥det
[
∂p
∂u

]∥∥∥∥
−1

∂

∂uî

(
1

E(p)

∥∥∥∥det
[
∂p
∂u

]∥∥∥∥Γ ĵ
ν̂ρ̂ p

ρ̂ ∂u
î

∂ p ĵ
L ν̂

νT
μν

)

= −Γ μνρT νρ + L μ
μ̂ p
μ̂
C[ f ], (28)

where
T μν ≡ L μ

μ̂L
ν
ν̂ p
μ̂ pν̂ f (29)

is the specific particle stress-energy tensor.
As an illustrative example, we specialize Eq. (27) to the case of spherical sym-

metry, Lagrangian coordinates, and O(v/c) transport, as in Mezzacappa and Bruenn
(1993a, b, c). As shown by Cardall and Mezzacappa, Eq. (27) reduces to

∂

∂t

(
f

ρ

)
+ ∂

∂m

(
4πr2ρμ

f

ρ

)
+ 1

ε2

∂

∂ε

(
ε3

[
μ2

(
3v

r
+ ∂ ln ρ

∂t

)
− v

r

]
f

ρ

)

+ ∂

∂μ

(
(1 − μ2)

[
1

r
+ μ

(
3v

r
+ ∂ ln ρ

∂t

)]
f

ρ

)
= 1

ρ ε
C [ f ], (30)

in agreement with the conservative formulation of the Boltzmann equation used in
Mezzacappa and Bruenn (1993a, b, c). In spherical symmetry and to O(v/c) one can
arrive at a manifestly conservative form of the Boltzmann equation through trial and
error. However, in three dimensions and with full general relativity, such trial and error
approaches are doomed to failure. A manifestly conservative starting point becomes
paramount.

4.4 The 3 + 1 formulation of general relativity

The fundamental building blocks of the “3+1” formulation of general relativity are
the spacelike hypersurfaces corresponding to surfaces of constant τ , where τ is some
scalar function of the spacetime coordinates xμ: τ = τ(x0, x1, x2, x3). It is natural
to choose τ to be x0 = t . The spacelike hypersurfaces, Σt , are threaded by a time-
like congruence of constant-spatial-coordinate curves. The points of constant xi (t)
between two hypersurfaces separated by dt are connected by the four-vector t . At
each point of the hypersurface Σt , there is a unit timelike normal four-vector n sat-
isfying nμnμ = −1. n corresponds to the four-velocity of the observer at rest with
respect to the hypersurface. This is the generalization of the definition of the Eule-
rian observer familiar from non-relativistic formulations. The four-vector β, known
as the “shift” vector, describes how the spatial coordinates move within each hyper-
surface. The proper time between two hypersurfaces Σt and Σt+dt is given by αdt .
α is known as the “lapse” function. Given such a foliation of spacetime and such a
coordinatization, the squared spacetime line element becomes
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ds2 = −(α2 − βiβ i )dt2 + 2βi dx
i dt + γi j dxi dx j , (31)

where γi j is the metric on the hypersurface Σt . From Eq. (31), the spacetime metric
can be read off as

gμν =
(−α2 + βiβ i βi

βi γi j

)
, (32)

whose determinant g can be computed directly to find
√−g = α√

γ , where γ is the
determinant of the spatial metric.

In addition to the intrinsic geometry—specifically, the intrinsic curvature—of each
spacelike hypersurface, which is determined by the metric γi j , we describe how such a
hypersurface is embedded in the four-dimensional spacetime by its extrinsic curvature,
Ki j , which is related to the three-metric by

∂tγi j = −2αKi j + Diβ j + Djβi . (33)

Here Di corresponds to the covariant derivative onΣt corresponding to theLevi–Civita
connection associated with γi j . We can regard the coordinates of this formulation as
the metric components, γi j , and the components of the extrinsic curvature, Ki j , as
the velocities. The dynamics is supplied by the Einstein equations, which provide the
following evolution equations for the six independent components of Ki j :

∂tKi j = −Di D jα + βk∂kKi j + Kik∂ jβk + Kk j∂iβk

+α
(
(3)Ri j + KKi j − 2KikKkj

)
+ 4πα[γi j (S − E)− 2Si j ], (34)

where K is the trace of the extrinsic curvature tensor, and (3)Ri j is the Ricci curvature
tensor for the spacelike hypersurface. The source terms in Eq. (34) are given in terms
of the stress–energy tensor, Tαβ , by

Sμν = γ αμγ βνTαβ, (35)

Sμ = −γ αμnβTαβ, (36)

S = Sμμ, (37)

E = nαnβTαβ, (38)

where

nμ = 1

α
(1,−β i ) with nμ = (−α, 0) (39)

and
γ αμ = δαμ + nα nμ (40)

provide timelike and spacelike projections, respectively. While not drawn here, there
is a corresponding spacelike hypersurface to which the fluid four-velocity

uμ = W ( nμ + vμ ) (41)
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is the unit timelike normal, which defines the timelike basis element of the orthonormal
frame of reference of the inertial observer instantaneously comoving with the fluid and
at rest with respect to the hypersurface. This is our generalized Lagrangian observer
in this formalism. The projection into the slice defined by the normal uμ is given by

hαμ = δαμ + uα uμ. (42)

Here,W = −nμuμ is the Lorentz factor and vμ = (γ μνuν)/W the fluid three-velocity.

4.5 3 + 1 general relativistic hydrodynamics

The 3+1 slicing of spacetime allows us to formulate the radiation-hydrodynamics
equations in a form suitable for numerical solution. Here we briefly summarize the
3+1 form of the hydrodynamics equations given by Eqs. (4)–(6) (see, e.g., Anile 1989;
Rezzolla and Zanotti 2013 for details). The mass conservation equation [cf. Eq. (4)]
becomes

1

α
√
γ

[
∂t
(√
γ D

) + ∂i
(√
γ D

[
α vi − β i ] ) ] = 0, (43)

where D = W ρ, while the electron number conservation equation [cf. Eq. (6)]
becomes

1

α
√
γ

[
∂t
(√
γ D Ye

) + ∂i
(√
γ D Ye

[
α vi − β i ] ) ] = −mB L. (44)

Conservative forms of the energy and momentum equations are derived by decompos-
ing Eq. (5) into components relative to the spatial hypersurface. The energy equation
becomes

1

α
√
γ

[
∂t
(√
γ τfluid

) + ∂i
(√
γ
[
α (Si − D vi )− τfluid β i

] ) ]

= 1

α

[
α Sik Kik − Si∂iα

] + nμ G
μ, (45)

where τfluid = E−D, E = ρ h W 2− p, Sμ = ρ h W 2 vμ, and Sμν = ρ h W 2 vμ vν+
p γ μν , while the momentum equation is given by

1

α
√
γ

[
∂t
(√
γ S j

) + ∂i
(√
γ
[
α Sij − β i S j

] ) ]

= 1

α

[
Si ∂ jβ

i + 1

2
α Sik∂ jγik − E ∂ jα

] − γ jμ Gμ. (46)

The source terms modeling lepton and four-momentum exchange due to neutrino–
matter interactions (−L , −nμ Gμ, and γ jμ Gμ, respectively) will be discussed in
detail in Sect. 5.
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4.6 The 3 + 1 general relativistic Boltzmann equation

The general relativistic Boltzmann equation in both conservative form and using
the spacetime coordinates associated with the 3+1 decomposition of spacetime was
derived by Cardall et al. (2013a). Essential to the derivation is the recognition that the
composite transformation L μ

μ̂ can be viewed as the coordinate basis components
(μ) of the element of the tetrad of four-vectors (μ̂) corresponding to the frame carried
by the observer instantaneously comoving with the fluid. The Eulerian decomposition
of L μ

μ̂ into timelike and spacelike components is

L μ
μ̂ = Lμ̂n

μ + lμμ̂, (47)

where Lμ̂ is the coefficient of the timelike component of the tetrad element (four-
vector) designated by μ̂, and lμμ̂ is the spacelike component of this tetrad element.
Explicit expressions forLμ̂ and lμμ̂ can be found in Cardall et al. (2013a). The Ricci
Rotation Coefficients can be expressed as

Γ ρ̂ ν̂μ̂ = L ρ̂
νL

μ
μ̂∇μL ν

ν̂ . (48)

Using the decomposition (47), we are left with three terms to evaluate:

L ρ̂
νL

μ
μ̂

(
Lν̂∇μnν + nν∇μLν̂ + ∇μlν ν̂

)
. (49)

The results can be found in Cardall et al. (2013a). With the decomposition of the
momentum-space transformation matrix Pĩ

î into elements parallel and perpendicular

to the three-momentum pî ,

Pĩ
î = Qĩ pî

p
+Uĩ

î , (50)

with

Qĩ = Pĩ
î p

î

p
, (51)

p =
√
pî pî , (52)

Uĩ
î = Pĩ

ĵ k
ĵ
î , (53)

k ĵ
î = δ ĵ hati + p ĵ pî

p2
. (54)

The 3+1 general relativistic Boltzmann equation can now be written as

SN + MN = C[ f ], (55)
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where the spacetime divergence is

SN =
(−p0̂

)

α
√
γ

[
∂ (DN )

∂t
+ ∂ (FN )

i

∂xi

]
, (56)

with

DN =
√
γ(−p0̂
) Lμ̂ pμ̂ f , (57)

(FN )
i =

√
γ(−p0̂
)
(
α �i μ̂ − β iLμ̂

)
pμ̂ f . (58)

DN and (FN )
i are, respectively, the conserved number density and number flux. The

momentum-space divergence, MN , can be expressed as

MN = 1

α
√
γ

(−p0̂
)

√
λ

∂

∂ pı̃

{√
λ
Qı̃

(−p0̂
)

p

[
(RN )

0̂ + (ON )
0̂
]

+√
λUı̃

ı̂

[
(RN )

ı̂ + (ON )
ı̂
]}
, (59)

where

(RN )
ρ̂ = α

√
γ(−p0̂
) pν̂ pμ̂ f

×
[
L ρ̂ � j ν̂

(
Lμ̂
α

∂α

∂x j
− �k μ̂ K jk

)

−�ρ̂ j
(
Lν̂Lμ̂
α

∂α

∂x j
− �kν̂ Lμ̂

α

∂βk

∂x j
− �

k
ν̂ �

i
μ̂

2

∂γki

∂x j

)]
(60)

describes momentum shifts (i.e., redshift and angular aberration in momentum-space
spherical coordinates) due to gravity as embodied in the spacetime geometry,

(ON )
ρ̂ =

√
γ(−p0̂
) pν̂ pμ̂ f

×
{
L ρ̂

[
Lμ̂
∂Lν̂
∂t

+
(
α � j μ̂ − β jLμ̂

) ∂Lν̂
∂x j

]

−�ρ̂k
[
Lμ̂
∂�kν̂

∂t
+

(
α � j μ̂ − β jLμ̂

) ∂�kν̂
∂x j

]}
(61)

are ‘observer corrections’ due to the acceleration of the fluid and, consequently, chang-
ing comoving observers with different velocities (and partially entangled with the
geometry as well), and
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√
λ =

∥∥∥∥det
[
∂p
∂u

]∥∥∥∥ . (62)

4.7 Multi-frequencymoment kinetics and the closure problem

Because of the prohibitively high computational cost associated with solving the
Boltzmann equation with sufficient phase-space resolution, most (all in three spa-
tial dimensions) supernova models to date employ a moments approach to neutrino
transport. In the moments approach, one solves for a finite number of moments of
the distribution function (instead of the distribution function), and the hierarchy of
moment equations is closed by a closure procedure, relating higher-order moments to
the evolved lower-order moments.

The basic idea of the moments approach can be illustrated by considering the
Boltzmann equation in one spatial dimension

∂t f + μ∂x f = χ ( f0 − f )+ σ (〈 f 〉 − f ), (63)

where, for simplicity, we let the distribution function depend on spatial position, x ,
momentum-space angle cosine, μ, and time, t . χ is the absorption opacity, f0 is the
isotropic equilibrium distribution, and σ is the scattering opacity due to isotropic and
isoenergetic scattering. A finite number (N+1) of angular moments of the distribution
function can be formed as weighted integrals over angle:

m(k)(x, t) = 〈 f , μk 〉 ≡ 1

2

∫ 1

−1
f (μ, x, t) μk dμ, k = 0, 1, . . . , N . (64)

Thus, in a truncated moments approach the distribution function is approximated by
the moments vector

mN = (
m(0),m(1), . . . ,m(N )

)T (65)

so that

f (μ, x, t) ≈
N∑

k=0

c(k) m(k)(x, t) μk, (66)

where c(k) are normalization constants. Similarly, by takingmoments of theBoltzmann
equation in Eq. (63), the hierarchy of moment equations is given by

∂tm
(0) + ∂xm(1) = χ ( f0 − m(0)), (67)

∂tm
(k) + ∂xm(k+1) = χ (〈 f0, μk〉 − m(k))+ σ (m(k)0 − m(k)), for k > 0, (68)

where on the right-hand sides we have defined

〈 f0, μk〉 = f0
[1 + (−1)k]
2 (k + 1)

and m(k)0 = m(0)
[1 + (−1)k]
2 (k + 1)

. (69)

When considering the expansion in Eq. (66), the moments approach is simply an
approximation to the angular dependence of the distribution function in terms of the
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monomial basis {μk}Nk=0. The power of the moments approach becomes evident when
collisions are moderate to strong. In this case, collisions tend to drive the zeroth
moment m(0) towards the isotropic distribution f0, the higher-order odd moments
decay exponentially to zero (m(k) → 0; k odd), and the higher-order even moments
tend tom(k) → m(0)/(k+1) (k even). Thus, the angular dependence of the distribution
is captured well by only a few moments. In the absence of collisions, more moments
are typically needed to capture the angular shape of the distribution function. Note
in particular that in Eq. (68), the equation for the k-th moment contains the k + 1-
th moment. Thus, in a truncated moment model based on N + 1 moments, mN ,
the equation for m(N ) contains the moment m(N+1), which must be related to the
lower order moments by a closure procedure—i.e., m(N+1) := g(mN )—in order
to form a closed system of equations. This is referred to as the closure problem.
Typically, the closure function g is a nonlinear function of mN , which can make
the construction of numerical methods for moment models more difficult. There are
several challenges associated with the construction of closures for moment hierarchies
(see, e.g., Levermore 1996), one being the construction of closures that preserve the
hyperbolic character of the system of moment equations; see, e.g., Pons et al. (2000),
for a discussion of this topic in the context of two-moment models. In the remainder
of this section, we will discuss relativistic two-moment models (N = 1 in the simpler
formalism above). In the multi-dimensional setting, the two-moment model evolves
four unknowns (e.g., the energy density and three components of the momentum
density), and, in the relativistic setting considered here, second and third moments
appear in the equations for the first moments.

Conservative, 3+1 general relativistic, multi-frequency (or multi-energy) two-
moment formalisms have been developed by Shibata et al. (2011) and Cardall et al.
(2013b). The formalism of Shibata et al. (2011) is based on the formalism of Thorne
(1981), while the formalism of Cardall et al. (2013b) starts out with the conserva-
tive formulation of kinetic theory from Cardall and Mezzacappa (2003) discussed in
Sect. 4.3. Both approaches, of course, lead to the same result, which we summarize
here.

Covariant expressions for the first few moments of the distribution function f are
given by

Nμ(x, t) =
∫

Vp

f (p, x, t) pμ πm, (70)

Tμν(x, t) =
∫

Vp

f (p, x, t) pμ pν πm, (71)

Qμνρ(x, t) =
∫

Vp

f (p, x, t) pμ pν pρ πm, (72)

where Nμ is the four-current density, Tμν the stress-energy tensor, and the rank three
tensor of moments Qμνρ is sometimes referred to as the tensor of fluxes or heat
flux tensor. When expressed in terms of comoving frame spherical-polar momentum
coordinates (ε, ϑ, ϕ), the invariant momentum-space 3-volume in Eq. (24) is
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πm = ε sin ϑ dϑ dϕ dε. (73)

Higher-order moments can be constructed similarly in a straightforward way, but we
will limit the discussion to moment models involving the moments in Eqs. (70)–(72).
Note that the moments defined above depend only on position x and time t . However,
because neutrino heating and cooling rates are sensitive to the neutrino energy (cf.
Sect. 2), supernova models based on moment descriptions for neutrino transport retain
the energy dimension and solve for angular moments, or spectral moments, defined
by

N μ(ε, x, t) = 1

4π

∫

S2
f pμ

dω

ε
, (74)

T μν(ε, x, t) = 1

4π

∫

S2
f pμ pν

dω

ε
, (75)

Qμνρ(ε, x, t) = 1

4π

∫

S2
f pμ pν pρ

dω

ε
, (76)

where dω = sin ϑdϑdϕ and the integrals extend over the sphere

S
2 = {

ω ∈ (ϑ, ϕ) |ϑ ∈ [0, π ], ϕ ∈ [0, 2π) }, (77)

where ϑ and ϕ are momentum-space angular coordinates. The angular moments
defined in Eqs. (74)–(76) depend on the neutrino energy, ε, position, x , and time,
t . They are related to the moments in Eqs. (70)–(72) by the integral over energy

{
Nμ, Tμν, Qμνρ

}
(x, t) =

∫ ∞

0

{
N μ, T μν, Qμνρ

}
(ε, x, t) dVε, (78)

where the infinitesimal energy-space shell-volume element is dVε = 4πε2dε. In
forming the angularmoments we have used the freedom in choosing distinct spacetime
and momentum space coordinates: x and t are spacetime coordinates in a global
coordinate basis, while {ε, ϑ, ϕ} are momentum coordinates in a comoving basis.

Moment equations governing the evolution of the angular moments are derived
from the general relativistic Boltzmann equation discussed in Sect. 4.3. Since current
supernova modelers employing angular moment models use either a flux-limited dif-
fusion (one-moment) or a two-moment approach, we will limit the discussion to these
approaches. In this context, we will need evolution equations for the spectral neutrino
number density, energy density, and three-momentum density. The evolution equation
for the neutrino number density is obtained by multiplying Eq. (27) by 1/(4πε) and
integrating over S

2:

∇νN ν − 1

ε2

∂

∂ε

(
ε2 T μν ∇μuν

) = 1

4π

∫

S2
C [ f ] dω

ε
, (79)

where uν is the four-velocity of the observer measuring neutrino energy ε (i.e., the
comoving observer). Note that the left-hand side of Eq. (79) is in divergence form, and
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the use of spherical momentum-space coordinates is apparent from the form of the
second term. Integrating over energy (dVε) gives rise to the balance equation

∇νN ν =
∫

Vp

C [ f ]πm, (80)

where the left-hand side is in conservative form. The right-hand side gives rise to
lepton exchange sources and sinks due to neutrino–matter interactions (e.g., emission
and absorption). In a similar manner, conservative evolution equations for the neu-
trino four-momentum are obtained by multiplying the four-momentum conservative
Boltzmann equation in Eq. (28) by 1/(4πε) and integrating over S

2:

∇νT μν − 1

ε2

∂

∂ε

(
ε2 Qμνρ ∇νuρ

) = 1

4π

∫

S2
C [ f ] pμ dω

ε
. (81)

Again, integrating this equation over energy results in the balance equation

∇νTμν =
∫

Vp

C [ f ] pμ πm, (82)

where the left-hand side is in conservative form, and the right-hand side gives rise to
four-momentum exchange with the fluid.

Equation (81) forms a basis for the two-moment model for neutrino transport. Since
neutrinos exchange lepton number and four-momentum with the fluid, Eq. (79) needs
to be considered, as well. However, these equations are not independent. Due to the
relations [obvious from the definitions in Eqs. (74)–(76)]

N ν = −uμ
ε

T μν and T νρ = −uμ
ε

Qμνρ, (83)

Equations (79) and (81) are related in a similar way: Eq. (79) can be obtained from
Eq. (81) by a contraction with −uμ/ε. In a numerical implementation targeting both
lepton and four-momentum exchange between neutrinos and the stellar fluid, such
consistency is desirable since the numerical method then preserves a critical structure
of themoment system. In the following, we provide versions of the two-momentmodel
in the 3+1 framework of general relativity. Before we delve into the details, we briefly
discuss two useful decompositions of the angular moments.

4.7.1 Lagrangian decompositions

With comoving frame four-momentum coordinates, Lagrangian decompositions of
tensors is a natural way to express the angular moments in Eqs. (74)–(76) in terms of
elementary moments of the distribution function. This is achieved with the Lagrangian
decomposition of the particle four-momentum

pμ = ε ( uμ + �μ ), (84)
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where uμ is the four-velocity of the Lagrangian observer, and �μ is a unit four-vector
orthogonal to uμ; i.e., �μ�μ = 1 and uμ�μ = 0. Then, ε = −uμ pμ is the neutrino
energymeasured by the Lagrangian observer. In terms of the composite transformation
of the neutrino four-momentum, pμ = L μ

μ̂
pμ̂ = ε

(
L μ

0̂
+ L μ

ı̂ �
ı̂
)
, a comparison

with Eq. (84) implies that L μ

0̂
= uμ and �μ = L μ

ı̂ �
ı̂ , where

�ı̂ = {
cosϑ, sin ϑ cosϕ, sin ϑ sin ϕ

}
(85)

are components of the spatial unit vector in the orthonormal comoving frame. (See
Sect. 4.3 for the definition of L μ

μ̂
.) Inserting Eq. (84) into Eq. (74) results in the

Lagrangian decomposition of the spectral neutrino four-current density

N μ = D uμ + I μ, (86)

where the angular moments

{
D,I μ

}
(ε, x, t) = 1

4π

∫

S2
f (ω, ε, x, t)

{
1, �μ

}
dω (87)

are the comoving spectral number density and number flux, respectively. Using the
fluid four-velocity uμ and the projector in Eq. (42), these components are obtained
from D = −uμN μ and I μ = hμνI ν . The moments in Eq. (87) are the most
elementary in the moment hierarchy, and for the two-moment model, these are used
in the closure procedure to determine the higher-order moments in terms of D and
I μ. Note that for an isotropic distribution function f = f0 (where f0 is independent
of ω), D = f0 and I μ = 0.

In a similar way, using Eq. (84) in Eq. (75), the Lagrangian decomposition of the
stress-energy tensor is given by

T μν = J uμ uν + H μ uν + uμH ν + K μν, (88)

where

{
J , H μ, K μν

}
(ε, x, t) = ε

4π

∫

S2
f (ω, ε, x, t)

{
1, �μ, �μ�ν

}
dω, (89)

and H μ and K μν are orthogonal to uμ (spacelike in the comoving frame); i.e.,
uμH μ = uμK μν = uνK μν = 0. In Eq. (89), J , H μ, and K μν are respectively
the spectral energy density, momentum density, and stress measured by a Lagrangian
observer. The four-velocity uμ and the associated orthogonal projector hμν are used
to extract components of the Lagrangian decompositions of T μν :

J = uμ uν T
μν, H μ = −uν h

μ
ρ T

νρ, and K μν = hμρ h
ν
σ T

ρσ . (90)
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Note that the Lagrangian energy density and momentum density are related to the
number density and flux by a factor ε; i.e.,

{
J , H μ

} = ε {D, I μ
}
. (91)

Finally, a Lagrangian decomposition of the rank-three tensor in Eq. (76) gives

Qμνρ = ε (J uμ uν uρ + H μ uν uρ + H ν uμ uρ + H ρ uμ uν

+ K μν uρ + K μρ uν + K νρ uμ + L μνρ
)
, (92)

where the spectral rank-three tensor measured by a Lagrangian observer,

L μνρ(ε, x, t) = ε

4π

∫

S2
f (ω, ε, x, t) �μ�ν�ρ dω, (93)

is orthogonal to uμ—i.e., uμL μνρ = uνL μνρ = uρL μνρ = 0—and is obtained
fromQμνρ using the orthogonal projector:

L μνρ = 1

ε
hμσ h

ν
κ h
ρ
λQ

σκλ. (94)

4.7.2 Eulerian decompositions

Eulerian projections of tensors are particularly useful when deriving evolution equa-
tions in the context of moment models for neutrino transport, as it is the Eulerian
number density, energy density, and three-momentum density that are governed by
conservation laws. In a manner similar to the Lagrangian decomposition in Eq. (86),
the Eulerian decomposition of the spectral number current density is

N μ = N nμ + G μ, (95)

where nμ G μ = 0. The four-velocity nμ and the projector γμν = gμν + nμ nν can be
used to extract the Eulerian components

N = −nμN
μ and G μ = γ μνN ν, (96)

whereN andG μ are the spectral number density and number fluxdensitymeasured by
an Eulerian observer, respectively. Note thatN and G μ are still considered functions
of ε, the neutrino energy measured by a Lagrangian observer. Thus, the definition in
Eq. (95) should merely be viewed as a decomposition ofN μ in a different basis than
in Eq. (86), not as moments of the distribution with respect to Eulerian momentum
coordinates. Inserting the Lagrangian decomposition in Eq. (86) into the expressions
in Eq. (96), the Eulerian number density and number flux density are expressed in
terms of the Lagrangian number density and number flux density as
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N = W D + vμI μ, (97)

G μ = [
δμν − nμvν

]
I ν + W D vμ. (98)

Similarly, the Eulerian decomposition of the stress-energy tensor is

T μν = E nμ nν + Fμ nν + nμF ν + S μν, (99)

where E , Fμ, and S μν are respectively the spectral energy density, momentum
density, and stress measured by an Eulerian observer. The Eulerianmomentum density
and stress are spacelike (i.e., nμFμ = nμS μν = nνS μν = 0), and the components
of the Eulerian decomposition of T μν are extracted using nμ and the associated
orthogonal projector γμν :

E = nμ nν T
μν, Fμ = −nν γ

μ
ρ T

νρ, S μν = γ μρ γ νσ T ρσ . (100)

Inserting the Lagrangian decomposition in Eq. (88) into the expressions in Eq. (100),
the Eulerian energy density, momentum density, and stress are expressed in terms of
the corresponding Lagrangian quantities as [cf. Equations (B8)–(B10) in Cardall et al.
2013b]

E = W 2J + 2W vμH
μ + vμ vνK μν, (101)

Fμ = W vμ
(
WJ + vνH ν

) + [
δμρ − nμ vρ

] (
WH ρ + vνK νρ

)
, (102)

S μν = W 2J vμvν + Wvν
[
δμρ − nμvρ

]
H ρ + Wvμ

[
δν σ − nνvσ

]
H σ

+ [
δμρ − nμvρ

][
δν σ − nνvσ

]
K ρσ . (103)

Finally, and similar to Eqs. (95) and (99), the Eulerian decomposition of the rank three
tensor in Eq. (76) is given by

Qμνρ = ε (X nμ nν nρ + Y μ nν nρ + Y ν nμ nρ + Y ρ nμ nν

+ Z μν nρ + Z μρ nν + Z νρ nμ + W μνρ
)
, (104)

where the Eulerian components are obtained from

X = −1

ε
nμ nν nρQ

μνρ, (105)

Y μ = 1

ε
γ μσ nν nρQ

σνρ, (106)

Z μν = −1

ε
γ μσ γ

ν
κ nρQ

σκρ, (107)

W μνρ = 1

ε
γ μσ γ

ν
κ γ

ρ
λQ

σκλ. (108)

These components can be expressed in terms of the Lagrangian moments by inserting
the Lagrangian decomposition in Eq. (92). We will not repeat these tedious expres-
sions here, but see Eqs. (B15), (B16), (B17), and (B18) in Cardall et al. (2013b) for
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expressions relating respectively Z , Yμ, Zμν , and Wμνρ in terms of the Lagrangian
moments J , H μ, K μν , and L μνρ (note the difference of the factor of ε between
our definition of Qμνρ and the corresponding variable in Cardall et al. 2013b).

While components of Lagrangian decompositions are more closely related to the
distribution function, Eulerian decompositions appear to be more natural to use in the
3+1 approach, and powerful in simplifying terms appearing in the moment equations,
especially for the energy derivative terms in Eqs. (79) and (81), which contain con-
tractions with the covariant derivative of the fluid four-velocity. As elaborated on in
Cardall et al. (2013b), Eulerian decompositions of T μν and Qμνρ , in combination
with the Eulerian decomposition of uμ, in Eq. (41) result in surprisingly simple expres-
sions, without explicit reference to connection coefficients [cf. Eq. (13)]. Moreover,
as emphasized by Cardall et al. (2013b), consistent use of Eulerian decompositions
in spacetime and momentum-space divergences in the moment equations turns out to
simplify the elucidation of the relationship between the equations for four-momentum
and number conservation in the 3+1 case.

4.7.3 Two-moment kinetics

In this section we review two-moment models in the 3+1 formulation of general
relativity, which can serve as a basis for the development of numerical methods and
their implementation in codes tomodel neutrino transport in core-collapse supernovae.
We present three versions, all based on Eq. (81), but using different projections. The
projection of Eq. (81) orthogonal and tangential to the spacelike slice of the Eulerian
observer (using nμ and γμν) gives rise to the Eulerian two-moment model, while the
projection of Eq. (81) orthogonal and tangential to the spacelike slice of the Lagrangian
observer (using uμ and hμν) gives rise to the Lagrangian two-moment model. We
also present a number conservative two-moment model, which is closely related to
the Lagrangian two-moment model, but uses projections based on uμ/ε and hμν/ε.
This results in one of the evolved equations being Eq. (79), which is neutrino number
conservative. Analytically, all these formulations are equivalent, but they could have
different numerical properties.
Eulerian two-moment modelThe Eulerian two-moment model evolves the spectral
energy density and momentum density measured by an Eulerian observer (E andF j ,
respectively). The energy equation is obtained as the projection of Eq. (81) onto the
four-velocity of the Eulerian observer [i.e., contracting −nμ with Eq. (81)]. The result
is:

1

α
√
γ

[
∂t
(√
γ E

) + ∂i
(√
γ
[
αF i − β i E ] ) ] − 1

ε2

∂

∂ε

(
ε2 (−nμ)Q

μνρ ∇νuρ
)

= 1

α

[
αS i j Ki j − F i ∂iα

] + W

4π

∫

S2
C ( f ) dω + v j

4π

∫

S2
C ( f ) � j dω, (109)

where the sources on the right-hand side are due to spacetime geometry and energy
exchange between neutrinos and the fluid. The left-hand side is in divergence form,
where the divergence operates on the spacetime-plus-energy phase-space. In express-

123



4 Page 34 of 174 A. Mezzacappa et al.

ing the terms inside the energy derivative (last term on the left-hand side), we make
use of the Eulerian decomposition in Eq. (104) to write

− nμ
ε

Qμνρ ∇νuρ
= (

X nν nρ + Y ν nρ + nν Y ρ + Z νρ
)∇νuρ

= W

α

{ (
Y i − X vi

)
∂iα + Yk v

i ∂iβ
k + αZ ki

(
1

2
vm ∂mγki − Kki

) }

+ 1

α

{
Yk ∂t

(
Wvk

) − X ∂tW − (
αY i − X β i

)
∂iW

+ (
αZ i

k − Yk β
i ) ∂i

(
Wvk

) }
, (110)

which account for changes in the spectral energy density due to gravitational energy
shifts and the fact that adjacent comovingobserver velocities in spacetime are generally
different.

The momentum equation is obtained as the projection of Eq. (81) into the slice with
normal given by nμ [i.e., contracting γ jμ with Eq. (81)], which results in

1

α
√
γ

[
∂t
(√
γF j

) + ∂i
(√
γ
[
αS i

j − β iF j
] )] − 1

ε2

∂

∂ε

(
ε2 γ jμQ

μνρ ∇νuρ
)

= 1

α

[
Fi ∂ jβ

i + 1

2
αS ik ∂ jγik − E ∂ jα

] + 1

4π

∫

S2
C ( f ) � j dω + Wv j

4π

∫

S2
C ( f ) dω,

(111)

where the right-hand side gives rise to changes in the spectral momentum density due
to spacetime geometry and neutrino–matter interactions. Again, using the Eulerian
decomposition in Eq. (104), the terms inside the energy derivative can be written as

γ jμ

ε
Qμνρ ∇νuρ

= (
Y j n

ν nρ + Z ν
j nρ + Z ρ

j nν + W νρ
j

)∇νuρ
= W

α

{ (
Z i

j − Y j v
i ) ∂iα + Z jk v

i ∂iβ
k + αW ki

j

(
1

2
vm ∂mγki − Kki

) }

+ 1

α

{
Z jk ∂t

(
Wvk

) − Y j ∂tW − (
αZ i

j − Y j β
i ) ∂iW

+ (
αW i

jk − Z jk β
i ) ∂i

(
Wvk

) }
, (112)

which account for changes in the spectral momentum density due to gravitational
comoving observer effects.

An obvious advantage of the Eulerian two-moment model given by Eqs. (109) and
(111) is the conservative form. Integrating these equations over energy space (using
dVε = 4πε2dε) results in the radiation energy equation
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1

α
√
γ

[
∂t
(√
γ E

) + ∂i
(√
γ
[
α Fi − β i E ] ) ]

= 1

α

[
α Si j Ki j − Fi ∂iα

] + W
∫

Vp

C [ f ] ε πm + v j
∫

Vp

C [ f ] ε � j πm (113)

and radiation momentum equation

1

α
√
γ

[
∂t
(√
γ Fj

) + ∂i
(√
γ
[
αSi j − β i Fj

] ) ]

= 1

α

[
Fi ∂ jβ

i + 1

2
α Sik ∂ jγik − E ∂ jα

] +
∫

Vp

C [ f ] ε � j πm + Wv j

∫

Vp

C [ f ] ε πm,
(114)

where the energy-integrated Eulerian moments are given by

{
E, Fμ, Sμν

} =
∫ ∞

0

{
E , Fμ, S μν

}
dVε. (115)

Equations (113) and (114) are conservation laws for radiation energy and momen-
tum in the sense that in the case of Cartesian coordinates in flat spacetime, with no
neutrino–matter interactions, the right-hand sides vanish, and the equations express
exact conservation of radiation energy and momentum.

The Eulerian two-moment model presented here is the basis for several codes
developed to model neutrino transport in core-collapse supernovae (O’Connor 2015;
Kuroda et al. 2016; Roberts et al. 2016): the GR1D code (O’Connor 2015) solves the
equations in spherical symmetry; the Zelmani code (Roberts et al. 2016) solves the
equations in three spatial dimensions, but does not include velocity dependent terms
(i.e., vi = 0 in the transport equations); and Kuroda et al. (2016) solve the full system
in three spatial dimensions.
Lagrangian two-moment modelThe Lagrangian two-moment model is an alternative
to the Eulerian two-moment model discussed above, where the spectral energy density
andmomentumdensitymeasured by theLagrangian observerwith four-velocityuμ are
evolved (J andH j , respectively). The energy equation is obtained as the projection
of Eq. (81) along the four-velocity of the Lagrangian observer [i.e., contracting −uμ
with Eq. (81)], which results in

1

α
√
γ

[
∂t
(√
γ
[
WJ + viHi

] ) + ∂i
(√
γ
[
αH i + (

α vi − β i )WJ
] ) ]

− 1

ε2

∂

∂ε

(
ε3T μν ∇μuν

) = −T μν∇μuν + 1

4π

∫

S2
C ( f ) dω, (116)

where the contraction of the stress-energy equation with the covariant derivative of
the Lagrangian observer’s four-velocity is given in 3 + 1 form as
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T μν ∇μuν
= (

E nμ nν + Fμ nν + nμF ν + S μν
)∇μuν

= W

α

{ (
F i − E vi

)
∂iα + Fk v

i ∂iβ
k + αS ki

(
1

2
vm ∂mγki − Kki

) }

+ 1

α

{
Fk ∂t

(
Wvk

) − E ∂tW − (
αF i − E β i

)
∂iW

+ (
αS i

k − Fk β
i ) ∂i

(
Wvk

) }
, (117)

which accounts for changes to the spectral energy density from gravitational effects
and from the fact that adjacent comoving observers in spacetime have different veloc-
ities. In Eq. (117), we made use of the Eulerian decomposition of the stress-energy
tensor, which, as discussed at the end of Sect. 4.7.2, is more convenient than using the
Lagrangian decomposition, since it keeps the number of terms in the expression to a
minimum and simplifies book-keeping. The components of the Eulerian decomposi-
tion are related to the Lagrangian components by Eqs. (101)–(103).

The Lagrangian momentum equation is obtained by projecting Eq. (81) tangential
to the slice with uμ as the normal [i.e., contracting h jμ with Eq. (81)], which gives

1

α
√
γ

[
∂t
(√
γ
[
WH j + viKi j

] ) + ∂i
(√
γ
[
αK i

j + (
α vi − β i )WH j

] ) ]

− 1

ε2

∂

∂ε

(
ε2 h jμQ

μνρ ∇νuρ
) = T μν

(∇νh jμ + Γ ρjνhρμ
) + 1

4π

∫

S2
C ( f ) � j dω,

(118)

where the “geometry” source on the right-hand side can be written as

T μν
(∇νh jμ + Γ ρjνhρμ

)

= 1

2
T μν ∂ j gμν + Wv j T

μν∇μuν + uμT
μν ∂ν

(
Wv j

)
. (119)

Again, using the Eulerian decomposition ofT μν , the first term on the right-hand side
of Eq. (119) can be written as

1

2
T μν ∂ j gμν = 1

α

[
Fi ∂ jβ

i + 1

2
αS ik ∂ jγik − E ∂ jα

]
, (120)

which also appears on the right-hand side of Eq. (111). Similarly, the third term on the
right-hand side of Eq. (119) can be written as

uμT
μν ∂ν

(
Wv j

) = −W

α

{
E − vk Fk

}
∂t
(
Wv j

)

− W

α

{ (
αF i − β i E ) − vk (αS i

k − β i Fk
) }
∂i
(
Wv j

)
,

(121)
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while the second term on the right-hand side of Eq. (119) contains the expression in
Eq. (117). Finally, the expression inside the energy derivative term on the left-hand
side of Eq. (118) can be written as

h jμ

ε
Qμνρ ∇νuρ

= ( 1
ε
Q νρ

j − Wv j T
νρ

)∇νuρ
=

{ (
Y j − Wv j E

)
nν nρ + (

Z ν
j − Wv j F

ν
)
nρ

+ (
Z ρ

j − Wv jF
ρ
)
nν + (

W νρ
j − Wv jS

νρ
) }∇νuρ, (122)

which is a contraction of Eulerian decompositions of rank two tensors, with compo-
nents

(
Y j − Wv j E

)
,
(
Z ν

j − Wv j F ν
)
, and

(
W νρ

j − Wv jS νρ
)
, contracted with

the covariant derivative of the fluid four-velocity, and can be written in a form similar
to Eq. (112).

The Lagrangian two-moment model presented here [Eqs. (116) and (118)] is the
basis for several codes used to model neutrino transport in core-collapse supernovae:
Müller et al. (2010) used it in conjunction with the conformal flatness approximation
to GR (CFA) and ray-by-ray neutrino transport transport; and Just et al. (2015) and
Skinner et al. (2019) used this model in itsO(v/c) limit to develop multi-dimensional
neutrino transport codes.
Number conservative two-moment modelThe number conservative model is yet
another formulation of two-moment transport, which evolves the spectral number
density as measured by the Eulerian observer (with four-velocity nμ) and the spec-
tral number flux. The equation for the number density is obtained (1) directly from
Eq. (79), (2) by contraction of Eq. (81) with −uμ/ε, or (3) by dividing Eq. (116) by ε.
In 3 + 1 form it is given by

1

α
√
γ

[
∂t
(√
γ
[
WD + viIi

] ) + ∂i
(√
γ
[
αI i + (

α vi − β i )WD
] ) ]

− 1

ε2

∂

∂ε

(
ε2 T μν ∇μuν

) = 1

4π

∫

S2
C ( f )

dω

ε
, (123)

where the expression inside the energy derivative (last term on the left-hand side) is
given by Eq. (117). Equation (123) is conservative in the sense that an integration over
energy space gives the balance equation Eq. (80), which in 3 + 1 form is given by

1

α
√
γ

[
∂t
(√
γ N

) + ∂i
(√
γ
[
α Gi − β i N ] ) ] =

∫

Vp

C [ f ]πm, (124)

expressing exact particle conservation in the absence of particle-converting neutrino–
matter interactions (e.g., emission and absorption).
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The equation for the number flux density is obtained by contraction of h jμ/ε with
Eq. (81) [or by dividing Eq. (118) by ε]:

1

α
√
γ

[
∂t
(√
γ
[
WI j + viK̂i j

] ) + ∂i
(√
γ
[
α K̂ i

j + (
α vi − β i )WI j

] ) ]

− 1

ε2

∂

∂ε

(
ε2 h jμ Q̂

μνρ ∇νuρ
)

= 1

2
T̂ μν ∂ j gμν + 1

ε
Q̂ μν

j ∇νuμ − N ν ∂νu j

+ 1

4π

∫

S2
C ( f ) � j

dω

ε
. (125)

Here, we use the “hat” to denote previously-defined moments divided by ε; e.g.,

{
T̂ μν, Q̂μνρ

} = 1

ε

{
T μν, Qμνρ

}
. (126)

The expression in the energy derivative in Eq. (125) is given by Eq. (122). The first
term on the right-hand side of Eq. (125) can be written as [cf. Eq. (118)]

1

2
T̂ μν ∂ j gμν = 1

α

{
F̂i ∂ jβ

i + 1

2
α Ŝ ik ∂ jγik − Ê ∂ jα

}
, (127)

while the third term on the right-hand side of Eq. (125) can be written as

N ν∂νu j = 1

α

{
N ∂t

(
Wv j

) + (
α G i − β iN )

∂i
(
Wv j

) }
, (128)

where N and G i are written in terms of Lagrangian moments in Eqs. (97) and (98).
The second term on the right-hand side of Eq. (125) can be written as

1

ε
Q̂ μν

j ∇νuμ =
{
Ŷ j n

μ nν + Ẑ μ
j nν + nμ Ẑ ν

j + Ŵ μν
j

}
∇νuμ, (129)

which is in the same form as Eq. (117), but where Ŷ j , Ẑ
μ

j , and Ŵ μν
j , replace E ,

Fμ, and S μν , respectively.
This number conservative two-momentmodelwas presented in spherical symmetry,

assuming the conformal flatness approximation (CFA) to general relativity, by Müller
et al. (2010), and was also presented in theO(v/c) limit by Just et al. (2015), but it was
not explicitly used in the numerical techniques developed by either of these authors.
Themodel presented here is the 3+1 general relativistic version of that model, without
approximation. It should also be mentioned that Rampp and Janka (2002) developed a
two-moment, variable Eddington factor method based on solving both the Lagrangian
two-moment model and the number conservative two-moment model simultaneously,
in spherical symmetry and in the O(v/c) limit, treating the radiation energy density,
momentum density, number density and number flux density as independent variables.
However, resulting from inconsistency between the energy and number equations, in
this approach the mean energy in an energy group, J /D , is not constrained to the
group boundaries, and can even move outside the group (Müller et al. 2010).
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4.7.4 The closure problem

The two-moment models discussed above are not closed. The rank-two tensor K μν

defined in Eq. (89) and the rank-three tensor L μνρ defined in Eq. (93) are present in
various terms in the two-moment model: components of K μν are present in space-
time derivative terms, while components of K μν and L μνρ are present in energy
derivative terms and source terms. These tensor components must be expressed in
terms of the evolved moments to close the system of equations. For the Eulerian and
the Lagrangian two-moment models, the evolved quantities are ultimately the energy
density andmomentumdensitymeasured by a comoving observer;J andH j , respec-
tively. (For the number conservative two-moment model, the evolved quantities are
the number density and number flux density measured by a comoving observer; D
and I j , respectively.)

Following Levermore (1984) and Anile et al. (1992), the general symmetric, rank-
two tensorK μν , dependingonJ andH μ, that is orthogonal to thefluid four-velocity
uμ and that satisfies the trace condition K μ

μ = J takes the form

K μν = 1

2

[ (
1 − k

)
hμν + (

3 k − 1
)
ĥ
μ
ĥ
ν
]
J , (130)

where k(J , h) is theEddington factor,h = H /J is theflux factor,H = √
HμH μ,

and ĥ
μ = H μ/H is a unit four-vector parallel toH μ. It is straightforward to show

that the Eddington factor can be written as

k = ĥμĥνK μν

J
=

1
4π

∫
S2

f (ω) (̂hμ�μ)2 dω
1
4π

∫
S2

f (ω) dω
=

1
2

∫ 1
−1 f(μ)μ

2 dμ
1
2

∫ 1
−1 f(μ) dμ

, (131)

where we have defined

f(μ) = 1

2π

∫ 2π

0
f (μ, ϕ) dϕ. (132)

In the last step in Eq. (131) we have aligned the momentum-space coordinate system
in the comoving frame so that ĥμ�μ = ĥμ̂�μ̂ = cosϑ = μ. (Note, this is not the same
μ that will be defined later, in Sect. 6.1.1. The angle here is defined in terms of the
direction specified by ĥμ̂, whereas in Sect. 6.1.1 it will be defined in terms of r̂ .) The
two-moment closure forK μν requires the Eddington factor to be specified in terms of
J and h (or equivalentlyD and h). We will discuss some specific approaches further
below.

In a similar way, we can construct the third-order moment,L μνρ , depending onJ
andH μ, as the symmetric rank-three tensor that is orthogonal to uμ and that satisfies
the trace conditions L μν

ν = H μ. From (e.g., Pennisi 1992; Cardall et al. 2013b;
Just et al. 2015),

L μνρ = 1

2

[ (
h − q

) (
ĥ
μ
hνρ + ĥ

ν
hμρ + ĥ

ρ
hμν

)
+ (

5 q − 3 h
)
ĥ
μ
ĥ
ν
ĥ
ρ
]
J ,

(133)
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where we have defined the “heat flux” factor q(J , h):

q = ĥμ ĥν ĥρ L μνρ

J
=

1
4π

∫
S2

f (ω) (̂hμ�μ)3 dω
1
4π

∫
S2

f (ω) dω
=

1
2

∫ 1
−1 f(μ)μ

3 dμ
1
2

∫ 1
−1 f(μ) dμ

. (134)

The two-moment closure for L μνρ requires that we specify the heat flux factor in
terms of J and h (or D and h).

To complete the specification of the two-moment closure, the Eddington and heat
flux factors must be specified in terms of the zeroth and first moments. To this end,
several approaches have been proposed for the Eddington factor, including maximum
entropy closure (e.g., Minerbo 1978), Kershaw-type closure (e.g., Kershaw 1976), and
closures derived from fits to results obtained with higher-fidelity models (e.g., Janka
1991). In the context of spherically symmetric proto-neutron star models, Murchikova
et al. (2017) carried out a comprehensive comparison of results obtained with two-
moment neutrino transport, using analytic Eddington factors, to results obtained with
Monte Carlo transport calculations. Murchikova et al. (2017) included Eddington
factors fromWilson et al. (1975),Kershaw (1976), Levermore (1984),Minerbo (1978),
Cernohorsky and Bludman (1994) and Janka (1991); Janka (1992), and found no
closure to perform consistently better than the others in the test cases considered.
Because the maximum entropy closures of Minerbo (1978) and Cernohorsky and
Bludman (1994) gave practically identical results and never yielded the worst results,
and given the simplicity of the closure by Minerbo (1978) relative to the closure by
Cernohorsky and Bludman (1994) and Murchikova et al. (2017) concluded that the
Minerbo (1978) closure is the most attractive choice for neutrino transport around
proto-neutron stars. The closures provided by Minerbo (1978) and Levermore (1984)
are probably the most widely used in core-collapse supernova simulations employing
two-moment neutrino transport. Recently, Just et al. (2015), comparing the closures
of Minerbo (1978), Cernohorsky and Bludman (1994) and Levermore (1984) in the
context of a simulation of collapse and post-bounce evolution of a 13M� star in
spherical symmetry, showed that the differences in shock radii, neutrino luminosities,
and mean energies are practically indistinguishable. This may be because the closures
are very similar for the values ofJ and h encountered. Chu et al. (2019) considered
Eddington factors by Minerbo (1978), Cernohorsky and Bludman (1994), Larecki
and Banach (2011) and Banach and Larecki (2017) and found that, under certain
conditions, results obtained with closures based on Fermi–Dirac statistics can differ
significantly from results obtained with the Minerbo (1978) closure, which is based
on Boltzmann statistics.

We discuss the closures due to Minerbo (1978), Levermore (1984) and Kershaw
(1976) in further detail and give explicit expressions for Eddingon and heat flux factors,
which are also plotted in Fig. 5 (see figure caption for details).
Maximum entropy closureThe maximum entropy approach to specifying the Edding-
ton and heat flux factors comes from statistical mechanics, and has been used
extensively in moment models for radiation transport (e.g., Minerbo 1978; Cer-
nohorsky and Bludman 1994). In this approach, the “most probable” values of k and
q are determined by finding the distribution function fMe that maximizes the entropy
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Fig. 5 Plot of Eddington factors k (solid lines) and heat flux factors q (dotted lines) versus flux factor h for
the closures due to Minerbo (1978) (black), Levermore (1984) (magenta), and Kershaw (1976) (blue)

functional s[fMe], subject to the constraints that fMe reproduces the known moments
(e.g., D and h). The unknowns can then be computed from Eqs. (131) and (134) by
setting f = fMe. For the two-moment model, the maximum entropy distribution is
obtained by extremizing

S =
∫ 1

−1
s[fMe] dμ+ α0

∫ 1

−1
fMe dμ+ α1

∫ 1

−1
fMe μ dμ (135)

with respect to fMe, where the Lagrange multipliers α0 and α1 are introduced for
the constraints. A particularly simple closure is obtained by considering the case of
Boltzmann statistics, where s[fMe] = fMe ln fMe − fMe. This case was considered
in detail by Minerbo (1978), and is the low-occupancy limit (D � 1) of the more
appropriate case (for neutrino transport) of Fermi–Dirac statistics considered by Cer-
nohorsky and Bludman (1994). For the case of Boltzmann statistics, the maximum
entropy distribution is easily found to be given by

fMe(μ) = exp
(
α0 + α1 μ

)
, (136)

where α0 and α1 are found from the known moments. Direct integration of Eq. (136)
gives (Minerbo 1978)

D = 1

2

∫ 1

−1
fMe(μ) dμ = eα0 sinh(α1)/α1, (137)

I = 1

2

∫ 1

−1
fMe(μ)μ dμ = eα0

(
α1 cosh(α1)− sinh(α1)

)
/α21, (138)
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which can be solved forα0 andα1. In particular, the flux factor is given by the Langevin
function L(α1),

h = I /D = coth(α1)− 1/α1 ≡ L(α1), (139)

and is independent of α0. Thus, α1(h) = L−1(h). (The inversion of the Langevin
function must be done numerically.) Once α1 is obtained, α0 can be obtained directly
from either Eq. (137) or Eq. (138), which completes the specification of fMe. Then the
Eddington factor and heat flux factor can be computed by direct integration

k(h) = 1 − 2 h/α1(h) and q(h) = coth
(
α1(h)

) − 3 k(h)/α1(h), (140)

which closes the two-moment model under the simplifying assumption of Boltzmann
statistics, which is a reasonable approximation for neutrinos only when the occupation
density is low; i.e., whenD � 1. This closure is referred to as theMinerbo closure, and
is a commonly used closure in simulations employing spectral two-moment neutrino
transport (e.g., Kuroda et al. 2016; Just et al. 2018; O’Connor and Couch 2018). In
practice, to avoid inverting the Langevin function for α1, the Eddington and heat flux
factors can be approximated as polynomials in the flux factor. This leads to algebraic
expressions, which are computationally more efficient. The algebraic form of the
Eddingon factor, which approximates the one in Eq. (140) to better than one percent,
is given by (Cernohorsky and Bludman 1994)

kAlg(h) = 1

3
+ 2

15

(
3 h2 − h3 + 3 h4

)
. (141)

Similarly, the algebraic form of the heat flux factor, which approximates the one in
Eq. (140) to within a few percent, is given by (Just et al. 2015)

qAlg(h) = h
(
45 + 10 h − 12 h2 − 12 h3 + 38 h4 − 12 h5 + 18 h6

)
/75. (142)

In Fig. 5, the Eddington and heat flux factors kAlg and qAlg are plotted versus the
flux factor h (denoted Minerbo in the legend, using solid and dotted black lines,
respectively).

Another two-moment closure based on the maximum entropy principle is the so-
called M1 closure (e.g., Levermore 1984; Dubroca and Fuegas 1999). TheM1 closure
is thus based on the same principle as the Minerbo closure, but a different entropy
functional is considered; namely the entropy functional for Bose–Einstein statistics
s[fMe] = (1+ fMe) ln(1+ fMe)− fMe ln fMe. For the M1 closure the Eddington factor
is given by

kM1(h) = 3 + 4 h2

5 + 2
√
4 − 3 h2

. (143)

It should be noted that Levermore (1984) derived this result without the maximum
entropy principle. More recently, Vaytet et al. (2011) proposed a numerical method for
multi-group radiation hydrodynamics in theO(v/c) limit, and provided an expression
for the heat flux factor in the M1 model:
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qM1(h) = 3ϕ1(h) h + ϕ2(h) h3, (144)

where

ϕ1(h) = (h − 2 + a)(h + 2 − a)

4h(a − 2)5

[
12 ln

(h − 2 + a

h + 2 − a

)(
h4 + 2ah2 − 7h2 − 4a + 8

)

+48h3 − 9ah3 − 80h + 40ah
]
, (145)

ϕ2(h) = 1

h3(a − 2)5

[
60 ln

(h − 2 + a

h + 2 − a

)( − h6 + 15h4 − 3ah4

+ 15ah2 − 42h2 − 16a + 32
)

+54ah5 − 465h5 − 674ah3 + 2140h3 + 1056ah − 2112h
]
, (146)

and a = √
4 − 3h2. The M1 closure is another commonly used closure in simulations

employing spectral two-moment neutrino transport (e.g., Skinner et al. 2019). In Fig. 5,
the Eddington and heat flux factors kM1 and qM1 are plotted versus the flux factor
h (denoted “Levermore” in the legend, using solid and dotted magenta lines, respec-
tively). When plotting the heat flux factor, we found ϕ1 and ϕ2 to exhibit oscillatory
behavior as h → 0. To avoid these oscillations in qM1, we used Taylor expansions of
ϕ1 (around h = 0.1) and ϕ2 (around h = 0.2) to plot qM1 for smaller values of h.

The low occupancy assumption used for the Minerbo closure does not hold every-
where in a supernova simulation, butmaybe a reasonable approximation in the neutrino
heating region. The M1 closure based on Bose–Einstein statistics is also not a good
approximation when the phase space occupation is high. In this case, a more realistic
treatment for neutrinos must consider the entropy functional for Fermi–Dirac statis-
tics, where s[fMe] = fMe ln fMe + (1− fMe) ln(1− fMe), and follow the procedure as
outlined above, as was done by Cernohorsky and Bludman (1994), and more recently
in further detail by Larecki and Banach (2011). For the maximum entropy closure
derived by Cernohorsky and Bludman (1994), the Eddington factor is

kCB(D, h) = 1

3
+ 2 (1 − D) (1 − 2D)

3
Θ
( h

1 − D

)
, (147)

whereΘ(x) = x2(3−x+3x2)/5. To account for Fermi–Dirac statistics, theEddington
factor in Eq. (147) depends on both the number density D and the flux factor h. In the
low-occupancy limit when, D � 1, this Eddington factor reduces to the Eddington
factor due to Minerbo in Eq. (141). Cernohorsky and Bludman (1994) did not provide
an expression for the heat flux factor.

It should be noted that the term “M1 closure,” used here to refer to the closure
in Eqs. (143) and (144), derives from the more general term “MN closure,” which is
used in transport theory to refer to maximum entropy closures applied to N -moment
hierarchies. As such, all the closures discussed in this section are M1 closures, but
they differ in the entropy functional that is maximized.
Kershaw closureA different approach to the closure problem was proposed by Ker-
shaw (1976). The key idea behind the Kershaw closure is to consider the bounds on the
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moments generated by the underlying distribution function. For a nonnegative distri-
bution function (f ≥ 0), the set generated by the normalized moments { 1, h, k, q } is
convex and bounded, which in turn allows one to construct any sequence of moments
in this set by a convex combination of moment vectors on the boundary of this domain.
The moments constructed by this procedure are then “good” in the sense that they can
be obtained from a nonnegative distribution function.

For the two-moment model, the Kershaw closure procedure can be used to specify
k and q in terms of h. For f ≥ 0, it is straightforward to show that −1 ≤ h ≤ 1, while
the bounds on the Eddington factor are given by

h2 ≡ kL(h) ≤ k ≤ kH(h) ≡ 1. (148)

For ζ ∈ [0, 1], the Eddington factor can be written as the convex combination

kK(h) = ζ kL(h)+ (1 − ζ ) kH(h). (149)

Demanding that this expression be correct in the limit when h = 0, i.e., k(0) = 1/3,
gives ζ = 2/3, so that

kK(h) = 1

3
+ 2

3
h2. (150)

Similarly, for the heat flux factor, it can be shown that the following bounds hold (e.g.,
Schneider 2016):

−k + (h + k)2

1 + h
≡ qL(h, k) ≤ q ≤ qH(h, k) ≡ k − (h − k)2

1 − h
. (151)

Constructing the heat flux factor from a convex combination of these bounds, and
using kK(h), gives

qK(h) = ζ qL(h, kK(h))+ (1 − ζ ) qH(h, kK(h)). (152)

Demanding that qK(0) = 0 (isotropic limit) gives ζ = 1/2, so that

qK(h) = h
(
h2 + kK(h)

2 − 2 kK(h)
)

(h2 − 1)
. (153)

In Fig. 5, the Eddington and heat flux factors kK and qK are plotted versus the flux factor
h (denoted “Kershaw” in the legend; solid and dotted blue lines, respectively). The
Kershaw closure considered here only assumes f ≥ 0, which holds for Bose–Einstein
and Boltzmann statistics. Kershaw-type closures for Fermi–Dirac statistics, which is
appropriate for neutrinos where f ∈ [0, 1], was recently considered by Banach and
Larecki (2017).
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4.7.5 One-moment kinetics

One-moment models [commonly referred to as flux-limited diffusion models (Lev-
ermore and Pomraning 1981)] are among the earliest transport models adopted for
neutrino transport in core-collapse supernova simulations (Bruenn 1975), and are still
in use today (e.g., Bruenn et al. 2020; Rahman et al. 2019). Essentially, one-moment
models evolve only the zeroth moment of the distribution function, while higher-order
moments are specified through a closure procedure. Specifically, the radiation flux is
specified in terms of the zeroth moment in a way that it is correct in both the diffusion
and streaming regimes. In order to be correct in the streaming regime, a flux limiter is
applied to transition the model from parabolic (diffusion) to hyperbolic (streaming).
Here we consider the 3+1 general relativistic formulation presented by Rahman et al.
(2019), which was derived using the formalisms from Shibata et al. (2011), Endeve
et al. (2012) and Cardall et al. (2013b). We start from a slightly different perspective,
since we already have presented the main evolution equation in Eq. (116). Rahman
et al. (2019) define their angular moments with an additional factor of ε2 relative to our
definitions in Eq. (89) and absorb

√
γ into the variables; hence, wemake the following

definitions

{
Ĵ , Ĥ μ, T̂ μν, . . .

} = √
γ ε2

{
J , H μ, T μν, . . .

}; (154)

i.e., similar definitions hold for other moments appearing in the equations. (They also
do not normalize theirmoments by the factor of 4π , but that should not cause confusion
in the presentation here.) We can then write Eq. (116) as

1

α

[
∂t
( [

WĴ + viĤi
] ) + ∂i

( [
α Ĥ i + (

α vi − β i )WĴ
] ) ]

+ R̂ε − ∂ε
(
ε R̂ε

) = 1

4π

∫

S2
Ĉ ( f ) dω, (155)

where we have defined

R̂ε = T̂ μν∇μuν
= W

[
F̂k ∂τ v

k + Ŝ i
k ∂iv

k + (
F̂ i − Ê vi

)
∂i ln α + α−1F̂kv

i∂iβ
k

+ Ŝ ik( 1
2
vm∂mγik − Kik

) ] − (
Ê − vkF̂k

)
∂τW − (

F̂ i − Ŝ i
k v

k ) ∂iW ,
(156)

where in the second step, we used Eq. (117), re-expressed in the form given byRahman
et al. (2019) [cf. their Eq. (A14)], and we have defined ∂τ = nμ∂μ.

Rahman et al. (2019) solve formoments defined in an orthonormal comoving frame,
and write
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Ĥ i = Li
μ̂
Ĥ μ̂ = eiμ̄ Λ

μ̄

μ̂
Ĥ μ̂

= ei
î
Ĥ î + W

( W

W + 1
vi − β i

α

)
v̄î Ĥ

î , (157)

where

Ĥ î (ε) = √
γ
ε3

4π

∫

S

f (ω, ε) �î (ω) dω. (158)

(Similar expressions can be made for higher-order moments; see Endeve et al. 2012;
Rahmanet al. 2019.) InEq. (157),we remind the reader thatΛμ̄

μ̂
is theLorentz transfor-

mation between the orthonormal comoving frame basis and the orthonormal laboratory
frame basis, while eiμ̄ is a transformation between the orthonormal laboratory frame

basis and the coordinate basis. We have made the choice eμ
0̄

= nμ, and v̄î are three-

velocity components in the orthonormal laboratory frame basis (v̄ī = v̄ ī = v̄î = v̄î ),
so that vi = ei

î
v̄ î , where the notation ei

î
= ei

ī
δ ī
î
is used.

To close the one-moment (MGFLD) model, Rahman et al. (2019) replace the
momentum density by the gradient of the energy density:

H î −→ −D
ekî

α3
∂k(α

3J ), (159)

where D is the diffusion coefficient, which they express in terms of the flux-limiter
λ ∈ [0, 1/3] and the total opacity κt as

D ≡ λ

κt
. (160)

For Levermore–Pomraning and Wilson flux-limiting,

λLP ≡ 2 + R

6 + 3R + R2 ,

λWilson ≡ 1

3 + R
, (161)

respectively, where Rahman et al. (2019) define the generalized Knudsen number as

R ≡ |ekî∂k(α3J )|
κtα3J

. (162)

Thus, when the opacity is high, R → 0 and λ → 1/3. On the other hand, when the
opacity is low, λ→ 1/R and

H î → − ekî∂k(α3J )

|ekî∂k(α3J )|
J . (163)

123



Physical, numerical, and computational challenges of... Page 47 of 174 4

The Eddington tensor is related to the neutrino radiation stress tensor:

χ î ĵ = K î ĵ

J
. (164)

In the MGFLD approximation, the Eddington tensor, which appears in the expression
for R̂ε, takes a form analogous to Eq. (130):

χ î ĵ = 1

2
[(1 − χ)δ î ĵ + (3χ − 1)hî h ĵ ]. (165)

In Eq. (165), hî is a unit vector in the direction of the neutrino flux, H î , and χ is the
Eddington factor, which is given by

χ = λ+ (λR)2. (166)

5 Neutrino interactions

The phenomenon of core-collapse supernovae is a magnificent juxtaposition of the
macroscopic physics of neutrino radiation hydrodynamics and themicroscopic physics
of neutrino weak interactions and the nuclear equation of state. In particular, the weak
interactions between the neutrinos and thematter arewhatmake neutrinos important to
this phenomenon. Thus, any review of neutrino transport in core-collapse supernovae
must include adiscussionof such interactions. In the history of core-collapse supernova
modeling, there have beenmany important examples of studies that have demonstrated
the impact of additional weak interaction physics and/or improved treatments of such
physics in supernova models. Here we select a subset of these studies, each selected to
investigate one of the dimensions of this component of supernova modeling: (1) The
impact of the addition of new weak-interaction channels. (2) The impact of improved
treatments of channels that have already been included in themodels. (3) The interplay
between different weak-interaction channels and the impact of adding/changing more
than one weak-interaction channel at a time in a model. (4) The uncertainties in the
weak-interaction rates currently used in core-collapse supernova models and their
ramifications for core-collapse supernova modeling.

5.1 An intertwined history

Looking back at the history of the development of the theory of weak interactions and
of core-collapse supernovae, especially during the time frame after the discovery and
publication of the electroweak theory, it becomes obvious that (1) the first period of
what can be called modern core-collapse supernova theory, after the publication of the
seminal work of Colgate and White, was greatly influenced and greatly accelerated
by the new electroweak theory, for more than a decade, and (2) the interplay between
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advancing descriptions of neutrino weak interactions and core-collapse supernovae
continued well beyond this period, even to this day.

A year after the publication of the Colgate and White work, the electroweak theory
was published (Weinberg 1967; Salam 1968). It was specifically the advent of weak
neutral currents that would turn out to be a game changer for core-collapse supernova
theory. Seven years after the publication of the electroweak theory, Freedman (1974)
showed that, owing to weak neutral currents, neutrinos could scatter coherently off the
nucleons in a nucleus, introducing an A2 dependence in the cross section,where A is the
atomic number. During stellar core collapse, the core is neutronized through the emis-
sion and escape of electron neutrinos. As a result, the core nuclei become large—i.e.,
have large A—given that the nuclear size is a competition between Coulomb repul-
sion and surface tension, the former favoring smaller nuclei, the latter favoring larger
nuclei, and the latter winning out. In turn, coherent nuclear scattering cross sections
become large. Following Freedman’s discovery and publication, Tubbs and Schramm
provided an electroweak-theory-based set of cross sections for problems of astrophys-
ical interest (Tubbs and Schramm 1975). Subsequently, these were implemented in the
pioneering work of Arnett (1977), wherein he showed that coherent nuclear scattering
led to the trapping of electron neutrinos during stellar core collapse and to the devel-
opment of a trapped Fermi sea of them in the core. This provided the foundation for
the discovery 5 years later by Wilson that the stalled core-collapse supernova shock
wave could be revived by charged-current mediated electron neutrino and antineutrino
absorption on the shock-liberated nucleons behind it (Wilson 1985; Bethe andWilson
1985), which marked the beginning of contemporary core-collapse supernova theory,
which has largely operatedwithin the framework of the delayed-shock or, equivalently,
the neutrino-reheating mechanism. The 15 years between 1966 and 1982 saw the fun-
damental and significant advance from the first models of core-collapse supernovae to
the establishment of the framework within which all core-collapse supernova model-
ers operate today. The developments in core-collapse supernova theory during these
first 15 years were very tightly intertwined with the development of weak interaction
physics. While this period was certainly unique in this regard, additional milestones,
owing to further development in the theory of neutrino interactions in the environments
of interest here, occurred since.

Bruenn (1985) published a landmark paper on the physics of stellar core collapse.
Bruenn included the following electron neutrino emissivities and opacities in his mod-
els, which have come to be known as the “Bruenn 85” opacity set. Subsequent to
Bruenn’s publication and prior to the publications discussed below, this set was frozen
in as the canonical neutrino opacity set. It is still used today in code tests and compar-
isons. Bruenn included electron capture on (free) protons and nuclei and the inverse
interactions of electron neutrino absorption, as well as scattering on (free) nucleons
and electrons and coherent scattering on nuclei in his models. For electron antineu-
trino and heavy-flavor neutrino production, electron–positron pair annihilation served
as the dominant source after core bounce and shock formation.

Hannestad and Raffelt (1998) computed the production of neutrino–antineutrino
pairs from nucleon–nucleon bremsstrahlung. Prior to the recognition that such
bremsstrahlung could lead to, and perhaps dominate, neutrino pair production, pair
production occurred only through electron–positron pair annihilation. Thus, partic-
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Fig. 6 The neutrino number production rate due to neutrino–antineutrino pair production via electron–
positron annihilation and nucleon–nucleon bremsstrahlung are plotted. Also shown are the thermalization
surfaces for the different neutrino and antineutrino flavors, as well as the shock location at this time after
bounce: 4ms. The data used to generate the plot are taken fromaChimeramodel using an 18M� progenitor.
At the high densities present at radii below ∼ 10 km in the core, pair production from bremsstrahlung
dominates. On the other hand, between the heavy-flavor thermalization surfaces and the shock, production
by electron–positron pair annihilation is consistently larger

ularly for the muon and tau neutrino flavors, which have only pair production as
sources, bremsstrahlung production introduced a fundamental change. Figures6 and
7 show the relative importance of nucleon–nucleon bremsstrahlung for the production
of electron neutrino–antineutrino pairs of all three flavors, relative to the production by
electron–positron annihilation. The results shown are for two times after core bounce,
at 4 and 100 ms, in a core-collapse supernova model performed with the Chimera
code, initiated from an 18M� progenitor.

In the same year, Burrows and Sawyer (1998) and Reddy et al. (1998) took on the
long-term challenge to understand neutrino interactions in dense, interacting, nuclear
matter, taking into account nucleon recoil, degeneracy, relativity, thermal motions,
and correlations. In particular, these authors computed new differential scattering rates
(and new charged-current absorption and emission rates), which were no longer iso-
energetic, as had been assumed before (e.g., in the Bruenn 85 opacity set), but resulted
in small energy transfer between the neutrinos and the nucleons. Per scattering, the
amount of energy transferred would be of little consequence, but taken over all of
the scattering events in the dense environment in the vicinity of the neutrinospheres,
such small-energy scattering has a notable impact. Müller et al. (2012) were the first
to demonstrate this. In particular, they showed that small-energy scattering of heavy
flavor neutrinos by nucleons at the electron neutrino- and antineutrino-spheres led to
heating of these neutrinospheres and, consequently, an increase in the electron neutrino
flavor luminosities. Their results are shown in Fig. 8. This in turn impacted neutrino
shock reheating. In the absence of small-energy scattering on nucleons, shock revival
was delayed by 50–100ms relative to their baseline model.
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Fig. 7 The same as in Fig. 6 but at a time of 100 ms after bounce, during the critical shock reheating
epoch. At this time, at radii above ∼ 25 km, which is well below the thermalization spheres where the
neutrino spectra set in, neutrino pair production is dominated by electron–positron pair annihilation. At
high densities, below ∼ 10 km, production due to bremsstrahlung continues to dominate

Fig. 8 Plotted are the neutrino and antineutrino luminosities for all three flavors of neutrinos, as a function of
density, at 400ms after bounce in the general relativisticmodel ofMüller et al. (2012) initiated from a 15M�
progenitor. Solid lines show data from the model that includes neutrino–nucleon small-energy scattering.
Evident in the plots is the ∼ 20% increase in both the electron neutrino and antineutrino luminosities, at a
density of 1011 g cm−3, due to the heating of the electron neutrinospheres resulting from the scattering of
higher-energy heavy flavor neutrinos, emanating from deeper regions, on nucleons in the neutrinospheric
region. Image reproduced with permission, copyright by AAS

In 2003, yet another source of heavy-flavor neutrino pair production was intro-
duced. Buras et al. (2003) examined the production of heavy-flavor neutrino pairs
through the annihilation of electron-neutrino pairs. They too found that heavy-flavor
pair production by electron-flavor pair annihilation dominated the production of such
pairs through electron–positron pair annihilation. Moreover, they found that the inclu-
sion of this mode of heavy-flavor production in their model boosted the heavy-flavor
luminosities during the first ∼150ms after bounce and decreased the electron-flavor
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luminosities after ∼ 200 ms. They found too that their shock was weaker and reached
a smaller peak radius when electron-flavor pair annihilation was included. While the
differences were not “dramatic,” they concluded they were also not “negligible.”

And once again in the same year, progress was made on a different front. The rates
for electron capture on nuclei in the Bruenn 85 opacity set are based on the Indepen-
dent Particle Model for the nucleons in the nucleus. That is, the IPM assumes that the
nucleons are noninteracting. Under this assumption, the final neutron states are filled
for nuclei with N > 40, which is true of the stellar core nuclei, and electron capture
is blocked, relying in turn solely on capture on protons. This assumption was finally
removed, as nuclear structure models developed. In 2003, rates for electron capture on
nuclei using a “hybrid”model, wherein thermal excitation and nucleon–nucleon corre-
lationswere both accounted for, were recomputed (Langanke et al. 2003). Owing to the
improved description, capture in nuclei was no longer blocked and in fact dominates
capture on protons during core collapse, resulting in a more neutronized/deleptonized
core, a smaller inner core, and a deeper shock formation mass (Hix et al. 2003).

The importance of the above additions andmodifications to the neutrino opacities in
core collapse supernovamodelswere reinforced in the context of later two-dimensional
models developed by other groups (Burrows et al. 2018; Just et al. 2018; Kotake et al.
2018) (Fig. 9).

Earlier in this section,we have seen the impact of adding newweak interaction chan-
nels and improving the treatment of those already included in core-collapse supernova
model. Herewe explore yet another dimension of this important sector of core-collapse
supernova physics: the interplay of neutrino weak interaction channels (new and/or
modified). Lentz et al. (2012a) conducted an in-depth analysis focused largely on the
neutrino production and interaction channels discussed above (i.e., nucleon–nucleon
bremsstrahlung, non-isoenergetic scattering, and electron capture on nuclei). They
demonstrated several important points: (1) While the addition of a single interaction
channel may impact the dynamics of stellar core collapse and the post-bounce evo-
lution, the addition of two interaction channels may not be additive—in fact, it may
render one of the additional channels irrelevant. (2) When two or more interaction
channels are included and are instead additive, the additive impact may be nonlinear.
As an example, Lentz et al. considered the interplay of electron capture on nuclei and
neutrino–electron scattering during stellar core collapse. If we consider the nucleons as
independent particles [Independent Particle Model (IPM)], electron capture on nuclei
is blocked for N > 40,where N is the neutron number. In this case, the nuclear electron
capture rates are given by Bruenn (1985) are appropriate. In this instance, neutrino–
electron scattering, which scatters neutrinos to lower energies given the core’s electron
degeneracy, leads to a significant increase in core deleptonization and a concommitant
decrease in the inner core mass. On the other hand, if the improved nuclear electron
capture rates of Langanke et al. are used, which factor in nucleon interactions and cor-
relations, nuclear electron capture is no longer blocked. In turn, low-energy neutrino
states are filled, and neutrino–electron scattering is no longer able to down scatter neu-
trinos in energy (and contributes very little to the total neutrino opacity) and becomes
rather unimportant. This is captured in Fig. 10. Comparing, for example, the velocity
at bounce in the upper left panel of Fig. 10 for the cases “Base,” which includes the
full set of neutrino weak interactions with “Base–noNES,” which leaves out neutrino–
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Fig. 9 Plots of the density, entropy per baryon, electron fraction, and fluid velocity at core bounce using data
from two models: one implementing the “Bruenn 85” electron capture rates (Bruenn 1985), based on the
Independent Particle Model of nucleons, and one implementing the rates of Langanke et al. (2003), based
on the “Hybrid” model, which includes correlations between the nucleons in RPA and finite-temperature
effects. The former (latter) data correspond to the thin (thick) black lines in the plots. Given the inclusion
of the hybrid model electron capture rates, electron capture is unblocked and proceeds, leading to increased
electron capture in the core in this model and, consequently, to a significant (inward) change in the location
of the bounce shock in mass. Image reproduced with permission from Hix et al. (2003), copyright by APS

electron scattering, it is obvious there is no difference. This is also true of all of the
other quantities plotted. On the other hand, a comparison between “Base” and “IPA,”
which includes nuclear electron capture in the independent particle approximation, it
is evident that neutrino–electron scattering had a significant impact during collapse
and on the final shock formation location.

That the search for all core collapse-supernova relevant neutrino weak interactions
is an ongoing activity is no better illustrated than by the very recent example provided
by Bollig et al. (2017), whose work illuminated the importance of including muons
and neutrino–muon weak interactions in core-collapse supernova models. Past models
assumed that the population of muons in the stellar core during collapse, bounce, and
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Fig. 10 Plots of velocity, density, entropy, temperature, electron and lepton fraction, and pressure at core
bounce across five models with different input physics. The model “Base” includes all weak interac-
tions and uses the modern, hybrid-model electron capture rates. Model Base-NoNES includes the same
weak interaction physics, with one exception: neutrino-electron scattering (NES) is not included. Similarly,
model “IPA” includes all weak interaction channels, as does model Base, but uses the Independent Parti-
cle Approximation (IPA) rates for nuclear electron capture. And model “IPA-NoNES” includes the same
weak interaction physics except neutrino–electron scattering. Comparing models Base and Base-NoNES,
no significant changes result when NES is excluded. On the other hand, comparing models IPA and IPA-
NoNES, we reach a different conclusion: in this case, the inclusion of NES has a significant impact on core
deleptonization and, consequently, on the mass of the inner core at bounce. These comparisons demonstrate
there is an interplay between different neutrino opacities. An improvement in one opacity may render an
otherwise important second opacity relatively unimportant. Image reproduced with permission from Lentz
et al. (2012a), copyright by AAS

the post-bounce neutrino shock reheating epoch would remain low given the large rest
mass of the muon. Bollig et al. point out that such arguments are not well motivated.
The electron chemical potential in the proto-neutron star at this time exceeds the muon
rest mass, and the core temperature is large, as well. In the context of two-dimensional
supernova models using the Vertex code and initiated from a 20M� progenitor,
they demonstrated that significant populations of muons are in fact produced and,
more importantly, that the inclusion of muons in their supernova models impacted the
outcomes quantitatively in all cases and even qualitatively in some cases, depending on
the nuclear equation of state used. For the SFHo equation of state, models with muons
exhibited explosion whereas counterpart models without them did not. For models
with the LS220 equation of state, models with muons exhibited earlier explosions,
indicating that explosion was facilitated in these models. Bollig et al.’s results are
encapsulated in Fig. 11.

We close this section with an emphasis on one final important point: Like all
weak interaction cross sections, those the community has found to be important to

123



4 Page 54 of 174 A. Mezzacappa et al.

Fig. 11 In the upper left panel, the angle-averaged shock trajectories for several models, excluding and
including muons, using the Steiner–Fischer–Hempel (SFHo) equation of state, are plotted. In the upper
right panel, plotted are the results from the models that instead use the Lattimer–Swesty equation of state
with bulk compressionmodulus K = 220MeV (LS220). Here “Standard” indicates models without muons.
Image reproduced with permission from Bollig et al. (2017), copyright by APS

core-collapse supernova evolution and has included in its supernova models have
uncertainties associated with them, which can arise from experimental uncertainties
in the few cases where the cross sections have been measured directly, or from uncer-
tainties in the theory used to predict them, which in the end the supernova modeling
community must rely on given it is impossible to measure all relevant cross sections
under all relevant thermodynamic conditions and at all relevant neutrino energies found
in a supernova environment. Thus, it is important to explore the potential impact of
such uncertainties on the quantitative and qualitative core-collapse supernova model
outcomes.

Case in point: The exploration of the impact of the uncertainty in the neutrino–
nucleon cross section. Melson et al. (2015a) performed two state-of-the-art three-
dimensional simulations of the core-collapse supernova explosion of a 20M�
progenitor. In one case, they included what the modeling community regarded at
the time as the state-of-the-art neutrino weak interaction set, with no modification to
any of the cross sections. In the other, they varied one of the cross sections, albeit a
critical one: the cross section for neutrino scattering on nucleons. This cross section
is one of the most important for neutrino transport below the neutrinospheres, as the
leading opacity source and, as we saw above, as an additional heating source for matter
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Fig. 12 Results are shown here from the core-collapse supernova studies of Melson et al. (2015a). In
particular, in the uppermost left panel, the angle-averaged shock radius is plotted for two pairs of models,
one for the two-dimensional case and one for the three-dimensional case. All cases are launched from a
20M� progenitor and were performed with the Vertex code. Within each case, two simulations were
performed, one using the standard weak interaction cross section for neutrino–nucleon scattering and the
other including a correction to the strangeness content of the nucleon, which results in a correction to the
coupling constants. In two dimensions, both models explode, with some quantitative differences observed
in the shock trajectories. In the more important three-dimensional case, the outcomes with and without
the correction are qualitatively different. Specifically, explosion is not obtained in their model unless the
opacity correction is included. Image reproduced with permission, copyright by AAS

within the proto-neutron star. Uncertainty in the cross section for neutrino–nucleon
scattering arises from, among other things, uncertainty in the strangeness content of
the nucleon, which can alter the coupling constants. In particular, Melson et al. varied
the cross section by ∼10%, consistent with the experimental uncertainties, and in so
doing found they could qualitatively alter the outcome of the model. When the stan-
dard weak interaction set was used, they did not obtain an explosion in the model.
When they varied the neutrino–nucleon cross section, they did. The results are shown
in Fig. 12. Of course, we have already seen that variations in a particular cross sec-
tion can interact with variations in another. The only way the supernova modeling
community can accurately assess the impact of variations in a single cross section
is to vary all of them, in a statistically meaningful way—i.e., perform a sensitivity
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study. And, obviously, this should be performed, at least ultimately, in the context of
three-dimensional models. Unfortunately, the last requirement cannot be met at this
time. Such a study would require that many three-dimensional models be performed,
which at the moment, even with the significant computing power afforded the mod-
eling community by today’s supercomputers, is prohibitive. Such studies should be
conducted, but they will have to wait for future supercomputing capabilities.

5.2 The relevant neutrino interactions

The previous section makes clear that the effort to ascertain which neutrino weak
interactions are important to core-collapse supernovae theory is an ongoing activity.
To date, the list included in Table 1 is what is deemed to be the essential list. Most, if
not all, of the weak interactions in the list have been included in the state-of-the-art
simulations whose underlying numerical methods have been the focus of this review.
Motivated by the recent example documented in the previous section, inTable 2we also
include a list of the relevant neutrino weak interactions involving muons. At present,
these have been included by only one group (Bollig et al. 2017) and, as discussed,
have been found to be important by this group. In light of this, adoption of these weak
interactions by other groups is certainly warranted.

5.2.1 Boltzmann collision term

Wewrite the collision term as the sum of terms corresponding to the main processes—
emission and absorption, scattering, and pair creation and annihilation—listed in Table
1:

C [ fs](p) = CAbEm[ fs](p)+ CScat[ fs](p)+ CPair[ fs](p). (167)

For each of the terms, we focus on its functional form, which is closely related to the
computational complexity of including a particular weak interaction in a core-collapse
supernova model. Each term—hence, each added interaction—warrants tailored con-
sideration.

The term due to neutrino emission and absorption is written as

1

ε
CAbEm[ fs](p) = [1 − fs(p)]ηs − χs fs(p), (168)

where ηs and χs are the emissivity and absorption opacity of neutrino species s and are
assumed to be isotropic in the momentum-space angle (independent of ω), but depend
on the neutrino energy ε. The blocking factor, 1 − fs(p), is included to account
for the Fermi–Dirac statistics of neutrinos, and suppresses neutrino emission when
the phase-space occupancy is high (i.e., when fs � 1). It is common to introduce
χ̃s = (ηs + χs), associated in this case with “stimulated absorption” (as opposed
to the stimulated emission of photons), and to define f0,s = ηs/χ̃s , in which case
Eq. (168) can be written in relaxation form:
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Table 2 Relevant
neutrino–muon weak
interactions

μ− + p � n + νμ
μ− + νe � e− + νμ
μ− + ν̄μ+ � e− + ν̄e
μ− � e− + ν̄e + νμ
μ+ + n � p + ν̄μ
μ+ + ν̄e � e+ + ν̄μ
μ+ + νμ � e+ + νe
μ+ � e+ + νe + ν̄μ
νe,μ,τ + μ+,− � νe,μ,τ + μ+,−

1

ε
CAbEm[ fs](p) = χ̃ (

f0,s − fs
)
. (169)

In this form it is easy to see that the collision term drives the distribution func-
tion towards the equilibrium distribution, f0,s . Also note, this interaction is local
in momentum-space; i.e., there is no coupling across momentum-space.

Neutrino–matter scattering (the second and third category in Table1) is described
by

1

ε
CScat[ fs](p) = (

1 − fs(p)
) ∫

Vp

RIn
Scat(p, p

′) fs(p′) d3 p′

− fs(p)
∫

Vp

ROut
Scat(p, p

′) (1 − fs(p
′)) d3 p′, (170)

whereRIn
Scat(p, p

′) is the scattering rate frommomentum p′ into p, andROut
Scat(p, p

′)
is the scattering rate out of momentum p into p′. When compared with the collision
term in Eq. (169), the coupling in momentum-space (due to the integral opera-
tors) increases the computational complexity of evaluating the collision operator. If
momentum-space is discretized into Np bins, a brute force evaluation of Eq. (170) for
all p requires O(N 2

p) operations. Note also the blocking factors in Eq. (170), which
suppress scattering to high-occupancy regions of momentum-space. The second cat-
egory in Table1 (coherent, isoenergetic scattering) is obtained as a simplification of
Eq. (170) by letting

R
In/Out
Scat (p, p′)→ RIso(|p|, cosα) δ(|p| − |p′|), (171)

where cosα = p · p′/(|p||p′|). For this type of interaction, with d3 p′ =
|p′|2 d|p′| dω′, the collision term is given by

1

ε
CIso[ fs](|p|, ω) =

∫

S2
RIso(|p|, cosα) |p|2 fs(|p|, ω′) dω′

− fs(|p|, ω)
∫

S2
RIso(|p|, cosα) |p|2 dω′, (172)
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which is considerably simplified relative to the scattering operator in Eq. (170).
Finally, neutrino-antineutrino pair creation and annihilation (e.g., from electron-

positron pairs; the fourth category in Table1) is described by

1

ε
CPair[ fs](p) = (1 − fs(p))

∫

Vp

RIn
Pair(p, p

′) (1 − f̄s(p
′)) d3 p′

− fs(p)
∫

Vp

ROut
Pair(p, p

′) f̄s(p′) dp′, (173)

whereRIn
Pair(p, p

′) andROut
Pair are the neutrino-antineutrino pair production and anni-

hilation rates, respectively, and f̄s is the antineutrino distribution function. We note
that the functional form of the collision term for the last of the pair processes included
in Table 1 is not represented by the functional form for pair creation and annihilation
presented here. In this particular case, both in-states and both out-states correspond
to neutrinos, which, when treated without approximation, results in a collision term
involving four distribution functions. This non-approximate treatment of the process
has yet to be implemented in core-collapse supernova models. As a result, we do not
include its functional form here.

All of the above rates ηs , χs ,R
In/Out
Scat , andRIn/Out

Pair depend on the thermodynamic
state of the stellar core fluid (e.g., ρ, T , and Ye).

Symmetries in some of the collision kernels exist (e.g., Bruenn 1985; Cernohorsky
1994), which should be leveraged in computations. First, because the total number of
neutrinos is conserved in neutrino–matter scattering,

∫

Vp

CScat[ fs](p) d
3 p

ε
= 0, (174)

and the following in–out invariance holds:

RIn
Scat(p, p

′) = ROut
Scat(p

′, p). (175)

Second, when the neutrino distribution function equals the local Fermi–Dirac distri-
bution, fs = f0,s = 1/[e(ε−μν,s )/T + 1], where T is the matter temperature and μν
is the equilibrium neutrino chemical potential, the net energy and momentum transfer
between neutrinos and matter due to scattering must vanish. Thus, requiring

∫

Vp

CScat[ f0,s](p) g(p)
d3 p

ε
= 0 (176)

for an arbitrary function g(p), gives

RIn
Scat(p, p

′) = ROut
Scat(p, p

′) e−(ε−ε′)/T = RIn
Scat(p

′, p) e−(ε−ε′)/T , (177)

where Eq. (175) is used in the rightmost expression.
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5.2.2 Two-moment collision terms

Collision terms for the two-moment model are derived by taking angular moments of
the collision term in Eq. (167). Such terms have been discussed in the context of mul-
tidimensional two-moment models by, e.g., Shibata et al. (2011). For completeness,
we list two-moment collision terms corresponding to angular moments of Eqs. (169),
(170) and (173) here. Considering the two-moment models delineated in Sect. 4.7.3,
the relevant angular moments of the Boltzmann collision term are

1

4π

∫

S2
C [ fs] dω

ε
and

1

4π

∫

S2
C [ fs] � j dω

ε
. (178)

[The first of these terms also appears in the one-momentmodel discussed in Sect. 4.7.5;
cf. Eq. (155)].
Emission/absorptionFor emission and absorption, the evaluation is straightforward
since the emissivity and opacity are isotropic in momentum space angle. The zeroth
moment gives

1

4π

∫

S2
CAbEm[ fs] dω

ε
= (

1 − Ds
)
ηs − χs Ds = χ̃s

(
D0,s − Ds

)
, (179)

where the zeroth moment of the equilibrium distribution is defined as

D0,s = 1

4π

∫

S2
f0,s dω. (180)

The first moment gives

1

4π

∫

S2
CAbEm[ fs] � j dω

ε
= −χ̃s Is, j , (181)

since the angular moment of � j vanishes.
Angular kernel approximationsTo incorporate scattering and pair processes in the
two-moment model, following Bruenn (1985), the kernels are expanded in a Legendre
series up to linear order; e.g.,

RIn
Scat(p, p

′) = RIn
Scat(ε, ε

′,Ω) ≈ ΦIn
Scat,0(ε, ε

′)+ΦIn
Scat,1(ε, ε

′)Ω(ω, ω′), (182)

whereΩ = �μ(ω)�μ(ω′) is the cosine of the scattering angle. From the orthogonality
of the Legendre polynomials, the scattering coefficients are then evaluated form the
kernels as

{
ΦIn

Scat,0(ε, ε
′),ΦIn

Scat,1(ε, ε
′)
} = 1

2

∫ 1

−1
RIn

Scat(ε, ε
′,Ω)

{
1, 3Ω

}
dΩ. (183)

Terms beyond linear can be included in the expansion of the kernel in Eq. (182) at the
expense of a more complicated collision operator for the two-moment model. Smit
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and Cernohorsky (1996) investigated the effect of including the quadratic term for
neutrino-electron scattering in a configuration during the infall phase of stellar core
collapse. They found that including the quadratic term results in a better fit to the
scattering kernel, but when comparing stationary state transport solutions with and
without the quadratic term, they found no significant difference in relevant quantities
such as the neutrinonumber density, flux, and transfer rates of leptonnumber, energy, or
momentum to the stellar fluid.We also note that Just et al. (2018), in their AppendixA,
provide expressions for pair processes that include the quadratic term in the Legendre
expansion of the kernels.
ScatteringEmploying the expansion in Eq. (182) for the scattering operator gives

1

4π

∫

S2
CScat[ fs](p)

dω

ε

= (
1 − D(ε)

) ∫ ∞

0
ΦIn

Scat,0(ε, ε
′)D(ε′) dVε′ − Iμ(ε)

∫ ∞

0
ΦIn

Scat,1(ε, ε
′)I μ(ε′) dVε′

− D(ε)

∫ ∞

0
ΦOut

Scat,0(ε, ε
′)
(
1 − D(ε′)

)
dVε′ + Iμ(ε)

∫ ∞

0
ΦOut

Scat,1(ε, ε
′)I μ(ε′) dVε′

(184)

for the zeroth moment (recall that dVε = 4πε2dε), and

1

4π

∫

S2
CScat[ fs] � j

dω

ε

= −I j (ε)

∫ ∞

0
ΦIn

Scat,0(ε, ε
′)D(ε′) dVε′

+
(
1

3
g jμ − K̂ jμ(ε)

)∫ ∞

0
ΦIn

Scat,1(ε, ε
′)I μ(ε′) dVε′

− I j (ε)

∫ ∞

0
ΦOut

Scat,0(ε, ε
′)
(
1 − D(ε′)

)
dVε′ + K̂ jμ

∫ ∞

0
ΦOut

Scat,1(ε, ε
′)I μ(ε′) dVε′

(185)

for the first moment. Here we have used

1

4π

∫

S2
�μ(ω) �ν(ω) dω = 1

3
gμν. (186)

Pair processesEmploying the kernel expansion in Eq. (182) for the neutrino-
antineutrino pair creation and annihilation operator in Eq. (173) gives

1

4π

∫

S2
CPair[ fs ](p) dω

ε

= (
1 − D(ε)

) ∫ ∞

0
ΦIn

Pair,0(ε, ε
′)
(
1 − D̄(ε′)

)
dVε′ + Iμ(ε)

∫ ∞

0
ΦIn

Pair,1(ε, ε
′) Ī μ(ε′) dVε′

− D(ε)

∫ ∞

0
ΦOut

Pair,0(ε, ε
′) D̄(ε′) dVε′ − Iμ(ε)

∫ ∞

0
ΦOut

Pair,1(ε, ε
′) Ī μ(ε′) dVε′ (187)
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for the zeroth moment of the collision operator, and

1

4π

∫

S2
CPair[ fs](p) � j dω

ε

= −I j (ε)

∫ ∞

0
ΦIn

Pair,0(ε, ε
′)
(
1 − D̄(ε′)

)
dVε′

−
(
1

3
g jμ − K̂ jμ(ε)

)∫ ∞

0
ΦIn

Pair,1(ε, ε
′) Ī μ(ε′) dVε′

− I j (ε)

∫ ∞

0
ΦOut

Pair,0(ε, ε
′) D̄(ε′) dVε′ − K̂ jμ(ε)

∫ ∞

0
ΦOut

Pair,1(ε, ε
′) Ī μ(ε′) dVε′

(188)

for the first moment. Here, D̄ and Ī μ are the zeroth and first moments of the antineu-
trino distribution function f̄ .

5.3 Neutrino-matter coupling

In coupling neutrinos and matter, we are primarily concerned with lepton and four-
momentum exchange. The neutrino lepton current density is

J νneutrino =
∑

s=νe,ν̄e
gs N

ν
s , (189)

where N νs is the neutrino four-current density for neutrino species s, defined as in
Eq. (70) with distribution function fs , and gs is the lepton number of neutrino species
s (gs = +1 for neutrinos, and gs = −1 for antineutrinos). From the electron num-
ber conservation equation, Eq. (6), and the neutrino number conservation equation,
Eq. (80) (one for each neutrino species), we obtain

∇ν
(
J νneutrino + J νe /mB

) =
∑

s=νe,ν̄e
gs

∫

Vp

C [ fs]πm − L, (190)

Lepton number conservation demands that the source term of the right-hand side of
Eq. (6) takes the form

L =
∑

s=νe,ν̄e
gs

∫

Vp

C [ fs]πm . (191)

Note that, for simplicity of this exposition, we have assumed that only electron neu-
trinos and antineutrinos are involved in lepton exchange with the fluid, but see Bollig
et al. (2017) for a discussion of additional lepton exchange channels when muons are
included as a fluid component. When muons are included, an additional equation for
the muon number density, similar to Eq. (6), must be evolved, and the definition of the
neutrino lepton current density in Eq. (189) must be extended to include contributions
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from muon neutrinos. [Technically, similar extensions should be done to accommo-
date tauons, but, because of their large rest mass, they can be neglected as an agent
for lepton number exchange with the fluid (Bollig et al. 2017).]

The total neutrino stress-energy tensor is defined as

Tμνneutrino =
NSp∑
s=1

Tμνs , (192)

where the stress-energy tensor for neutrino species s, Tμνs , is defined as in Eq. (71)
with distribution function fs and NSp is the total number of neutrino species. Using
Eqs. (5) and (82), the divergence of the total (fluid plus neutrino) stress-energy is

∇ν
(
Tμνneutrino + Tμνfluid

) =
NSp∑
s=1

∫

Vp

C [ fs] pμ πm − Gμ. (193)

Then, four-momentum conservation in neutrino–matter interactions demands the
right-hand side of Eq. (5) takes the form

Gμ =
NSp∑
s=1

∫

Vp

C [ fs] pμ πm . (194)

To illustrate the complexity of the neutrino–matter coupling problem further, we con-
sider the neutrino–matter coupling problem in the space-homogeneous case using
the number conservative two-moment model discussed in Sect. 4.7.3. The angular
moments of the neutrino distribution function of species s evolve according to

dt
(√
γ
[
W Ds + vi Is,i

] ) = α
√
γ

4π

∫

S2
C [ fs] dω

ε
, (195)

dt
(√
γ
[
W Is, j + vi K̂s,i j

] ) = α
√
γ

4π

∫

S2
C [ fs] � j dω

ε
, (196)

where we use the ordinary derivative dt = d/dt to indicate that we consider the
space-homogeneous case where physical variables are considered functions of time
only. The right-hand sides of Eqs. (195) and (196) will include the contributions from
emission and absorption, scattering, pair processes (as discussed above), and other
processes. This sub-problem is typically considered in numerical implementations
where neutrino–matter interactions are solved for in a time-implicit fashion, e.g., as is
done within an implicit-explicit framework for integrating the full neutrino-radiation
hydrodynamics system forward in time,whichwewill discuss inmoredetails later (see,
e.g., Sect. 6.5). Coupled to the transport equations, are the fluid evolution equations,
which are combined with the transport equations and formulated as constraints due to
mass, four-momentum, and lepton number conservation:
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dt
(√
γ D

) = 0, (197)

dt
(√
γ
[
S j + S j,neutrino

] ) = 0, (198)

dt
(√
γ
[
τfluid + Eneutrino

] ) = 0, (199)

dt
(√
γ
[
Ne + Nneutrino

] ) = 0, (200)

where Ne = D Ye/mB, and

S j,neutrino =
NSp∑
s=1

∫ ∞

0
F j,s dVε, (201)

Eneutrino =
NSp∑
s=1

∫ ∞

0
Es dVε, (202)

Nneutrino =
∑

s=νe,ν̄e
gs

∫ ∞

0
Ns dVε, (203)

and where the Eulerian angular moments Fs, j , Es , and Ns are defined in Sect. 4.7.2.
The Eulerian neutrino number density Ns is expressed in terms of the Lagrangian
moments in Eq. (97), which is also the expression inside the time-derivative on the
left-hand side of Eq. (195). The Eulerian momentum and energy, can also be written as
combinations of the quantities in the time-derivatives on the left-hand side ofEqs. (195)
and (196):

F j,s = ε {W v j
[
W Ds + vi Is,i

] + [
W Is, j + vi K̂s,i j

] }
, (204)

Es = ε {W [
W Ds + vi Is,i

] + v j [W Is, j + vi K̂s,i j
] }
. (205)

Thus, adopting a closure for the radiation moments, writing K̂s,i j in terms of Ds and
Is, j as discussed in Sect. 4.7.4, and an equation of state for the fluid p = p(ρ, e,Ye),
the system given by Eqs. (195)–(196) and (197)–(200) can be solved for the radiation
moments Ds andIs, j , and the fluid states ρ, vi , e, and Ye. This is a nonlinear system
of equations, where nonlinearities are due to the radiation moment closure, the fluid
equation of state, the dependence of D, S j , and τfluid on ρ, vi , e, and Ye, and the
nonlinear dependence of the neutrino opacities discussed in Sect. 5.2.2 on the ther-
modynamic state ρ, e, and Ye. Modeling this four-momentum and lepton exchange
between neutrinos and the fluid—with all the relevant neutrino–matter interactions
included—constitutes the major computational cost of core-collapse supernova mod-
els.
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6 Phase-space discretizations and implementations

6.1 Boltzmann kinetics: spatial and energy finite differencing plus discrete
ordinates

6.1.1 Phase-space coordinates

In a spherical spatial coordinate system, the neutrino’s direction of propagation is
specified relative to the basis vectors {er ,θ,φ} as (see Fig. 13)

n = (nr , nθ , nφ), (206)

where

nr = cos θp, (207)

nθ = sin θp cosφp, (208)

nφ = sin θp sin φp. (209)

This can be rexpressed as

nr = μ, (210)

nθ = (1 − μ2)
1
2 cosφp, (211)

nφ = (1 − μ2)
1
2 sin φp, (212)

whereμ ≡ cos θp.When spherical spatial andmomentum-space coordinates are used,
as defined above, the neutrino distribution function has the following dependencies
for no imposed symmetry, axisymmetry, and spherical symmetry,

f = f (r , θ, φ,n, E, t) = f (r , θ, φ, μ, φp, E, t), (213)

f = f (r , θ,n, E, t) = f (r , θ, μ, φp, E, t), (214)

f = f (r ,n, E, t) = f (r , μ, E, t), (215)

respectively, where in all three cases E is the neutrino energy.

6.1.2 Spherical symmetry

We illustrate the approach used byMezzacappa and Bruenn (1993a), Mezzacappa and
Messer (1999), Liebendörfer et al. (2004) and Mezzacappa et al. (2004, 2005) in the
context of a model that assumes Newtonian gravity and is valid to O(v/c). The fully
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Fig. 13 Diagram illustrating the spherical momentum-space coordinates used in most neutrino radiation
hydrodynamics implementations. The angle θp is the angle between the outgoing radial direction and the
neutrino propagation direction, at the neutrino’s location. The neutrino direction cosine, μ ≡ cos θp , is
defined in terms of it. φp is the associated momentum-space azimuthal angle. In spherical symmetry, the
distribution function is only a function of μ, not φp

general relativistic case is detailed in Liebendörfer et al. (2004). In the Newtonian
gravity, O(v/c) case, the conservative neutrino Boltzmann equation reads

1

c

∂F

∂t
+ 4πμ

∂(r2ρF)

∂m
+ 1

r

∂[(1 − μ2)F]
∂μ

+1

c

(
∂lnρ

∂t
+ 3v

r

)
∂[μ(1 − μ2)F]

∂μ
+ 1

c

[
μ2

(
∂lnρ

∂t
+ 3v

r

)
− v

r

]
1

E2

∂(E3F)

∂E

= j

ρ
− χ̃F + 1

c

1

h3c3
E2

∫
dμ′RISF − 1

c

1

h3c3
E2F

∫
dμ′RIS

+ 1

h3c4

(
1

ρ
− F

)∫
dE ′E ′2dμ′ R̃in

NISF − 1

h3c4
F
∫

dE ′E ′2dμ′ R̃out
NIS

(
1

ρ
− F

)

+ 1

h3c4

(
1

ρ
− F

)∫
dE ′E ′2dμ′ R̃em

PAIR

(
1

ρ
− F̄

)
− 1

h3c4
F
∫

dE ′E ′2dμ′ R̃abs
PAIR F̄,

(216)

where F ≡ f /ρ, m is the Lagrangian mass coordinate, μ is the neutrino direction
cosine, as defined above, and E is the neutrino energy. In spherical symmetry, F =
F(t,m, μ, E). After the time derivative term on the left-hand side of the Boltzmann
equation, the remaining terms correspond to the transport of neutrinos in all three
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dimensions of phase space: (m, μ, E). The first term corresponds to spatial transport
of neutrinos through the stellar core layers. As a neutrino propagates through the core,
its direction cosine, defined in spherical coordinates with respect to the outward radial
vector at its position, changes. This is captured by the second term. The third and
fourth terms capture the transport of neutrinos in angle and energy due to relativistic
(in this case to O(v/c)) angular aberration and frequency shift, respectively. On the
right-hand side, the collision term includes (1) thermal emission, with emissivity, j ,
(2) absorption, with absorption opacity χ̃ ≡ j + χ , which accounts for stimulated
absorption, (3) iso-energetic scattering,with scattering kernel RIS, (4) non-isoenergetic
scattering, with scattering kernel, RNIS, and (5) neutrino pair creation and annihilation,
with pair-production kernel, RPAIR. The distribution function for antineutrinos are
designated by F̄ . While the left-hand side of the Boltzmann equation is linear in
the distribution functions, it is important to note that the right-hand side is not. The
nonlinearity on the right-hand side is evident due to the blocking factors corresponding
to the boundedness of the neutrino distribution functions: f lies in the range [0, 1].
There is an additional nonlinearity that is implicit in the equation. The distribution
functions are updated togetherwith thematter internal energy and electron fraction, due
to energy and lepton number exchange between the neutrinos and the matter as a result
of the above processes. In turn, the neutrino emissivity, opacity, and scattering kernels
depend on the thermodynamic state of the matter, which depends on the matter’s
density, internal energy, and electron fraction. Thus, a simultaneous linearization of the
discretized equations of neutrino radiation hydrodynamics in the neutrino distribution
functions, the matter internal energy, and the matter electron fraction is required.

The finite differencing of the time derivative of the neutrino distribution function
in Eq. (216) is straightforward:

∂F

∂t
= Fi ′, j ′,k′ − Fn

i ′, j ′,k′

dt
. (217)

For simplicity,wedefine the zone-center indices for eachof the phase space dimensions
with primed indices: i ′ ≡ i + 1/2, j ′ ≡ j + 1/2, and k′ ≡ k + 1/2. Focusing now on
the spatial advection term, the first of the O(1) terms: In the free streaming limit, the
advected neutrino number in a time step (as measured by a comoving observer) can
be large relative to the neutrino number in a zone (mass shell). Upwind differencing
of the advection term is appropriate to limit destabilizing errors in the fluxes. For
discrete direction cosines, μ j ′ , the direction of the neutrino “wind” is given by the
sign of μ j ′ . On the other hand, in diffusive conditions, the neutrino flux may be
orders of magnitude smaller than the nearly isotropic neutrino density in a zone. In
this situation, an asymmetric differencing can lead to an overestimation of the first
angular moment because of improper cancellations among the contributions of the
nearly isotropic neutrino radiation field. As a result, Mezzacappa et al. interpolate
between upwind differencing in free streaming regimes and centered differencing in
diffusive regimes. Specifically, using the coefficients, βi,k′ , defined as

βi,k′ =
{
1/2 if 2dri > λi,k′ ,(
2dri/λi,k′ + 1

)−1 otherwise,
(218)
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where λi,k is the angle-averaged neutrino mean free path, the spatial advection term
is discretized as

μ
∂r2ρF

∂m
= μ j ′

dmi ′

[
4πr2i+1ρi+1Fi+1, j ′,k′ − 4πr2i ρi Fi, j ′,k′

]
(219)

with
ρi Fi, j ′,k′ = βi,k′ρi ′−1Fi ′−1, j ′,k′ + (

1 − βi,k′
)
ρi ′Fi ′, j ′,k′ (220)

for outward propagating neutrinos
(
μ j ′ > 0

)
and

ρi Fi, j ′,k′ = (
1 − βi,k′

)
ρi ′−1Fi ′−1, j ′,k′ + βi,k′ρi ′Fi ′, j ′,k′ (221)

for inward propagating neutrinos
(
μ j ′ < 0

)
.

Next, focusing on the angular advection term, Mezzacappa et al. use the following
discretization:

∂[(1 − μ2)F]
r∂μ

= 3
[
r2i+1 − r2i

]

2
[
r3i+1 − r3i

] 1

w j ′

(
ζ j+1Fi ′, j+1,k′ − ζ j Fi ′, j,k′

)
. (222)

The differencing of the coefficients, ζ = 1 − μ2, is defined by

ζ j+1 − ζ j = −2μ j ′w j ′, (223)

where the w j ′ are the weights corresponding to the Gaussian quadrature values used
for μ j ′ . The discretization of the coefficient, 1/r , of the angular advection term is set
such that in an infinite homogenous medium in thermal equilibrium, ρF = feq =
constant is a solution (Mezzacappa and Bruenn 1993a). The angular integration of
the term ∂[(1 − μ2)F]/r∂μ produces the zeroth and second angular moments of
the neutrino distribution function. Its finite difference representation is therefore not
as sensitive to cancellations in the diffusive limit as the differencing of the spatial
advection term. Upwind differencing is justified. The angular “wind” always points
towards μ = 1. However, for reasons of completeness and consistency, Mezzacappa
et al. use centered differencing in the diffusive regime here as well, with angular
coefficients, γi ′,k′ ≡ βi ′,k′ , and

Fi ′, j,k′ = γi ′,k′Fi ′, j ′−1,k′ + (
1 − γi ′,k′

)
Fi ′, j ′,k′ . (224)

123



Physical, numerical, and computational challenges of... Page 69 of 174 4

Finally, Mezzacappa et al. discretize the last of the O(1) terms in the Boltzmann
equation, the collision term, as

jn+1
i ′,k′

ρn+1
i ′

− χ̃n+1
i ′,k′ Fi ′, j ′,k′

+ 1

ch3c3
E2
k′

jmax∑
l=1

wl ′ (RIS)
n+1
i ′, j ′,l ′,k′ Fi ′,l ′,k′ − 1

ch3c3
E2
k′ Fi ′, j ′,k′

jmax∑
l=1

wl ′ (RIS)
n+1
i ′, j ′,l ′,k′

+ 1

ch3c3

(
1/ρn+1

i ′ − Fi ′, j ′,k′
) kmax∑

m=1

ΔEm′E2
m′

jmax∑
l=1

wl ′ × (R̃in
NIS)

n+1
i ′, j ′,l ′,k′,m′ Fi ′,l ′,m′

− 1

ch3c3
Fi ′, j ′,k′

kmax∑
m=1

ΔEm′ E2
m′

jmax∑
l=1

wl ′ × (R̃out
NIS)

n+1
i ′, j ′,l ′,k′,m′

(
1/ρn+1

i ′ − Fi ′,l ′,m′
)

+ 1

ch3c3

(
1/ρn+1

i ′ − Fi ′, j ′,k′
) kmax∑

m=1

ΔEm′E2
m′

jmax∑
l=1

wl ′

×(R̃em
PAIR)

n+1
i ′, j ′,l ′,k′,m′

(
1/ρn+1

i ′ − F̄i ′,l ′,m′
)

− 1

ch3c3
Fi ′, j ′,k′

kmax∑
m=1

ΔEm′ E2
m′

jmax∑
l=1

wl ′ × (R̃abs
PAIR)

n+1
i ′, j ′,l ′,k′,m′ F̄i ′,l ′,m′ (225)

It is important to note that the collision term is differenced implicitly with respect
to time. All of the neutrino and antineutrino distribution functions in Eq. (225) are
evaluated at the new time step. Given the implementation of discrete ordinates in angle,
the angular integrals in the collision termare evaluatedwithGaussian quadrature, using
the same quadrature set used for the angular discretizations of the distribution function
and terms on the left-hand side of the Boltzmann equation.

6.1.3 Challenges: relativistic effects and the simultaneous conservation of lepton
number and energy

Define

J N =
∫ 1

−1

∫ ∞

0
FE2dEdμ, (226)

HN =
∫ 1

−1

∫ ∞

0
FE2dEμdμ. (227)

J N and HN are the zeroth and first angular number moments of the distribution
function. Integration of Eq. (216) over μ and E with E2 as the measure of integration
gives the following evolution equation for J N :

∂ J N

∂t
+ ∂

∂m

[
4πr2ρHN

]
−

∫
j

ρ
E2dEdμ+

∫
χFE2dEdμ = 0. (228)
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One more integration over rest mass m from the center of the star to its surface gives
the evolution equation for the total neutrino (lepton) number. It is clear from Eq. (228)
that the total neutrino (lepton) number in the computational domain will change only
as a result of an inflow or an outflow of neutrinos at the boundary of the domain and/or
as a result of the exchange of lepton number between the neutrinos and the matter.
Now, in the same way, define the energy moments:

J E =
∫

FE3dEdμ, (229)

HE =
∫

FE3dEμdμ, (230)

K E =
∫

FE3dEμ2dμ. (231)

By taking the zeroth and first angularmoments of the energymoment (
∫
E3dE{∂F/∂t

= O[F]}) of the Boltzmann equation, the latter weighted by the fluid velocity, v,—
i.e.,

∫
E3dEdμ{∂F/∂t = O[F]} and v ∫ E3dEdμμ{∂F/∂t = O[F]}—one obtains

two equations:

∂ J E

∂t
+ ∂

∂m

[
4πr2ρHE

]
−

(
∂lnρ

∂t
+ 2v

r

)
K E + v

r

(
J E − K E

)

−
∫

j

ρ
E3dEdμ+

∫
χFE3dEdμ = 0, (232)

and

v
∂HE

∂t
+ ∂

∂m

[
4πr2vρK E

]
− 4πr2ρ

dv

dm
K E − v

r

(
J E − K E

)

−v
(
∂lnρ

∂t
+ 2v

r

)
HE + v

∫
χFE3dEμdμ = 0. (233)

Equation (232) is the evolution equation for the comoving-frame neutrino energy
per gram. Equation (233) is the evolution equation for the comoving-frame neutrino
momentum per gram. Combining the two, toO(v/c), one obtains the laboratory-frame
neutrino energy conservation equation:

0 = ∂

∂t

(
J E + vHE

)
+ ∂

∂m

[
4πr2ρ

(
vK E + HE

)]

−
∫

j

ρ
E3dEdμ+

∫
χFE3dEdμ+ v

∫
χFE3dEμdμ. (234)

Note that J E + vHE is the laboratory-frame neutrino energy per gram as expressed
in terms of the comoving-frame moments J E and HE . Similarly, vK E + HE is
the laboratory-frame flux per gram expressed in terms of comoving-frame moments.
Integration of Eq. (234) over enclosed mass leads to an equation for total neutrino
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energy conservation. It is clear that, with the exception again of fluxes at the boundary
of the computational domain and energy exchangewith thematter due to collisions (the
terms involving j and χ ) and neutrino stress (the term involving vχ ), the total neutrino
energy as defined in the laboratory frame (where one can speak of conservation of
energy) is conserved.

In arriving at Eq. (234), the expressions (∂lnρ/∂t+2v/r)KE and K E4πr2ρ∂v/∂m
in Eqs. (232) and (233) cancel given the continuity equation

∂lnρ

∂t
+ 2v

r
= −4πr2ρ

∂v

∂m
. (235)

To achieve global energy conservation in the discrete limit, one must ensure, these
cancellations occur in the finite differencing as well. Identifying the origin of the
terms (∂lnρ/∂t + 2v/r)KE and K E4πr2ρ∂v/∂m, we find that (∂lnρ/∂t + 2v/r)KE

originates from the zeroth moment of the energy advection term,

[
μ2

(
∂lnρ

∂t
+ 2v

r

)
−

(
1 − μ2

) v
r

]
1

E2

∂

∂E

(
E3F

)
, (236)

in the Boltzmann equation (216), and K E4πr2ρ∂v/∂m originates from the first
moment of the spatial advection term,

μ
∂
(
4πr2ρF

)

∂m
, (237)

in the same equation. The terms
(
J E − K E

)
v/r also stem from the zeroth moment

of the energy advection term, Eq. (236), and the first moment of the angular advection
term

1

r

∂
[(
1 − μ2

)
F
]

∂μ
(238)

in the Boltzmann equation (216). The requirement of global energy conservation in
the laboratory frame therefore imposes interdependencies on the finite differencing of
the O(1) spatial and angular advection terms, Eqs. (237) and (238), and the O(v/c)
energy advection term, Eq. (236) (Liebendörfer et al. 2004). In particular, given a
choice of finite differencing of the O(1) terms on the left-hand side of the Boltzmann
equation (216), conservation of energy requires “matched” finite differencing for the
coefficients

A ≡ ∂lnρ

∂t
+ 2v

r
(239)

and
B ≡ (1 − μ2)

v

r
(240)

of the O(v/c) advection terms in the same equation.
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Mezzacappa et al. begin by multiplying the discrete representation of the O(1)
terms on the left-hand side of the Boltzmann equation (216) by 1 + μv̄i+1 (in what
follows, unless otherwise specified the indices are i ′, j ′, and k′):

(1 + μv̄i+1)E
F − F̄

cdt
+ (1 + μv̄i+1)E

4πμ

dm
[r̄2i+1ρ̄i+1Fi+1 − r̄2i ρ̄i Fi ]

+(1 + μv̄i+1)E
3(r̄2i+1 − r̄2i )

2(r̄3i+1 − r̄23 )

1

w
[ζ j+1Fj+1 − ζ j Fj ]

= (1 + μvi+1)EF − (1 + μv̄i+1)E F̄

cdt
− μvi+1EF − μv̄i+1EF

cdt

+4πμ

dm
[(1 + μv̄i+1)Er̄

2
i+1ρ̄i+1Fi+1 − (1 + μv̄i )Er̄2i ρ̄i Fi ]

−4πμ2

dm
[v̄i+1r̄

2
i ρ̄i E Fi − v̄i r̄2i ρ̄i E Fi ] + 3(r̄2i+1 − r̄2i )

2(r̄3i+1 − r̄23 )

1

w
[ζ j+1EFj+1 − ζ j E Fj ]

+3(r̄2i+1 − r̄2i )

2(r̄3i+1 − r̄23 )
v̄i+1

1

w
[μζ j+1EFj+1 − μζ j E Fj ]

= (1 + μvi+1)EF − (1 + μv̄i+1)E F̄

cdt
− EF

μvi+1 − μv̄i+1

cdt

+4πμ

dm
[(1 + μv̄i+1)Er̄

2
i+1ρ̄i+1Fi+1 − (1 + μv̄i )Er̄2i ρ̄i Fi ] − 4πμ2

dm
r̄2i ρ̄i E Fi [v̄i+1 − v̄i ]

+3(r̄2i+1 − r̄2i )

2(r̄3i+1 − r̄23 )

1

w
[ζ j+1EFj+1 − ζ j E Fj ]

+ + 3(r̄2i+1 − r̄2i )

2(r̄3i+1 − r̄23 )
v̄i+1

1

w
[μζ j+1EFj+1 − μζ j E Fj ]. (241)

A bar over a variable indicates its value is to be taken at time step tn . As noted, the total
energy equation is obtained when summing Eqs. (232) and (233) and then integrating
over m (the integration in μ and E has already taken place). In this sequence of
integrations (over μ, E , and then m), the term involving A in Eq. (232) cancels with
the term −4πr2ρK Edv/dm in Eq. (233).

Identifying the appropriate velocity gradient term in Eq. (241) and focusing on the
appropriate integration (in this case, overm),Mezzacappa et al. require that [below, the
term involving A comes from the zerothmoment of first term in the observer correction
(236) after an integration by parts in energy, E ; the term involving the velocity gradient
is the next to last term in Eq. (241), corresponding to the first moment of the spatial
propagation term in the Boltzmann equation (216)]:

∑
i=1,imax−1

μ2Ai ′Fi ′dmi ′

−
∑

i=1,imax−1

4πμ2r̄2i ρ̄i Fi (v̄i+1 − v̄i )

=
∑

i=1,imax−1

μ2Ai ′Fi ′dmi ′
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−
∑

i=1,imax−1, j≤ jmax/2

4πμ2r̄2i (βi ρ̄i ′Fi ′ + (1 − βi )ρ̄i ′−1Fi ′−1)(v̄i+1 − v̄i )

−
∑

i=1,imax−1, j≥ jmax/2+1

4πμ2r̄2i (βi ρ̄i ′−1Fi ′−1 + (1 − βi )ρ̄i ′Fi ′)(v̄i+1 − v̄i )

=
∑

i=1,imax−1

μ2Ai ′Fi ′dmi ′

−
∑

i=1,imax−1, j≤ jmax/2

4πμ2r̄2i (v̄i+1 − v̄i )βi ρ̄i ′Fi ′

−
∑

i=1,imax−2, j≤ jmax/2

4πμ2r̄2i+1(v̄i+2 − v̄i+1)(1 − βi+1)ρ̄i ′Fi ′

−
∑

i=1,imax−1, j≥ jmax/2+1

4πμ2r̄2i (v̄i+1 − v̄i )(1 − βi )ρ̄i ′Fi ′

−
∑

i=1,imax−2, j≥ jmax/2+1

4πμ2r̄2i+1(v̄i+2 − v̄i+1)βi+1)ρ̄i ′Fi ′

= 0, (242)

which gives

Ai ′,k′ = 4π
ρ̄i ′

dmi ′

(
r̄2i (v̄i+1 − v̄i )βi,k′ + r̄2i+1(v̄i+2 − v̄i+1)(1 − βi+1,k′)

)
(243)

for j ≤ jmax/2 and

Ai ′,k′ = 4π
ρ̄i ′

dmi ′

(
r̄2i (v̄i+1 − v̄i )(1 − βi,k′)+ r̄2i+1(v̄i+2 − v̄i+1)βi+1,k′

)
(244)

for j ≥ jmax/2+1. (The case i = imax −1 is a boundary case, the details of which
are not important for the present discussion.)

Similarly, defining B ′ according to

Bi ′, j ′,k′ ≡ 3

2

r̄2i+1 − r̄2i
r̄3i+1 − r̄3i

v̄i+1B
′
j ′,k′ , (245)

and again focusing on the appropriate integration (in this case, over μ), Mezzacappa
et al. require that [below, the term involving B ′ comes from the zeroth moment of the
second term in brackets in the energy advection term (236), after an integration by
parts in angle, μ; the second term is the last term in Eq. (241), corresponding to the
first moment of the angular advection term]:
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0 =
∑

j=1, jmax

B ′
j ′Fj ′w j ′ +

∑
j=1, jmax

2

w j ′
[μ j ′α j+1Fj+1 − μ j ′α j Fj ]w j ′

=
∑

j=1, jmax

B ′
j ′Fj ′w j ′

+
∑

j=1, jmax

2[μ j ′α j+1(γ Fj ′ + (1 − γ )Fj ′+1)− μ j ′α j (γ Fj ′−1 + (1 − γ )Fj ′)]

=
∑

j=1, jmax

B ′
j ′Fj ′w j ′ +

∑
j=1, jmax

2[μ j ′α j+1γ − μ j ′α j (1 − γ )]Fj ′

+
∑

j=2, jmax

2μ j ′−1α j (1 − γ )Fj ′ +
∑

j=1, jmax−1

(−2)μ j ′+1α j+1γ Fj ′

=
∑

j=1, jmax

B ′
j ′Fj ′w j ′ +

∑
j=1, jmax

2γα j+1(μ j ′ − μ j ′+1)Fj ′

+
∑

j=1, jmax

2(1 − γ )α j (μ j ′−1 − μ j ′)Fj ′, (246)

which gives

Bi ′, j ′,k′ = 3

2

r̄2i+1 − r̄2i
r̄3i+1 − r̄3i

v̄i+1

[
2γi ′,k′α j+1

μ j ′+1 − μ j ′

w j ′
+ 2(1 − γi ′,k′)α j

μ j ′ − μ j ′−1

w j ′

]
.

(247)
Given the necessary matched finite differencing for A and B, Mezzacappa et al. then
consider the finite difference representation of the energy advection term (236). Using
the definitions (239) and (240), they rewrite the equation corresponding to the change
in the distribution function due to relativistic energy advection as

0 = E3
(
∂F

∂t

)

E
+

(
μ2A − B

)
E
∂

∂E

[
E3F

]
, (248)

and then solve it analytically. To solve Eq. (248), Mezzacappa et al. write the prefactor
of the energy derivative as the time derivative of the quantity

R f = r3μ
2−1ρμ

2; (249)

i.e.,
∂lnR f

∂t
= μ2A − B. (250)

They then transform from the “Eulerian” variable x = E to the “Lagrangian” variable
y = E/R f , and in so doing they transform Eq. (248):
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0 =
(
∂

∂t

[
E3F

])

E
+ ∂R f

R2
f ∂t

E × R f
∂

∂E

[
E3F

]

=
(
∂

∂t

[
E3F

])

E
−

(
∂
[
E/R f

]

∂t

)

E

∂
[
E3F

]

∂
[
E/R f

]

=
(
∂

∂t

[
E3F

])

E/R f

. (251)

For a small section of energy phase space E2ΔE = (
E3
2 − E3

1

)
/3, this relationship

leads to (
∂

∂t

[
E2FΔE

])

E/R f

= 0, (252)

which has the following interpretation: The neutrinos in the energy interval E2ΔE
movealong constant E/R f in the phase space of a comovingobserver.Given this,Mez-
zacappa et al. are able to evolve any neutrino quantity in this phase-space interval—in
particular, the neutrino specific energy, dε = E3FΔE :

(
∂

∂t

[
E3FΔE

])

E/R f

= E2FΔE

(
∂E

∂t

)

E/R f

= ∂lnR f

∂t
dε. (253)

They then consider a neutrino energy group k′, with neighboring groups k′ +dk, dk =
±1. FromEq. (252), the number of neutrinos before energy advection, Fi ′, j ′,k′E2

k′dEk′ ,
is equal to the number of neutrinos after advection. The distribution of these neutrinos
in energy after the advectionyields a diminishednumber of neutrinos Fi ′, j ′,k′E2

k′dEk′−
n−
i ′, j ′,k′ in group k′ and an additional number of neutrinos n+

i ′, j ′,k′+dk in the neighboring
group k′ + dk such that

Fi ′, j ′,k′E2
k′dEk′ −

[(
Fi ′, j ′,k′E2

k′dEk′ − n−
i ′, j ′,k′

)
+ n+

i ′, j ′,k′+dk

]
= 0. (254)

Equation (253) defines a similar correction for the specific neutrino energy in group
k′:

Fi ′, j ′,k′E3
k′dEk′ −

[(
Fi ′, j ′,k′E3

k′dEk′ − Ek′n−
i ′, j ′,k′

)
+ Ek′+dkn

+
i ′, j ′,k′+dk

]

= −
(
μ2

j ′ Ai ′,k′ − Bi ′, j ′,k′
)
Fi ′, j ′,k′E3

k′dEk′dt, (255)

where Ai ′,k′ and Bi ′, j ′,k′ are given by Eqs. (243), (244) and (247). Equations (254) and
(255) can be solved for n−

i ′, j ′,k′ and n+
i ′, j ′,k′ :

n−
i ′, j ′,k′ =

(
μ2

j ′ Ai ′,k′ − Bi ′, j ′,k′
) dEk′

Ek′+dk − Ek′
E3
k′Fi ′, j ′,k′ dt,

n+
i ′, j ′,k′ = n−

i ′, j ′,k′−dk, (256)
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which leads, given the change in the neutrino distribution function in group k′ due to
energy advection can be expressed as

Fi ′, j ′,k′ = Fn
i ′, j ′,k′ +

(
n+
i ′, j ′,k′ − n−

i ′, j ′,k′
)
/
(
E2
k′dEk′

)
, (257)

to the following finite difference representation of the energy advection term in the
Boltzmann equation (216):

1

E2
k′dEk′

[(
μ2

j ′ Ai ′,k′−dk − Bi ′, j ′,k′
) dEk′−dk

Ek′ − Ek′−dk
E3
k′−dk Fi ′, j ′,k′−dk

−
(
μ2

j ′ Ai ′,k′ − Bi ′, j ′,k′
) dEk′

Ek′+dk − Ek′
E3
k′Fi ′, j ′,k′

]
. (258)

Mezzacappa et al. are then left with the task of finding a finite difference representation
for the angular advection term in Eq. (216). Their finite differencing of the energy
advection term conserved specific neutrino energy. Their finite differencing of the
angular advection term is designed to conserve specific neutrino luminosity. With
ζ = 1 − μ2, the angular aberration term can be rewritten as

(
∂F

∂t

)

μ

= (A + B/ζ )
∂

∂μ
[ζμF] . (259)

As before, Mezzacappa et al. seek an analytic solution to Eq. (259). To do so, they
convert the prefactor of the angular derivative to a time derivative. For the quantity
Ra = r3ρ, they find

dlnRa

dt
= A + B/ζ. (260)

They then rewrite Eq. (259) in terms of the “Lagrangian” variable y = ζ−1/2μ/Ra

instead of the “Eulerian” variable x = μ. After multiplication by ζμ, Eq. (259)
becomes:

0 = ζμ
[(
∂F

∂t

)

μ

+ α (A + B/ζ )
∂

∂μ
[ζμF]

]

=
(
∂

∂t
[ζμF]

)

μ

+ ζ−1/2μ
∂Ra

R2
a∂t

× ζ 3/2Ra
∂

∂μ
[ζμF]

=
(
∂

∂t
[ζμF]

)

μ

−
(
∂
[
ζ−1/2μ/Ra

]

∂t

)

μ

∂ [ζμF]

∂
[
ζ−1/2μ/Ra

]

=
(
∂

∂t
[ζμF]

)

ζ−1/2μ/Ra

. (261)

As before, the interpretation is clear: The neutrinos initially residing in the inter-
val

(
1 − 3μ2

)
Δμ = ζ2μ2 − ζ1μ1 are shifted by angular aberration along constant

μ/
(√
ζ Ra

)
in the phase space of a comoving observer:
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(
∂

∂t

[(
1 − 3μ2

)
FΔμ

])

ζ−1/2μ/Ra

= 0. (262)

Given Eq. (262), Mezzacappa et al. are in turn able to evaluate the change in
other neutrino quantities—in particular, the specific neutrino luminosity, d� =(
1 − 3μ2

)
μFΔμ:

(
∂

∂t

[(
1 − 3μ2

)
μFΔμ

])

ζ−1/2μ/Ra

=
(
1 − 3μ2

)
FΔμ

(
∂μ

∂t

)

ζ−1/2/Ra

= ζ ∂lnRa

∂t
d�. (263)

Identifying their bin size
(
1 − 3μ2

j ′
)
Δμ j ′ = w j ′ with their Gaussian quadrature

weights, Eq. (262) leads to their condition for neutrino number conservation,

Fi ′, j ′,k′w j ′ −
[(

Fi ′, j ′,k′w j ′ − n−
i ′, j ′,k′

)
+ n+

i ′, j ′+d j,k′
]

= 0, (264)

and Eq. (263) leads to their prescription for the numerical evolution of the specific
luminosity,

Fi ′, j ′,k′μ j ′w j ′ −
[(

Fi ′, j ′,k′μ j ′w j ′ − μ j ′n
−
i ′, j ′,k′

)
+ μ j ′+d j n

+
i ′, j ′+d j,k′

]

= − (
ζ j ′ Ai ′,k′ + Bi ′, j ′,k′

)
Fi ′, j ′,k′μ j ′w j ′ dt, (265)

where d j = ±1. The change in the neutrino distribution from angular aberration is
then

Fi ′, j ′,k′ = Fn
i ′, j ′,k′ +

(
n+
i ′, j ′,k′ − n−

i ′, j ′,k′
)
/w j ′, (266)

with

n−
i ′, j ′,k′ = (

Ai ′,k′ + Bi ′, j ′,k′/ζ j ′
) w j ′

μ j ′+d j − μ j ′
ζ j ′μ j ′Fi ′, j ′,k′ dt,

n+
i ′, j ′,k′ = n−

i ′, j ′−d j,k′ . (267)

This leads to the following finite difference representation of the angular aberration
term in the Boltzmann equation (216):

1

w j ′

[(
Ai ′,k′ + Bi ′, j ′−d j,k′/ζ j ′−d j

) w j ′−d j

μ j ′ − μ j ′−d j
ζ j ′−d jμ j ′−d j Fi ′, j ′−d j,k′

− (
Ai ′,k′ + Bi ′, j ′,k′/ζ j ′

) w j ′

μ j ′+d j − μ j ′
ζ j ′μ j ′Fi ′, j ′,k′

]
, (268)

where d j = +1 for μ j ′ ≤ 0 and d j = −1 for μ j ′ > 0.
Given the finite differencing for all of the terms in the Boltzmann equation (216)—

i.e., Eqs. (217), (219), (222), (268), (258) and (225)—Mezzacappa et al. solve the
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discretized equation as follows. With the exception of the discretized time derivative,
which is a finite difference of the values of the distribution function at time step tn+1

and tn , the distribution function in all of the remaining terms is defined at time step
tn+1—i.e., Mezzacappa et al. employ a fully implicit approach, including phase-space
advection and collisions. Given the presence of blocking factors in the collision term
and the presence of products of the distribution functions and the neutrino opacities,
which are functions of the specific internal energy and electron fraction of the matter,
which are updated together with the distribution functions given lepton number and
energy exchange with thematter through collisions [see Eqs. (5), (6), (191) and (194)],
linearization is necessary. Specifically, Mezzacappa et al. introduce the linearizations

Fi ′, j ′,k′ = F0
i ′, j ′,k′ + δFi ′, j ′,k′ , (269)

εi ′ = ε0i ′ + δεi ′ , (270)

(Ye)i ′ = (Ye)0i ′ + δ(Ye)i ′ , (271)

where a 0 superscript denotes the value of the variable at the current iterate in an outer
Newton iteration of the solution algorithm. Given the dependence of j , χ̃ , RIS, RNIS,
and RPAIR on ρ, T , and Ye, the above linearizations lead to linearizations in all of these
quantities. For example:

ji ′,k′ = j0i ′,k′ +
[(
∂ j

∂T

)

ρ,Ye

]0

i ′,k′
+

[(
∂ j

∂Ye

)

ρ,T

]0

i ′,k′
. (272)

Insertion of these linearizations into the finite differenced Boltzmann equation leads
to a block-tridiagonal linear system of equations for the quantities δFi ′, j ′,k′ , δεi ′ , and
δ(Ye)i ′ , which is solved for each outer iteration until a prescribed tolerance is reached
for all of the variables. The block tridiagonal system has the form

− CiVi−1 + AiVi − Bi+1Vi+1 = Ui , (273)

where Bi andCi are diagnoal, reflecting the fact that spatial advection couples nearest
neighbors only, and where Ai has the form

Ai =
(
A1 A2
A3 A4

)
. (274)

Ai is an M × M matrix, where M = jmax × kmax + 2. jmax corresponds to
the number of angular quadratures used in the discrete ordinates implementation for
angle, and kmax corresponds to the number of energy groups. The submatrices A2
and A3 are of dimension 2 × (M − 2) and (M − 2) × 2, respectively. A4 is a 2 × 2
matrix. The 2 rightmost columns of Ai and the 2 bottom-most rows correspond to the
coupling of the Boltzmann equation to the equations for the specific internal energy
and electron fraction of thematter, accounting for energy and lepton number exchange.
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The solution vector, Vi , comprising the quantities δFi ′, j ′,k′ , δεi ′ , and δ(Ye)i ′ , has the
form ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δFi ′,1′,1′
δFi ′,2′,1′
.

.

.

δFi ′,1′,2′
δFi ′,2′,2′
.

.

.

δεi ′
δ(Ye)i ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (275)

D’Azevedo et al. (2005) developed a physics-based preconditioner for the above
system. This “ADI-like” preconditioner treats the diagonal dense blocks, which corre-
spond to coupling in momentum space, and the tridiagonal bands, which correspond
to coupling in space, separately, and has proven very effective.

For Mezzacappa et al., neutrino momentum exchange with the matter is handled
separately, during the hydrodynamics update, and is differenced explicitly in time.

6.1.4 Challenges: neutrino–nucleon (small-energy) scattering

In the case of neutrino–electron scattering, for example, where the energy transfer is
not small in comparison with the widths of the zones of our energy grid, Eq. (216)
is differenced using zone-centered values of energy in both the neutrino distribution
function and the scattering kernels.However, for small-energy transfers comparedwith
our energy zone widths, the scattering kernel Rin/out

NNS (εk, εk′ , cos θ) will be effectively
zero if εk �= εk′ , and the scatteringwill become essentially isoenergetic,with negligible
energy transfer. As already discussed, while the transfer of energy between neutrinos
and nucleons during a scattering event is small, there are many such scatterings, and
the overall impact of the energy exchange between the neutrinos and nucleons in these
events is nonnegligible. Thus, a numerical treatment of this scattering contribution that
reflects the fact that the energy exchange between neutrinos and matter is important
and, more important, captures this exchange accurately, must be developed.

Focusing on this term in the collision term, we have

∂ f (μ, ε)

∂t
= [1 − f (μ, ε)] 1

(hc)3

∫ ∞

0
ε′2dε′

∫ 1

−1
dμ′ f (μ′, ε′)

∫ 2π

0
dβ ′Rin

NNS(ε, ε
′, cos θ)

− f (μ, ε)
1

(hc)3

∫ ∞

0
ε′2dε′

∫ 1

−1
dμ′[1 − f (μ′, ε′)]

∫ 2π

0
dβ ′Rout

NNS(ε, ε
′, cos θ),

(276)
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where, for simplicity, we have suppressed the radial and temporal dimensions. With
the energy zone centers, εk+1/2, defined in terms of the energy zone edges, εk , as

εk+ 1
2

= 1

3
[ε2k + εkεk+1 + ε2k+1], (277)

the volume of an energy zone is given by

4πε2
k+ 1

2
Δεk+ 1

2
= 4π

3
[ε3k+1 − ε3k ], (278)

where
Δεk+ 1

2
= εk+1 − εk . (279)

The integral over energy can now be replaced by

∫ εN+1

0
ε2dε =

N∑
k=1

ε2
k+ 1

2
Δεk+ 1

2
, (280)

and Eq. (276) becomes

∂ f (μ, ε)

∂t

∣∣∣∣
scat

� [1 − f (μ, ε)] 1

(hc)3

∫ εN+1

0
ε′2dε′

∫ 1

−1
dμ′ f (μ′, ε′)

∫ 2π

0
dβ ′Rin

NNS(ε, ε
′, cos θ)

− f (μ, ε)
1

(hc)3

∫ εN+1

0
ε′2dε′

∫ 1

−1
dμ′[1 − f (μ′, ε′)]

∫ 2π

0
dβ ′Rout

NNS(ε, ε
′, cos θ)

= [1 − f (μ, ε)] 1

(hc)3

N∑
k′=1

∫ εk′+1

εk′
ε′2dε′

∫ 1

−1
dμ′ f (μ′, ε′)

∫ 2π

0
dβ ′Rin

NNS(ε, ε
′, cos θ)

− f (μ, ε)
1

(hc)3

N∑
k′=1

∫ εk′+1

εk′
ε′2dε′

∫ 1

−1
dμ′[1 − f (μ′, ε′)]

∫ 2π

0
dβ ′Rout

NNS(ε, ε
′, cos θ)

= [1 − f (μ, ε)] 1

(hc)3

N∑
k′=1

ε2
k′+ 1

2
Δεk′+ 1

2

1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ εk′+1

εk′
ε′2dε′

×
∫ 1

−1
dμ′ f (μ′, ε′)

∫ 2π

0
dβ ′Rin

NNS(ε, ε
′, cos θ)

− f (μ, ε)
1

(hc)3

N∑
k′=1

ε2
k′+ 1

2
Δεk′+ 1

2

1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ εk′+1

εk′
ε′2dε′

×
∫ 1

−1
dμ′[1 − f (μ′, ε′)]

∫ 2π

0
dβ ′Rout

NNS(ε, ε
′, cos θ). (281)

In Eq. (281), the first approximation was made by truncating the energy integral at
εN+1. In the second equality, the integral over the entire energy domain is broken up
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into segments within the domain, corresponding to the energy zone widths. This is
not an approximation. In the last equality, we have inserted a factor of unity inside the
summation over energy groups, which, again, is not an approximation. Therefore, no
approximations have been made thus far except for truncating the range of the energy
integration.

The ultimate goal of an improved treatment of small-energy, neutrino–nucleon
scattering is to accurately compute the energy transfer between the neutrinos and the
nucleons—i.e., to compute accurately the change in the neutrino energy within each of
the groups of our energy grid from such scattering. The change in the neutrino energy
within a group is given by

∂Ek+ 1
2

∂t

∣∣∣∣∣
scat

= 1

(hc)3

∫ εk+1

εk

ε3dε
∂ f (μ, ε)

∂t

∣∣∣∣
scat

= 1

(hc)3

∫ εk+1

εk

ε3dε[1 − f (μ, ε)] 1

(hc)3

N∑
k′=1

ε2
k′+ 1

2
Δεk′+ 1

2

1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ εk′+1

εk′
ε′2dε′

×
∫ 1

−1
dμ′ f (μ′, ε′)

∫ 2π

0
dβ ′Rin

NNS(ε, ε
′, cos θ)

− 1

(hc)3

∫ εk+1

εk

ε3dε f (μ, ε)
1

(hc)3

N∑
k′=1

ε2
k′+ 1

2
Δεk′+ 1

2

1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ εk′+1

εk′
ε′2dε′

×
∫ 1

−1
dμ′[1 − f (μ′, ε′)]

∫ 2π

0
dβ ′Rout

NNS(ε, ε
′, cos θ), (282)

where we have inserted Eq. (281) for the time derivative of the neutrino distribution
function due to neutrino–nucleon scattering. Ifwe nowchoose to define the distribution
function, f (μ, ε), at the energy zone centers, Eq. (282) can be expressed as

1

(hc)3

∫ εk+1

εk

ε3dε
∂ f

(
μ, εk+ 1

2

)

∂t

∣∣∣∣∣∣
scat

=
∂ f

(
μ, εk+ 1

2

)

∂t

∣∣∣∣∣∣
scat

1

(hc)3

∫ εk+1

εk

ε3dε

= 1

(hc)3

∫ εk+1

εk

ε3dε
[
1 − f

(
μ, εk+ 1

2

)] 1

(hc)3

N∑
k′=1

ε2
k′+ 1

2
Δεk′+ 1

2

1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ εk′+1

εk′
ε′2dε′

×
∫ 1

−1
dμ′ f

(
μ′, εk′+ 1

2

) ∫ 2π

0
dβ ′Rin

NNS(ε, ε
′, cos θ)

− 1

(hc)3

∫ εk+1

εk

ε3dε f
(
μ, εk+ 1

2

) 1

(hc)3

N∑
k′=1

ε2
k′+ 1

2
Δεk′+ 1

2

1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ εk′+1

εk′
ε′2dε′

×
∫ 1

−1
dμ′ [1 − f

(
μ′, εk′+ 1

2

)] ∫ 2π

0
dβ ′Rout

NNS(ε, ε
′, cos θ)

=
[
1 − f

(
μ, εk+ 1

2

)] 1

(hc)3

N∑
k′=1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ 1

−1
dμ′ f

(
μ′, εk′+ 1

2

) ∫ 2π

0
dβ ′
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× 1

(hc)3

∫ εk+1

εk

ε3dε
1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ εk′+1

εk′
ε′2dε′Rin

NNS(ε, ε
′, cos θ)

− f
(
μ, εk+ 1

2

) 1

(hc)3

N∑
k′=1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ 1

−1
dμ′ [1 − f

(
μ′, εk′+ 1

2

)] ∫ 2π

0
dβ ′

× 1

(hc)3

∫ εk+1

εk

ε3dε
1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ εk′+1

εk′
ε′2dε′Rout

NNS(ε, ε
′, cos θ). (283)

The first equality in Eq. (283) stems from the fact that, once the distribution function is
evaluated at the energy zone center and, consequently, its time derivative is evaluated
there, the time derivative becomes a constant integrand and can be taken outside of
the integral. Dividing both sides of Eq. (283) by

1

(hc)3

∫ εk+1

εk

ε3dε = 1

(hc)3
ε3k+1/2Δεk+ 1

2
, (284)

we obtain
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dμ′ [1 − f

(
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ε2
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Δεk′+ 1

2

∫ εk′+1

εk′
ε′2dε′Rout

NNS(ε, ε
′, cos θ),

(285)

which we rewrite as

∂ f
(
μ, εk+ 1

2

)

∂t

∣∣∣∣∣∣
scat

=
[
1 − f

(
μ, εk+ 1

2

)] 1

(hc)3

N∑
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ε2
k′+ 1

2
Δεk′+ 1

2

×
∫ 1
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dμ′ f

(
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2
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0
dβ ′〈Rin

NNS(ε, ε
′, cos θ)〉E
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− f
(
μ, εk+ 1

2

) 1

(hc)3

N∑
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ε2
k′+ 1
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Δεk′+ 1
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×
∫ 1

−1
dμ′[1 − f (μ′, εk′+ 1

2
)]
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0
dβ ′〈Rout

NNS(ε, ε
′, cos θ)〉E ,

(286)

where

〈Rin/out
NNS (ε, ε

′, cos θ)〉E
≡ 1

ε3
k+ 1

2
Δεk+ 1

2

∫ εk+1

εk

ε3dε
1

ε2
k′+ 1

2
Δεk′+ 1

2

∫ εk′+1

εk′
ε′2dε′Rin/out

NNS (ε, ε
′, cos θ).

(287)

With the scattering kernel defined as in Eq. (287) in the collision term of the Boltzmann
equation, the energy transfer between the neutrinos and the nucleons resulting from
the many neutrino–nucleon scattering events is captured accurately, despite the fact
that the energy exchange per scattering is much less than a typical energy zone width.

6.1.5 Axisymmetry

The first implementation of multi-angle, multi-frequency neutrino transport in the
context of spatially two-dimensional, axisymmetric core-collapse supernova models
was achieved by Ott et al. (2008). Their implementation was based on the neutrino
transport solver developed by Livne et al. (2004) for the neutrino specific intensity
(I ), whose evolution is given by the following equation:

DI

Dt
+Ω · ∇ I + σ I = S. (288)

Here, D/Dt is the Lagrangian time derivative, Ω is the unit vector in the direction
of neutrino propagation, whose components are (cos θp, sin θp cosφp, sin θp sin φp),
where θp and φp are spherical momentum-space coordinates defined relative to the
outward radial direction, σ is the total absorption cross section, including absorption
and scattering, and S is the total emissivity, including emission and scattering.

Equation (288) is temporally discretized fully implicitly. The phase space dis-
cretization is handled as follows. Space—i.e., radius and angle—is discretized using a
conservative difference scheme.Momentum space—i.e., the space comprising the two
dimensions corresponding to the angles of the neutrino’s direction of propagation, θp
and φp, and the dimension corresponding to the neutrino’s energy, εν , is discretized as
follows. The discrete ordinates method is used for the momentum-space dimensions.
Further details of the discretization of Eq. (288) have not yet been provided.
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6.1.6 Three spatial dimensions

The journey down what will no doubt be a long road toward the implementation of
general relativistic, three-dimensional Boltzmann neutrino transport in the context of
core-collapse supernovae was begun by Sumiyoshi and Yamada (2012). With core-
collapse supernovae in mind, they began by solving the conservative form of the
Boltzmann equation for three-dimensional, static stellar core configurations:

1

c

∂ f

∂t
+ μ

r2
∂

∂r
(r2 f )+

√
1 − μ2 cosφp

rsin θ

∂

∂θ
(sin θ f )+

√
1 − μ2 sin φp

rsin θ

∂ f

∂φ

+1

r

∂

∂μ
[(1 − μ2) f ] −

√
1 − μ2

r

cos θ

sin θ

∂

∂φp
(sin φp f ) =

[
1

c

δ f

δt

]

collision
.(289)

In light of the use of spherical polar coordinates, there are terms that correspond to
advection in momentum space even in a static medium in flat spacetime—i.e., even
in the absence of special and general relativistic effects. For example, as a neutrino
propagates, its direction cosine,μ ≡ cos θp, which is defined relative to the outwardly
pointing radial basis vector, will necessarily change. This is described by the fourth
term on the left-hand side of Eq. (289). This is not a geometric effect, as spacetime is
flat in this case. Rather, it is a coordinate effect. The last term on the left-hand side of
the same equation has a similar origin and interpretation. Given the assumption of a
static medium and flat spacetime, no other terms appear on the left-hand side, which
would describe special and general relativistic effects were they considered.

The discretization of Eq. (289) follows and extends that used in Mezzacappa and
Bruenn (1993a)—i.e., finite differencing in space and energy, and discrete ordinates
in neutrino propagation angles. For the second term on the left-hand side of Eq. (289),
corresponding to radial advection of neutrinos, Sumiyoshi and Yamada use the fol-
lowing discretization:

[
μ

r2
∂

∂r
(r2 f )

]
=

[
μ

∂

∂(r3/3)
(r2 f )

]
= μ j

3

r3I − r3I−1

(r2I f I − r2I−1 f I−1), (290)

where, in their notation, f I−1 and f I are the neutrino distributions at the cell interfaces
of the i-th zone. The quantities μ j f I at the cell boundaries are defined by

μ j f I = μ j − |μ j |
2

{(1−βI ) fi +βI fi+1}+μ j + |μ j |
2

{βI fi +(1−βI ) fi+1}, (291)

and βI is

βI = 1 − 1

2

αΔrI /λI
1 + αΔrI /λI . (292)
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In the diffusion (free-streaming) limit, βI = 1/2(1). The advection in μ = cos θp is
discretized as

[
1

r

∂

∂μ
[ (1 − μ2) f ]

]
= 3

2

r2I − r2I−1

r3I − r3I−1

1

dμ j

[
(1 − μ2)J f J − (1 − μ2)J−1 f J−1

]
.

(293)
Upwind differencing is implemented, and f J = f j . θ -advection is first reexpressed
and then discretized as

[√
1 − μ2 cosφp

rsin θ

∂

∂θ
(sin θ f )

]
=

[
−
√
1 − μ2 cosφp

r

∂

∂μ
[ (1 − μ2)

1
2 f ]

]

= −3

2

r2Ir − r2Ir−1

r3Ir − r3Ir−1

(1 − μ2
jθ )

1
2 cosφp jφ

1

dμiθ

[
(1 − μ2)

1
2
Iθ
f Iθ − (1 − μ2)

1
2
Iθ−1 f Iθ−1

]
.

(294)

The factor, (1 − μ2
jθ
)
1
2 cosφp jφ

, determines the direction of advection and the evalu-
ation of f Iθ at the cell interface. Given the sign of cosφp, f Iθ is determined by

cosφp jφ
f Iθ =

cosφp jφ
+ |cosφp jφ

|
2

{(1 − βIθ ) fiθ + βIθ fiθ+1}

+
cosφp jφ

− |cosφp jφ
|

2
{βIθ fiθ + (1 − βIθ ) fiθ+1}. (295)

As before, βIθ takes on values between
1
2 (diffusion limit) and 1 (free-streaming limit)

and is defined in the same way as βI , using instead the angular zone widths and mean
free paths. φp advection is discretized as

[
−
√
1 − μ2

r

cos θ

sin θ

∂

∂φp
(sin φp f )

]
=

[
−
√
1 − μ2

r

μ√
1 − μ2

∂

∂φp
(sin φp f )

]

= −3

2

r2Ir − r2Ir−1

r3Ir − r3Ir−1

(1 − μ2
jθ )

1
2

μiθ

(1 − μ2
iθ
)
1
2

1

dφp jφ

[
(sin φp)Jφ f Jφ − (sin φp)Jφ−1 f Jφ−1

]
.

(296)

In this case, the sign of μiθ (sin φp)Jφ determines the direction of advection. Upwind
differencing is used to determine f Jφ at the cell interface. f Jφ is given by

μiθ (sin φp)Jφ f Jφ = μiθ (sin φp)Jφ + |μiθ (sin φp)Jφ |
2

f jφ+1

+μiθ (sin φp)Jφ − |μiθ (sin φp)Jφ |
2

f jφ . (297)

123



4 Page 86 of 174 A. Mezzacappa et al.

Last but not least, φ advection is discretized as follows

[√
1 − μ2 sin φp

rsin θ

∂ f

∂φ

]
=

[√
1 − μ2 sin φp

r
√
1 − μ2

∂ f

∂φ

]
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(1 − μ2
jθ )

1
2

sin φp jφ

(1 − μ2
iθ
)
1
2

1

dφiφ

[
f Iφ − f Iφ−1

]
.

(298)

Given the sign of sin φp jφ
and, therefore, the advection direction, f Iφ is given by

sin φp jφ
f Iφ =

sin φp jφ
+ |sin φp jφ

|
2

{βIφ fiφ + (1 − βIφ ) fiφ+1}

+
sin φp jφ

− |sin φp jφ
|

2
{(1 − βIφ ) fiφ + βIφ fiφ+1}. (299)

βIφ is determined in the same way as its counterparts in the radial and θ directions,
using the appropriate angular zone widths and mean free paths.

Focusing on the temporal discretization, the phase-space discretizations spelled out
in Eqs. (290) through (299) are assembled and evaluated in a fully implicit manner, as
shown schematically below (i.e., the phase-space discretizations themselves are not
inserted; each term is represented by its continuum counterpart):
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i − f ni
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∂r
(r2 f )
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+
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+
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−
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cos θ

sin θ

∂

∂φp
(sin φp f )
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=
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1

c

δ f

δt

]n+1

collision
, (300)

where n designates the current time slice. The left-hand side of Eq. (300) is linear
in the distribution function, but the right-hand side is not. Consequently, as in the
spherically symmetric case, both sides of Eq. (300) are linearized in f . (In this case,
Sumiyoshi and Yamada are working with a hydrostatic and thermally frozen stellar
core profile. As a result, linearizations in ε and Ye are not necessary.) This gives
rise to a linear system of equations for δ fi . To solve the combination of the outer
nonlinear system of equations and the corresponding inner linear system of equations,
Sumiyoshi and Yamada implement a Newton–Krylov approach—specifically, they
implement Newton–BiCGSTAB, with point-Jacobi preconditioning.

The extension of these lepton-number conservative methods to the special rel-
ativistic case was documented by Nagakura et al. (2014). They deployed novel
momentum-space gridding based on three considerations: (1) The invariant emissivity
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and opacity, which together define an invariant collision term on the right-hand side
of the Boltzmann equation, can be computed in either the inertial, Eulerian frame or
the inertial frame of an observer instantaneously comoving with the stellar core fluid.
The value obtained in both cases would be the same if the neutrino angles and energies
used in either case were related by the Lorentz transformation between the two inertial
frames. (2) The Lorentz transformations of angles and energies between the Eulerian
and comoving frames decouple—i.e., one is free to define one’s energy grid in either of
the two frames independently of one’s angular grids, allowing the choices that would
simplify the numerics while respecting the physics. (3) The dominant opacity during
stellar core collapse stems from coherent, isoenergetic scattering on nuclei—i.e., any
novel gridding should be constructed with this opacity in mind.

In Nagakura et al.’s notation, the invariance of the collision term can be expressed
as

εlb
(δ f
δt

)lb
col

= εfr
(δ f
δt̃

)fr
col
. (301)

where t(t̃) is the Eulerian (comoving) frame time and where the labels lb(fr) corre-
spond to the Eulerian (comoving) frames. The equality in Eq. (301) is to be understood
as follows: If one evaluates the left-hand side at a particular neutrino angle and energy
as measured by the Eulerian observer, the equality is guaranteed provided the righ-
hand side is evaluated at the corresponding Lorentz transformed neutrino angle and
energy, which would be the angle and energy measured by the comoving observer.
The neutrino energies in the two frames, εlb and εfr, are related by

εfr = εlbγ (1 − nlb · v), (302)

where γ is the Lorentz factor, nlb is the neutrino propagation direction as measured
in the Eulerian frame, and v is the fluid velocity in the same frame. The unit neutrino
propagation direction vectors in the two frames are related by

εfrnfr = εlb
[
nlb +

(
−γ + (γ − 1)

nlb · v
v2

)
v
]
, (303)

where nfr denotes the unit neutrino propagation direction vector in the comoving
frame.

Figure 14 from Nagakura et al. shows two momentum-space grids associated with
momentum-space spherical coordinates. The grid on the left corresponds to a choice
of uniform gridding in both angle and energy in the Eulerian frame. (Uniform gridding
is typically not used for either, but for simplicity Nagakura et al. consider this case to
illustrate the essential features of their approach.) The grid on the right corresponds
to the Lorentz-transformed Eulerian grid—i.e., the counterpart grid in the comoving
frame. This grid is no longer uniform in either angle or energy. On the comoving-frame
grid, an isoenergetic scattering event, wherein the neutrino’s angle changes but its
energy does not, would necessitate an interpolation in energy given the fact the energy
grid is not uniform in angle. The number (typically ∼20) of energy “groups” used
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Fig. 14 The left panel shows a schematic of uniform momentum-space angular and energy grids in the
Laboratory frame. Constant-energy grid lines are represented by concentric circles (Nagakura et al. 2014).
Constant angles are indicated by radial lines. The right panel shows the corresponding contours and lines
in the comoving frame. Also added (dotted line) is a constant comoving-frame neutrino energy contour

in most core-collapse supernova simulations is low, and to make matters worse, the
groups are typically spaced exponentially, with coarser resolution at higher energies.
Interpolation on such grids is problematic for these reasons and for the conservation
of neutrino (lepton) number. To overcome these difficulties, Nagakura et al. use the
independence of the Lorentz transformation for neutrino angles and energy and choose
a hybrid-grid approach. They introduce the Lagrangian Remap Grid (LRG) for the
Eulerian observer, which is shown on the left-hand side of Fig. 15, which is the primary
grid used in their work. On the LRG, the angular grid is uniform but the energy grid is
not. The energy grid on theLRG is theLorentz transformof the energy grid on the right-
hand side of the same figure, which corresponds to the comoving-frame observer’s
energy grid, which is uniform. Of course, by virtue of the Lorentz transformation and
the fact that the angular grid is uniform in the Eulerian frame, the angular grid in the
comoving frame cannot be uniform. This presents no difficulties in their approach,
so Nagakura et al. opt for the simplicity of the uniform angular grid on the LRG,
their primary grid. The evaluation of the collision term on the LRG, which is how
the collision term is evaluated in Nagakura et al.’s approach to the discretization and
solution of the Boltzmann equation, is the same as its evaluation on the comoving-
frame grid, given the invariance of the collision term for such Lorentz-transform-
related grids. Since the latter energy grid is uniform across angles, no interpolation
in energy is required in evaluating, for example, isoenergetic scattering. The Lorentz
transformation between the two grids is spatially and temporally dependent, so the
LRGmust be continually redefined as the evolution proceeds, but the comoving-frame
grid does not change. As the LRG evolves, a conservative remapping procedure is used
to remap the neutrino distributions on the previous LRG to the new LRG.
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Fig. 15 The left panel shows the Lagrangian Remapping Grid (LRG) used by Nagakura et al. (2014) in their
Boltzmann transport implementation. On the LRG, the neutrino angular grid is uniform, but the energy grid
corresponds to a uniform energy grid in the comoving frame, shown in the right panel by concentric circles.
The two energy grids are related by a Lorentz transformation. Given that the angular grid is uniform in the
Laboratory frame, the corresponding angular grid in the comoving frame is not uniform. The angular grids,
too, are related by a Lorentz transformation between the frames

With all of the above inmind, and focusing on isoenergetic scattering, the right-hand
side of the Boltzmann equation, Eq. (289), is evaluated on the LRG as

(
δ f

δt

)

collision

= γ
(
1 − nlb · v

)(δ f
δt̃

)

collision

= γ
(
1 − nlb · v

) [−(εfr)2
(2π)3

∫
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lb[Ω fr(Ω lb),Ω ′fr(Ω ′lb)]

×{ f lb[εfr(εlb),Ω fr(Ω lb)] − f lb[εfr(εlb),Ω ′fr(Ω ′lb)]}]
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(
1 − nlb · v

)
[−[εfr(εlb)]2

(2π)3

∫
dΩ ′lb dΩ ′fr

dΩ ′lb R
lb[Ω fr(Ω lb),Ω ′fr(Ω ′lb)]

×{ f lb(εlb,Ω lb)− f lb(εlb,Ω ′lb)}].
(304)

The last equality follows from the invariance of the distribution function.
While the use of the LRG simplifies the evaluation of the collision term and avoids

the need to introduce velocity-dependent angle and energy advection on the left-
hand side of the Boltzmann equation, there is a cost: It complicates spatial advection.
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Fig. 16 In the left panel, energy zones on the LRG are shown for adjacent radial or angular grid points,
designated here by y (Nagakura et al. 2014). In the right panel, the higher-resolution Laboratory Fixed Grid
(LFG) is shown, superimposed on the LRG

To overcome this inherited difficulty, Nagakura et al. invoke yet another grid, the
Laboratory Fixed Grid (LFG). The LFG is like the grid depicted on the left-hand side
of Fig. 14. It is the same for all Eulerian observers at different spatial locations and is
constant in time. And, in Nagakura et al.’s implementation, it is of higher resolution
in energy relative to the LRG. This is evident in Fig. 16.

Given the LFG, the treatment of spatial and angular advection occurs in the fol-
lowing steps: (1) Using the subgrid energy distribution, fsubgrid, the values of the
distribution function, f , at the zone centers of the LFG grid are determined by
fsubgrid(εLFGA′ ,B′,...), where εLFGA′,B′,... are the value of the energies corresponding
to the zone centers on the LFG grid for zones A′, B′, . . ., respectively. (For the exam-
ple points selected here, the LFG energies are the same.) (2) Once the values of the
distribution function are defined at the zone centers of the LFG, they can be used to
define the spatial and angular fluxes on the LRG as follows. Consider Fig. 16. On the
left-hand side of the figure, the LRG is shown. On the right, the LFG is overlaid on
the LRG. Note, too, here we are considering advection in space and angle, denoted
on the vertical axis by y to represent both. Let us consider LFG zones A′ and B′.
The flux at the interface between these two zones is determined from the value of the
distribution function there, which is determined by interpolating between the values of
the distribution function at the A′ and B′ zone centers, as outlined by Sumiyoshi and
Yamada (2012). (When invoking the LFG, this interpolation involves only two zones,
not three as it would in the case of the LRG.) (3) Given the fluxes on the LFG, we
are ready to define the fluxes that will be used on the LRG to update the distribution
function in each of the LRG’s zones due to advection. Note that advection into (for
example) LFG zone B′ from A′ involves advection into a single zone. However, it is
easy to see from Fig. 16 that advection from A′ into B′ involves advection into two
zones of the LRG: A and B. To divide the contribution of the LFG flux into B′ into
LRG fluxes into zones A and B, we split the flux as follows:

FA′|B′ = γ FA′|B′ + (1 − γ )FA′|B′ , (305)

where FA′|B′ is the LFG flux at the interface between LFG zones A′ and B′ and where
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γ = NL

NL + NR
, (306)

NL = |ε3AB − ε3L | f A, (307)

NR = |ε3AB − ε3R | fB, (308)

with εAB corresponding to the value of the energy at the interface of the LRG zones A
and B and where εL(R) corresponds to the energy value associated with the left (right)
boundary of the LFG zone B′. f A(B) corresponds to the value of the distribution
function on the LRG in zone A(B). In other words, the LFG flux at the interface of
LFG zones A′ and B′ is split, according to the distribution-weighted energy volume,
between LRG fluxes into zones A and B. Note that zone B, for example, has multiple
LFG fluxes advecting into it. The total LRG flux for zone B would therefore be the
sum of all of the relevant LFG fluxes into it determined in the manner described here.
(4) Once the LRG interface fluxes are defined as in step 3, the spatial (or angular)
advection on the LRG is carried out as outlined by Sumiyoshi and Yamada (2012).

Nagakura et al.’s novel method has been designed to conserve lepton number. A
demonstration that it simultaneously conserves energy at an appropriate level remains
to be demonstrated.

With regard to the temporal discretization with special relativistic effects included,
Nagakura et al. use a semi-implicit method. This is necessitated by the fact that the
methods outlined above for the treatment of advection on the LRG cannot be made
fully implicit.With the temporal descretization alone in mind, the Boltzmann equation
can be written as

f n+1 − f n

Δt
= −Fadv( f

gs, f n+1)+
(δ f
δt

)lb
col
( f n+1), (309)

where

Fadv( f
gs, f n+1) = FSR

adv( f
gs)+ κ

(
FNR
adv ( f

n+1)− FNR
adv ( f

gs)
)
. (310)

The first term on the right-hand side of Eq. (310) is the advection term for the special
relativistic case. It is evaluated explicitly at the value of the current iterate, f gs . The sec-
ond two terms correspond to what the advection terms would be in the non-relativistic
case, evaluated both implicitly and explicitly (at the current iterate), respectively.
Together they represent a “correction” to the first term and are introduced for numer-
ical stability. When f gs → f n+1, the second two terms cancel, and the right-hand
side of Eq. (310) becomes FSR

adv( f
n+1), as desired. The parameter, κ , is a limiter and

prevents the correction from becoming larger than the first term, which Nagakura et
al. note can happen when the fluid velocities become several tens of percent of the
speed of light.

Given the solution of the distribution function and, in particular, the numerical
determination of the collision term, the update to the matter electron fraction and
stress–energy tensor (including both energy and momentum exchange) are computed
as follows [see Eqs. (5), (6), (191) and (194)]:
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Tμν,ν = −Gμ, (311)

N νe ,ν = −Γ , (312)

where

Gμ ≡
∑
i

Gμi , (313)

Gμi ≡
∫

pμi

(δ f
δτ

)
col(i)

dVp, (314)

Γ ≡ Γνe − Γν̄e , (315)

Γi ≡
∫ (δ f

δτ

)
col(i)

dVp, (316)

and where, for Nagakura et al., N νe (our J νe ) is the electron density current, dVp (our
πm) is the invariant momentum-space volume element, and i indicates the neutrino
species (Fig. 17).

6.2 Boltzmann kinetics: spatial discontinuous Galerkin discretization plus
spectral multigroup PN

A numerical treatment of Boltzmann kinetics that implements a finite-element
discretization—specifically, a Discontinuous Galerkin (DG) discretization—for the
spatial degrees of freedom together with a spectral decomposition inmomentum space
was developed by Radice et al. (2013) for the Boltzmann equation:

pμ
∂F

∂xμ
= C[F]. (317)

In this scheme, the distribution function, F , is first decomposed in momentum space
as

F(xα, ν, ϕ, θ) =
Nν∑
n=0

N∑
�=0

�∑
m=−�

Fn�m(xα) χn(ν) Y�m(ϕ, θ), (318)

where the orthonormal basis functions in the energy dimension are defined by

χn(ν) =
{
1/

√
Vn, if ν ∈ [νn, νn+1],

0, otherwise,
, Vn =

∫ νn+1

νn

h3ν2 dν = h3

3
(ν3n+1 − ν3n).

(319)

Using the orthonormality of the spherical harmonics and χn(ν), the coefficients in the
momentum-space expansion of the distribution function, Eq. (318), are given by

Fn�m(x
α) =

∫ ∞

0
h3ν2 dν

∫

S1

dΩ F(xα, ν, ϕ, θ) Y�m(ϕ, θ) χn(ν). (320)

123



Physical, numerical, and computational challenges of... Page 93 of 174 4

Fig. 17 In the top left panel, Nagakura et al. (2018) plot the r−θ component of the Eddington tensor, krθ , at
190 ms after bounce in a core-collapse supernova simulation they performed with their Boltzmann neutrino
transport solver, initiated from a progenitor of 11.2M�. In the corresponding upper right panel, they plot
the (absolute) difference between krθ computed with both Boltzmann neutrino transport and two-moment
neutrino transport with M1 closure. In both cases, krθ is evaluated at the mean neutrino energy at each
point of the spatial grid shown here. Nagakura et al. classify such absolute differences in the off-diagonal
components of the Eddington tensor in their model as substantial, indicating that Boltzmann transport is
needed to accurately compute the components of the neutrino Eddington tensor. In their model, krθ was
demonstrated to dictate the evolution of the lateral neutrino fluxes, not kθθ , in the critical semitransparent
regime. Image reproduced with permission, copyright by AAS

Radice et al. introduce the shorthand notation:

ΨA(ν, ϕ, θ) ≡ χn(ν) Y�m(ϕ, θ), (321)

and reexpress Eq. (318) as

F(xα, ε, ϕ, θ) =
∑
A

F A(xα)ΨA(ε, ϕ, θ) = F AΨA. (322)
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Inserting the expansion (322) into the Boltzmann equation (317) leads to a coupled
system of equations for the expansion coefficients that must be solved to determine
them as a function of time and space:

p0
∂FB

∂t
ΨB + pk

∂FB

∂xk
ΨB = C[F]. (323)

Multiplying Eq. (323) byΨ A (in the notation of Radice et al., a superscript A indicates
a complex conjugate), integrating overmomentum space, and using the orthonormality
of the basis functions ΨA gives

∂F A

∂t
+ Pk A

B
∂FB

∂xk
= S

A[F], (324)

where

Pk A
B ≡

∫
pk Ψ A ΨB dΠ (325)

and

S
A[F] ≡

∫
C[F]Ψ A dΠ. (326)

In Eqs. (325) and (326), dΠ is the invariant momentum-space volume element. Once
the expansion coefficients are obtained by solvingEq. (324), the solution to the original
Boltzmann equation is given by Eq. (318).

Radice et al. illustrate their approach to solving Eq. (324) by considering the one-
dimensional, collisionless case:

∂F A

∂t
+ P1A

B
∂FB

∂x
= 0. (327)

In a DG discretization in x , the distribution function is written as an expansion in
Lagrange polynomials:

F A(x, t) =
∑
A

F A
i (t)u(x), (328)

where
u(x) = ui−1/2li−1/2(x)+ ui+3/2li+3/2(x), (329)

and where the Lagrange polynomials are defined by

li−1/2(x) = 1 − x − xi−1/2

xi+3/2 − xi−1/2
, li+3/2(x) = x − xi−1/2

xi+3/2 − xi−1/2
. (330)

Insertion of the expansion (328) in Eq. (327) yields the following set of coupled ordi-
nary differential equations for the coefficients F A

i :

Δx
dF A

i

dt
= F

A
i , (331)
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where the flux factors are given by

F
A
i ≡ 3

2
F− − F − 1

2
F+, F

A
i+1 ≡ 1

2
F− + F − 3

2
F+, (332)

F ≡ 1

2

[(
P1A

B
)
i F

B
i + (

P1A
B
)
i+1F

B
i+1

]
,

F− ≡ 1

2

[
P1A

B
(
FB

L + FB
R
) − R1A

Cmax(v, |Λ1C
D|)L 1D

B
(
FB

R − FB
L
)]
,

P1A
B = R1A

CΛ
1C

DL
1D

B .

In Eq. (332),F is the average flux;F− is the flux computed at the boundary xi+1/2 of
the i th element through an exact solution of the Riemann problem with left and right
states, FB

L and FB
R , respectively; F+ is defined in the same way, at the boundary

xi+3/2 ; R1A
C is the matrix of right eigenvectors of P1A

B ; L 1D
B is the matrix of

left eigenvectors of P1A
B ; Λ1C

D is the matrix of eigenvalues of P1A
B ; and v is

a parameter taken to be the first abscissa of the adopted Legendre quadrature (this
parameter is introduced by Radice et al. to dissipate numerically zero-speed modes).
The three-dimensional extension of the scheme is given by constructing the flux factors
in each of the three dimensions in the same way, which gives

dF A
i, j,k

dt
= S

A[F] + 1

Δx
F
A
i, j,k + 1

Δy
G

A
i, j,k + 1

Δz
H

A
i, j,k . (333)

Now, focusing on the temporal discretization of Eq. (333) and using Radice et al.’s
rewrite of the equation as

dF A

dt
= S

A[F] + A A[F], (334)

the authors evolve the coefficients of the distribution function’s DG–spectral expan-
sion, Eqs. (318) and (328), in a two-step, semi-implicit, asymptotic-preserving scheme
(McClarren et al. 2008), staged as a predictor step,

F A
k+1/2 − F A

k

Δt/2
= A A[Fk] + S

A[Fk+1/2] , (335)

followed by a corrector step,

F A
k+1 − F A

k

Δt
= A A[Fk+1/2] + S

A[Fk+1]. (336)

Given that Radice et al. choose to use a partially spectral scheme, like all others
deploying such schemes they had to contend with the Gibbs phenomenon. To do
so, they were informed by the seminal work of McClarren and Hauck (2010), who
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developed a method, using filtering, to mitigate Gibbs phenomena in PN schemes.
Unfortunately, as pointed out byMcLerran and Hauck and by Radice et al., the filtered
PN scheme does not have a unique continuum limit—i.e., it cannot be shown to be a
discretization of a system of partial differential equations. In Radice et al.’s approach,
the spherical harmonic expansion of the solution is filtered at each time step using a
spherical-spline filter:

[
F (F)

]
(ϕ, θ) =

N∑
�=0

�∑
m=−�

[
σ
( �

N + 1

)]s
F�mY�m(ϕ, θ), (337)

where σ(η) is a filter function of order p such that

σ(0) = 1, σ (k)(0) = 0, for k = 1, 2, . . . p − 1, (338)

and where s is a strength parameter, which is chosen to be a function of the time step:

s = βΔt, (339)

where β is a parameter. Radice et al. document success using a modified, second-order
Lanczos filter:

σ(η) = sin η

η
. (340)

With the introduction of filtering, the time stepping algorithm, Eqs. (335) and (336),
is modified as follows:

F A∗ − F A
k

Δt/2
= A A[Fk] + S

A[Fk+1/2], (341)

F A
k+1/2 = F A

B F
B∗, (342)

F A∗∗ − F A
k

Δt
= A A[Fk+1/2] + S

A[Fk+1], (343)

F A
k+1 = F A

B F
B∗∗, (344)

where F A
B is a diagonal matrix that instantiates the filtering operation. Moreover,

Radice et al. were able to show that their filtering method represents the first-order,
operator-split discretization of a term added to the underlying system of partial differ-
ential equations, Eq. (324):

∂F A

∂t
+ Pk A

B
∂FB

∂xk
= eA + SA

B F
B + βL A

B F
B, (345)

where L A
B is a diagonal matrix with coefficients log σ(l/(N + 1)). That is, their

filtering method is equivalent to the addition of a forward-scattering term [σ(0) = 1]
to Eq. (324), and their overallmethod is a unique discretization of an underlying system
of coupled partial differential equations, Eq. (345).
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While the filtering effectively mitigates the Gibbs phenomenon, the distribution
function can still become negative, which is unphysical. To contend with negative
distribution functions in the context of the filtered PN scheme, Laiu and Hauck (2019)
developed and analyzed so-called positivity limiters, which can be used to ensure
positivity of distribution function in each step of a time integration scheme.

6.3 Boltzmann kinetics: spectral decomposition across phase space

Peres et al. (2014) opt for a fully spectral approach to the solution of the 3+1 general
relativistic Boltzmann equation in the CFC approximation in non-conservative form:

1

α

∂ f

∂t
+

(
pi

Ψ 2ε
− β i

α

)
∂ f

∂xi
− Γ̄ j

μν p
μ pν J i j

1

ε

∂ f

∂ pi
= 1

ε
C [ f ]. (346)

In this case, the 3+1 line element is

ds2 = −α2dt2 + γĩ j̃ (dxĩ + β ĩ dt)(dx j̃ + β j̃ dt), (347)

where the spatial geometry is assumed to be conformally flat—i.e.,

γĩ j̃ = Ψ 4 fĩ j̃ . (348)

In Eq. (348), fĩ j̃ is the flat metric and Ψ is the conformal factor,

Ψ =
(
det γĩ j̃
det fĩ j̃

)1/12

. (349)

In Eq. (346), pμ and ε correspond to the neutrino four-momenta and energy, respec-
tively, measured by an Eulerian observer. Γ̄ j

μν are the Ricci rotation coefficients.
Peres et al.’s choice of phase-space coordinates is motivated by the known challenge
time derivatives present for spectral methods. Specifically, were comoving-frame four-
momenta chosen instead, the coefficients of the advection terms on the left-hand side
of Eq. (346) would contain time derivatives associated with, for example, relativistic
Doppler shift. Of course, the collision term is best evaluated in the comoving frame,
using comoving-frame four momenta, so the choice of Eulerian frame four-momenta
necessitates additional work to treat collisions. Peres et al. leave the detailed treatment
of this term to future publication. They also acknowledge the benefits of beginning
instead with the conservative form of Eq. (346) and leave that to future publication, as
well.

In their approach, the distribution function is written as an expansion in terms of
the basis functions across all six dimensions of phase space—in this case, spherical
coordinates in both space and momentum space:
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f (t, r , θ, φ, ε,Θ,Φ)

�
nr∑
i=0

nθ∑
j=0

nφ∑
k=0

nε∑
l=0

nΘ∑
m=0

nΦ∑
p=0

Ci jklmp(t) Ti (r̄) Fj (θ) Fk(φ) Tl(ε̄) Tm(Θ̄) Fp(Φ).

(350)

Chebyshev basis functions are used for r , ε, andΘ—i.e., for the expected non-periodic
nature of the distribution function in these dimensions. Fourier basis functions are
used for θ , φ, andΦ—i.e., for the expected periodic nature of the distribution function
in these dimensions. Barred variables in Eq. (350) are in the range [−1, 1] and are
related to the standard coordinates by affine transformations. In the case of the radial
coordinate, the affine transformation is written explicitly as

r = αr r̄ + βr , r̄ ∈ [−1, 1], (351)

where αr and βr are constants, with Rmin = βr − αr and Rmax = αr + βr . Rmin
and Rmax are the minimum and maximum radii of the spherical shell considered in
the Peres et al. analysis, respectively. (The extension of their method to r = 0 is left
for future development.) Ignoring the collision term in Eq. (346), it can be written in
terms of the Liouville operator, L̃[ f ], as

∂ f

∂t
= −L̃[ f ]. (352)

Substituting the expansion (350) into Eq. (352) results in a system of coupled ordinary
differential equations for the solution vector,UN (t), where N = nr × nθ × nφ × nε×
nΘ × nΦ . The elements of the solution vector are the coefficients Ci jklmp(t). Under
this substitution, the operator, L̃[ f ], in Eq. (352) becomes an N × N matrix. To solve
this system of equations, Peres et al. employ an explicit, third-order, Adams–Bashforth
scheme,

Un+1
N = Un

N −Δt
(
23

12
L̃ NU

n
N − 4

3
L̃ NU

n−1
N + 5

12
L̃ NU

n−2
N

)
, (353)

though they emphasize they are not restricted to explicit updates but could also deploy
semi-implicit and implicit methods.

6.4 Boltzmann kinetics: Monte Carlo methods

Up to now,we have focused on deterministicmethods for the solution of theBoltzmann
neutrino transport equations in core-collapse supernovae. But nondeterministic—
specifically Monte Carlo—methods have also been used. Until recently, they have
been confined to “snapshot” studies in a particular slice of an evolving stellar core
and have been used most extensively as a gauge of the accuracy of deterministic, but
approximate, methods. Although it has yet to be used in the context of a core-collapse
supernova simulation as the method of choice for treating time-dependent neutrino
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transport, a lepton-number and energy conservingMonte Carlo scheme for such trans-
port has been developed by Abdikamalov et al. (2012) for the O(v/c) limit of special
relativistic effects and Newtonian gravity.

In their paper, Abdikamalov et al. illustrate their method assuming spherical sym-
metry. They beginwith the equation for the neutrino intensity for each neutrino species,
here written generically without a species label:

1

c

∂ I (r , μ, ε, t)

∂t
+ ∂ I (r , μ, ε, t)

∂r
+ 1 − μ2

r

∂ I (r , μ, ε, t)

∂μ

= κa(ε, T ) [B(ε, T )− I (x, μ, ε, t)] − κs(ε, T )I (r , μ, ε, t)
+2π

∫ +1

−1

∫ ∞

0
κs(ε

′, μ′ → ε, μ)I (x, μ′, ε′, t)dμ′dε′. (354)

The first term term on the right-hand side is the familiar term for emission and absorp-
tion of neutrinos. κa(s) is the total absorption (scattering) opacity. The last term
describes the additional source of neutrino as a result of inscattering into the neutrino
“beam” with direction μ and energy ε. Equation (354) is solved using the boundary
conditions:

I (R, μ, ε, 0) = IR(μ, ε, t), −1 ≤ μ ≤ 0. (355)

In their set of evolution equations, Eq. (354) is coupled to the material energy equation
and the equation for the evolution of the electron fraction:

ρ
dUm

dt
= 2π

∑
i

∫ 1

−1

∫ ∞

0
κai (Ii − Bi ) dμdε

+
∑
i

Si , (356)

ρNA
dYe
dt

= 2π
∑
i

si

∫ 1

−1

∫ ∞

0

κai

ε
(Ii − Bi ) dμdε. (357)

The sum over i is over neutrino species, which will be dropped in what follows. si =
+1,−1, 0 for electron neutrinos, electron antineutrinos, and heavy-flavor neutrinos,
respectively, and will be carried through the remaining presentation of the method.
In Eq. (356), S is the contribution to the material energy from energy-exchanging
scattering with neutrinos and is given by

S = (2π)2
∫ ∞

0

∫ ∞

0

∫ 1

−1

∫ 1

−1

[ ε
ε′

κs(ε
′, μ′→ ε, μ)I (x, μ′, ε′, t)

−κs(ε, μ→ ε′, μ′)I (x, μ, ε, t)
]
dεdε′dμdμ′. (358)
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Abdikamalov et al. introduce the additional quantities:

Ur = 4π

c

∫ ∞

0
Bdε, (359)

b = B

4π
∫ ∞
0 Bdε

, (360)

κp =
∫ ∞
0 κa Bdε∫ ∞
0 Bdε

, (361)

χa = κa

ε
, (362)

χp =
∫ ∞
0 χa Bdε∫ ∞
0 Bdε

, (363)

whereUr is the equilibriumneutrino energy density and κp is the Planck-mean opacity.
The evolution equation for Ur is related to the evolution equations for Um and Ye by

dUr

dt
= β

(
ρ
dUm

dt

)
+ ζ

(
ρNA

dYe
dt

)
, (364)

where

β = 1

ρCV

(
∂Ur

∂T

)

ρ,Ye
(365)

and

ζ = 1

ρNA

[(
∂Ur

∂Ye

)

ρ,T
− 1

CV

(
∂Um

∂Ye

)

ρ,T

(
∂Ur

∂T

)

ρ,Ye

]
. (366)

In Eqs. (364) through (366), NA is Avogadro’s Number and CV is the material heat
capacity.

As with deterministic methods, the first step in the solution of Eqs. (354), (356),
and (357) is to linearize them. As part of this linearization procedure, Abdikamalov
also ensure that these three evolution equations become decoupled. The first step in
the linearization process involves approximating {κa, κp, κs,κs, b, χa, χp, β, ζ }with
{κ̃a, κ̃p, κ̃s, κ̃s, b̃, χ̃a, χ̃p, β̃, ζ̃ }. Abdikamalov define the latter as the time-centered
values of the former within the time interval tn ≤ t ≤ tn+1. In practice, they are
chosen at the initial time step: tn . Given this linearization, Eqs. (354), (356), (357),
and (364) become:

1

c

∂ I (μ, ε)

∂t
+ μ∂ I (μ, ε)

∂r
+ 1 − μ2

r

∂ I (μ, ε)

∂μ

= cκ̃ab̃Ur − (κ̃a + κ̃s)I (μ, ε)
+2π

∫ +1

−1

∫ ∞

0
κ̃s(ε

′, μ′ → ε, μ)I (μ′, ε′)dμ′dε′, (367)
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ρ
dUm

dt
= 2π

∫ 1

−1

∫ ∞

0
κ̃a I dμdε − cκ̃pUr + S, (368)

ρNA
dYe
dt

= 2πsi

∫ 1

−1

∫ ∞

0
χ̃a I dμdε − csi χ̃pUr , (369)

dUr

dt
= 2π

∫ 1

−1

∫ ∞

0
γ̃ I d μdε − cγ̃pUr + β̃S, (370)

where

γ̃ = β̃κ̃a + ζ̃ si χ̃a, (371)

γ̃p = β̃κ̃p + ζ̃ si χ̃p. (372)

It is understood in Eqs. (368) and (370) that κs is replaced by κ̃s . Abdikamalov et al.
then time average Eq. (370) and use

Ūr = αUr ,n+1 + (1 − α)U∗
r ,n, (373)

where, as pointed out byAbdikamalov et al.,α controls the degree towhich themethod
is implicit, and where

U∗
r ,n = Ur ,n + β̃Δtn S̄ (374)

and

S̄ = 1

Δtn

∫ tn+1

tn
S(t)dt, (375)

to obtain

Ūr = fnU
∗
r ,n + 2π

1 − fn
cγ̃p

∫ 1

−1

∫ ∞

0
γ̃ Ī dμdε, (376)

where
U∗
r ,n = Ur ,n + β̃Δtn S̄ (377)

and

fn = 1

1 + αcΔtn γ̃p . (378)

Abdikamalov et al. now assume that Ū = Ur (t) and Ī = I (t) in Eq. (376) and use the
resultant equation to substitute for Ur in Eq. (367), to obtain their final equation for
the evolution of the neutrino intensity:

1

c

∂ I

∂t
+ μ∂ I

∂r
+ 1 − μ2

r

∂ I

∂μ
= κ̃eacb̃U

∗
r ,n

−κ̃ea I + κ̃es,e I + κ̃es,l I + κ̃s I

+2π
κ̃ab̃

κ̃p

∫ 1

−1

∫ ∞

0
κ̃es,e I dμdε + 2π

κ̃ab̃

χ̃p

∫ 1

−1

∫ ∞

0
χ̃es,l I dμdε

+2π
∫ +1

−1

∫ ∞

0
κ̃s(ε

′, μ′ → ε, μ)I (μ′, ε′)dμ′dε′, (379)
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where

κea = fnκa, (380)

κes,e = (1 − fn)
β̃κ̃p

γ̃p
κa, (381)

κes,l = (1 − fn)
ζ̃ si χ̃p
γ̃p

κa , (382)

χes,e = (1 − fn)
β̃κ̃p

γ̃p
χa, (383)

χes,l = (1 − fn)
ζ̃ si χ̃p
γ̃p

χa . (384)

A similar procedure can be used to derive equations for the updates of Um and Ye, as
was performed forUr . Abdikamalov et al. point out that care must be taken to use the
same expression for Ur—specifically, Eq. (376) with Ūr = Ur (t) and Ī = I (t)—in
the derivation of the equation for Um in order to guarantee conservation of energy, to
arrive at

Um,n+1 = Um,n + Δtn
ρ

{
2π

∫ 1

−1

∫ ∞

0
κ̃ea Ī dμdε

−c fn κ̃pUr ,n + 2π
∫ 1

−1

∫ ∞

0
κ̃es,l Ī dμdε

−2π
κ̃p

χ̃p

∫ 1

−1

∫ ∞

0
χ̃es,l Ī dμdε + S̄

}
(385)

and

Ye,n+1 = Ye,n + Δtn
ρNA

{
2πsi

∫ 1

−1

∫ ∞

0
χ̃ea Ī dμdε

−csi fnχ̃pUr ,n + 2πsi

∫ 1

−1

∫ ∞

0
χ̃es,e Ī dμdε

−2πsi
χ̃p

κ̃p

∫ 1

−1

∫ ∞

0
κ̃es,e Ī dμdε

}
. (386)

Having linearized and decoupled the equations of motion, the evolution in Abdika-
malov et al.’s Monte Carlo approach proceeds as follows: The weight associated with
each Monte Carlo paricle (MCP) is the number of particles associated with it and is
assumed to be N0. The number of particles emitted by the matter in the time interval
[tn, tn + 1] is

NT = 8π2
∫ tn+1

tn

∫ R

0

∫ ∞

0

κa(ε, T )B(ε, T )

ε
r2 dt dr dε. (387)
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Then, the number of MCP’s emitted in this time interval is

NT = RInt (NT /N0) , (388)

where RInt(x) returns the largest integer less than x . The particle energy in each MCP
is chosen according to the functional form of κB. Since thermal emission is isotropic,
the angle of propagation of each MCP emitted, μ, is chosen uniformly on the interval
[−1,+1] using

μ = 2ξ − 1, (389)

where ξ is a random number that takes on values in the interval [0, 1]. Similarly, the
emission time is chosen uniformly on the interval [tn, tn+1] using

t = tn + (tn+1 − tn)ξ. (390)

To choose the zone in which anMCP is emitted, Abdikamalov et al. use the probability
that the MCP is emitted in a particular zone, which is given by the total number of
particles emitted in that particular zone divided by the total number of particles emitted
across all zones. Once an MCP is emitted in a particular zone, its location (assuming
spherical symmetry) within that zone is determined using

r =
[
r3j−1/2 + (

r j+1/2 − r j−1/2
)3
ξ
]1/3

. (391)

where j is the zone index. The number of MCPs entering from the outer boundary of
the domain, at radius R, during the interval [tn, tn+1] is given by

NB = RInt

[
−8π2R2

N0

∫ tn+1

tn

∫ ∞

0

∫ 0

−1

μIR(μ, ε, t)

ε
dt dε dμ

]
. (392)

The number of MCPs present at the beginning of the interval is

NIC = RInt

[
8π2

cN0

∫ R

0

∫ 1

−1

∫ ∞

0
Ii (r , μ, ε)r

2 dr dμ dε

]
, (393)

where the spatial zone, propagation angle, and energy of eachMCP is chosen randomly
using the functional form of I .

During transport, an emitted MCP will either (1) travel within the zone without
collision and remain in the zone, (2) encounter a collision within the zone, or (3) exit
the zone. These three possibilities correspond to three different distances, given by

db =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣
[
r2j+1/2 − r2(1 − μ2)

]1/2 − rμ

∣∣∣∣ , if j = 1 orμ > 0, sin θ ≥ R j−1/2
r

∣∣∣∣
[
r2j−1/2 − r2(1 − μ2)

]1/2 + rμ

∣∣∣∣ , if μ < 0, sin θ <
R j−1/2

r ,

(394)

dt = c(tn+1 − t), (395)
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and

dc = − ln ξ

κa + κs . (396)

In Eqs. (394), (395), and (396), db, dt , and dc are the distance to the boundary of the
zone, the distance the particle can travel in the time interval if it does not encounter a
collision, and the distance between collisions, respectively. Once these distances are
known, the MCP is moved to the location corresponding to the smallest of the three
distances, and to the associated time, according to

r →
√
r2 − 2rdμ+ d2, (397)

t → t + d/c. (398)

If d = dc, the MCP is either absorbed or scattered. To determine which, Abdikamalov
et al. use the following probabilities corresponding to the absorption and scattering
coefficients appearing in Eq. (379), the equation governing the MCP transport:

Pea = κea/(κe + κs), (399)

Ps = κs/(κe + κs), (400)

Pes,e = κes,e/(κe + κs), (401)

Pes,l = κes,l/(κe + κs). (402)

The sum of all of these probabilities is, of course, equal to 1. As a result, to determine
which of the above interactions takes place, Abdikamalov et al. sample a random
number ξ in the range [0, 1]. Based on the value of ξ : (1) if ξ < Pea , the MCP
undergoes effective absorption, (2) if Pea < ξ < Pea + Ps , the MCP is scattered, (3)
if Pea + Ps < ξ < Pea + Ps + Pes,e, the MCP undergoes effective scattering in which
its total energy is conserved, and (4) if ξ > Pea + Ps + Pes,e, the MCP undergoes
effective scattering in which its total lepton number is conserved. Within the domain
[0, 1], the subdomain corresponding to each of the above possibilities is proportional to
the probability for each possibility to occur, which ensures that the selection procedure
yields a statistically correct result. And their result does not depend on the order in
which they consider the possibilities. If the MCP is absorbed, its energy and lepton
number are deposited in the zone and it is removed from the population of MCPs. If
the MCP undergoes real scattering, it is moved to the location where the scattering
occurs. For iso-energetic scattering, its angle is determined randomly using Eq. (389).
If its energy changes as well, its new energy is determined by randomly sampling
the functional form of the scattering kernel in energy. If the MCP undergoes effective
scattering, which is isotropic, the MCP’s angle is again determined randomly using
Eq. (389) and its energy is determined by randomly sampling the local emissivity
spectrum since effective scattering mimics absorption and reemission. If d = db and
the boundary is the zone boundary, the transport sampling process begins again, using
the values of the opacities in the new zone. If the boundary is the outer boundary, the
MCP is removed from the population of MCPs. Finally, if d = dt , the MCP is stored
for the next time step. The above procedure is conducted for all of the MCP’s in the
computational domain (i.e., in all zones) at the beginning of a time step.
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For the case of a non-static medium, the comoving and Eulerian frames are no
longer coincident and an extension of the Monte Carlo procedure outlined above
is necessary. Abdikamalov et al. extend their approach as follows: The emissivities
and opacities are naturally computed in the comoving frame. Once calculated, the
number of MCPs emitted in this frame in each cell is determined. Assuming spherical
symmetry for simplicity, the location, r0, direction of propagation, μ0, and energy, ε0
of each MCP emitted at t0 is sampled based on the comoving frame emissivities. Each
of these quantities is then transformed to the Eulerian frame using the well-known
transformations (reproduced here for the spherically symmetric case):

ε0 = γ ε
(
1 − Vrμ

c

)
, (403)

μ0 = μ− Vr/c

1 − μVr/c , (404)

ϕ0 = ϕ, (405)

κ(μ, ε) = ε0

ε
κ0(ε0), (406)

r = γ j
[
r0 + Vr , j (t0 − tn)

]
, (407)

t = γ j
(
t0 − tn + Vr , j r0

c2

)
. (408)

The index j in the last two equations is the index of the comoving-frame cell in which
the MCP is emitted. (Of course, Vr , j is measured in the Eulerian frame.) Once these
transformations are made, the MCP is transported in the Eulerian frame, as described
in the static case. Note, however, the distance to collision must be determined using
the Eulerian-frame values of the opacities. Most of the steps in the static case proceed
in the same way, with the exception of scattering, which requires additional care. If the
MCP scatters, Abdikamalov et al. transform the angle of propagation and the energy
of the MCP into the comoving frame, determine a new comoving-frame angle and
energy due to the scattering event, then transform this new set of momentum-space
variables back into the Eulerian frame before the transport of the MCP proceeds. The
amount of energy and momentum exchanged between the MCP and the matter during
the scattering, determined in the comoving frame, is recorded.

One further addition to the method presented by Abdikamalov et al. that should
be noted is the computational efficiency they gain by coupling their method to a
Discrete Diffusion Monte Carlo (DDMC) method, first developed by Densmore et al.
(2007) for photon transport and extended by Abdikamalov to neutrino transport. The
latter method is used in diffusive regimes, where the original Monte Carlo method
is plagued by the short distances between collisions: MCP paths between collisions
become very short and the number of such paths that have to be simulated becomes
prohibitively large. However, even with the coupling to DDMC, the Monte Carlo
approach described here remains expensive and awaits future computing architectures
that are more capable and well-suited to such an approach in order to be used for
core-collapse supernova simulations.
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6.5 Two-moment kinetics

Numerical methods for solving equations for two-moment kinetics in core-collapse
supernovaehavenowbeendevelopedbymultiple groups (Müller et al. 2010;O’Connor
2015; Just et al. 2015; Kuroda et al. 2016; Roberts et al. 2016; Skinner et al. 2019).
There are as many variations in approach as there are groups. Here we focus on
common features and highlight specific solutions. For example, some authors have
adopted fully relativistic descriptions (e.g.,Müller et al. 2010;O’Connor 2015;Kuroda
et al. 2016; Roberts et al. 2016), while others have resorted to approximations that
seek to capture relativistic effects (e.g., Just et al. 2015; Skinner et al. 2019). Current
methods for solving the equations for neutrino-radiation hydrodynamics using the two-
moment approach employ finite-volume or finite-difference typemethods. To this end,
the system of equations can be written in the compact form [cf. Eqs. (43)–(46), and
Eqs. (109) and (111)]

∂tU + ∂iFi (U)+ ∂ε
(
ε Fε(U)

) = S(U)+ C(U), (409)

where the vector of evolved quantities is given by

U = √
γ
(
D, S j , τ, D Ye, ε

2E1, ε
2F1, j , . . . , ε

2ENSp , ε
2FNSp, j

)T
. (410)

The spatial flux vectors Fi , energy-space flux vector Fε (zero for fluid variables),
“geometry” sources S, and the “collision” source due to neutrino–matter interactions
C can be inferred from equations given in Sects. 4.5, 4.7, and 5.2. Here, as an example,
we consider theEulerian two-momentmodel described in Sect. 4.7.3with NSp neutrino
species. Note that for each neutrino species, each radiation moment is represented by
Nε degrees of freedom to represent the energy distribution of neutrinos, giving a
total of 4 × Nε × NSp radiation degrees of freedom (compared to 6 fluid degrees of
freedom) per point in spacetime. In core-collapse supernova models, Nε = O(20),
while NSp = 3 − 6, resulting in 240–480 degrees of freedom per spacetime point.

Among the approaches to solve the system of equations given by Eq. (409)
numerically, high-resolution shock-capturing (HRSC) methods (e.g., finite-volume or
finite-difference), initially developed for compressible hydrodynamics with shocks,
have attracted much attention recently. (For simplicity of presentation, we proceed
to discuss the case of one spatial dimension.) In the HRSC approach, the spacetime
is discretized into spacelike foliations of spacetime with discrete time coordinates
{ tn }Nt

n=0, where the time step Δt = tn+1 − tn is the separation between foliations.

On each foliation, spatial positions are assigned coordinates { x j− 1
2
}Nx+1
j=1 , separating

Nx “cells” with width Δx j = (x j+ 1
2

− x j− 1
2
). In addition, for radiation quantities,

momentum (energy) space is discretized into Nε “energy bins”with edges { εi− 1
2
}Nε+1
i=1

and bin widths Δεi = (εi+ 1
2

− εi− 1
2
). Integration of Eq. (409) over the phase-space

cell Ii j = I εi × I εj , where I εi = (εi− 1
2
, εi+ 1

2
) and I xj = (x j− 1

2
, x j+ 1

2
), gives the

semi-discretized system
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dUi j

dt
= − 1

ΔVi j

(
Fx
i j+ 1

2
− Fx

i j− 1
2

) − 1

ΔVi j

(
εi+ 1

2
Fε
i+ 1

2 j
− εi− 1

2
Fε
i− 1

2 j

) + Si j + Ci j ,

(411)
where the evolved quantities are the cell averages defined as

Ui j (t) = 1

ΔVi j

∫

Ii j
U(ε, x, t) dε dx and ΔVi j =

∫

Ii j

√
γ ε2dεdx, (412)

with Si j and Ci j defined analogously, and the fluxes defined as

Fx
i j± 1

2
(t) =

∫

I εi

Fx (ε, x j± 1
2
, t) dε, (413)

Fε
i± 1

2 , j
(t) =

∫

I xj

Fε(εi± 1
2
, x, t) dx . (414)

In Eq. (411), the temporal dimension has been left continuous (semi-discrete). More-
over, the equation is still exact. Approximations enter with the specification of the
fluxes in Eqs. (413) and (414), and the integrals to evaluate the sources Si j and Ci j .
These approximations ultimately result in phase-space discretization errors.With these
specifications, the approximate system in Eq. (411) can be viewed as a system of ordi-
nary differential equations (ODEs), which can be integrated forward in time with
an ODE solver, which introduces temporal discretization errors. This discretization
approach is called the method of lines (MOL).

6.5.1 Spatial discretization

The spatial fluxes in Eq. (413) can be approximated with an appropriate numerical
flux:

Fx
i j+ 1

2
(t) ≈ Δεi F̂x

(
U(εi , x

−
j+ 1

2
, t),U(εi , x

+
j+ 1

2
, t)

)
, (415)

where U(εi , x
±
j+ 1

2
, t) is an approximation of U to the immediate left and right of

the cell interface located at x j+ 1
2
(x±

j+ 1
2

= limδ→0+ x j+ 1
2

± δ). [In Eq. (415), the

midpoint rule is used to approximate the integral, but a more accurate quadrature
rule can be used if desired.] Two things must be defined when computing the inter-
face fluxes: (1) the procedure to reconstruct the “left” and “right” states, and (2) the
numerical flux function F̂x . The reconstruction step for radiation variables is essen-
tially identical to that used for hydrodynamics schemes: a polynomial of degree k is
reconstructed from the evolved quantities (cell averages). To this end, the accuracy
of the numerical method depends in part on the degree of the reconstructed poly-
nomial, and the desired polynomial degree impacts the width of the computational
stencil, since values in k + 1 cells are needed to reconstruct a polynomial of degree k.
The most commonly used methods are monotonized piecewise linear (van Leer 1974;
LeVeque 1992) and piecewise parabolic methods (Colella and Woodward 1984), as
well as higher order monotonicity preserving (MP) (Suresh and Huynh 1997) and
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weighted essentially nonoscillatory (WENO) reconstruction methods (Liu et al. 1994;
Shu 1998). Monotonicity constraints are placed on the reconstruction polynomial to
ensure nonoscillatory solutions around discontinuities. For fluid variables, the numer-
ical flux function can be computed with a standard Riemann solver; e.g., HLL (Harten
et al. 1983) or HLLC (Toro et al. 1994). However, when using finite-volume or finite-
difference methods to solve for the radiation moments, specification of the numerical
flux requires additional care. As elucidated by the analysis in Audit et al. (2002) in the
context of the O(v/c) limit of the energy integrated (gray) Lagrangian two-moment
model presented in Sect. 4.7.3, in the asymptotic diffusion limit (characterized by a
short neutrino mean free path) the inherent numerical dissipation associated with the
numerical flux used for hyperbolic systems overwhelms the physical radiative diffu-
sive flux and leads to spurious evolution unless the mean free path is resolved by the
spatial grid. We discuss this important issue further below (see also Jin and Levermore
1996; Lowrie and Morel 2001, for discussions on this topic). Since it is not practical
to resolve the neutrino mean free path in core-collapse supernova simulations, the
numerical fluxes for the radiation moment equations are modified to better capture
the evolution in diffusive regimes. Following Audit et al. (2002) and O’Connor and
Ott (2013) propose the following modified HLL numerical fluxes for the two-moment
model for neutrino transport (see also Kuroda et al. 2016):

F̂ x
Es

(
UL,UR

) = λ+Fx
Es
(UL)+ λ−Fx

Es
(UR)− ξλ−λ+((Es)R − (Es)L

)

λ− + λ+ , (416)

F̂ x
Ss, j

(
UL,UR

) =
ξ2

(
λ+Fx

Ss, j
(UL)+ λ−Fx

Ss, j
(UR)

) − ξλ−λ+((Ss, j )R − (Ss, j )L
)

λ− + λ+

+ (1 − ξ2) 1
2

(
Fx
Ss, j
(UL)+ Fx

Ss, j
(UR)

)
, (417)

where Fx
Es

and Fx
Ss, j

are the radiation energy and momentum spatial fluxes, respec-

tively, and λ− and λ+ are estimates of the largest (absolute) eigenvalues for left-going
and right-going waves, respectively (see, e.g., Shibata et al. 2011, for explicit expres-
sions of estimates). In the modified numerical fluxes in Eqs. (416) and (417), ξ is a
local parameter depending on the ratio of the neutrino mean free path to the local grid
size:

ξ = min
(
1, λi j/Δx j

)
, (418)

where λi j is a local, energy-dependent neutrino mean free path (computed from the
neutrino opacities). Thus, when the mean free path is much smaller than a grid cell
(ξ → 0), the numerical dissipation term (proportional to the jump in the conserved
variables across the interface) vanishes, and the numerical flux switches to an average
of the fluxes evaluated with the left and right states (a similar approach is also taken
in Just et al. 2015; Skinner et al. 2019). It should be noted that the average flux is
appropriate for solving parabolic equations, but is in general unstable for hyperbolic
equations (e.g., LeVeque 1992).
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To further illustrate the issue with the numerical flux, and to see how the modifica-
tions in Eqs. (416)–(417) help, it is easiest to consider the reduced system

∂tJ + ∂xH = 0, (419)

∂tH + ∂xK = −1

λ
H , (420)

where {
J ,H ,K

}
(x, t) = 1

2

∫ 1

−1
f (μ, x, t) μ{0,1,2} dμ, (421)

and λ is the scattering mean free path. When scattering events are frequent (λ → 0),
the system in Eqs. (419)–(420) limits to parabolic behavior governed by

∂tJ + ∂xH = 0 and H = −λ
3
∂xJ ⇒ ∂tJ − λ

3
∂xxJ = 0, (422)

which is referred to as the diffusion limit. The semi-discrete form of Eqs. (419)–(420)
can be written as

dtJi + 1

Δx

(
Ĥi+ 1

2
− Ĥi− 1

2

)
= 0, (423)

dtHi + 1

Δx

(
K̂i+ 1

2
− K̂i− 1

2

)
= −1

λ
Hi . (424)

With constant reconstruction, which results in first-order spatial accuracy, the numer-
ical fluxes in Eqs. (416)–(417) at the xi+ 1

2
interface become

Ĥi+ 1
2

= 1

2

(
Hi+1 + Hi − ξ (Ji+1 − Ji

) )
, (425)

K̂i+ 1
2

= 1

2

(
Ki+1 + Ki − ξ (Hi+1 − Hi

) )
, (426)

where for simplicity we set λ+ = λ− = 1 (i.e., the global Lax-Friedrichs flux). By
ignoring the time derivative term in Eq. (424) and using the numerical flux in Eq. (426)
withK = J /3, one can write

Hi = −Kn
1

2

( 1

3

(
Ji+1 − Ji−1

) − ξ (Hi−1 − 2Hi + Hi+1
) )
,

≈ −Kn
1

2

1

3

(
Ji+1 − Ji−1

)
, (427)

where we have introduced the Knudsen number Kn = λ/Δx , the ratio of the mean
free path to the spatial grid size. In Eq. (427), we ignored the numerical dissipation
term because in the diffusion limit |H | � J . Then, inserting the numerical flux,
Eq. (425), using Eq. (427), into Eq. (423) gives the approximate semi-discrete form of
Eq. (419) in the diffusion limit:
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dtJi − 1

(2Δx)2

[ λ
3

(
Ji−2 − 2Ji + Ji+2

)

+ min(λ,Δx)
(
Ji−1 − 2Ji + Ji+1

) ]
= 0, (428)

which is an approximation to the diffusion equation in Eq. (422). Note that the last term
on the left-hand side of Eq. (428) is due to the numerical dissipation term (proportional
to ξ ) in Eq. (425). Because of the introduction of ξ in Eq. (425), Eq. (428) remains a
reasonable approximation to a diffusion equation with the correct diffusion coefficient
λ/3, even as λ � Δx . Without the modification to the numerical flux (i.e., ξ = 1
independent of λ), we would obtain Eq. (428) with min(λ,Δx)→ Δx . In this case the
numerical diffusion termwould overwhelm the physical diffusion termwhen λ� Δx ,
and result in spurious evolution. Note, in this simplified discussion, where we assumed
constant spatial reconstruction, the numerical dissipation term is of the same order
of magnitude as the physical dissipation term, and still contributes to the diffusive
evolution. With higher-order accurate spatial reconstruction, the relative contribution
of this term decreases. Also note that in arriving at Eq. (428), we only relied on the
modification to the numerical flux in the energy equation, as is done by Skinner
et al. (2019). Finally, note that in the physical diffusion term in Eq. (428), the second
derivative is approximated with a wide stencil, which supports a mode with odd-even
point decoupling (Lowrie and Morel 2001).

6.5.2 Energy discretization

Next we consider the approximation of the energy fluxes in Eq. (414), which contribute
to shifts in the neutrino energy spectrum due to gravitational and moving fluid effects.
Müller et al. (2010), who solved the Lagrangian two-moment model in Sect. 4.7.3,
developed a method to compute the energy fluxes that is inherently number conserva-
tive; i.e., with this discretization of the energy derivative, the energy equation in the
Lagrangian two-moment model in Eq. (116) is consistent with the equation for number
conservation inEq. (123) at the discrete level.Akey observation in achieving this is that
the number conservation equation is obtained by multiplying the Lagrangian energy
equation with a factor 1/ε. At the continuum level, when this factor is brought inside
the energy derivative, the remainder cancels with the first term on the right-hand side
of Eq. (116), resulting in the conservative number equation in Eq. (123). The relevant
equation is given by considering only the energy derivative and the (non-collisional)
source term in Eq. (116) [cf. Eq. (B1) in Müller et al. 2010]:

∂t J + ∂ε
(
ε FJ

) = FJ , (429)

where we introduce the shorthand notation

J = √
γ ε2

(
WJ + viHi

)
and FJ = −α√

γ ε2 T μν∇μuν . (430)

Dividing Eq. (429) by ε gives the conservation equation:

∂t N + ∂ε
(
FJ

) = 0, (431)
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where N = J/ε is the spectral Eulerian number density [cf. Eq. (123)].
Similar to Eq. (411), the semi-discrete form of Eq. (429) can be written as

d Ji
dt

= − 1

Δεi

(
εi+ 1

2
F̂J i+ 1

2
− εi− 1

2
F̂J i− 1

2

) + FJ i , (432)

where F̂J i± 1
2
are the numerical flux functions to be determined. (Here we drop the

spatial index j to simplify the notation.) Dividing Eq. (432) by εi and defining Ni =
Ji/εi gives a provisionary semi-discrete form of Eq. (431):

dNi

dt
= − 1

Δεi

( εi+ 1
2

εi
F̂J i+ 1

2
−
εi− 1

2

εi
F̂J i− 1

2

) + FJ i

εi

= − 1

Δεi

(
F̂J i+ 1

2
− F̂J i+ 1

2

) −
(εi+ 1

2
− εi )

Δεi

F̂J i+ 1
2

εi
−
(εi − εi− 1

2
)

Δεi

F̂J i− 1
2

εi
+ FJ i

εi
.

(433)

Without specifying the numerical fluxes F̂J i± 1
2
, the last three terms in the second

line of Eq. (433) do in general not cancel, and the neutrino number density is not
conserved in the energy advection step, which is contrary to what is suggested by
Eq. (431). However, there is some freedom in choosing the numerical fluxes. To deter-
mine the numerical fluxes, Müller et al. (2010) demand total number conservation
upon integration of Eq. (433) over all energy bins; i.e.,

0 = dt NTot ≡
Nε∑
i=1

dNi

dt
Δεi = −

Nε∑
i=1

{ εi+ 1
2

εi
F̂J i+ 1

2
−
εi− 1

2

εi
F̂J i− 1

2
− Δεi

εi
FJ i

}

= −
Nε∑
i=1

{( 1

εi
− 1

εi+1

)
εi+ 1

2
F̂J i+ 1

2
− Δεi

εi
FJ i

}
, (434)

where zero flux energy space boundaries are assumed (i.e., F̂J 1
2

= F̂J Nε+ 1
2

= 0).
Next, the numerical flux is split into “left” and “right” contributions

F̂J i+ 1
2

= FL
J i + FR

J i+1, (435)

so that the change in the total number density can be written as (assuming ε 1
2

= 0 and

setting FR
J Nε+1 = 0)

dt NTot = −
Nε∑
i=1

{( 1

εi
− 1

εi+1

)
εi+ 1

2
FL
J i +

( 1

εi−1
− 1

εi

)
εi− 1

2
FR
J i − Δεi

εi
FJ i

}
.

(436)
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Number conservation is then obtained by demanding

(
1

εi
− 1

εi+1

)
εi+ 1

2
FL
J i +

(
1

εi−1
− 1

εi

)
εi− 1

2
FR
J i = Δεi

εi
FJ i . (437)

Furthermore, Müller et al. (2010) introduce

εi+ 1
2
FL
J i = Δεi

1 − εiε−1
i+1

FJ i ξi , (438)

εi− 1
2
FR
J i = Δεi

εiε
−1
i−1 − 1

FJ i (1 − ξi ), (439)

where ξi is a local weighting factor

ξi =
jσ
i+ 1

2

jσ
i− 1

2
+ jσ

i+ 1
2

and 1 − ξi =
jσ
i− 1

2

jσ
i− 1

2
+ jσ

i+ 1
2

, (440)

depending on the zeroth moment ( j) of the distribution function at cell interfaces,
jσ
i− 1

2
and jσ

i+ 1
2
, which are computed as weighted geometric means of j using values

from adjacent energy bins. In regions where Ji varies modestly with i , ξi is close to
1/2, while in the high-energy tail of the neutrino spectrum, where Ji decreases rapidly
with increasing i , ξi � 1 (see AppendixB in Müller et al. 2010, for further details).
Then, using the split in Eq. (435), the numerical flux, e.g., at interface εi+ 1

2
, to be used

in Eq. (432) is given by

εi+ 1
2
F̂J i+ 1

2
= εi+ 1

2
FL
J i + εi+ 1

2
FR
J i+1

= Δεi

1 − εiε−1
i+1

FJ i ξi + Δεi+1

εi+1ε
−1
i − 1

FJ i+1 (1 − ξi+1). (441)

For a commonly used geometrically progressing grid where εi+ 1
2

= Δε1 λi−1 (where

λ > 1 and i = 1, . . . , Nε), it can be shown thatΔεi/(1−εiε−1
i+1) = Δεi+1/(εi+1ε

−1
i −

1) = εi+ 1
2
, so that the numerical flux can be written as

F̂J i+ 1
2

(
FJ i , FJ i+1

) = FJ i ξi + FJ i+1 (1 − ξi+1), (442)

which is simply a weighted average with nonlinear weights ξi and (1 − ξi+1). If
ξi , ξi+1 > 0 and ξi + ξi+1 = 1, the numerical flux is a convex combination of FJ i
and FJ i+1, but this is not guaranteed. Although the numerical flux in Eq. (441) was
developed byMüller et al. (2010) to ensure neutrino number conservation in the context
of the Lagrangian two-moment model, the same approach has also been applied to
the Eulerian two-moment model by O’Connor (2015) and Kuroda et al. (2016). [It
is not at all clear that the approach developed by Müller et al. (2010) in the context
of the Lagrangian two-moment model results in a number conservative scheme when
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applied to the Eulerian two-moment model. In the Lagrangian two-moment model,
the spectral neutrino number and energy equations are related simply by a factor of
1/ε, whereas in an Eulerian two-moment model, the relationship is more complex,
involving both the spectral neutrino energy andmomentum equations (cf. Endeve et al.
2012; Cardall et al. 2013b).] We also note that the numerical flux in Eq. (441) is also
used by Just et al. (2015), who solve the Lagrangian two-moment model in theO(v/c)
limit.

A few remarks should be made about the numerical flux in Eq. (442). First, a
numerical flux is said to be consistent if, when the two arguments are set to be equal,
it reduces to the common value; i.e., when FJ i = FJ i+1 = FJ the following holds:

F̂J i+ 1
2

(
FJ , FJ

) = FJ . (443)

Consistency of the numerical flux is generally required for a numerical method to be
convergent (Crandall and Majda 1980; LeVeque 2002). Since it is not guaranteed that
ξi + ξi+1 = 1, the numerical flux in Eq. (442) is not consistent. Second, if one sets
ξi = 1/2 ∀i (which makes it consistent), the numerical flux in Eq. (442) reduces to a
simple arithmetic average, which is known to be notoriously unstable when combined
with explicit time integration (e.g., LeVeque 2002).

Skinner et al. (2019), who also solve the Lagrangian two-moment model in the
O(v/c) limit, follow a different approach adapted from Vaytet et al. (2011). In this
case, assuming Cartesian coordinates for simplicity, the evolved quantity and the flux
in energy space in the neutrino energy equation [cf. Eq. (429)] are given by

J = ε2J and FJ = −ε2K i
j ∂iv

j , (444)

where K i
j is the radiation stress tensor [cf. Eq. (130)] and vi are components of the

fluid three-velocity. Similarly, the evolved quantity and flux in energy space from the
neutrino momentum equation are given by

Hk = ε2Hk and FHk = −ε2L i
jk ∂iv

j , (445)

where L i
jk is the heat flux tensor in Eq. (133). With u = (

J , Hk
)T and fε(u) =(

Hk, FHk

)T , the subsystem to be solved is then given by

∂tu + ∂ε
(
ε fε(u)

) = 0, (446)

which is a familiar advection-type equation. For the energy equation, the numerical
flux in energy space is then given by

F̂J i+ 1
2

= −ε2
i+ 1

2
K̂ i

j (εi+ 1
2
) ∂iv

j , (447)
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where an upwind approach is used to compute

K̂ i
j (εi+ 1

2
) =

⎧
⎨
⎩
K i

j (ε
−
i+ 1

2
), if ∂iv j < 0

K i
j (ε

+
i+ 1

2
), if ∂iv j ≥ 0.

(448)

A similar expression is used for the energy-space fluxes in the radiation momentum
equation. The eigenvalues of the flux Jacobian ∂fε/∂u associated with the reduced
system of equations governing the “advection” in energy space are always of the same
sign (Vaytet et al. 2011). This is one motivation for using the upwind flux. Although
the numerical flux in Eq. (447) does not necessarily lead to exact number conservation
(as is the case for the corresponding numerical flux developed by Müller et al. 2010),
the upwind flux has desirable properties that can improve numerical stability [e.g., the
upwind flux is consistent and can be used to design monotone numerical schemes (cf.
Crandall and Majda 1980; LeVeque 1992)].

6.5.3 Time integration approaches

After the specification of approximations to the terms on the right-hand side of
Eq. (411), the system is evolved in time with an ODE solver. When solving the general
relativistic radiation hydrodynamics system, Kuroda et al. (2016) write the resulting
ODE system in the following form:

dU
dt

+ Sadv,s + Savd,e + Sgrv + Sνm = 0, (449)

where the spatial advection term Sadv,s, the energy advection term Savd,e, the grav-
itational source term Sgrv, and the neutrino–matter interaction term Sνm correspond
to the terms on the right-hand side of Eq. (411). (Here we omit phase-space indices
for brevity.) In their time integration scheme, Kuroda et al. (2016) evaluate the spatial
advection and gravitational source terms explicitly, while the energy advection and
neutrino–matter interaction terms are evaluated implicitly:

U∗ − Un

Δt
+ Snadv,s + Sngrv = 0, (450)

Un+1 − U∗

Δt
+ Sn+1

avd,e + Sn+1
νm = 0. (451)

This splitting is a special case of a more general class of time integration methods
referred to as implicit-explicit (IMEX) schemes (Ascher et al. 1997; Pareschi and
Russo 2005). The splitting in Eqs. (450)–(451) is first-order accurate in time, while
high-order accurate methods have been developed. The main benefit of introducing
this split is to avoid a distributed implicit solve, since the spatial advection term cou-
ples neighboring cells in space, which can reside on different processing units. On the
downside, the time step is restricted by the speed of light, but this is acceptable for rel-
ativistic systems. In general, the neutrino–matter interaction term cannot be integrated
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efficiently in time with explicit methods because the stable time step needed to resolve
the governing time scale is many orders of magnitude shorter than that governing the
spatial advection term. There is another benefit of integrating the neutrino–matter
interaction term separately with implicit methods. These terms are local in space,
which makes them easier to parallelize. The energy advection term can be integrated
with explicit or implicit methods. Using explicit methods for this term, an additional
time step restriction is needed, but this is usually less severe than that introduced by
the spatial advection term (e.g., O’Connor 2015; Just et al. 2015). On the other hand,
since the neutrino–matter interaction term couple the entire momentum space, includ-
ing the energy advection term in the implicit update (as is also done by, e.g., Müller
et al. 2010), which only couples nearest neighbors in energy, does not add significantly
to the computational complexity. One should note that in their AppendixB, Kuroda
et al. (2016) report significantly different electron fraction profiles when comparing
explicit versus implicit integration of Savd,e, but the reason for this is not clear.

The implicit solve in Eq. (451) requires the solution of a nonlinear system of equa-
tions. To this end, Kuroda et al. (2016), write the system as

f(Pn+1) ≡ U(Pn+1)− U∗

Δt
+ Savd,e(P

n+1)+ Sνm(Pn+1) = 0, (452)

where the unknowns are given by the vector of “primitive” variables:

P = (
ρ, v j , s, Ye, E1,F1, j , . . . ,ENSp ,FNSp, j

)T
. (453)

To solve the nonlinear system in Eq. (452), Kuroda et al. (2016) employ a Newton-
Raphson scheme:

∂f(Pk)

∂P
δPk = −Pk → Pk+1 = Pk + δPk (454)

for k = 0, 1, 2, . . ., with P0 = P∗. The iteration is continued until |δPk | < tol |Pk |,
where the tolerance is typically set to tol = 10−8.Kuroda et al. (2016) treat the problem
fully implicitly, evaluating the neutrino–matter interactions at tn+1, and thus include
derivatives of opacities in Sνm with respect to P in the Jacobian (∂f/∂P). To help
convergence in the Newton-Raphson procedure, Kuroda et al. (2016) also monitor the
change in total lepton number during iterations (see their Sect. 3.3 for details), which
improves the robustness of the method. Note that in the primitive vector in Eq. (453)
the radiation quantities are the Eulerian moments

(
E ,F j

)
, while the closure and

the neutrino–matter interaction terms are most naturally expressed in terms of the
Lagrangian moments

(
J ,H j

)
. To evaluate the closure and collision terms during

the Newton-Raphson iterations, the Lagrangian moments are kept consistent with the
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Eulerian moments through the relations:

J = uμuνT
μν = W 2 E − 2W ui F

i + uiu jS
i j , (455)

H j = −uν h jμT
μν = (

W E − uk F
k ) h jμ n

μ + W h jk F
k − ui h jk S

ik .

(456)

The number of iterations needed to reach convergence varies during a simulation. It
is at its maximum in the center around core bounce (several tens), but settles down to
∼ 10 after the shock stalls.

Just et al. (2015), employing theO(v/c) limit of the Lagrangian two-momentmodel
in Sect. 4.7.3 coupled to non-relativistic hydrodynamics, also use a combination of
explicit and implicit methods to integrate the coupled equations in time, but ease the
computational cost by treating some interaction terms explicitly. They split the solution
vector into radiation variablesX = (J ,H j ) andfluid variablesU = (ρ, ρYe, ρv, et),
where the total fluid energy density is et = ei + ρv2/2, and ei is the internal energy
density. They write the radiation hydrodynamics system as

∂tX + (
δtX

)
hyp + (

δtX
)
vel = (

δtX
)
src, (457)

∂tU + (
δtU

)
hyd = (

δtU
)
src, (458)

where in the transport equations,
(
δtX

)
hyp represents the velocity-independent hyper-

bolic terms,
(
δtX

)
vel represents all the velocity-dependent terms in the transport

equations, and
(
δtX

)
src represent neutrino–matter interactions. The phase-space

advection terms combine to
(
δtX

)
adv = (

δtX
)
hyp + (

δtX
)
vel. In the hydrodynamics

equations,
(
δtU

)
hyd represents the non-radiative physics, while

(
δtU

)
src the radia-

tive source terms. For a given time step Δt , when advancing the system from tn to
tn+1 = tn +Δt , a ‘predictor’ step to tn+1/2 = tn +Δt/2 is performed first:

Xn+ 1
2 = Xn + Δt

2

[
− (
δtX

)n
hyp + (

δtX
)n,n+ 1

2
src

]
, (459)

Un+ 1
2 = Un + Δt

2

[
− (
δtU

)n
hyd + (

δtU
)n,n+ 1

2
src

]
, (460)

followed by the ‘corrector’ step:

Xn+1 = Xn +Δt
[

− (
δtX

)n+ 1
2

hyp + (
δtX

)n+ 1
2 ,n+1

src

]
, (461)

Un+1 = Un +Δt
[

− (
δtU

)n+ 1
2

hyd + (
δtU

)n+ 1
2 ,n+1

src

]
, (462)

where double superscripts indicate that the source terms can be evaluated using
radiation and hydrodynamics variables in the old and the new state. (The implicit
neutrino–matter solve can be simplified considerably by time-lagging some terms.
See the discussion below.) When comparing with the scheme of Kuroda et al. (2016)
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in Eqs. (450)–(451), the scheme used by Just et al. (2015) uses two explicit evalu-
ations and two implicit evaluations, instead of one of each. Also note that Kuroda
et al. (2016) treat the velocity-dependent terms implicitly in time, while these terms
are treated explicitly by Just et al. (2015). While being formally first-order accurate
in time, it can be shown that the scheme in Eqs. (459)–(462) is second-order accurate
with respect to the explicit part. Except for the use of both old and new variables in
the implicit part, it is equivalent to the scheme presented by McClarren et al. (2008).

The prospect of evaluating some variables in the implicit neutrino–matter solve
in the old state is potentially rewarding, since this part of the solve usually accounts
for the majority of the computational cost in simulations. When doing this, stabil-
ity and accuracy concerns are important to consider, and this could be investigated
with rigorous analysis. Methods with time lagging can be considered unconverged or
partially converged implicit methods, and can be quite accurate, but this depends on
the chosen time step and the degree of nonlinearity of the problem (see, e.g., Knoll
et al. 2001; Lowrie 2004). For stability of the explicit part of the IMEX scheme in
Eqs. (459)–(462), an upper bound on the time step is given by the advection time scale
τadv = Δx/c ≈ 3μs×(Δx/1 km). On the other hand, the neutrino–matter interaction
time scale can be estimated as τint = λν/c ≈ 10 ns × (λν/3 × 10−3 km), where λν
is the neutrino mean-free path (cf. Fig. 4 in Sect. 4.1). In the core of a core-collapse
supernova, λν ≈ 3 × 10−3 km, so that τint � τadv, which implies that the neutrino–
matter interactions terms should be integrated with implicit methods in order to keep
Δt/τadv = O(1). However, τint should be viewed as the time scale for neutrino–matter
equilibration, and neutrinos have practically equilibrated with the matter for densities
above 1012 g cm−3. Since in near equilibrium, the matter quantities (i.e., ρ, ei, and the
electron density ne) evolve on time scales that typically exceed τadv, it is reasonable
to ask whether some neutrino opacities, which depend nonlinearly on ρ, ei, and ne,
can be evaluated in a lagged fashion in order to avoid costly reevaluations during an
iterative implicit solve. Numerical experiments can give valuable insights into this
question. To this end, Just et al. (2015) considered three cases for comparison

(a) The radiation moments X and the fluid variables ei and ne appearing in the source
terms

(
δtX

)
src and

(
δtU

)
src are defined at tn+1. Only the Eddington and heat flux

factors (k and q) and the coefficients of the Legendre expansion of energy-coupling
interactions [e.g., scattering; cf. Eq. (182)] are evaluated at tn .

(b) Like case (a), but ei and ne in the source terms are evaluated at tn for all the opaci-
ties. This alleviates the computational cost of recomputing the opacities within the
iteration procedure. Iterations are still performed in this case because the radiation
moments appearing in the blocking factors are treated implicitly.

(c) Like case (b), but all the energy-coupling interactions are treated explicitly in time.
This renders the matrix to be inverted in the implicit solve diagonal.

Using case (b) where ρ > 1011 g cm−3 and case (c) for ρ ≤ 1011 g cm−3, Just et al.
(2015) performed a detailed comparison of their scheme in spherical symmetry with
results from Liebendörfer et al. (2005) (obtained with Boltzmann-based codes) for a
13M� star, and found good agreement. In addition, they computed an additional run
with the same physical specifications, but where case (b) was replaced with case (a)
for ρ > 1011 g cm−3, and found the results essentially unaltered (see their Fig. 11).
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See also Just et al. (2018) for an extensive comparison of the two-moment method
of Just et al. (2015) with the Prometheus- Vertex code (Rampp and Janka 2002;
Buras et al. 2006), and on the impact of various approximate treatments of relevant
physics. We also note that O’Connor (2015), who also used explicit treatment of the
matter quantities in evaluation the neutrino–matter sources, reported good agreement
with Liebendörfer et al. (2005) across many quantities.

After obtaining expressions for the radiation moments, the changes to the fluid
momentum and kinetic energy densities due to neutrino–matter interactions are com-
puted as

(
δtρv j

)
src = −

∑
ν,ξ

(
δtH j,ν,ξ

)
src, (463)

(
δt ek

)
src = −v j

∑
ν,ξ

(
δtH j,ν,ξ

)
src, (464)

where the sums extend over all neutrino frequencies ν and species ξ , and the repeated
index on the fluid velocity components v j imply summation over all spatial dimen-
sions.

Skinner et al. (2019), employing a very similar O(v/c) two-moment model as Just
et al. (2015) coupled to non-relativistic hydrodynamics, also use explicit and implicit
methods to integrate the coupled equations in time. They only describe their time
integration scheme in the context of emission, absorption, and isotropic, isoenergetic
scattering. Skinner et al. (2019) write the radiation hydrodynamics system as

∂t Q + (
F i

Q

)
;i = Snon-stiff + Sstiff, (465)

where the evolved quantities are Q = (
ρ, ρv j , ρe, ρYe,J ,H j

)
, where e is the total

specific energy of the gas, andJ andH j are respectively the comoving frame spectral
radiation energy density and momentum density, representing all species and groups.
Components of J and H j are denoted Jsg and H j,sg , where s denotes neutrino
species and g denotes frequency group. In Eq. (465),

(
F i

Q

)
;i and Snon-stiff represent

terms from the phase-space advection operator,while Sstiff represents neutrino–matter
interactions.

Skinner et al. (2019) use operator splitting to integrate the coupled system of equa-
tions. The phase-space advection terms are integrated with the optimal second-order
SSP-RK scheme of Shu and Osher (1988), while the update due to neutrino–matter
interactions is followed by a backward Euler solve. This scheme applied to Eq. (465)
can be written as

Q(1) = Qn +Δt
{

− (
F i

Q

)n
;i + Snnon-stiff

}
, (466)

Q− = 1

2
Qn + 1

2

[
Q(1) +Δt

{
− (

F i
Q

)(1)
;i + S(1)non-stiff

} ]
, (467)

Qn+1 = Q− +Δt Sn+1
stiff, (468)
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which requires two evaluations of
(
F i

Q

)
;i and Snon-stiff and one implicit solve to

evaluate Sstiff per time step.
After the explicit update in Eqs. (466)–(467), a nested iteration scheme is employed,

where for each spatial point, the coupled system

un+1 − u−

Δt
= −

∑
s

∑
g

(
jn+1
sg − κn+1

sg J n+1
sg

)
, (469)

ρ

(
Yn+1
e − Y−

e

)

Δt
=

∑
s

∑
g

ξsg
(
jn+1
sg − κn+1

sg J n+1
sg

)
, (470)

J n+1
sg − J −

sg

Δt
= jn+1

sg − κn+1
sg J n+1

sg , (471)

is solved for the material internal energy density, u and electron fraction, Ye—or
equivalently, the temperature, T , and Ye—and the spectral radiation energy density,
J . In Eqs. (469)–(471), jsg and κsg are the emission and absorption coefficients
(depending on ρ, which is fixed in this step, T , and Ye), and

ξsg =
⎧
⎨
⎩

−(NA ν)
−1, S = νe

+(NA ν)
−1, s = ν̄e

0, s = νx
, (472)

where NA is Avogadro’s number and ν is the neutrino frequency. In the nested iteration
scheme, the updates are separated into “inner” and “outer” parts. In the k-th outer
iteration, the radiation energy density is updated implicitly in the inner iteration as

J k
sg − J −

sg

Δt
= j k−1

sg − κk−1
sg J k

sg ⇒ J k
sg = J −

sg +Δt j k−1
sg

1 +Δt κk−1
sg

, (473)

where the opacities and emissivities are evaluated using T k−1 and Y k−1
e (as an initial

guess in the first iteration {T 0,Y 0
e } = {T−,Y−

e }). The changes in energy and electron
fraction are then computed as

ΔEk =
∑
s

∑
g

(
J k

sg − J −
sg

)
, (474)

ΔY k
e =

∑
s

∑
g

ξsg
(
J k

sg − J −
sg

)
, (475)

and the residuals as

rkE = uk − u− +ΔEk, (476)

rkYe = ρ (Y k
e − Y−

e

) −ΔY k
e , (477)
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where uk = u(T k,Y k
e ) (the internal energy also depends on ρ, which is fixed in

this part of the solve). Then, using a Newton-Raphson technique, the temperature T k

and electron fraction Y k
e are found such that rkE = rkYe = 0. The iteration scheme

is terminated when the relative change in temperature and electron fraction, δT k =
|T k−T k−1|/T k−1 and δY k

e = |Y k
e −Y k−1

e |/Y k−1
e , are below a specified tolerance (e.g.,

10−6). In this sense, the converged solutions satisfy Eq. (469)–(471). Skinner et al.
(2019) report that in practice their iteration procedure converges in a few iterations for
a wide range of conditions. An obvious benefit of this nested approach is that nonlinear
iterations are performed on a smaller systemwith only two unknowns (T and Ye). Note
however that modifications to this algorithm are needed if energy coupling interactions
such as scattering and pair processes are to be included in an implicit fashion as in
cases (a) and (b) from Just et al. (2015) discussed above.

After obtaining un+1, Yn+1
e , T n+1, and J n+1

sg by solving Eqs. (469)–(471), the
radiation momentum density is updated implicitly as

H n+1
j,sg − H −

j,sg

Δt
= −(

κn+1
sg + σ n+1

sg

)
H n+1

j,sg

⇒ H n+1
j,sg = H −

j,sg

1 +Δt ( κn+1
sg + σ n+1

sg
) , (478)

where σsg is the scattering coefficient. Finally, the fluid momentum and kinetic energy
densities ((ρv j ) and (ρek), respectively) are updated as

(ρv j )
n+1 = (ρv j )− −

∑
s

∑
g

(
H n+1

j,sg − H −
j,sg

)
, (479)

(ρek)
n+1 = (ρek)− −

∑
s

∑
g

(v j )−
(
H n+1

j,sg − H −
j,sg

)
, (480)

where, in the last equation, the repeated index j implies summation over spatial dimen-
sions. The total energy density of the gas at tn+1 is then obtained from

(ρe)n+1 = un+1 + (ρek)n+1

= (
u− + (ρek)−

)
︸ ︷︷ ︸

(ρe)−

−
∑
s

∑
g

(
J n+1

sg − J −
sg

) −
∑
s

∑
g

(v j )−
(
H n+1

j,sg − H −
j,sg

)
,

(481)

where Eq. (469), with Eq. (471) inserted, and Eq. (480) are used. Note that Eq. (481)
differs from the total energy update listed in Skinner et al. (2019); see their Eq. (32),
which is equivalent to Eq. (480), but with ρek → ρe. We believe Eq. (481) is correct
in this context since it accounts for changes in internal and kinetic energy due to
neutrino–matter interactions.
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6.5.4 Lepton number and energy conservation

Weend this section on discretization techniques for two-momentmodelswith a discus-
sion on the topic of lepton number and energy conservation. These are conservation
laws inherit in the system of equations evolved, and provide a crucial consistency
check on the numerical solution. The challenges discussed here in the context of the
two-moment model mirror the challenges discussed in Sect. (6.1.3) for Boltzmann
transport. The concept of lepton number conservation is easily understood by con-
sidering Eqs. (44) and (124), which are evolution equations for the electron density
and neutrino number density, respectively. The Eulerian electron number is given by
Ne = D Ye/mB = W ne, and the Eulerian neutrino lepton number density and lepton
number flux density are

Nν =
NSp∑
s=1

gs Ns and Gi
ν =

NSp∑
s=1

gs G
i
s, (482)

respectively. Then, combining Eq. (44), using the source term in Eq. (191), with
Eq. (124) results in the conservation law for the total lepton number NLep = Ne + Nν

1

α
√
γ

[
∂t
(√
γ NLep

) + ∂i
(√
γ
[
α Gi

Lep − β i NLep
] ) ] = 0, (483)

where Gi
Lep = Ne v

i + Gi
ν . A similar conservation statement for the total energy

is not available in the relativistic case because the matter and neutrino equations
governing the evolution of the four-momentum—Eqs. (45), (46), (113), and (114)—are
not local conservation laws. Instead, the so-called ADM mass, MADM, (Baumgarte
and Shapiro 2010) (defined as a global quantity) is conserved. (See, e.g., Kuroda et al.
(2016), their Eq. (71), for a definition applicable to the CCSN context.) In this case,
conservation of the ADMmass can be monitored as a consistency check. Kuroda et al.
(2016), see their Figure7, report violations of ADM mass conservation, ΔMADM,
(i.e., deviations from the initial value) of order ΔMADM ≈ 8 × 1050 erg early after
core bounce. Müller et al. (2010), see their Figure12, report violations of ADM mass
conservation of similar magnitude in a simulation extending beyond 500ms after
core bounce. In their simulation, ΔMADM jumps by about 5 × 1050 erg at bounce,
and keeps increasing more gradually to ΔMADM ≈ 2 × 1051 erg at the end of the
simulation. This change in the ADM mass is only about 0.5% relative to the initial
value.

Müller et al. (2010) argue that the velocity-dependent terms in the transport equa-
tions are the most critical terms responsible for the violation of energy (or ADM
mass) conservation. To see this, it is illustrative to consider the equations they solve
in the special relativistic limit with Cartesian coordinates and no neutrino–matter
interactions. Neutrino–matter interactions are entirely local, and lepton number and
four-momentum conservation in this sector can be enforced by constraints as in
Eqs. (198)–(200). The challenge stems from the discretization of the phase-space
advection operators; i.e., the left-hand side of the moment equations. In the special
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relativistic limit with Cartesian coordinates and no neutrino–matter interactions, the
Lagrangian two-moment model corresponding to the one used by Müller et al. (2010)
is given by the energy equation [cf. Eq. (116)]

∂ν
(
Ĵ uν + Ĥ ν

) − ∂ε
(
ε T̂ μν ∂νuμ

) = −T̂ μν ∂νuμ (484)

and the momentum equation [cf. Eq. (118)]

∂ν
(
Ĥ j u

ν + ˆK ν
j

) − ∂ε
(
h jρ Q̂

ρμν ∂νuμ
) = T̂ μν ∂νh jμ, (485)

where the “hat” is used to denote that a factor ε2 has been absorbed into the definition
of the moments; i.e.,

{
Ĵ , Ĥ ν, ˆK μν, . . .

} = ε2 {J ,H ν,K μν, . . .
}
. (486)

Note that neither Eq. (484) nor Eq. (485) are local conservation laws. Therefore, a
numerical method based on these equations requires care in the discretization process
to achieve neutrino number, energy, and momentum conservation. (Neutrino energy
and momentum contribute to the ADM mass.)

First, note that by dividing Eq. (484) by ε results in

∂ν ˆN ν − ∂ε
(
T̂ μν ∂νuμ

) = 0, (487)

which is a local phase-space conservation law for the spectral number density. In
arriving at Eq. (487), the remainder after bringing ε−1 inside the energy derivative in
Eq. (484) cancels with the right-hand side. This is exactly what the discretization of
the energy derivative term developed by Müller et al. (2010) (discussed in Sect. 6.5.2)
is designed to do in order to achieve lepton number conservation.

On the other hand,

− nμT̂
μν = (

Ê nν + F̂ ν
) = W

(
Ĵ uν + Ĥ ν

) + v j ( Ĥ j u
ν + ˆK ν

j

)
, (488)

where both the Eulerian and Lagrangian decompositions of T̂ μν are used; cf. Eqs. (88)
and (99), respectively. Thus, by adding W times Eq. (484) and the contraction of v j

with Eq. (485) gives

∂ν
(
Ê nν + F̂ ν

) − ∂ε
(
(−nρ) Q̂

ρμν ∂νuμ
) = 0, (489)

which is a local phase-space conservation law for the spectral energy density. When
arriving at Eq. (489), the remainders after bringing W inside the spacetime derivative
in Eq. (484) and v j inside the spacetime derivative of Eq. (485) cancel with the terms
due to the sources on the right-hand sides of Eqs. (484) and (485) in a nontrivial way:
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(
Ĵ uν + Ĥ ν

)
∂νW + (

Ĥ j u
ν + ˆK ν

j

)
∂νv

j − T̂ μν
(
W∂νuμ − v j∂νh jμ

)

= −(
uμ ∂νW − h jμ ∂νv

j + W∂νuμ − v j∂νh jμ
)
T̂ μν

= −∂ν
(
W uμ − h jμ v

j ) T̂ μν = −T̂ μν ∂νnμ = 0, (490)

since, in special relativity, nμ = (−1, 0, 0, 0). Similarly,

γ jμ T̂
μν = (

F̂ j n
ν + Ŝ ν

j

) = Wv j
(
Ĵ uν + Ĥ ν

) + (
Ĥ j u

ν + ˆK ν
j

)
. (491)

Then, by adding Wv j times Eqs. (484) and (485) one obtains

∂ν
(
F̂ j n

ν + Ŝ ν
j

) − ∂ε
(
γ jρ Q̂

ρμν ∂νuμ
) = 0, (492)

which is a local conservation law for the spectralmomentumdensity. Again, in arriving
at Eq. (492), the remainder after bringing Wv j inside the spacetime derivative in
Eq. (484) cancels with the sources in Eqs. (484) and (485) in a nontrivial way:

(
Ĵ uν + Ĥ ν

)
∂ν
(
Wv j

) − Wv j T̂
μν ∂νuμ + T̂ μν ∂νh jμ

= −(
uμ ∂ν

(
Wv j

) + Wv j ∂νuμ − ∂νh jμ
)
T̂ μν

= −∂ν
(
Wv j uμ − h jμ

)
T̂ μν = T̂ μν ∂νg jμ = 0, (493)

since, in special relativity and with Cartesian coordinates, ∂νg jμ = 0.
Equations (490) and (493) can be viewed as constraints. Since the discretizations of

Eqs. (484) and (485) are unlikely to satisfy these constraints, they are inconsistent with
energy conservation in the sense of Eq. (489) andmomentum conservation in the sense
of Eq. (492). In the fully relativistic case, one is faced with the same issue, namely that
the discretization of the Lagrangian two-moment model [Eqs. (116) and (118)] is to a
certain degree inconsistent with the discretization of the Eulerian two-moment model
[Eqs. (109) and (114)]. Since it is the Eulerian moments that enter into the definition
of the ADM mass, this inconsistency can propagate and manifest itself as violations
of ADM mass conservation. On the other hand, by using the Eulerian two-moment
model as the starting point for a numerical method—e.g., as in Kuroda et al. (2016)—it
may be easier to control ΔMADM. (The time evolution of the ADM mass reported
by Kuroda et al. (2016) and Müller et al. (2010) are indeed quite different.) However,
while the use of the Eulerian two-moment model may provide an advantage with
regard to controlling energy conservation, one is still left with the equally challenging
task of maintaining consistency with the number equation [Eq. (123)] and controlling
lepton number conservation, as discussed in detail by Cardall et al. (2013b), and in
this case violations of lepton number conservation in the sense of Eq. (483) may still
result.

We conclude this section by discussing number, energy, and momentum conser-
vation in the context of the O(v/c) limit of the relativistic Lagrangian two-moment
model discussed above, implemented by Just et al. (2015) and Skinner et al. (2019).
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(Note, we use units in which c = 1.) The energy equation, Eq. (484), is then given by

∂t
(
Ĵ +Θ viĤi

) + ∂i
(
Ĥ i + viĴ ) − ∂ε

(
ε ˆK i

k ∂iv
k ) = − ˆK i

k ∂iv
k, (494)

while the momentum equation, Eq. (485), is given by

∂t
(
Ĥ j +Θ vi ˆKi j

) + ∂i
( ˆK i

j + viĤ j
) − ∂ε

(
ε L̂ i

k j ∂iv
k ) = −Ĥ i ∂iv j . (495)

For simplicity, we ignore terms proportional to the time derivative of the fluid three-
velocity, which is a reasonable approximation. In Eqs. (494) and (495), we introduced
a constant parameter,Θ , that is either zero or one. ForΘ = 0, the two-moment model
reduces to the one solved by Just et al. (2015) and by Skinner et al. (2019). However,
when Θ = 1, as we will show below, the two-moment model is better aligned with
number, energy, and momentum conservation.

First, by dividing Eq. (494) with the particle energy ε and rearranging, one obtains

∂t
(
D̂ +Θ vi Îi

) + ∂i
(
Î i + vi D̂ ) − ∂ε

( ˆK i
k ∂iv

k ) = 0, (496)

which is a local conservation law for the spectral number density D̂ +Θ vi Îi . Note
that, when Θ = 0, it is the Lagrangian number density defined in Eq. (87) that is
conserved, which is incorrect in the O(v/c) limit. On the other hand, when Θ = 1,
Eq. (496) is a conservation law for the O(v/c) approximation of the Eulerian number
density defined in Eq. (97), which is conserved.

Next, we consider energy and momentum conservation. Following the approach in
the relativistic case, by adding Eq. (494) and the contraction of v j with Eq. (495) one
obtains

∂t
(
Ĵ + (1 +Θ) viĤi

) + ∂i
(
Ĥ i + viĴ + v j ˆK i

j

)

− ∂ε
(
ε ˆK i

k ∂iv
k ) = O(v2), (497)

which, to O(v/c), is a local conservation law for the Eulerian spectral energy density
Ĵ +(1+Θ) viĤi .WithΘ = 1, this is the correctO(v/c) limit of the Eulerian energy
density in Eq. (101). Terms of higher order in the fluid velocity have been moved to the
right-hand side of Eq. (497), which must remain small for theO(v/c) limit to be valid.
Also note that, with Θ = 0, energy conservation breaks down to leading order in the
fluid three-velocity (a factor of 2 should appear in the coefficient of the second term
inside the parentheses of the time derivative). Similarly, by adding v j times Eqs. (494)
and (495) one obtains

∂t
(
Ĥ j + v jĴ +Θ vi ˆKi j

) + ∂i
( ˆK i

j + Ĥ iv j + viĤ j
)

(498)

− ∂ε
(
ε L̂ i

k j ∂iv
k) = O(v2), (499)

which, to O(v/c), is a local conservation law for the Eulerian spectral momentum
density Ĥ j + v jĴ +Θ vi ˆKi j . Again, with Θ = 1, this is the correct O(v/c) limit
of the Eulerian momentum density equation, Eq. (102).
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Thus, at the expense of some additional computational complexity, by lettingΘ = 1
in Eqs. (494) and (495), the two-moment model becomes consistent with number,
energy, and momentum conservation in the O(v/c) limit.

6.6 One-moment kinetics

6.6.1 Newtonian-gravity, O(v/c), finite-difference implementation

One moment kinetics is typically deployed in the context of neutrino transport in
core-collapse supernovae using the multigroup (i.e., multi-frequency) flux-limited
diffusion approximation (MGFLD). Such MGFLD approaches solve the neutrino and
antineutrino moment equations for the zeroth moment of the distribution function, the
multigroup neutrino/antineutrino energy density, with closure provided at the level
of the first moment, the neutrino/antineutrino energy flux, via a diffusion-like equa-
tion, modified in such a way that the flux cannot be come superluminal (flux limiting).
Swesty andMyra (2009) were the first to implement such an approach in axisymmetric
simulations of core-collapse supernovae. The equations for the neutrino/antineutrino
multigroup energy densities used by Swesty and Myra are expressed as

∂Eε
∂t

+ ∇ · (Eεv)+ ∇ · Fε − ε ∂
∂ε
(Pε : ∇v) = Sε, (500)

∂ Ēε
∂t

+ ∇ · (Ēεv
) + ∇ · F̄ε − ε ∂

∂ε

(
P̄ε : ∇v

) = S̄ε, (501)

where Eε and Ēε are the neutrino and antineutrino energy densities per group, Pε and
P̄ε are the neutrino and antineutrino stress tensors, and Sε and S̄ε are the neutrino and
antineutrino matter couplings, respectively. The energy flux in both equations is given
by a Fick’s-like relation of the form

Fε ≡ −Dε∇Eε, (502)

where
Dε = c

3κTε
(503)

is the diffusion coefficient, and κTε is the total opacity. In flux-limited diffusion
schemes, the diffusion coefficient Dε is modified. A general form for such a mod-
ified diffusion coefficient is given by

Dε ≡ cλε(Rε)

κTε
. (504)

In particular, the so-called Levermore–Pomraning flux limiter (Levermore and Pom-
raning 1981) is given by

λε(Rε) ≡ 2 + Rε
6 + 3Rε + Rε2

, (505)
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where Rε is the radiation Knudsen number, which is the ratio of the mean free path to
some characteristic length scale in the problem. The Knudsen number is written as

Rε ≡ |∇Eε|
κTε Eε

. (506)

Note that the Knudsen number is different for different energy groups given that
the opacities are typically (and for neutrinos in core-collapse supernovae, definitely)
energy dependent. The radiation stress tensor takes the typical form

Pε ≡ XεEε, (507)

where

Xε ≡ 1

2
(1 − χε) I + 1

2
(3χε − 1) nn, (508)

whereχε is the scalar Eddington factor, which in the case of theLevermore–Pomraning
flux-limiting scheme becomes

χε = λε(Rε)+ {λε(Rε)}2 Rε
2. (509)

Given the choice of Levermore-Pomraning flux limiting, the evolution equations (500)
and (501) become

∂Eε
∂t

+ ∇ · (Eεv)− ∇ · (Dε∇Eε)− ε ∂
∂ε

{(XεEε) : ∇v} = Sε, (510)

∂ Ēε
∂t

+ ∇ · (Ēεv
) − ∇ · (D̄ε∇ Ēε)− ε ∂

∂ε

{
(X̄ε Ēε) : ∇v

} = S̄ε. (511)

Swesty and Myra note, these equations are not in conservative form. They opt to
monitor conservation of lepton number and energy after the fact. The degree to which
they achieve either was not documented. Their equations are operator split as follows
(written here for just the neutrinos, not the antineutrinos):

[[
∂Eε
∂t

]]

total
=

[[
∂Eε
∂t

]]

advection
+

[[
∂Eε
∂t

]]

diff-coll
, (512)

where

[[
∂Eε
∂t

]]

advection
= −∇ · (Eεv), (513)

[[
∂Eε
∂t

]]

diff-coll
= ∇ · (Dε∇Eε)+ ε ∂

∂ε
{(XεEε) : ∇v} + Sε. (514)
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For the purpose of describing their numerical method used to treat each of the operator
split equations shown above, Swesty andMyra note, first, that the advection equations
take the general form [[

∂ψ

∂t

]]

advection
+ ∇ · (ψv) = 0, (515)

where ψ is the scalar field (Eε and Ēε) being advected. They then deploy the ZEUS
consistent advection scheme of Stone and Norman (1992) in a directionally-split man-
ner to each dimension (in their case, x1 and x2) of the problem. For the x1 update,
Eq. (515) is discretized as follows:

[ΔV ]i+(1/2), j+(1/2)
Δt

(
[ψ]n+β

i+(1/2), j+(1/2) − [ψ]n+α
i+(1/2), j+(1/2)

)

= −
(
[F1(ψ)]

n+α
i+1, j+(1/2) [ΔA1]i+1, j+(1/2) − [F1(ψ)]

n+α
i, j+(1/2) [ΔA1]i, j+(1/2)

)
.

(516)

The fluxes in Eq. (516) are given by

[F1(ψ)]i, j+(1/2) =
[
I1

(
ψ

ρ

)]

i, j+(1/2)
[F1(ρ)]i, j+(1/2) , (517)

where
[F1(ρ)]i, j+(1/2) = [I1(ρ)]i, j+(1/2) [υ1]i, j+(1/2) , (518)

and where

[I1(ψ)]i, j+(1/2)

=

⎧
⎪⎪⎨
⎪⎪⎩

[ψ]i−(1/2), j+(1/2) + [δ1(ψ)]i−(1/2), j+(1/2)
(
1 − [υ1]i, j+(1/2) Δt

[x1]i − [x1]i−1

)
if [υ1]i, j+(1/2) > 0,

[ψ]i+(1/2), j+(1/2) − [δ1(ψ)]i+(1/2), j+(1/2)
(
1 + [υ1]i, j+(1/2) Δt

[x1]i+1 − [x1]i

)
if [υ1]i, j+(1/2) < 0.

(519)

In Eq. (518), ρ is the fluid mass density. I1(ψ) is the van Leer monotonic upwind
advection function (Van Leer 1977), given by

[δ1(ψ)]i+(1/2), j+(1/2)

=
⎧
⎨
⎩

[Δψ]i, j+(1/2) [Δψ]i+1, j+(1/2)
[ψ]i+(3/2), j+(1/2) − [ψ]i−(1/2), j+(1/2)

if [Δψ]i, j+(1/2) [Δψ]i+1, j+(1/2) > 0,

0 otherwise,

(520)

where
[Δψ]i, j+(1/2) = [ψ]i+(1/2), j+(1/2) − [ψ]i−(1/2), j+(1/2) . (521)
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The x2 update is computed in the same way, with the obvious substitutions.
The remaining term, due to neutrino diffusion, relativistic effects, and collisions:

[[
∂(eEε)

∂t

]]

diff−coll
− ∇ · (eDe

εEε
) − ε ∂

∂ε

(ePε : ∇v
) −e

Sε = 0 (522)

is differenced implicitly in time and as follows in phase space:

[Eε]
n+1
k+(1/2),i+(1/2), j+(1/2) − [Eε]nk+(1/2),i+(1/2), j+(1/2)

Δt
− [∇ · Dε∇Eε]

n+1
k+(1/2),i+(1/2), j+(1/2)

−
[
ε
∂ (Pε : ∇v)

∂ε

]n+1

k+(1/2),i+(1/2), j+(1/2)
− [Sε]

n+1
k+(1/2),i+(1/2), j+)1/2) = 0,

(523)

where

[∇ · Dε∇Eε]
n+1
k+(1/2),i+(1/2), j+(1/2)

≡ 1

[g2]i+(1/2) [g31]i+(1/2) [g32] j+(1/2)

{
1

[x1]i+(3/2) − [x1]i+(1/2)
×

(
[g2]i+1 [g31]i+1 [g32] j+(1/2) [Dε(x1)]n+t

k+(1/2),i+1, j+(1/2)

× [Eε]
n+1
k+(1/2),i+(3/2), j+(1/2) − [Eε]

n+1
k+(1/2),i+(1/2), j+(1/2)

[x1]i+(3/2) − [x1]i+(1/2)
− [g2]i [g31]i [g32] j+(1/2) [Dε(x1)]n+t

k+(1/2),i, j+(1/2)

× [Eε]
n+1
k+(1/2),i+(1/2), j+(1/2) − [Eε]

n+1
k+(1/2),i−(1/2), j+(1/2)

[x1]i+(1/2) − [x1]i−(1/2)

)

+ 1

[x2] j+(3/2) − [x2] j+(1/2)

×
(
[g31]i+(1/2) [g32] j+1

[g2]i+(1/2)
[Dε(x2)]

n+t
k+(1/2),i+(1/2), j+1

× [Eε]
n+1
k+(1/2),i+(1/2), j+(3/2) − [Eε]

n+1
k+(1/2),i+(1/2), j+(1/2)

[x2] j+(3/2) − [x2] j+(1/2)

− [g31]i+(1/2) [g32] j
[g2]i+(1/2)

[Dε(x2)]
n+t
k+(1/2),i+(1/2), j

× [Eε]
n+1
k+(1/2),i+(1/2), j+(1/2) − [Eε]

n+1
k+(1/2),i+(1/2), j−(1/2)

[x2] j+(1/2) − [x2] j−(1/2)

)}
(524)
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and

[
ε
∂ (Pε : ∇v)

∂ε

]n+1

k+(1/2),i+(1/2), j+(1/2)
≡ [ε]k+(1/2)

[ε]k+1 − [ε]k

×(
[Xε : ∇v]n+t

k+(3/2),i+(1/2), j+(1/2) [Eε]
n+1
k+(3/2),i+(1/2), j+(1/2)

− [Xε : ∇v]n+t
k−(1/2),i+(1/2), j+(1/2) [Eε]

n+1
k−(1/2),i+(1/2), j+(1/2)

)
(525)

and

[Sε]
n+1
k+(1/2),i+(1/2), j+(1/2)

≡ − [Sε]
n+t
k+(1/2),i+(1/2), j+(1/2)

(
1 + ηα(

[ε]k+(1/2)
)3 [Eε]n+1

k+(1/2),i+(1/2), j+(1/2)

)

+c
[
κaε

]n+t
k+(1/2),i+(1/2), j+(1/2) [Eε]

n+1
k+(1/2),i+(1/2), j+(1/2)

−
(
1 + ηα(

[ε]k+(1/2)
)3 [Eε]n+1

k+(1/2),i+(1/2), j+(1/2)

)
[ε]k+(1/2)

×
Ng−1∑
�=0

[Δε]�+(1/2) [G]n+t
k+(1/2),�+(1/2),i+(1/2), j+(1/2)

(
1 + ηα(

[ε]�+(1/2)
)3

[
Ēε

]n+1
�+(1/2),i+(1/2), j+(1/2)

)

−c

(
1 + ηα(

[ε]k+(1/2)
)3 [Eε]n+1

k+(1/2),i+(1/2), j+(1/2)

)

×
Ng−1∑
�=0

[Δε]�+(1/2)
[
κs

]n+t
k+(1/2),�+(1/2),i+(1/2), j+(1/2) [Eε]

n+1
�+(1/2),i+(1/2), j+(1/2)

+c [Eε]
n+1
k+(1/2),i+(1/2), j+(1/2)

×
Ng−1∑
�=0

[Δε]�+(1/2)
[
κs

]n+t
�+(1/2),k+(1/2),i+(1/2), j+(1/2)

(
1 + ηα(

[ε]�+(1/2)
)3 [Eε]n+1

�+(1/2),i+(1/2), j+(1/2)

)
.

(526)

In Eq. (524), the factors g2, g31, and g32 derive from the 3-covariant form of the spatial
metric used by Swesty and Myra, which is given by

ds2 = (g1)2dx21 + (g2)2dx22 + (g31g32)2dx23 (527)

123



4 Page 130 of 174 A. Mezzacappa et al.

and is written to accommodate Cartesian, cylindrical, and spherical coordinates. In
Eq. (526), κa and κs are the absorption and scattering opacities, respectively, and
G(ε, ε′) is the pair annihilation kernel. The factors α and η are constants. Ng is
the number of energy groups, and the superscript n + t , with t taking on different
values, designates the update stages for the electron, muon, and tau neutrino dis-
tributions in the overall update scheme used by Swesty and Myra, shown in their
Figure 3. To solve Eq. (523) and its counterpart for antineutrinos, simultaneously,
given their coupling, Swesty and Myra implement the Newton–BiCGSTAB subclass
of Newton–Krylov iterative methods. Equation (523) and its antineutrino counter-
part are first linearized. BiCGSTAB is used for a solution to the resultant “inner”
linear system of equations for the updates to the iterates of the outer Newton itera-
tion.

Once the quantities l
Sε, where � denotes neutrino flavor, are known from the solu-

tion of Eq. (523) and its counterparts for heavy-flavor neutrinos, Swesty and Myra
then update the fluid electron fraction and energy density using the following operator
split equations:

[[
∂ne
∂t

]]

collision
= −

∫
1

ε

(e
Sε −e

S̄ε

)
dε, (528)

[[(
∂E

∂t

)]]

collision−‘
= −

∫ (
�
Sε +� S̄ε

)
dε, (529)

where ne is the electron number density and E is the matter energy density. Equa-
tion (529) is solved in operator split fashion for each flavor. The discretizations for
Eqs. (528) and (529) for electron-neutrino flavor neutrinos (where both lepton number
and energy are exchanged) are:

[ne]
n+1
i+(1/2), j+(1/2) = [ne]

n+b
i+(1/2), j+(1/2)

−Δt
Ng−1∑
�=0

[Δε]�+(1/2)

⎛
⎝
[
e
Sε

]n+b
i+(1/2), j+(1/2) −

[
e
S̄ε

]n+b
i+(1/2), j+(1/2)

[ε]�+(1/2)

⎞
⎠ ,

(530)
[E]n+d

i+(1/2), j+(1/2) = [E]n+b
i+(1/2), j+(1/2)

−Δt
Ng−1∑
�=0

[Δε]�+(1/2)
([e

Sε

]n+c
i+(1/2), j+(1/2) −

[e
S̄ε

]n+c
i+(1/2), j+(1/2)

)
.

(531)

In a similar manner, the neutrino–matter momentum exchanged is computed.
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6.6.2 General-relativistic, finite-difference implementation

A general relativistic implementation of MGFLD was developed by Rahman et al.
(2019). They begin with the 3+1 metric:

ds2 ≡ gabdx
adxb

= −α2dt2 + γi j (dxi + β idt)(dx j + β jdt), (532)

and the following definitions of the comoving-frame spectral neutrino energy density,
momentum density, and stress tensor:

J (xμ, ε) ≡ ε3
∫

f (xμ, pμ̂) dΩ,

H î (xμ, ε) ≡ ε3
∫

l î f (xμ, pμ̂) dΩ,

K î ĵ (xμ, ε) ≡ ε3
∫

l î l ĵ f (xμ, pμ̂) dΩ, (533)

respectively. pμ̂ ≡ ε(1, l î ) denotes the comoving-frame, momentum-space coor-

dinates. l î is a unit comoving-frame, momentum-space three-vector. With these
definitions and choice of phase-space coordinates, Rahman et al. express the evo-
lution equation for the comoving-frame neutrino energy density as given by Eq. (155)
in Sect. 4.7.5. Given the approximations discussed there, the neutrino energy density
equation solved by Rahman et al. becomes

1

α

∂

∂t
(WĴ )+ 1

α

∂

∂x j
[αW (v j − β j/α)Ĵ ]

− 1

α

∂

∂x j

[
α−2√γ

{
γ ik + W

( W

W + 1
v j − β j/α

)
vk

}
D∂k(α

3J )
]

−ekî

α4

∂

∂t
(W

√
γ v̄î )D∂k(α

3J )+ R̂ε − ∂

∂ε
(ε R̂ε)

= κa(Ĵ eq − Ĵ ), (534)

where the relation e ĵ
î
ekî = γ jk was used.

Rahman et al. divide the numerical update into three steps, operator splitting
Eq. (534) into the source term, the radial and spectral shift terms, and the nonradial
terms. In step 1, the focus is on the source term, and the corresponding terms in the
matter specific internal energy and electron fraction equations. The set of equations
to be solved is given by
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W

α
∂tJν,ξ = [

κa(J
eq − J )

]
ν,ξ
,

W

α
ρ∂t e(T ,Ye) = −

∑
ν,ξ

[
κa(J

eq − J )Δεξ
]
ν,ξ
,

W

α
ρ∂t Ye = −mu

∑
ξ

[[
κa(J

eq − J )Δεξ
]
νe

−[
κa(J

eq − J )Δεξ
]
ν̄e

]
ξ
, (535)

where ν and ξ indicate the neutrino species and energy bin, respectively, andΔεξ the
energy bin width. mu is the atomic mass unit. These equations are differenced fully
implicitly in time and solved using Newton–Raphson iteration. Linearization of the
equations inJν,ξ , e, and Ye leads to a system of linear equations that must be solved
for each iteration. To do so, Rahman et al. use a direct (LAPACK) solver. The quantities
ρ, α, W , and κa are all held constant during the Newton–Raphson procedure.

In step 2, the following equation is solved:

W∂tĴ + Rr = 0, (536)

where

Rr ≡ ∂t (W )Ĵ + ∂r [αW (vr − βrα−1)Ĵ ]
−∂r

[
α−2√γ

{
γ rr + W

( W

W + 1
vr − βrα−1

)
vr
}
D1∂r (α

3J )
]

−α−3erî∂t (W
√
γ v̄î )D1∂r (α

3J )+ α
[
R̂ε − ∂

∂ε
(ε R̂ε)

]
(537)

includes radial advection, diffusion, and acceleration, as well as spectral shifts. D1
denotes the radial diffusion coefficient. Equation (536) is solved using the Crank–
Nicolson scheme:

(W
√
γ )

J n+1
i − J n

i

Δt
= −1

2
(Rn+1

r ,i + Rn
r ,i ). (538)

All gravitation and hydrodynamics variables are kept fixed during transport updates.
Rn

r ,i on the right-hand side of equation (538) is evaluated at both t
n and tn+1. For tn+1,

Rahman et al. provide the following discretizations. The diffusion term is discretized
as

[
∂r {Ar D1∂r (α

3J )}
]n+1

i

= 1

Δr

[
Ar
i+1/2D

n
1,i+1/2

α3i+1J
n+1
i+1 − α3i J n+1

i

Δr

−Ar
i−1/2D

n
1,i−1/2

α3i J
n+1
i − α3i−1J

n+1
i−1

Δr

]
, (539)
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where

Ar ≡ α−2√γ
{
γ rr + W

( W

W + 1
vr − βrα−1

)
vr
}
. (540)

i − 1/2 and i + 1/2 denote the left and right zone edges for zone i , respectively.
Values of the gravity and hydrodynamics variables at zone edges are determined by
linear interpolation of their zone-center counterparts. The fluid acceleration term is
discretized as

[
Br D1∂r (α

3J )
]n+1

i

= Br
i

2

[
Dn
1,i+1/2

α3i+1J
n+1
i+1 − α3i J n+1

i

Δr

+Dn
1,i−1/2

α3i J
n+1
i − α3i−1J

n+1
i−1

Δr

]
, (541)

where

Br ≡ α−3erî∂t (W
√
γ v̄î ). (542)

The metric and hydrodynamics variables before and after the metric and hydrodynam-
ics updates are used to evaluate the time derivative in Eq. (542). The advection term
is discretized in an upwind fashion as

[
∂r (C

rJ )
]n+1

i
= 1

Δr

[
Cr
i+1/2J

n+1
ι(i+1/2) − Cr

i−1/2J
n+1
ι(i−1/2)

]
, (543)

where

Cr ≡ α√γW (vr − βrα−1) (544)

and

ι(i + 1/2) ≡
{
i, if vri+1/2 > 0 ,
i + 1, otherwise.

(545)

Spectral shifts—the last term in Eq. (537)—are discretized using the number-
conservative scheme of Müller et al. (2010) discussed in Sect. 6.5.2. The flux factor,
f î , and the Eddington tensor, χ î ĵ , are used to replace H î and K î ĵ by f îI and

χ î ĵI , respectively. In evaluating the spectral shift terms, both the flux factor and the
Eddington tensor are evaluated at tn , whereas the energy density, I , is evaluated at
tn+1. The remaining advection and diffusion terms are included in the last transport
step, encapsulated in the equation

W
√
γ ∂t (J ) = R(J ), (546)
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where

R(J ) ≡ −∂θ [αW (vθ − βθα−1)Ĵ ] − ∂φ[αW (vφ − βφα−1)Ĵ ]
+∂θ

[
α−2√γ

{
γ θθ + W

( W

W + 1
vθ − βθα−1

)
vθ

}
D2∂θ (α

3J )
]

+∂φ
[
α−2√γ

{
γ φφ + W

( W

W + 1
vφ − βφα−1

)
vφ

}
D3∂φ(α

3J )
]

+α−3eθ î∂t (W
√
γ v̄î )D2∂θ (α

3J )

+α−3eφ î∂t (W
√
γ v̄î )D3∂φ(α

3J ). (547)

D2 and D3 are the diffusions coefficients in the θ and φ directions, respectively.
Equation (547) is evolved using one of two explicit methods: Allen–Cheng (Allen
and Cheng 1970) and Runge–Kutta–Legendre (RKL2) (Meyer et al. 2012). The latter
method is a conditionally stable method expressly designed for the diffusion equation.
In the Allen–Cheng method, a predictor step provides the following partial update:

(W
√
γ )

Δt
(J ∗

k − J n
k ) = − 1

2Δy
(Fk+1J

n
k+1 − Fk−1J

n
k−1)

+ 1

Δy2
[Ek+1/2(α

3
k+1J

n
k+1 − α3kJ ∗

k )

−Ek−1/2(α
3
kJ

∗
k − α3k−1J

n
k−1)]

+ Gk

2Δy

[
Dk+1/2(α

3
k+1J

n
k+1 − α3kJ ∗

k )

+Dk−1/2(α
3
kJ

∗
k − α3k−1J

n
k−1)

]
, (548)

which, in turn, is followed by a corrector step that provides the complete update:

(W
√
γ )

Δt
(J n+1

k − J n
k ) = − 1

2Δy
(Fk+1J

∗
k+1 − Fk−1J

∗
k−1)

+ 1

Δy2
[Ek+1/2(α

3
k+1J

∗
k+1 − α3kJ n+1

k )

−Ek−1/2(α
3
kJ

n+1
k − α3k−1J

∗
k−1)]

+ Gk

2Δy

[
Dk+1/2(α

3
k+1J

∗
k+1 − α3kJ n+1

k )

+Dk−1/2(α
3
kJ

n+1
k − α3k−1J

∗
k−1)

]
, (549)

where

E ≡ α−2√γ
{
γ j j + W

( W

W + 1
v j − β jα−1

)
v j

}
D,

F ≡ α√γW (v j − β jα−1),

G ≡ α−3e j î∂t (W
√
γ v̄î ). (550)
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In Eqs. (548) and (549), only one spatial index, k, is explicitly shown and represents
a zone index in either the θ or the φ direction. Moreover, in the discretizations shown,
the gridding in the single dimension is assumed to be uniform, with zone width Δy.
In the (s-stage) RKL2 method, which Rahman et al. deploy as a 4-stage method, the
update in each of the four stages is given by

J0 = J n,

J1 = J0 + 2

27

Δt

W
√
γ
R(J0),

J2 = 3

2
J1 − 1

2
J0 + Δt

W
√
γ

(1
3
R(J1)− 2

9
R(J0)

)
,

J3 = 25

12
J2 − 5

6
J1 − 1

4
J0 + Δt

W
√
γ

(25
54

R(J2)− 25

81
R(J0)

)
,

J4 = 189

100
J3 − 81

80
J2 + 49

400
J0

+ Δt

W
√
γ

(21
50

R(J3)− 49

200
R(J0)

)
,

J n+1 = J4. (551)

For the s-th stage and zone k,R(J ) is discretized as

Rk(Js) = − 1

2Δy
(Fk+1Js,k+1 − Fk−1Js,k−1)

+ 1

Δy2
(Ek+1/2(α

3
k+1Js,k+1 − α3kJs,k)

−Ek−1/2(α
3
kJs,k − α3k−1Js,k−1))

+ Gk

2Δy

[
Dk+1/2(α

3
k+1Js,k+1 − α3kJs,k)

+Dk−1/2(α
3
kJs,k − α3k−1Js,k−1)

]
. (552)

Finally, it is important to note that Rahman et al. go to great lengths to ensure that their
definitions of the diffusion coefficients preserve causality for both the individual and
the total radiative fluxes. To accomplish this, they compute the gradient of the energy
density as

|∇J |i, j,k

=
√(Ji+1, j,k − Ji−1, j,k

ri+1 − ri−1

)2 +
(Ji, j+1,k − Ji, j−1,k

ri (θ j+1 − θ j−1)

)2 +
( Ji, j,k+1 − Ji, j,k−1

ri sin θ j (φk+1 − φk−1)

)2

(553)
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and the Knudsen number as

Ri, j,k = |∇J |i, j,k
(κt)i, j,kJi, j,k

, (554)

where (κt)i, j,k is the transport opacity at the cell center (i, j, k). Equation (161) is then
used to compute the flux limiter, and the causality-preserving diffusion coefficients
are given by

Di, j,k = λi, j,k

(κt)i, j,k
. (555)

Rahman et al. do not report on the conservation of lepton number in their code, but
given their use of the method developed by Müller et al. (2010), which is specifically
designed to conserve lepton number, it should be quite good. They do report on their
conservation of energy. They report a change in total energy of 1.85 × 1051 erg at 60
ms after bounce, most of which results at bounce, and a much more gradual increase
between 60 and 525 ms after bounce to their final value of ΔE of 2.0 × 1051 erg. As
discussed in Sect. 6.5.4, their use of the Lagrangian two-moment model as the starting
point for their MGFLD implementation does not lend itself to conserving energy,
nor does their use of flux-limited diffusion, as discussed in Just et al. (2015) and in
references cited therein.

6.6.3 Newtonian-gravity, O(v/c), finite-volume implementation

As part of the development of the CASTRO code, Zhang et al. (2013) developed a
MGFLD solver using finite-volume methods. They express the equations of multi-
group radiation hydrodynamics as

∂ρ

∂t
+ ∇ · (ρu) = 0, (556)

∂(ρu)
∂t

+ ∇ · (ρuu)+ ∇ p +
∑
g

λg∇Eg = FG, (557)

∂(ρE)

∂t
+ ∇ · (ρEu + pu)+ u ·

∑
g

λg∇Eg =
∑
g

c(κgEg − jg)+ u · FG, (558)

∂(ρYe)

∂t
+ ∇ · (ρYeu) =

∑
g

cξg(κgEg − jg), (559)
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∂Eg

∂t
+ ∇ ·

(
3 − fg

2
Egu

)
− u · ∇

(
1 − fg

2
Eg

)

= −c(κgEg − jg)+ ∇ ·
(
cλg
χg

∇Eg

)

+
∫

g

∂

∂ν

[(1 − f

2
∇ · u + 3 f − 1

2
n̂n̂ : ∇u

)
νEν

]
dν − 3 fg − 1

2
Egn̂n̂ : ∇u,

(560)

where the group quantities are defined as

Eg =
∫ νg+1/2

νg−1/2

Eνdν, (561)

jg = 4π

c
η(νg)Δνg, (562)

and
ξg = s

mB

hνg
. (563)

In Eq. (561), the neutrino energy density per frequency, Eν , is integrated over the
frequency group defined by the interval [νg−1/2, νg+1/2] to yield the energy density
per group. Equation (562) defines the group emissivity in terms of the emissivity, η,
and the group width Δνg = νg + 1/2 − νg − 1/2. In order of appearance in the
equations, the remaining quantities are, λg , κg , and fg , and are defined by evaluating
the flux limiter, λ, the absorption coefficient, κ , and the Eddington factor, f , at a
representative group frequency, νg—i.e., they are all group-mean values. Finally, for
neutrinos, ξg is given by Eq. (563), with s = +1 for electron neutrinos and s = −1
for electron antineutrinos. Zhang et al. split these equations into three subsets, based
on their mathematical characteristics and in an effort to minimize issues arising from
operator splitting. There is a hyperbolic subsystem that includes the evolution of the
electron fraction (it also includes pieces of the evolution equation for the neutrino
energy density, but the neutrino energy density is not evolved using this subsystem,
as will be discussed):

∂ρ

∂t
+ ∇ · (ρu) = 0, (564)

∂(ρu)
∂t

+ ∇ · (ρuu)+ ∇ p +
∑
g

λg∇Eg = FG, (565)

∂(ρE)

∂t
+ ∇ · (ρEu + pu)+ u ·

∑
g

λg∇Eg = u · FG , (566)

∂(ρYe)

∂t
+ ∇ · (ρYeu) = 0, (567)

∂Eg

∂t
+ ∇ ·

(
3 − fg

2
Egu

)
− u · ∇

(
1 − fg

2
Eg

)
= 0. (568)

123



4 Page 138 of 174 A. Mezzacappa et al.

There is a second set of hyperbolic equations that governs the evolution of the neutrino
energy density sans the diffusion term and the term that describes the coupling of
neutrinos to the matter:

∂Eg

∂t
= − ∇ · (Egu), (569)

∂Eν
∂t

= ∂

∂ ln ν

[(
1 − f

2
∇ · u + 3 f − 1

2
n̂n̂ : ∇u

)
Eν

]
. (570)

This second set of equations results from a splitting of their equation for the neutrino
energy density per frequency, Eν , prior to integration over group frequencies:

∂Eν
∂t

+ ∇ · (Eνu) = ∇ ·
(
cλ

χ
∇Eν

)
− (cκEν − 4πη)

+ ∂

∂ ln ν

(
1 − f

2
Eν∇ · u + 3 f − 1

2
Eν n̂n̂ : ∇u

)
. (571)

Finally, there is a parabolic system of equations that describes the evolution of the
neutrino energy density due to the diffusion of neutrinos in the stellar core, as well as
the evolution of the matter internal energy and electron fraction as a result of neutrino–
matter interactions:

∂(ρe)

∂t
=

∑
g

c(κgEg − jg), (572)

∂(ρYe)

∂t
=

∑
g

cξg(κgEg − jg), (573)

∂Eg

∂t
= − c(κgEg − jg)+ ∇ ·

(
cλg
χg

∇Eg

)
. (574)

The equations in the first hyperbolic subsystem, Eqs. (564) through (568), are solved
using an explicit, unsplit, PPM method, with characteristic limiting, full corner cou-
pling, and the approximate Riemann solver of Bell et al. (1989). Given the Godunov
states computed, the radiation field energy density is in turn updated via Eq. (569).
Finally, Eq. (570), which takes the form of an advection equation in neutrino-energy
space, is solved using a second, explicit Godunov method, based on the method of
lines. In this explicit part of the update scheme, a third-order, TVD, Runge–Kutta
scheme developed by Shu and Osher (1988) is used.

The parabolic system, Eqs. (572) through (574), is instead solved implicitly. Zhang
et al. reformulate the equations as
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Fe = ρe − ρe− −Δt
∑
g

c(κgEg − jg) = 0, (575)

FY = ρYe − ρY−
e −Δt

∑
g

cξg(κgEg − jg) = 0, (576)

Fg = Eg − E−
g −Δt ∇ ·

(
cλg
χg

∇Eg

)
+Δt c(κgEg − jg) = 0, (577)

and linearize in T , Ye, and Eg to obtain the (outer) linear system

⎡
⎣
(∂Fe/∂T )(k) (∂Fe/∂Ye)(k) (∂Fe/∂Eg)

(k)

(∂FY /∂T )(k) (∂FY /∂Ye)(k) (∂FY /∂Eg)
(k)

(∂Fg/∂T )(k) (∂Fg/∂Ye)(k) (∂Fg/∂Eg)
(k)

⎤
⎦
⎡
⎢⎣
δT (k+1)

δY (k+1)
e

δE (k+1)
g

⎤
⎥⎦ =

⎡
⎢⎣

−F (k)e

−F (k)Y

−F (k)g

⎤
⎥⎦ . (578)

They point out that if the derivatives of the diffusion coefficient, cλg/χg , with respect
to T , Ye, and Eg are ignored, the linear system of equations collapses to an equation

for the (k + 1)st iterate, E (k+1)
g :

(
cκg + 1

Δt

)
E (k+1)
g − ∇ ·

(
cλg
χg

∇E (k+1)
g

)
= cjg + E−

g

Δt

+ Hg

⎡
⎣c

∑
g′

(
κg′E (k+1)

g′ − jg′
)

− 1

Δt
(ρe(k) − ρe−)

⎤
⎦

+Θg

⎡
⎣c

∑
g′
ξg′

(
κg′E (k+1)

g′ − jg′
)

− 1

Δt
(ρY (k)e − ρY−

e )

⎤
⎦ ,

(579)
where λg , κg , χg , and jg are evaluated at the kth iterate, and where

Hg =
(
∂ jg
∂T

− ∂κg

∂T
E (k)g

)
ηT −

(
∂ jg
∂Ye

− ∂κg

∂Ye
E (k)g

)
ηY , (580)

Θg =
(
∂ jg
∂Ye

− ∂κg

∂Ye
E (k)g

)
θY −

(
∂ jg
∂T

− ∂κg

∂T
E (k)g

)
θT , (581)

and

ηT = cΔt

Ω

[
ρ + cΔt

∑
g

ξg

(
∂ jg
∂Ye

− ∂κg

∂Ye
E (k)g

)]
, (582)

ηY = cΔt

Ω

[
cΔt

∑
g

ξg

(
∂ jg
∂T

− ∂κg

∂T
E (k)g

)]
, (583)
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θT = cΔt

Ω

[
ρ
∂e

∂Ye
+ cΔt

∑
g

(
∂ jg
∂Ye

− ∂κg

∂Ye
E (k)g

)]
, (584)

θY = cΔt

Ω

[
ρ
∂e

∂T
+ cΔt

∑
g

(
∂ jg
∂T

− ∂κg

∂T
E (k)g

)]
, (585)

Ω =
[
ρ
∂e

∂T
+ cΔt

∑
g

(
∂ jg
∂T

− ∂κg

∂T
E (k)g

)][
ρ + cΔt

∑
g

ξg

(
∂ jg
∂Ye

− ∂κg

∂Ye
E (k)g

)]

−
[
ρ
∂e

∂Ye
+ cΔt

∑
g

(
∂ jg
∂Ye

− ∂κg

∂Ye
E (k)g

)][
cΔt

∑
g

ξg

(
∂ jg
∂T

− ∂κg

∂T
E (k)g

)]
,

(586)

all of which are evaluated at the kth iterate. Equation (579) couples Eg to its values
across all energy groups. To decouple the groups, Zhang et al. choose to use an (inner)
iterative procedure by evaluating the right-hand-side at the kth iterate of Eg and iter-
ating the solution of Eq. (579) to convergence. Once Ek+1

g is known, the updates for
ρe and Ye are determined by

ρe(k+1) = Hρe(k) + (1 − H)ρe− +Θ(ρY (k)e − ρY−
e )

+ cΔt
∑
g

[
(κgE

�+1
g − jg)− (H +Θξg)(κgE�g − jg)

]
, (587)

ρY (k+1)
e = Θ̄ρY (k)e + (1 − Θ̄)ρY−

e + H̄(ρe(k) − ρe−)

+ cΔt
∑
g

[
ξg(κgE

�+1
g − jg)− (H̄ + Θ̄ξg)(κgE�g − jg)

]
, (588)

which stem from Eqs. (575) and (576) upon linearization and are conservative for
energy and lepton number. In Eqs. (587) and (588), H , Θ , H̄ , and Θ̄ are defined by

H =
∑
g

Hg, (589)

Θ =
∑
g

Θg, (590)

H̄ =
∑
g

ξgHg, (591)

Θ̄ =
∑
g

ξgΘg. (592)

In turn, T is updated, and the next outer iteration is initiated. Zhang et al. deploy the
synthetic acceleration scheme of Morel et al. (1985); Morel et al. (2007), extended
in this case by them to neutrino transport, to accelerate convergence of their outer
iteration. Note that the system given by Eqs. (572)–(574) does not include energy
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coupling interactions (e.g., inelastic scattering). Inclusion of these interactions in a
fully implicit solve requires modifications to the solution procedure.

The degree towhich the approach outlined here conserves lepton number and energy
was not documented.

6.7 Structure-preservingmethods

Structure-preserving methods are advanced numerical methods that aim to capture
key properties of the underlying, continuous PDEs, and include methods that preserve
physical bounds on solutions (e.g., positive distribution functions), achieve asymp-
totic limits of a multi-scale model (e.g., diffusion limit in radiation transport and
steady states), preserve constraints (e.g., the divergence-free condition in magnetohy-
drodynamics), or conserve secondary quantities (e.g., simultaneous conservation of
neutrino number and energy). As such, structure-preserving methods are more faithful
to the physics, and often improves accuracy and robustness. The energy conserving
discretization of the spherically symmetric Boltzmann equation by Liebendörfer et al.
(2004) discussed in Sect. 6.1.3, and the number conserving discretization of the energy
equation in the Lagrangian two-moment model by Müller et al. (2010) discussed in
6.5 are examples of structure-preserving discretizations already in use in simulations.
These aim to preserve secondary quantities that are not evolved directly by the numer-
ical method. Below we discuss discretizations that aim to preserve physical bounds
on evolved quantities.

6.7.1 Preamble: discontinuous Galerkin methods

Since the following subsections employ the discontinuous Galerkin (DG) method,
which has yet to be adapted to modeling CCSN, we include a short description of key
elements here by considering the scalar conservation law,

∂t u + ∂x f (u) = 0, (593)

with a linear flux f (u) = a u, where a is a constant in space and time. We refer
to Cockburn and Shu (1989); Cockburn and Shu (1991); Cockburn and Shu (1998)
and Cockburn et al. (1989, 1990) for pioneering, in-depth expositions on the early
development of DG methods. See also Cockburn and Shu (2001) and Shu (2016) for
reviews.

To solve Eq. (593), the computational domain D is divided into a triangulation T
of non-overlapping elements K = (xL, xH), so that D = ∪K∈T . On each element,
the solution will then be approximated by functions in the approximation space

V
k
h = {ϕh : ϕh

∣∣
K ∈ P

k(K ), ∀ K ∈ T }, (594)

where P
k(K ) denotes the space of one-dimensional polynomials of maximal degree

k (e.g., Legendre polynomials). Functions in V
k
h can be discontinuous across element

interfaces (hence discontinuous Galerkin). One then writes the approximate solution
to Eq. (593) on element K as the expansion
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uKh (x, t) =
k+1∑
i=1

uKi (t) b
K
i (x), (595)

where the expansion coefficients uKi are the unknowns for which we solve the equa-
tions, and bKi ∈ V

k
h are the basis functions. Next, one defines in what sense uKh will

approximate u, the solution to Eq. (593). To this end, the residual

R(uKh ) = ∂t uKh + ∂x f (uKh ) (596)

is defined, which is required to be orthogonal to all test functions ϕh ∈ V
k
h ; i.e.,

∫

K
R(uKh ) ϕ

K
h dx = 0, ∀ϕKh ∈ V

k
h . (597)

Inserting Eq. (596) into Eq. (597), and performing an integration by parts on the flux
term gives

∫

K
(∂t u

K
h ) ϕ

K
h dx+[

f (uKh )(x
−
H ) ϕ

K
h (x

−
H )− f (uKh )(x

+
L ) ϕ

K
h (x

+
L )

]−
∫

K
f (uKh ) ∂xϕ

K
h dx = 0,

(598)
where x±

L/H = limδ+→0 xL/H±δ. However, the entirely local formulation in Eq. (598)
is problematic because it does not specify how solutions in adjacent elements interact.
In addition, a unique flux must be defined on the element interfaces at xL/H to recover
the conservation statement inherent in Eq. (593). To resolve this, the fluxes on the
element interfaces are replaced by a unique value, which then gives the semi-discrete
DG method in weak form: Find uKh ∈ V

k
h such that

∫

K
(∂t u

K
h ) ϕ

K
h dx+[

̂f (uKh )(xH) ϕ
K
h (x

−
H )− ̂f (uKh )(xL) ϕ

K
h (x

+
L )

]−
∫

K
f (uKh ) ∂xϕ

K
h dx = 0

(599)

holds for all ϕh ∈ V
k
h and all K ∈ T . In Eq. (599), ̂f (uKh )(x) is a unique numerical

flux defined on the interface. For the scalar problem considered here, the familiar
upwind flux can be used:

̂f (uKh )(x) = 1

2

(
f (uKh (x

−))+ f (uKh (x
+))− |a| (uKh (x+)− uKh (x

−))
)
, (600)

which is defined in terms of approximations to the immediate left and right of x , which
can be different.

Undoing the integration by parts that resulted in Eq. (599) gives the semi-discrete
DG method in strong form: Find uKh ∈ V

k
h such that
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∫

K
R(uKh ) ϕ

K
h dx

= [ (
f (uKh (x

−
H ))− ̂f (uKh )(xH)

)
ϕKh (x

−
H )−

(
f (uKh (x

+
L ))− ̂f (uKh )(xL)

)
ϕKh (x

+
L )

]
,

(601)

for allϕKh ∈ V
k
h and all K ∈ T . Here, theweak and the strong formulations [Eqs. (599)

and (601), respectively] are equivalent statements. By comparing the strong formula-
tion with Eq. (597), one sees that the residual in the DG solution is orthogonal to ϕh

only in the convergent limit when f (uKh (x
±))→ ̂f (uKh )(x). In Sects. 6.7.2 and 6.7.3,

we will only refer to the weak formulation in Eq. (599).
To further illustrate how the weak formulation in Eq. (599) is used in practice, let

uK (t) = (
uK1 (t), . . . , u

K
k+1(t)

)T and bK (x) = (
bK1 (x), . . . , b

K
k+1(x)

)T
. (602)

Then, by inserting Eq. (595) into Eq. (599), and letting ϕh = b j ( j = 1, . . . , k + 1),
one obtains an equation for the expansion coefficients:

duK

dt
= −(MK )−1

{ [
̂f (uKh )(xH)b

K (x−
H )− ̂f (uKh )(xL)b

K (x+
L )

] − SK uK
}
,

(603)
where components of the mass matrix and stiffness matrix are defined as

MK
i j =

∫

K
bKi bKj dx and SKi j = a

∫

K
(∂xb

K
i ) b

K
j dx, (604)

respectively. Since the basis functions are polynomials, the integrals in Eq. (604) can
be computed exactly with, e.g., Gaussian quadratures. Equation (603) is now a system
of ODEs, which can be integrated in time with an ODE solver. For non-stiff problems,
explicit Runge–Kutta methods can be used.

The DG method has been used to develop structure-preserving methods in a range
of applications; see for example Zhang and Shu (2010b) and Wu and Tang (2016) for
physical-constraint-preserving methods for the non-relativistic and relativistic Euler
equations, respectively, Li and Xing (2018) for a steady-state preserving method for
the Euler equations with gravitation, and Juno et al. (2018) for an energy-conserving
DG method for kinetic plasma simulations. We also mention the work of Heningburg
and Hauck (2020), where DG and finite-volume methods are combined to a hybrid
transport scheme that captures the diffusion limit and is more efficient in terms of
memory usage and computational time than the corresponding DG-only scheme.

6.7.2 Bound-preserving methods

Zhang and Shu (2010a) developed a general framework for “maximum-principle-
preserving”, high-order methods for scalar conservation laws (see also Zhang and Shu
2011). Inspired by this work, Endeve et al. (2015) developed bound-preserving meth-
ods in the context of neutrino transport, aiming to maintain a distribution function
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satisfying f ∈ [0, 1], as dictated by Pauli’s exclusion principle. They considered the
(collisionless) phase-space advection problem in curvilinear coordinates, and included
a general relativistic example in spherical symmetry with a time-independent space-
time metric given by

ds2 = −α2 dt2 + γi j dxi dx j , with γi j = ψ4diag
[
1, r2, r2 sin2 θ

]
, (605)

where α is the lapse function and ψ the conformal factor. Under these assumptions,
the Boltzmann takes the form

1

α

∂ f

∂t
+ 1

α ψ6 r2
∂

∂r

(
α ψ4 r2 μ f

)
− 1

ε2

∂

∂ε

(
ε3

1

ψ2 α

∂α

∂r
μ f

)

+ ∂

∂μ

( (
1 − μ2)ψ−2

{ 1

r
+ 1

ψ2

∂ψ2

∂r
− 1

α

∂α

∂r

}
f
)

= 0, (606)

where r ≥ 0 is the radius,μ ∈ [−1, 1] the momentum space angle cosine, and ε ≥ 0 is
the neutrino energy. By defining phase-space coordinates z1 = r , z2 = μ, and z3 = ε,
the phase space volume Jacobian τ = ψ6 r2 ε2, and

H1 = H (r) = α

ψ2μ, H2 = H (μ) = α
(
1 − μ2

)

ψ2r
Ψ , and H3 = H (ε) = − ε

ψ2

∂α

∂r
μ,

(607)
where

Ψ = 1 + r ∂r lnψ
2 − r ∂r ln α, (608)

Equation (606) can be written in the compact form

∂ f

∂t
+ 1

τ

3∑
i=1

∂

∂zi

(
τ Hi f

)
= 0. (609)

It is straightforward to show that

1

τ

3∑
i=1

∂

∂zi

(
τ Hi

)
= 0 (610)

holds. The divergence-free condition on the phase-space flow in Eq. (610) plays an
important role in maintaining f ≤ 1.

Endeve et al. (2015) employed the discontinuous Galerkin (DG) method (see, e.g.,
Cockburn and Shu 2001; Shu 2016, and references therein) to solve Eq. (606). To this
end, the phase space domain D is divided into a triangulation T of elements K, so
that D = ∪K∈T . Each element is a logically Cartesian box

K = {(r , μ, ε) ∈ R
3 : r ∈ K (r) := (rL, rH), μ ∈ K (μ) := (μL, μH), ε ∈ K (ε) := (εL, εH)},

(611)

123



Physical, numerical, and computational challenges of... Page 145 of 174 4

where ziL and ziH are, respectively, the coordinates of the lower and higher boundaries
of K in the i th dimension. On each element, the approximation space for the DG
method, V

k
h , is

V
k
h = {ϕh : ϕh

∣∣
K ∈ Q

k(K), ∀ K ∈ T }, (612)

where Q
k is the space of tensor products of one-dimensional polynomials of maximal

degree k. The approximation to the distribution function, fh , is then expressed as

fh(z, t) =
(k+1)3∑
i=1

Ci (t) Pi (z), (613)

where each Pi ∈ V
k
h . Note that functions in V

k
h can be discontinuous across element

interfaces. Then, for any (r , μ, ε) ∈ D and any ϕh ∈ V
k
h , the DGmethod is as follows:

Find fh ∈ V
k
h such that

∫

K
∂t fh ϕh dV −

∫

K
H (r) fh∂rϕh dV −

∫

K
H (μ) fh∂μϕh dV −

∫

K
H (ε) fh ∂εϕh dV

+
∫

K̃ (r)
Ĥ (r) fh(rH, μ, ε) ϕh(r

−
H , μ, ε) τ (rH, ε) dṼ

(r)

−
∫

K̃ (r)
Ĥ (r) fh(rL, μ, ε) ϕh(r

+
L , μ, ε) τ (rL, ε) dṼ

(r)

+
∫

K̃ (μ)
Ĥ (μ) fh(r , μH, ε) ϕh(r , μ

−
H, ε) τ (r , ε) dṼ

(μ)

−
∫

K̃ (μ)
Ĥ (μ) fh(r , μL, ε) ϕh(r , μ

+
L , ε) τ (r , ε) dṼ

(μ)

+
∫

K̃ (ε)
Ĥ (ε) fh(r , μ, εH) ϕh(r , μ, ε

−
H ) τ (r , εH) dṼ

(ε)

−
∫

K̃ (ε)
Ĥ (ε) fh(r , μ, εL) ϕh(r , μ, ε

+
L ) τ (r , εL) dṼ

(ε) = 0, (614)

where the infinitesimal phase-space volume and “area” elements are

dV = τ dr dμ dε, dṼ (r) = dμ dε, dṼ (μ) = dr dε, dṼ (ε) = dr dμ, (615)

and the subelements are

K̃ (r) = K (μ) × K (ε), K̃ (μ) = K (r) × K (ε), K̃ (ε) = K (r) × K (μ). (616)

In Eq. (614), upwind fluxes are used for the numerical fluxes on element interfaces:
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Ĥ (r) fh(rH/L, μ, ε) = H (r)( fh(r−
H/L, μ, ε), fh(r

+
H/L, μ, ε); rH/L, μ, ε

)

= αH/L

ψ2
H/L

{ 1

2

(
μ+ |μ|) fh(r

−
H/L, μ, ε)+

1

2

(
μ− |μ|) fh(r

+
H/L, μ, ε)

}
,

(617)

Ĥ (μ) fh(r , μH/L, ε) = H (μ)
(
fh(r , μ

−
H/L, ε), fh(r , μ

+
H/L, ε); r , μH/L, ε

)

= α

ψ2 r
(1 − μ2

H/L)
{ 1

2

(
Ψ + |Ψ |) fh(r , μ

−
H/L, ε)

+ 1

2

(
Ψ − |Ψ |) fh(r , μ

+
H/L, ε)

}
, (618)

Ĥ (ε) fh(r , μ, εH/L) = H (ε)
(
fh(r , μ, ε

−
H/L), fh(r , μ, ε

+
H/L); r , μ, εH/L

)

= −εH/L
ψ2

{ 1

2

(
∂rα μ− |∂rα μ|) fh(r , μ, ε

−
H/L)

+ 1

2

(
∂rα μ+ |∂rα μ|) fh(r , μ, ε

+
H/L)

}
. (619)

Key to the design of a time-explicit, bound-preserving method for Eq. (606) is to find
conditions such that, after the update from f nh to f n+1

h with time stepΔt = tn+1 − tn ,
the cell-averaged distribution function, defined as

fK = 1

VK

∫

K
fh dV , where VK =

∫

K
dV , (620)

satisfies the bounds; i.e., f n+1
K ∈ [0, 1]. The standard approach is to find sufficient

conditions such that these bounds hold with the first-order forward Euler method,
while the extension to higher-order accuracy in time relies on the use of a strong
stability-preserving (SSP) time stepping method, which can be expressed as convex
combinations of forward Euler operators (Gottlieb et al. 2001). The conditions that
are sought include a time step restriction. Then, if the bounds on the cell average at
tn+1 hold with the forward Euler method provided Δt ≤ ΔtFE (where ΔtFE is to
be determined), the bounds will also hold when an SSP method is used, provided
Δt ≤ CSSP × ΔtFE, where 0 < CSSP ≤ 1. For the optimal second- and third-order
SSP Runge–Kutta (SSP-RK) methods from Shu and Osher (1988), CSSP = 1.

The equation for the cell-average is obtained fromEq. (614)withϕh = 1 (the lowest
possible degree polynomial in the approximation space V

k
h). With forward Euler time

stepping, we then have

f n+1
K = f nK − Δt

VK

{
ψ6(rH) r

2
H

∫

K̃ (r)
Ĥ (r) f nh (rH, μ, ε) ε

2 dṼ (r)

− ψ6(rL) r
2
L

∫

K̃ (r)
Ĥ (r) f nh (rL, μ, ε) ε

2 dṼ (r)

+
∫

K̃ (μ)
Ĥ (μ) f nh (r , μH, ε) ψ

6(r) r2 ε2 dṼ (μ)
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−
∫

K̃ (μ)
Ĥ (μ) f nh (r , μL, ε) ψ

6(r) r2 ε2 dṼ (μ)

+ ε2H
∫

K̃ (ε)
Ĥ (ε) f nh (r , μ, εH) ψ

6(r) r2 dṼ (ε)

− ε2L
∫

K̃ (ε)
Ĥ (ε) f nh (r , μ, εL) ψ

6(r) r2 dṼ (ε)
}
. (621)

Assuming that f nK ∈ [0, 1], the flux terms (which can be positive or negative) can bring
f n+1
K outside the bounds. The contributions from these terms vanish as Δt → 0, and

this is where restrictions on the time step comes in. To find these restriction, f nK is
split into three parts and combined with the flux terms arising from the three phase-
space dimensions in the current setting. To this end, we define positive constants
s1, s2, s3 > 0, satisfying s1 + s2 + s3 = 1, and write the cell-average as

f nK = s1
VK

∫

K̃ (r)

∫

K (r)
f nh τ dr dṼ

(r) + s2
VK

∫

K̃ (μ)

∫

K (μ)
f nh τ dμ dṼ (μ)

+ s3
VK

∫

K̃ (ε)

∫

K (ε)
f nh τ dε dṼ

(ε). (622)

Inserting this into Eq. (621) gives

f n+1
K = s1

VK

∫

K̃ (r)
Γ (r)[ f nh ]dṼ (r)+ s2

VK

∫

K̃ (μ)
Γ (μ)[ f nh ]dṼ (μ)+ s3

VK

∫

K̃ (ε)
Γ (ε)[ f nh ]dṼ (ε),

(623)
where

Γ (r)[ f nh ](μ, ε)

=
∫

K (r)
f nh τ dr − Δt ε2

s1

{
ψ6(rH) r

2
H

̂H (r) f nh (rH, μ, ε)− ψ6(rL) r
2
L

̂H (r) f nh (rL, μ, ε)
}
,

(624)

Γ (μ)[ f nh ](r , ε)
=

∫

K (μ)
f nh τ dμ− Δtτ

s2

{
̂H (μ) f nh (r , μH, ε)− ̂H (μ) f nh (r , μL, ε)

}
, (625)

Γ (ε)[ f nh ](r , μ)

=
∫

K (ε)
f nh τ dε − Δtψ6(r)r2

s3

{
ε2H

̂H (ε) fh(r , μ, εH)− ε2L ̂H (ε) fh(r , μ, εL)
}
. (626)

With the cell-average expressed as in Eq. (623), in order to ensure f n+1
K ≥ 0, it

is sufficient to find conditions for which each of the right-hand sides in Eqs. (624),
(625), (626) are nonnegative. We illustrate the details of this for Eq. (624) (see Endeve
et al. 2015, for full details). In the DGmethod, the integrals over the faces K̃ (r), K̃ (μ),
and K̃ (ε) in Eq. (623) are typically evaluated with a quadrature rule. In this case, it is
sufficient that Γ (r), Γ (μ), Γ (ε) ≥ 0 holds in the respective quadrature points. As an

123



4 Page 148 of 174 A. Mezzacappa et al.

example, we let S̃(r)(∈ K̃ (r)) denote the set of quadrature points used to integrate over
K̃ (r) in Eq. (623).

To evaluate the integral on the right-hand side of Eq. (624), an N (r)-point Gauss-
Lobatto quadrature rule is used on the interval K (r), with points

Ŝ(r) = {
rL = r̂1, . . . , r̂N (r) = rH

}
, (627)

and weights ŵq ∈ (0, 1], normalized such that
∑N (r)

q=1 ŵq = 1. This quadrature inte-

grates polynomials in r of degree 2N (r) − 3 exactly. We can then write

∫

K (r)
f nh τ dr = Δr

N (r)∑
q=1

ŵq f nh (r̂q , μ, ε) τ (r̂q , μ, ε). (628)

If the distribution function is approximated with a polynomial of degree k in r , and
ψ6 is approximated by a polynomial of degree kψ , the quadrature is exact if N (r) ≥
(k + kψ + 5)/2. The reason for using the Gauss-Lobatto quadrature for the integral
over K (r) is because it includes the end points of the interval (rL, rH). These end
points are used to balance the flux terms in the radial dimension. Inserting Eq. (628)
into Eq. (624) gives

1

Δr
Γ (r)[ f nh ] =

N (r)∑
q=1

ŵq f nh (r̂q) τ (r̂q)

− Δt ε2

s1

{
ψ6(rH) r

2
HH (r)( fh(r−

H ), fh(r
+
H ); rH

)

− ψ6(rL) r
2
LH

(r)( fh(r−
L ), fh(r

+
L ); rL

) }

=
N (r)−1∑
q=2

ŵq f nh (r̂q) τ (r̂q)+ ŵ1Φ
(r)
1

[
f nh (r

−
L ), f

n
h (r

+
L )

]
τ(rL)

+ ŵN (r) Φ
(r)
N (r)

[
f nh (r

−
H ), f

n
h (r

+
H )

]
τ(rH), (629)

where

Φ
(r)
1

[
f nh (r

−
L ), f

n
h (r

+
L )

] = f nh (r
+
L )+

Δt

s1ŵ1Δr
H (r)( f nh (r−

L ), f
n
h (r

+
L ); rL

)
, (630)

Φ
(r)
N (r)

[
f nh (r

−
H ), f

n
h (r

+
H )

] = f nh (r
−
H )−

Δt

s1ŵN (r)Δr
H (r)( f nh (r−

H ), f
n
h (r

+
H ); rH

)
.

(631)
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(For notational brevity, we have suppressed the (μ, ε)-dependence.) Using the numer-
ical flux function in Eq. (617), one can write

Φ
(r)
1

[
f nh (r

−
L ), f

n
h (r

+
L )

]

= f nh (r
+
L )+

Δt

s1ŵ1Δr

α(rL)

ψ2(rL)

{ 1

2

(
μ+ |μ|) f nh (r

−
L )+

1

2

(
μ− |μ|) f nh (r

+
L )

}

= Δt

s1ŵ1Δr

α(rL)

ψ2(rL)

1

2

(
μ+ |μ|) f nh (r

−
L )+

{
1 + Δt

s1ŵ1Δr

α(rL)

ψ2(rL)

1

2

(
μ− |μ|)

}
f nh (r

+
L ).

(632)

On the right-hand side of Eq. (632) (last line), the coefficient in front of f nh (r
−
L ) is

nonnegative since α(rL), ψ2(rL) > 0 and
(
μ+ |μ|) ≥ 0. Only the coefficient in front

of f nh (r
+
L ) can become negative since

(
μ−|μ|) ≤ 0. Assuming f nh (r

−
L ), f

n
h (r

+
L ) ≥ 0,

it is easy to show that Φ(r)1

[
f nh (r

−
L ), f

n
h (r

+
L )

] ≥ 0, if

Δt ≤ s1ŵ1Δr

|μ|
ψ2(rL)

α(rL)
. (633)

Similarly, for f nh (r
−
H ), f

n
h (r

+
H ) ≥ 0, one finds that Φ(r)

N (r)
[
f nh (r

−
H ), f

n
h (r

+
H )

] ≥ 0, if

Δt ≤ s1ŵN (r)Δr

|μ|
ψ2(rH)

α(rH)
. (634)

Therefore, assuming f nh ≥ 0 in the combined quadrature set S(r) = Ŝ(r)⊗ S̃(r), where
the points in Ŝ(r) are used to evaluate the integral over K (r) in Eq. (624) and the points
in S̃(r) are used to evaluate the integral over K̃ (r) in Eq. (623), a sufficient condition
on the time step to guarantee

∫
K̃ (r) Γ

(r)[ f nh ]dṼ (r) ≥ 0 is given by

Δt ≤ min
(
ψ2(rL)/α(rL), ψ

2(rH)/α(rH)
)
ŵN (r) s1Δr . (635)

(Here, ŵ1 = ŵN (r) is used.) Sufficient conditions onΔt for
∫
K̃ (μ) Γ

(μ)[ f nh ]dṼ (μ) ≥ 0
and

∫
K̃ (ε) Γ

(ε)[ f nh ]dṼ (ε) ≥ 0 can be derived in a similar way [we refer the interested
reader to Endeve et al. (2015) for details]. Together, these restrictions on the time step
ensures f n+1

K ≥ 0. It should be noted that the time step restrictions derived here are
sufficient, not necessary, conditions. They are typically more restrictive than the time
step required for numerical stability. Thus, in practical calculations, larger time steps
may be taken. If violations of the physical bounds are detected after a time step, Δt
can be reduced to the sufficient conditions before the time step is redone.
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The proof for f n+1
K ≤ 1 relies on the divergence-free condition in Eq. (610), which

can be written as

1

VK

{
ψ6(rH) r

2
H

∫

K̃ (r)
H (r)(rH, μ, ε) ε

2 dṼ (r)

− ψ6(rL) r
2
L

∫

K̃ (r)
H (r)(rL, μ, ε) ε

2 dṼ (r)

+
∫

K̃ (μ)
H (μ)(r , μH, ε) ψ

6(r) r2 ε2 dṼ (μ)

−
∫

K̃ (μ)
H (μ)(r , μL, ε) ψ

6(r) r2 ε2 dṼ (μ)

+ ε2H
∫

K̃ (ε)
H (ε)(r , μ, εH) ψ

6(r) r2 dṼ (ε)

− ε2L
∫

K̃ (ε)
H (ε)(r , μ, εL) ψ

6(r) r2 dṼ (ε)
}

= 0. (636)

In Eq. (614), we approximate the derivatives ∂rα and ∂rψ4 in K (r) [appearing in H (μ)

and H (ε); cf. Eq. (607)] with polynomials and compute α and ψ4 from

α(r) = α(rL)+
∫ r

rL
∂rα(r

′) dr ′ and ψ4(r) = ψ4(rL)+
∫ r

rL
∂rψ

4(r ′) dr ′, (637)

where the Gaussian quadrature rule is used to evaluate the integrals exactly. Two-
dimensional Gaussian quadrature rules are also used to evaluate the integrals over
K̃ (r), K̃ (μ), and K̃ (ε), using L(r), L(μ), and L(ε) points in the r , μ, and ε dimensions,
respectively. With this choice, it is straightforward to show that the discretization
satisfies the divergence-free condition (636), provided L(μ) ≥ 1, L(ε) ≥ 2, while L(r)

depends on the degree of the polynomials approximating ∂rα and ∂rψ4.
Using the definitions in Eqs. (624)–(626), a direct calculation shows that

s1
VK

∫

K̃ (r)
Γ (r)[1]dṼ (r) + s2

VK

∫

K̃ (μ)
Γ (μ)[1]dṼ (μ) + s3

VK

∫

K̃ (ε)
Γ (ε)[1]dṼ (ε)

= s1
VK

∫

K̃ (r)

∫

K (r)
τ dr dṼ (r) + s2

VK

∫

K̃ (μ)

∫

K (μ)
τ dμ dṼ (μ) + s3

VK

∫

K̃ (ε)

∫

K (ε)
τ dε dṼ (ε)

− Δt

VK

{
ψ6(rH) r

2
H

∫

K̃ (r)
H (r)(rH, μ, ε) ε

2 dṼ (r) − ψ6(rL) r
2
L

∫

K̃ (r)
H (r)(rL, μ, ε) ε

2 dṼ (r)

+
∫

K̃ (μ)
H (μ)(r , μH, ε) ψ

6(r) r2 ε2 dṼ (μ) −
∫

K̃ (μ)
H (μ)(r , μL, ε) ψ

6(r) r2 ε2 dṼ (μ)

+ ε2H
∫

K̃ (ε)
H (ε)(r , μ, εH) ψ

6(r) r2 dṼ (ε) − ε2L
∫

K̃ (ε)
H (ε)(r , μ, εL) ψ

6(r) r2 dṼ (ε)
}

= s1 + s2 + s3 = 1, (638)
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where the divergence-free condition in Eq. (636) is used. Since the divergence-free
condition holds, it is then straightforward to show that the cell-average of gh = 1− fh
satisfies [cf. Eq. (623)]

gn+1
K = 1 − f n+1

K

= s1
VK

∫

K̃ (r)

(
Γ (r)[1] − Γ (r)[ f nh ])dṼ (r) + s2

VK

∫

K̃ (μ)

(
Γ (μ)[1] − Γ (μ)[ f nh ])dṼ (μ)

+ s3
VK

∫

K̃ (ε)

(
Γ (ε)[1] − Γ (ε)[ f nh ])dṼ (ε)

= s1
VK

∫

K̃ (r)
Γ (r)[gnh ]dṼ (r) +

s2
VK

∫

K̃ (μ)
Γ (μ)[gnh ]dṼ (μ) +

s3
VK

∫

K̃ (ε)
Γ (ε)[gnh ]dṼ (ε),

(639)

where the linearity property of the operators in Eq. (624)–(626) is used; e.g., Γ (r)[1]−
Γ (r)[ f nh ] = Γ (r)[1 − f nh ] = Γ (r)[gnh ]. Thus, provided Eq. (636) and the restrictions
on Δt hold, and the conditions on f nh also hold for gnh , it follows that g

n+1
K ≥ 0 (or

f n+1
K ≤ 1).
The numerical method developed by Endeve et al. (2015), and outlined above, is

designed to preserve the physical bounds of the cell averaged distribution function
(i.e., 0 ≤ fK ≤ 1), provided sufficiently accurate quadratures are used, specific time
step restrictions are satisfied, and that the polynomial approximating the distribution
function inside each phase space elementK at time tn is bounded in a set of quadrature
points, which we denote S. After one time step, it is possible that f n+1

h violates the
bounds for some points in the set S. In the DG method, the limiter proposed by Zhang
and Shu (2010a) is used to reenforce the bounds. That is, the polynomial obtained
after a time step Δt , f n+1

h (z), is replaced by with the “limited” polynomial

f̃ n+1
h (z) = ϑ f n+1

h (z)+ ( 1 − ϑ ) f n+1
K , (640)

where the limiter parameter ϑ ∈ [0, 1] is given by

ϑ = min
{∣∣∣ M − f n+1

K

MS − f n+1
K

∣∣∣,
∣∣∣ m − f n+1

K

mS − f n+1
K

∣∣∣, 1
}
, (641)

with m = 0 and M = 1, and

MS = max
z∈S f n+1

h (z), mS = min
z∈S f n+1

h (z), (642)

and S represents thefinite set of quadrature points inKwhere the boundsmust hold. For
ϑ = 0, the entire solution is limited to the cell-average, while forϑ = 1 f̃ n+1

h = f n+1
h .

It is thus absolutely necessary to maintain the bounds on the cell-average, otherwise
the limiting procedure will be futile. In practice, ϑ remains close to unity, and the
limiting is a small correction. It has been shown (Zhang and Shu 2010a) that this
“linear scaling limiter” maintains high order of accuracy. Also, note that the limiting
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procedure is conservative for particle number since it preserves the cell averaged
distribution function; i.e., by inserting Eq. (640) into the definition of the cell average
in Eq. (620):

1

VK

∫

K
f̃ n+1
h dV = 1

VK

∫

K

(
ϑ f n+1

h + ( 1 − ϑ ) f n+1
K

)
dV = f n+1

K . (643)

In the discussion above, forward Euler time stepping is used, which is only first-order
accurate. For explicit time integration, the bound-preserving scheme can easily be
extended to higher-order accuracy in time by using high-order SSP time stepping
methods (Shu and Osher 1988; Gottlieb et al. 2001), which are multi-stage methods
that can be formulated as convex combinations of forward Euler operators. Provided
limiting is applied at each stage, the bound-preserving property follows from convex-
ity arguments. For neutrino transport problems where neutrino–matter interactions
are treated with implicit methods, it is difficult to achieve both high-order accuracy
and bounded solutions, and this topic remains open for further research. We will dis-
cuss this issue further below in the context of a two-moment model. Another open
issue is the challenge of simultaneous number and energy conservation in the phase
space advection problem discussed here: The limiter in Eq. (640) preserves the particle
number, but not higher moments of the distribution function. In the present model,
the space time is stationary, which implies that the so-called Komar mass (α ε f ) is
conserved. Thus, if bounded solutions and exact conservation of the Komar mass is
desired, modifications to the limiter is needed.

6.7.3 Realizability-preserving moment methods

Chu et al. (2019) developed a numerical method for a two-momentmodel based onDG
spatial discretization and IMEX time stepping. The method is specifically designed to
preserve bounds on the moments as dictated by Pauli’s exclusion principle. As such,
it is an extension of the bound-preserving method discussed above, but for a nonlinear
system of hyperbolic balance laws with stiff sources. As is reasonable for an initial
investigation, the model adopted by Chu et al. (2019) is rather simple, when compared
to the two-moment models used to model neutrino transport in contemporary core-
collapse supernova simulations. However, the work highlighted the role of themoment
closure in the design of robust two-moment methods for neutrino transport, and devel-
oped an IMEX scheme with a reasonable time step restriction that is compatible with
bounded solutions. As such, the work put down the foundations for a framework that
may help future developments of robust methods for models with improved physical
fidelity. To simplify the discussion, we consider the model in Chu et al. (2019) for one
spatial dimension and define moments of the distribution function as

{
J ,H ,K

}
(x, t) = 1

2

∫ 1

−1
f (μ, x, t) μ{0,1,2} dμ. (644)
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The two-moment model can be written as a system of hyperbolic balance laws as

∂tu + ∂x f(u) = − R u ≡ c(u), (645)

where the evolvedmoment vector is u = (J ,H )T , the flux vector is f = (H ,K )T ,
the emissivity is = (σA J0, 0)T , and R = diag(σA, σT ). Here, J0 is the zeroth
moment of an equilibrium distribution function, f0, satisfying f0 ∈ [0, 1] (i.e., Fermi–
Dirac statistics), σA ≥ 0 is the absorption opacity, and σT = σA + σS , where σS ≥ 0
is the scattering opacity (assuming isotropic and isoenergetic scattering). In Eq. (645),
a closure is assumed so that K = K (u).

For fermions, the Pauli exclusion principle requires the distribution function to
satisfy the condition 0 ≤ f ≤ 1. This puts corresponding restrictions on realizable
values for the moments of f . It is then interesting to study the design of a numerical
method for solving the system of moment equations given by Eq. (645) that preserves
realizability of the moments; i.e., the moments evolve within the set of admissible
values as dictated by Pauli’s exclusion principle. If we let

R :=
{

f | 0 ≤ f ≤ 1 and 0 <
1

2

∫ 1

−1
f dμ < 1

}
, (646)

the moments u = (J ,H )T are realizable if they can be obtained from a distribution
function f (μ) ∈ R. The set of all realizable momentsR is (e.g., Larecki and Banach
2011)

R := {
u = (

J ,H
)T |J ∈ (0, 1) and (1 − J )J − |H | > 0

}
. (647)

The geometry of the set R in the (H ,J )-plane is illustrated in Fig. 18 (light blue
region). For comparison, the realizable domain R+ of positive distribution functions
(no upper bound on f ), which is a cone defined byJ > 0 andJ −|H | > 0 (light red
region), is also shown. The realizable set R is a bounded subset of R+. Importantly,
the setR is convex. This means that for two arbitrary elements ua,ub ∈ R, the convex
combination uc = ϑ ua + (1 − ϑ)ub ∈ R, where 0 ≤ ϑ ≤ 1. This property is used
repeatedly (sometimes in a nested fashion) to design the numerical method.

The DG method for the two-moment model is in many ways very similar to that
discussed in Sect. 6.7.2. The computational domain D is divided into elements K =
(xL, xH). One each element, the approximation space is

V
k
h = {ϕh : ϕh

∣∣
K ∈ P

k(K ), ∀ K ∈ D}, (648)

where P
k is the space of polynomials in x of maximal degree k. The approximation

to the moments, uh , is then expressed as

uh(x, t) =
k+1∑
i=1

ui (t) Pi (x), (649)
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Fig. 18 Illustration of the realizable set R (light blue region) defined in Eq. (647). The black lines define
the boundary ∂R. The red lines indicate the boundary of the realizable set of positive distributions R+
(light red region)

where each Pi ∈ V
k
h and eachui is a two-component vector representing the unknowns

per element in theDGmethod. Then, for any x ∈ D and anyϕh ∈ V
k
h , the semi-discrete

DG method is as follows: Find uh ∈ V
k
h such that

∫

K
∂tuh ϕh dx + [

f̂(uh)(xH) ϕh(x
−
H )− f̂(uh)(xL) ϕh(x

+
L )

]

−
∫

K
f(uh) ∂xϕh dx =

∫

K
c(uh) ϕh dx (650)

holds for all ϕh ∈ V
k
h and all K ∈ D. In Eq. (650),

f̂(uh)(xH/L) = h
(
uh(x

−
H/L),uh(x

+
H/L)

)
(651)

is a numerical flux, where h is a numerical flux function. In the DG method, any stan-
dard numerical flux designed for hyperbolic conservation laws can be used. However,
Chu et al. (2019) used the global Lax-Friedrichs flux, where

h
(
uh(x

−
H/L),uh(x

+
H/L)

) = 1

2

[
f
(
uh(x

−
H/L)

)+ f
(
uh(x

+
H/L)

)− (
uh(x

+
H/L)−uh(x

−
H/L)

)]
.

(652)
It should be noted that when using the DG method for radiation transport, as long as
the approximation space includes at least linear elements, it is not necessary to switch
between centered and upwind-type fluxes [e.g., as is done in Eqs. (416)–(417) for
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finite-volume and finite-difference methods to capture both the streaming and diffu-
sive regimes]. As such, the DG spatial discretization is naturally structure-preserving
with respect to the diffusion limit, and well-suited for radiation transport (e.g., Larsen
and Morel 1989; Adams 2001). In fact, the dissipation term in the numerical flux
in Eq. (652), which is not present in the diffusive regime when employing switch-
ing between centered and upwind fluxes, plays an important role in the proof of the
realizability-preserving property of the two-moment method presented here. It may
therefore be difficult, if not impossible, to design realizability-preserving methods for
the two-moment model without this term. Note that in the diffusion limit, |H | � J ,
the moment vector u is close to the line connecting (0, 0) and (0, 1) in Fig. 18. Then, if
the particle density is low (J � 1) themoment vector is safely insideR. On the other
hand, if the particle density is high (J � 1), which, e.g., is the case for electron neu-
trinos in the supernova core, the moment vector is dangerously close to the boundary
of R, and care is needed in order to maintain u ∈ R. Further away from the super-
nova core, where neutrinos transition to streaming conditions, |H | � (1 − J )J
(≈ J when J � 1), the moment vector is again close to the boundary of R,
and care in the numerics is again warranted. Maintaining u ∈ R is necessary to
ensure the well-posedness of the moment closure procedure (Levermore 1996; Junk
1998; Hauck et al. 2008). Realizability-preserving methods maintain u ∈ R and thus
improve robustness.

The semi-discretization of the two-moment model in Eq. (650) results in a system
of ODEs of the form

dU
dt

= T(U)+ C(U), (653)

where U represents all the degrees of freedom evolved with the DG method,

U =
{ ∫

K
∂tuh ϕh dx

}
K∈D,ϕh∈Vk

h

, (654)

which includes the cell-average of uh in each element:

uK = 1

Δx

∫

K
uh dx . (655)

In Eq. (653), the transport operatorT(U) corresponds to the second (surface) and third
(volume) terms on the left-hand side of Eq. (650), while the collision operator C(U)
corresponds to the right-hand side of Eq. (650). To evolve Eq. (653) forward in time,
Chu et al. (2019) developed IMEX schemes, where the transport operator is treated
explicitly and the collision operator is treated implicitly. As discussed in Sect. 6.7.2, the
extension of the bound-preserving property to high-order methods relies on the strong-
stability-preserving (SSP) property of theODEsolver. Explicit SSPRunge–Kutta (RK)
methods of moderate order (≤ 3) are relatively easy to construct. Unfortunately, high-
order (second- or higher-order temporal accuracy) SSP-IMEXmethods with time step
restrictions solely due to the explicit transport operator do not exist (see for example
Proposition6.2 in Gottlieb et al. (2001), which rules out the existence of implicit SSP-
RK methods of order higher than one). Because of this, Chu et al. (2019) resorted to
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develop formally first-order accurate IMEX schemes with the following properties: (i)
second-order accurate in the streaming limit, (ii) SSP (called convex-invariant in Chu
et al. 2019), with a time step restriction solely due to the explicit part, and (iii) well-
behaved in the diffusion limit in the sense that the flux density remains proportional
to the gradient of the number density with the correct constant of proportionality. The
optimal scheme, in the sense that it is SSP with the same timestep as the forward Euler
scheme applied to the explicit part, is given by

U(1) = ΛR

{
Un +Δt T(Un)

}
, (656)

Ũ(2) = U(1) +Δt C(Ũ(2)); U(2) = ΛR

{
Ũ(2)

}
, (657)

U(3) = ΛR

{
U(2) +Δt T(U(2))

}
, (658)

Ũn+1 = 1

2

(
Un + U(3)

) + 1

2
Δt C(Ũn+1); Un+1 = ΛR

{
Ũn+1

}
. (659)

This IMEX scheme involves two explicit evaluations of the transport operator and two
implicit solves to evaluate the collision operator. The explicit stages, Eqs. (656) and
(658), are forward Euler steps, while the implicit stages, Eqs. (657) and (659), can be
viewed as backward Euler steps.Without collisions (C = 0), the scheme reduces to the
optimal second-order accurate SSP-RK scheme of Shu andOsher (1988) (also referred
to as Heun’s method). Although the scheme is formally only first-order accurate in
time when collisions are frequent, quantities evolve on a diffusive time scale in this
case, which is much longer than the time step restriction required for stability of the
explicit part. Therefore, temporal discretization errors remain small. On the other hand,
second-order accuracy in the streaming limit is essential inmaintaining non-oscillatory
radiation solutions with the DG method in the streaming regime. In Eqs. (656)–(659),
ΛR is a realizability-enforcing limiter used to enforce point-wise realizability within
each element. The limiter, which we describe in more detail below, assumes that the
cell-average is realizable after each step. We begin by finding sufficient conditions for
realizability-preservation of the cell-average in each step. For this purpose, since the
remaining steps are equivalent, we consider only the explicit step in Eq. (656) and the
implicit step in Eq. (657).

For an explicit forward Euler update, as in Eq. (656), the equation for the cell-
averaged moments [obtained from Eq. (650) with ϕh = 1] is given by

u(1)K = unK − Δt

Δx

[
f̂(unh)(xH)− f̂(unh)(xL)

]
. (660)

To construct a realizability-preserving explicit update for the two-moment model, one
seeks to find sufficient conditions such that u(1)K ∈ R. The strategy is very similar to
that taken for the bound-preserving scheme discussed in Sect. 6.7.2. To evaluate the
integral on the right-hand side of Eq. (660) [cf. Eq. (655)], an N -point Gauss-Lobatto
quadrature rule is used on the interval K , with points

Ŝ = {
xL = x̂1, . . . , x̂N = xH

}
, (661)
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and weights ŵq ∈ (0, 1], normalized such that
∑N

q=1 ŵq = 1. Using this quadrature
and the numerical flux function in Eq. (651), one can write Eq. (660) as

u(1)K =
N∑

q=1

ŵq unh(x̂q)−
Δt

Δx

[
h
(
unh(x

−
H ),u

n
h(x

+
H )

) − h
(
unh(x

−
L ),u

n
h(x

+
L )

) ]

=
N−1∑
q=2

ŵq unh(x̂q)+ (ŵ1 + ŵN )Φ
(
unh(x

−
L ),u

n
h(x

+
L ),u

n
h(x

−
H ),u

n
h(x

+
H )

)
, (662)

which is a convex combination of {unh(x̂q)}N−1
q=2 and Φ. (Note that ŵ1 = ŵN , so

that 2 ŵ1 = 2 ŵN = ŵ1 + ŵN .) Thus, if, for each element K , unh(x̂q) ∈ R,∀q =
2, . . . , N − 1 and Φ ∈ R, since the set R is convex it follows that u(1)K ∈ R. In
Eq. (662),

Φ
(
unh(x

−
L ),u

n
h(x

+
L ),u

n
h(x

−
H ),u

n
h(x

+
H )

)

= 1

2

[
unh(x

+
L )+ λh

(
unh(x

−
L ),u

n
h(x

+
L )

) ] + 1

2

[
unh(x

−
H )− λh

(
unh(x

−
H ),u

n
h(x

+
H )

) ]

= (1 − λ)Φ0 + 1

2
λΦ1 + 1

2
λΦ2, (663)

where λ = Δt/(Δx ŵ1) = Δt/(Δx ŵN ) and

Φ0 = 1

2

[
unh(x

+
L )+ unh(x

−
H )

]
, (664)

Φ1 = 1

2

[
unh(x

−
L )+ f

(
unh(x

−
L )

) ] + 1

2

[
unh(x

−
H )− f

(
unh(x

−
H )

) ]
, (665)

Φ2 = 1

2

[
unh(x

+
L )+ f

(
unh(x

+
L )

) ] + 1

2

[
unh(x

+
H )− f

(
unh(x

+
H )

) ]
. (666)

In the last line in Eq. (663), if λ ≤ 1, Φ is expressed as a convex combination of Φ0,
Φ1, and Φ2. Thus, if Φ0, Φ1, Φ2 ∈ R, the time step restriction

Δt ≤ ŵN Δx (667)

is sufficient to guaranteeu(1)K ∈ R. The conditionΦ0 ∈ R follows from the assumption
unh(x

+
L ),u

n
h(x

−
H ) ∈ R, while the conditions Φ1, Φ2 ∈ R follow from the additional

assumptions unh(x
−
L ),u

n
h(x

+
H ) ∈ R and Lemma2 in Chu et al. (2019), which proves

Φ1, Φ2 ∈ R provided these expressions can be generated from distributions f ∈ R.
We note that for Lemma2 in Chu et al. (2019) to hold in the current setting, the
moments must be consistent with a distribution function satisfying 0 ≤ f ≤ 1,
which demands a two-moment closure based on Fermi–Dirac statistics (the second
component of Φ1 and Φ2 involves the Eddington factor). The maximum entropy
closures of Cernohorsky and Bludman (1994) and Larecki and Banach (2011) and the
Kershaw-type closure of Banach and Larecki (2017) are suitable. On the other hand,
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the Minerbo, M1, and Kershaw closures discussed in Sect. 4.7.4 are based on positive
distribution functions (with no upper bound), and are therefore not suitable if u ∈ R
is desired. These closures are only compatible with the relaxed condition u ∈ R+.
(In this case the approach discussed here, with minor modifications, is still applicable;
e.g., see Olbrant et al. (2012) for a method with explicit time stepping.)

For the implicit solve in Eq. (657), the cell-average with backward Euler gives

u(2)K = (
I +Δt R )−1( u(1)K +Δt ). (668)

Here it is assumed that the opacity is constantwithin each element. The first component
of Eq. (668) is then

J (2)
K = J (1)

K +Δt σA J0,K

1 +Δt σA . (669)

Since J (1)
K ,J0,K ∈ (0, 1), it follows that J (2)

K ∈ (0, 1). The second component of
Eq. (668) is

H (2)
K = H (1)

K

1 +Δt σT . (670)

Then, Lemma3 in Chu et al. (2019), which considers the moments in Eqs. (669) and
(670), shows that |H (2)

K | < (1 − J (2)
K )J (2)

K , so that u(2)K ∈ R. Note that this
assumes a very simple form of the collision operator (i.e., emission, absorption, and
isotropic and isoenergetic scattering). For more complicated collision operators with
anisotropic kernels, energy coupling interactions, and Pauli blocking factors it can
become very difficult to prove that realizability of the cell-average is preserved in
the implicit solve, and this must be investigated separately for each neutrino–matter
interaction type. Moreover, the ability to prove results rigorously may then depend on
the implicit solver used.

Theupdate inEq. (660) requires that for each element the polynomial approximation
is realizable in each point in the quadrature set Ŝ in Eq. (661). Thus, after each stage
in the time stepping algorithm in Eqs. (656)–(659), a limiter is applied in preparation
for the next. Let the unlimited solution after any of the stages be ũh = (

J̃h, H̃h
)T .

Following Zhang and Shu (2010a), a limiter from Liu and Osher (1996) is first used
to enforce the bounds on the zeroth moment J̃h . We replace the polynomial J̃h(x),
the first component of ũh , with the limited polynomial

Ĵh(x) = ϑ1 J̃h(x)+ (1 − ϑ1)JK, (671)

where the limiter parameter ϑ1 is given by

ϑ1 = min
{ ∣∣∣ M − JK

MŜ − JK

∣∣∣,
∣∣∣ m − JK

mŜ − JK

∣∣∣, 1
}
, (672)

with m = δ and M = 1 − δ, where δ is some small number (e.g., 10−16), and

MŜ = max
x∈Ŝ

Jh(x) and mŜ = min
x∈Ŝ

Jh(x). (673)
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This step, which ensures Ĵh ∈ (0, 1), corresponds to the bound-enforcing limiter

described in Sect. 6.7.2. After this step, we denote ûh = (
Ĵh, H̃h

)T .
The next step is to enforce γ (̂uh) ≡ (1 − Ĵh) Ĵh − |H̃h | > 0 for all x ∈ Ŝ,

which follows a procedure similar to that developed by Zhang and Shu (2010b) to
ensure positivity of the pressure when solving the Euler equations of gas dynamics. If
ûh is outsideR for any quadrature point x ∈ Ŝ, i.e., γ (̂uh) < 0, since uK ∈ R, there
exists an intersection point of the straight line sq(ψ), connecting uK and ûh evaluated
in the troubled quadrature point xq (denoted ûq ), and the boundary ofR. This line is
parameterized by

sq(ψ) = ψ ûq + (1 − ψ)uK, (674)

where ψ ∈ [0, 1]. The intersection point ψq is obtained by solving γ (sq(ψ)) = 0 for
ψ . (In practice, ψ needs not be accurate to many significant digits, and a bisection
algorithm terminated after a few iterations is sufficient.) This completes the description
of major steps in the scheme presented in Chu et al. (2019).

6.8 Hybridmethods

From the preceding sections, it is clear that the landscape of approaches to neu-
trino transport, and the associated numerical methods, is growing rapidly. One- and
two-moment models have reached a level of maturity where general relativistic core-
collapse supernovamodeling is feasible (e.g., Kuroda et al. 2016; Rahman et al. 2019).
Multidimensional models with Boltzmann neutrino transport—e.g., using discrete
ordinate or Monte Carlo methods—are also under development and results in axial
symmetry have already been published (Nagakura et al. 2017), but more work is
needed to reach the same level of maturity as found in moments-based models. One
primary reason is, of course, the computational cost associated with transport models
that provide better resolution of the angular dimensions of momentum space, such as
Boltzmann models. In particular, the computational cost of the neutrino–matter cou-
pling problem increases dramatically with increased fidelity in this sector. However,
the multiscale nature of the neutrino transport problem implies that Boltzmann neu-
trino transport is probably not necessary everywhere in a simulation. On the one hand,
the radiation field is well captured by the low-order moment models in the collision
dominated region below the neutrinospheres. On the other hand, higher-fidelity mod-
els may be warranted in the gain region since heating rates are sensitive to the angular
shape of the neutrino distributions. (There is already some evidence that two-moment
closures are unable to capture certain details in the radiation field; e.g., Harada et al.
2019.) This motivates the use of hybrid methods, which, for example, aim to com-
bine low- and high-fidelity approaches in order to provide sufficient resolution where
needed, but at a reduced computational cost. Hybrid approaches are used inmany areas
of computational physics, but are not widely adopted to model neutrino transport in
core-collapse supernovae. We note that the variable Eddington factor (VEF) method
of Rampp and Janka (2002), which has been shown to compare well with Boltzmann
neutrino transport in spherical symmetry (Liebendörfer et al. 2005), can be regarded as
a hybrid method, where a simplified (and less computationally expensive) Boltzmann
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solver is used in the context of a two-moment model to provide the moment closure.
Adopting hybrid methods to model neutrino transport in multidimensional models is
a potentially rewarding direction for near-future research, and some approaches may
even be able to leverage investments in capabilities that have already been developed.
Since these methods have not fully found their way into the core-collapse supernova
modeling community, we will not go into details, but rather briefly mention some
existing work, which in most cases will require further development to account for
relativity and domain-specific microphysics details. We hope to report more on this
interesting field in the future.

So-called high-order–low-order (HOLO) approaches (see, e.g., review by Chacon
et al. 2017) are one type of hybrid method gaining popularity for use in radiation
transport (and related) applications, and combine, as the name suggests, high-fidelity
solvers for the (Boltzmann) transport equation with lower-fidelity solvers (typically
based on one- or two-momentmodels, and commonly in a gray formulation) to acceler-
ate the process of solving the high-fidelitymodel—in particular, the nonlinear coupling
between radiation and a material background. In these applications, the radiation field
is governed by a kinetic model, while the material is governed by a fluid-like model
(as in the core-collapse supernova problem). The basic idea is that, in the collisional
regime, the interaction between the kinetic and fluid components occurs in a low-
dimensional subspace where only a few moments of the particle distribution function
are needed to accurately capture the coupling. Thus, HOLO methods are effective
primarily in regions where the particle mean free path is small and the problem is
stiff, and one challenge is to ensure consistency between the two model components.
Recent work on HOLO methods applied to the problem of thermal radiative transfer
include applications where the high-order model is solved with continuum methods
such as discrete ordinates (e.g., Park et al. 2012, 2013; Lou et al. 2019) or Monte
Carlo methods (e.g., Park et al. 2014; Bolding et al. 2017). We also point out related
work on solving the linear transport equation (i.e., without nonlinear coupling to the
material) with HOLO (or hybrid) methods by Hauck and McClarren (2013), Willert
et al. (2013); Willert et al. (2015) and Crockatt et al. (2017, 2019, 2020).

7 Solutionmethods

When ultimately expressed in computer code, all of the previously discussed deter-
ministic methods require the use of implicit numerical methods.When discretized, the
transport equations produce a set of nonlinear algebraic equations. When linearized,
these equations in turn lead to linear systems of equations that relate the values of
the change in the distribution functions (or moments of the distribution functions) to
the neutrino–matter and neutrino–neutrino interactions encoded in the terms on the
right-hand side of the equations: the collision term. These source terms depend on
the changes in the neutrino radiation field, as well, giving rise to the need for implicit
methods.

The solution of these linear systems is associated with the dominant computa-
tional cost for any deterministic method for neutrino transport. The remainder of the
panoply of physics that complete a core-collapse supernova model—hydrodynamics,
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nuclear kinetics, and even the global solution of the gravitational field—are typically
associated with much less computational intensity and often require significantly less
memory capacity and bandwidth. Because the solution techniques for the transport
linear system solve depend on almost every important dimension of modern com-
puter platforms—floating point performance, memory bandwidth, communication
bandwidth and latency—the particulars of individual platforms become an impor-
tant consideration when a practitioner looks to instantiate a real implementation in the
form of a production code. Therefore, the structural components of modern computers
and the quantitative requirements for realistic modeling of transport are inextricably
linked together when one looks to build a neutrino radiation hydrodynamics code.

7.1 Simulation requirements

Regardless of the particulars of the architecture enlisted to solve the requisite equa-
tions, the computational demands of neutrino radiation hydrodynamics are prodigious.
Some of these demands are imposed directly by the high dimensionality of the trans-
port equation itself. The need to discretize the neutrino phase space with adequate
resolution to capture the particulars of the neutrino–matter interactions (cf. Sect. 5)
results in energy resolutions that are typically on the order of dozens of groups. This
requirement is amplified by the need to spatially resolve matter features in the flow
that are of roughly the size of the neutrino mean free path at various points in the
computational domain. Adaptive mesh refinement (AMR) can help ameliorate the
need to refine the grid everywhere to resolve the shortest mean free paths, but this
reduction is typically only partially effective. Indeed, the time-dependent nature of the
core-collapse supernova problem often leads to much of the grid having to be refined
as the reheating and explosion epochs evolve. These resolution requirements directly
impact the size of the linear systems that must be solved via deterministic methods,
typically resulting in quadratic growth in the size of the system for increases in any
given phase space dimension.

Therefore, the product of required energy resolution, spatial resolution, number
of neutrino flavors and their distribution functions or their angular moments directly
translates into a need for scalable implementations of the solution algorithms. Any
implementation needs to be able to effectively take advantage of any future platform.
This type of scalability is typically termed weak scaling. The figure of merit for weak
scaling is how close to a constant runtime can be achieved as the computational load
is increased commensurately with the amount of resources. For example, as problem
size is increased along with the number of MPI ranks used in a simulation, good weak
scalability is achieved if the runtime remains constant.Weak scalability is often highly
dependent on effective distributed-memory parallelism, including possibly overlap-
ping slow inter-node communication with on-node computation (Fig. 19).

However, this is a necessary, but not sufficient, condition for effective investi-
gation. The resultant simulations must also be capable of execution in reasonable
amounts of wall-clock time. Runtimes of several months are untenable if one wishes
to explore a more-or-less complete set of supernova progenitors. Therefore, reducing
the wall-clock time for transport computations is equally important. This so-called
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Fig. 19 A schematic of the structure of a typical neutrino transport linear system that must be solved at each
time step. The diagonal, dense blocks are generally non-symmetric and have characteristic substructure
arising from the coupling in angle, energy, isospin (i.e. between neutrinos and antineutrinos), and neutrino
flavor, though the particulars of that structure are dependent on the lexical ordering of the solution vector.
Fully implicit methods also couple individual spatial zones to one another, producing a linear system that
contains a series of outlying bands in addition to the diagonally dominant dense block structure. This
global linear system typically requires considerable communication on parallel platforms, where domain
decomposition is often used to spread the spatial extent of the problem across the distributed memory space.
IMEX methods do not require solution of this global system, but the inversion of a similarly structured set
of dense blocks is required at each spatial index. However, this reduction of the implicit problem to a purely
local operation can result in considerable performance advantages

strong scalability is achievable if node-level execution is made faster. On modern
platforms, this has very much become a question of the effective use of hybrid-node
architectures.

7.2 Implementation on heterogeneous architectures

Currently, the most widely available and performant microarchitectures are based on
graphical processing units (GPUs). As suggested by their name, GPUs were originally
designed to handle computer graphics-intensive tasks in applications ranging from sci-
entific visualization to video games. However, the very high intensity with which they
compute and their relatively low power-consumption traits (as compared to modern
CPUs) led to their adoption as engines for a variety of scientific computing tasks.
Indeed, at this writing, GPU-based architectures dominate much of the highest-end
HPC platforms, and all planned near-future exascale platforms will employ GPUs as
the primary source of compute power.

The primary characteristic that provides the compute power of modern GPUs is the
large number of compute cores, as compared to traditional CPUs. Modern GPUs (e.g.
the NVIDIA V100) contain more than 5000 cores, compared to the few dozen that
are present on contemporary CPUs. Each core may have a relatively low clock speed
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compared to a CPU, but the sheer number of processors available on a GPU leads to
a much higher intensity of computation.

The architecture of the GPUs is wholly shaped by the single-instruction, multiple-
data (SIMD) execution model. In this execution model, each execution unit takes as
input two vectors, performs identical operations on both sets of operands (one operand
fromeach vector), and produces a resultant vector.ModernCPUs also typically contain
SIMD units: MMX, SSE, and AVX instructions are available on Intel architectures,
and POWER and ARM architectures have similar extensions to execution sets to
take advantage of similar units. In the case of GPUs, however, these instructions are
essentially the only ones available, restricting the amount of branching and conditional
execution that can be effectively carried out by the device.

All modern GPU architectures make use of a similar set of hardware components
and associated software abstractions. Here, we will primarily make use of the nomen-
clature used by NVIDIA to describe their GPU devices, but other vendors make use
of virtually identical concepts and constructions, albeit with slightly different naming.
In all cases, kernels are launched on the device as a set of threads. Each of these
threads executes a single SIMD pipeline. Within the kernel launch of threads, threads
are grouped into a number of blocks. These thread blocks are mapped to individual
streaming multiprocessors (SMs). Each SM executes threads in groups of parallel
threads termed a warp (the number of threads in a warp, or wave, is typically some
multiple of 32). Inside each warp, a single, common instruction is executed during a
clock cycle. This lockstep execution can be broken by conditionals (e.g. if-then-else
instructions). When this occurs, the effect of this thread divergence within a warp
breaks the parallelization of the warp. The execution on the conditional thread con-
tinues in a serial fashion, and all the other threads are stalled.

This execution model is further complicated by the hierarchical memory on GPUs.
Global memory is accessible by all cores. This global memory is typically several GBs
on each device. The bandwidth of this memory is often termed high-bandwidth, as it
typically has bandwidths several times that for DRAM that might be attached to the
CPU host. Closer to each multiprocessor there is a shared memory that offers a space
accessible to all cores inside the multiprocessor. It is typically used as a user-managed
cache of the global memory. The bandwidth to this cache is typically much faster
than fetching addresses from the global memory for each core. Ultimately, each core
has a certain number of registers that provide the greatest memory bandwidth, but,
concomitantly, have the smallest capacities.

Programming GPUs relies on providing as many operands as possible at the max-
imum possible rate to all of the SMs on a device. The complexity of the memory
hierarchy, the execution model, and the possibility of thread divergences can make
this a formidable programming task.

Several programming models have been introduced to program GPUs. These
include:

1. CUDA: a minor extension of C/C++ for GPU thread programming. CUDA is a
proprietary programming model created and supported by NVIDIA.

2. ROCm: an extension of C/C++, much like CUDA in purpose and syntax. ROCm
was created by AMD and is Open Source.
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3. OpenCL: amulti-vendor standard. OpenCL is designed towork on awide variety of
platforms, not just GPUs. This makes the model very powerful, but also introduces
a measure of irreducible complexity to accommodate this power.

4. OpenACC:Adirective-based approach toGPUprogramming,OpenACCuses code
decoration much like OpenMP or other directives-based models. OpenACC pro-
vides a straightforward path for GPU programming in Fortran.

5. OpenMP (with offload): Modern OpenMP standards include a set of extensions to
provide facilities for thread-level programming on GPU devices.

The choice for any programmer between these options depends on the code to
be produced and the relative agility of the development team. For neutrino radi-
ation transport, the Oak Ridge group, for example, has chosen to work primarily
in Fortran, with OpenMP directives to marshal the GPUs. This approach allows
them to extend legacy code (in Fortran) in a straightforward and performant man-
ner. Using OpenMP provides them with a measure of platform independence, as
it is the only programming model currently envisaged to be supported on all
major GPU hardware (i.e. NVIDIA, AMD, and Intel devices). The partial loss
of thread-level control ceded by not using a more low-level model like CUDA
or ROCm is not so important for radiation transport, as the vectorized com-
putational kernels produced in evaluation of both the left and right-hand sides
of the transport equation provide plenty of floating-point operations to saturate
any modern GPU streaming multiprocessor. Therefore, decorating the multi-level
loop nests that contain these vectorized operations at their deepest levels with
directives is an effective model. In addition, this programming model can be
effectively and easily extended with GPU-enabled scientific libraries (e.g., the GPU-
accelerated version of BLAS), regardless of the model used by those libraries
internally.

Many computational radiation transport practitioners have moved to Monte Carlo
(MC) approaches in recent years, driven to this choice by the relative abundance
of compute power available on GPUs. However, these approaches are not with-
out complexities on GPUs, as the widely disparate sizes of the memory spaces
described above (i.e., GBs to kBs to bytes as one moves from global memory to
shared memory to registers) mean that MC histories are not so simply preserved.
These complications mean that the relative expense of Monte Carlo methods (cf.
Sect. 6.4) cannot be fully ameliorated by porting to GPUs. Because the dense linear
algebra underpinning their implementations do make effective use of GPU compute
architectures, IMEX and discrete ordinates approaches have the potential to com-
pete with MC approaches with reduced memory footprint. But, this strong reliance
on a single class of numeric operations means that the success of these approaches
is almost wholly dependent on the performance of linear algebra subprograms on
GPUs. This is especially true for so-called batched execution of the solution of linear
systems of equations, wherein several matrices and right-hand sides are computed
by a single kernel invocation and the solver effectively divides the work among
SMs.
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8 Summary and outlook

The last decade has seen considerable, and accelerated, progress made on multiple
fronts: (1) Ascertaining the explosion mechanism of core-collapse supernovae. (2)
The development of the theory of general relativistic neutrino radiation hydrodynam-
ics. (3) The development of robust numerical methods for the solution of the neutrino
radiation hydrodynamics equations in core-collapse supernova environments. (4) And
the application of these methods in increasingly sophisticated three-dimensional core-
collapse supernova models. At this point, it is fair to say that we are theory and
methods rich and that the frontier lies more in the application of these methods in
three-dimensional core-collapse supernova models, although further method develop-
ment is certainly needed. Three-dimensional, fully general relativistic models with all
of the relevant neutrino physics in multi-frequency one- or two-moment approaches
are on the horizon, the leading examples of which are documented in the work of
Kuroda et al. (2016), Roberts et al. (2016) and Rahman et al. (2019). But counterpart
models in three dimensions using Boltzmann neutrino transport are farther off, though
here too there is a leading example in the work of Nagakura et al. (2017). Adding
a new dimension to the discussion, three-dimensional Boltzmann-based models are
limited right now more by supercomputing capabilities than anything else. We have
documented both moments and Boltzmann approaches here that have been developed
and used by multiple research groups. Boltzmann approaches have been used in core-
collapse supernova models with reduced spatial dimensionality and have served to
gauge moments approaches in multidimensional models for some time. Recent devel-
opments emphasize even more the need for Boltzmann-based models. The history
of core-collapse supernova theory has seen quantum leaps on a number of occasions
over the past more than fifty years, often associated with an increased glimpse of the
rich physics that drive such supernovae. In the past 5 years, evidence has mounted
that neutrino quantum effects—specifically, due to neutrino–neutrino coupling in the
proto-neutron star surface region—may impact the electron-flavor neutrino luminosi-
ties and spectra responsible for neutrino shock reheating and, consequently, may play
a role in the supernovamechanism itself. These early conclusions will require the same
extensive development to supplant them as has been documented here for the classical
neutrino transport problem. We are far from the equivalent three-dimensional, general
relativistic, full-physics models that deploy neutrino quantum kinetics. Early serious
work on the implementation of neutrino quantum kinetics in supernova-like environ-
ments (e.g., see Richers et al. 2019) has illuminated yet new numerical challenges that
will in turn require augmented methods, to handle both the classical and the quantum
mechanical evolution of the three-flavor neutrino radiation field. In this context, then,
it is very clear that a Boltzmann kinetic approach, which is a component of a complete
quantum kinetics approach, must be a major step toward instantiating full neutrino
quantum kinetics. We look forward to watching progress on this front and reporting
on these developments as well, as they mature. The core-collapse supernova prob-
lem continues to manifest itself as a generational problem, one that will continue to
serve as a fertile testbed for the development of transport and radiation hydrodynamics
methods.

123



4 Page 166 of 174 A. Mezzacappa et al.

Acknowledgements The authorswould like to acknowledge extensive and fruitful discussionswith Ernazar
Abdikamalov, Thomas Janka, Oliver Just, Takami Kuroda, Hiroki Nagakura, Martin Obergaulinger, Nimoy
Rahman, and Doug Swesty regarding their methods, as well as discussions with Cory Hauck. The authors
would also like to acknowledge Robert Bollig, Marc Herant, Thomas Janka, Tobias Melson, Bernhard
Müller, and Hiroki Nagakura for their willingness to include figures from their manuscripts in this review.
AM and EEwould like to acknowledge support from theNational Science FoundationGravitational Physics
Theory program, through Grant PHY 1806692. EE and OEBM are supported by the U.S. Department of
Energy (DOE) Nuclear Physics and/or Advanced Scientific Computing Research programs at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the DOE under Contract DE-
AC05-00OR22725. AM, EE, and OEBM acknowledge support from the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration. AM acknowledges support from the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics and Office of Advanced Scientific Computing Research, Scientific
Discovery through Advanced Computing (SciDAC) program under Award Number DE-SC0018232.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbar S, Duan H, Sumiyoshi K, Takiwaki T, Volpe MC (2019) On the occurrence of fast neutrino flavor
conversions in multidimensional supernova models. Phys Rev D 100(4):043004. https://doi.org/10.
1103/PhysRevD.100.043004

Abdikamalov E, Burrows A, Ott CD, Löffler F, O’Connor E, Dolence JC, Schnetter E (2012) A newMonte
Carlo method for time-dependent neutrino radiation transport. ApJ 755(2):111. https://doi.org/10.
1088/0004-637X/755/2/111

Adams ML (2001) Discontinuous finite element transport solutions in thick diffusive problems. Nucl Sci
Eng 137(3):298–333. https://doi.org/10.13182/nse00-41

Allen JS, Cheng SI (1970) Numerical solutions of the compressible Navier–Stokes equations for the laminar
near wake. Phys Fluids 13(1):37–51. https://doi.org/10.1063/1.1692801

Anile AM (1989) Relativistic fluids and magneto-fluids: with applications in astrophysics and plasma
physics. Cambridge monographs on mathematical physics. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511564130

Anile A, Pennisi S, Sammartino M (1992) Covariant radiation hydrodynamics. Ann Inst Henri Poincaré
56:49–74

Arnett WD (1977) Neutrino trapping during gravitational collapse of stars. ApJ 218:815–833. https://doi.
org/10.1086/155738

Ascher U, Ruuth S, Spiteri R (1997) Implicit–explicit Runge–Kutta methods for time-dependent partial
differential equations.ApplNumerMath 25:151–167. https://doi.org/10.1016/s0168-9274(97)00056-
1

Audit E, Charrier P, Chièze JP, Dubroca B (2002) A radiation-hydrodynamics scheme valid from the
transport to the diffusion limit. arXiv e-prints arXiv:astro-ph/0206281

Banach Z, Larecki W (2017) Kershaw-type transport equations for fermionic radiation. Z Angew Math
Phys 68:100. https://doi.org/10.1007/s00033-017-0847-z

Baumgarte TW, Shapiro SL (2010) Numerical relativity: solving Einstein’s equations on the computer.
Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139193344

Bell JB, Colella P, Trangenstein JA (1989)Higher order Godunovmethods for general systems of hyperbolic
conservation laws. J Comput Phys 82(2):362–397. https://doi.org/10.1016/0021-9991(89)90054-5

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.100.043004
https://doi.org/10.1103/PhysRevD.100.043004
https://doi.org/10.1088/0004-637X/755/2/111
https://doi.org/10.1088/0004-637X/755/2/111
https://doi.org/10.13182/nse00-41
https://doi.org/10.1063/1.1692801
https://doi.org/10.1017/CBO9780511564130
https://doi.org/10.1086/155738
https://doi.org/10.1086/155738
https://doi.org/10.1016/s0168-9274(97)00056-1
https://doi.org/10.1016/s0168-9274(97)00056-1
http://arxiv.org/abs/astro-ph/0206281
https://doi.org/10.1007/s00033-017-0847-z
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1016/0021-9991(89)90054-5


Physical, numerical, and computational challenges of... Page 167 of 174 4

Bethe HA, Wilson JR (1985) Revival of a stalled supernova shock by neutrino heating. ApJ 295:14–23.
https://doi.org/10.1086/163343

Bolding SR, Cleveland MA, Morel JE (2017) A high-order low-order algorithm with exponentially con-
vergent Monte Carlo for thermal radiative transfer. Nucl Sci Eng 185(1):159–173. https://doi.org/10.
13182/nse16-36

Bollig R, JankaHT, LohsA,Martínez-PinedoG,Horowitz CJ,Melson T (2017)Muon creation in supernova
matter facilitates neutrino-driven explosions. Phys Rev Lett 119(24):242702. https://doi.org/10.1103/
PhysRevLett.119.242702

Bruenn SW (1975) Neutrino interactions and supernovae. In: Bergman PG, Fenyves EJ, Motz L (eds)
Seventh Texas symposium on relativistic astrophysics. Annals of the New York Academy of Sciences,
vol 262, New York, pp 80–94. https://doi.org/10.1111/j.1749-6632.1975.tb31422.x

Bruenn SW (1985) Stellar core collapse: numerical model and infall epoch. ApJS 58:771–841. https://doi.
org/10.1086/191056

Bruenn SW,MezzacappaA (1997) Ion screening effects and stellar collapse. PhysRevD56(12):7529–7547.
https://doi.org/10.1103/PhysRevD.56.7529

Bruenn SW, De Nisco KR, Mezzacappa A (2001) General relativistic effects in the core collapse supernova
mechanism. ApJ 560:326–338. https://doi.org/10.1086/322319

BruennSW,Blondin JM,HixWR,LentzEJ,MesserOEB,MezzacappaA,EndeveE,Harris JA,Marronetti P,
Budiardja RD et al (2020) Chimera: a massively parallel code for core-collapse supernova simulations.
Astrophys J Suppl Ser 248(1):11. https://doi.org/10.3847/1538-4365/ab7aff

Buras R, Janka HT, Keil MT, Raffelt GG, Rampp M (2003) Electron neutrino pair annihilation: a new
source for muon and tau neutrinos in supernovae. ApJ 587:320–326. https://doi.org/10.1086/368015

Buras R, RamppM, JankaHT,Kifonidis K (2006) Two-dimensional hydrodynamic core-collapse supernova
simulations with spectral neutrino transport. I. Numerical method and results for a 15 M� star. A&A
447:1049–1092. https://doi.org/10.1051/0004-6361:20053783

Burrows A, Sawyer RF (1998) Effects of correlations on neutrino opacities in nuclear matter. Phys Rev C
58:554–571. https://doi.org/10.1103/physrevc.58.554

Burrows A, Vartanyan D, Dolence JC, Skinner MA, Radice D (2018) Crucial physical dependencies of the
core-collapse supernova mechanism. Space Sci Rev 214(1):33. https://doi.org/10.1007/s11214-017-
0450-9

Burrows A, Radice D, Vartanyan D (2019) Three-dimensional supernova explosion simulations of 9-, 10-,
11-, 12-, and 13-M� stars. Mon Not R Astron Soc 485(3):3153–3168. https://doi.org/10.1093/mnras/
stz543

Cardall CY, Mezzacappa A (2003) Conservative formulations of general relativistic kinetic theory. Phys
Rev D 68(2):023006. https://doi.org/10.1103/physrevd.68.023006

Cardall CY, Endeve E, Mezzacappa A (2013a) Conservative 3 + 1 general relativistic Boltzmann equation.
Phys Rev D 88:023011. https://doi.org/10.1103/physrevd.88.023011

Cardall CY, Endeve E, Mezzacappa A (2013b) Conservative 3 + 1 general relativistic variable Eddington
tensor radiation transport equations. Phys Rev D 87:103004. https://doi.org/10.1103/physrevd.87.
103004

Cernohorsky J (1994) Symmetries in neutrino-electron scattering. ApJ 433:247–249. https://doi.org/10.
1086/174639

Cernohorsky J, Bludman SA (1994) Maximum entropy distribution and closure for Bose-Einstein and
Fermi-Dirac radiation transport. ApJ 433:250–255. https://doi.org/10.1086/174640

Chacon L, Chen G, Knoll DA, Newman C, Park H, TaitanoW,Willert JA, Womeldorff G (2017) Multiscale
high-order/low-order (holo) algorithms and applications. J Comput Phys 330:21–45. https://doi.org/
10.1016/j.jcp.2016.10.069

Chu R, Endeve E, Hauck CD, Mezzacappa A (2019) Realizability-preserving DG-IMEX method for the
two-moment model of fermion transport. J Comput Phys 389:62–93. https://doi.org/10.1016/j.jcp.
2019.03.037

Cockburn B, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element
method for conservation laws. II. General framework. Math Comput 52:411–435. https://doi.org/10.
1090/s0025-5718-1989-0983311-4

Cockburn B, Shu CW (1991) The Runge–Kutta local projection p1-discontinuous-Galerkin finite element
method for scalar conservation laws. ESAIM M2AN 25(3):337–361. https://doi.org/10.1051/m2an/
1991250303371

123

https://doi.org/10.1086/163343
https://doi.org/10.13182/nse16-36
https://doi.org/10.13182/nse16-36
https://doi.org/10.1103/PhysRevLett.119.242702
https://doi.org/10.1103/PhysRevLett.119.242702
https://doi.org/10.1111/j.1749-6632.1975.tb31422.x
https://doi.org/10.1086/191056
https://doi.org/10.1086/191056
https://doi.org/10.1103/PhysRevD.56.7529
https://doi.org/10.1086/322319
https://doi.org/10.3847/1538-4365/ab7aff
https://doi.org/10.1086/368015
https://doi.org/10.1051/0004-6361:20053783
https://doi.org/10.1103/physrevc.58.554
https://doi.org/10.1007/s11214-017-0450-9
https://doi.org/10.1007/s11214-017-0450-9
https://doi.org/10.1093/mnras/stz543
https://doi.org/10.1093/mnras/stz543
https://doi.org/10.1103/physrevd.68.023006
https://doi.org/10.1103/physrevd.88.023011
https://doi.org/10.1103/physrevd.87.103004
https://doi.org/10.1103/physrevd.87.103004
https://doi.org/10.1086/174639
https://doi.org/10.1086/174639
https://doi.org/10.1086/174640
https://doi.org/10.1016/j.jcp.2016.10.069
https://doi.org/10.1016/j.jcp.2016.10.069
https://doi.org/10.1016/j.jcp.2019.03.037
https://doi.org/10.1016/j.jcp.2019.03.037
https://doi.org/10.1090/s0025-5718-1989-0983311-4
https://doi.org/10.1090/s0025-5718-1989-0983311-4
https://doi.org/10.1051/m2an/1991250303371
https://doi.org/10.1051/m2an/1991250303371


4 Page 168 of 174 A. Mezzacappa et al.

Cockburn B, Shu CW (1998) The Runge–Kutta discontinuous Galerkin method for conservation laws V:
multidimensional systems. J Comput Phys 141(2):199–224

Cockburn B, Shu CW (2001) Runge–Kutta discontinuous Galerkin methods for convection-dominated
problems. J Sci Comput 16:173–261

Cockburn B, Lin SY, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite
elementmethod for conservation laws III: one-dimensional systems. JComputPhys 84:90–113. https://
doi.org/10.1016/0021-9991(89)90183-6

Cockburn B, Hou S, Shu CW (1990) The Runge–Kutta local projection discontinuous Galerkin finite
element method for conservation laws. IV. The multidimensional case. Math Comput 54:545–581.
https://doi.org/10.2307/2008501

Colella P, Woodward P (1984) The piecewise parabolic method (PPM) for gas-dynamical simulations. J
Comput Phys 54:174–201. https://doi.org/10.1016/0021-9991(84)90143-8

Colgate SA,White RH (1966) The hydrodynamic behavior of supernovae explosions. ApJ 143:626. https://
doi.org/10.1086/148549

Crandall MG, Majda A (1980) Monotone difference approximations for scalar conservation laws. Math
Comput 34(149):1–21. https://doi.org/10.1090/s0025-5718-1980-0551288-3

CrockattMM, Christlieb AJ, Garrett CK, Hauck CD (2017) An arbitrary-order, fully implicit, hybrid kinetic
solver for linear radiative transport using integral deferred correction. J Comput Phys 346:212–241.
https://doi.org/10.1016/j.jcp.2017.06.017

Crockatt MM, Christlieb AJ, Garrett CK, Hauck CD (2019) Hybrid methods for radiation transport using
diagonally implicit Runge–Kutta and space-time discontinuous Galerkin time integration. J Comput
Phys 376:455–477. https://doi.org/10.1016/j.jcp.2018.09.041

Crockatt MM, Christlieb AJ, Hauck CD (2020) Improvements to a class of hybrid methods for radiation
transport: Nyström reconstruction and defect correction methods. J Comput Phys 422:109765. https://
doi.org/10.1016/j.jcp.2020.109765

D’Azevedo EF,Messer OEB,MezzacappaA, LiebendörferM (2005)AnADI-like preconditioner for Boltz-
mann transport. SIAM J Sci Comput 26(3):810–820. https://doi.org/10.1137/s1064827503424013

Delfan Azari M, Yamada S, Morinaga T, Iwakami W, Okawa H, Nagakura H, Sumiyoshi K (2019) Linear
analysis of fast-pairwise collective neutrino oscillations in core-collapse supernovae based on the
results of Boltzmann simulations. Phys Rev D 99(10):103011. https://doi.org/10.1103/PhysRevD.99.
103011

Densmore JD, Urbatsch TJ, Evans TM, Buksas MW (2007) A hybrid transport-diffusion method for Monte
Carlo radiative-transfer simulations. J Comput Phys 222(2):485–503. https://doi.org/10.1016/j.jcp.
2006.07.031

Dubroca B, Fuegas JL (1999) Étude théorique et numérique d’une hiérarchie de modèles aus moments pour
le transfert radiatif. CRAcad Sci Paris I 329:915–920. https://doi.org/10.1016/s0764-4442(00)87499-
6

Endeve E, Cardall CY, Mezzacappa A (2012) Conservative moment equations for neutrino radiation trans-
port with limited relativity. arXiv e-prints arXiv:1212.4064

Endeve E, HauckCD,XingY,MezzacappaA (2015) Bound-preserving discontinuousGalerkinmethods for
conservative phase space advection in curvilinear coordinates. J Comput Phys 287:151–183. https://
doi.org/10.2172/1394128

Freedman DZ (1974) Coherent effects of a weak neutral current. Phys Rev D 9(5):1389–1392. https://doi.
org/10.1103/PhysRevD.9.1389

Fryer CL, Warren MS (2004) The collapse of rotating massive stars in three dimensions. ApJ 601:391–404.
https://doi.org/10.1086/380193

Glas R, Just O, Janka HT, Obergaulinger M (2019) Three-dimensional core-collapse supernova simula-
tions with multidimensional neutrino transport compared to the ray-by-ray-plus approximation. ApJ
873(1):45. https://doi.org/10.3847/1538-4357/ab0423

Gottlieb E, Shu CW, Tadmor E (2001) Strong stability-preserving high-order time discretization methods.
SIAM Rev 43:89–112. https://doi.org/10.1137/s003614450036757x

Hanke F, Müller B, Wongwathanarat A, Marek A, Janka HT (2013) SASI activity in three-dimensional
neutrino-hydrodynamics simulations of supernova cores. ApJ 770:66. https://doi.org/10.1088/0004-
637X/770/1/66

Hannestad S, Raffelt G (1998) Supernova neutrino opacity from nucleon–nucleon Bremsstrahlung and
related processes. ApJ 507:339–352. https://doi.org/10.1086/306303

123

https://doi.org/10.1016/0021-9991(89)90183-6
https://doi.org/10.1016/0021-9991(89)90183-6
https://doi.org/10.2307/2008501
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1086/148549
https://doi.org/10.1086/148549
https://doi.org/10.1090/s0025-5718-1980-0551288-3
https://doi.org/10.1016/j.jcp.2017.06.017
https://doi.org/10.1016/j.jcp.2018.09.041
https://doi.org/10.1016/j.jcp.2020.109765
https://doi.org/10.1016/j.jcp.2020.109765
https://doi.org/10.1137/s1064827503424013
https://doi.org/10.1103/PhysRevD.99.103011
https://doi.org/10.1103/PhysRevD.99.103011
https://doi.org/10.1016/j.jcp.2006.07.031
https://doi.org/10.1016/j.jcp.2006.07.031
https://doi.org/10.1016/s0764-4442(00)87499-6
https://doi.org/10.1016/s0764-4442(00)87499-6
http://arxiv.org/abs/1212.4064
https://doi.org/10.2172/1394128
https://doi.org/10.2172/1394128
https://doi.org/10.1103/PhysRevD.9.1389
https://doi.org/10.1103/PhysRevD.9.1389
https://doi.org/10.1086/380193
https://doi.org/10.3847/1538-4357/ab0423
https://doi.org/10.1137/s003614450036757x
https://doi.org/10.1088/0004-637X/770/1/66
https://doi.org/10.1088/0004-637X/770/1/66
https://doi.org/10.1086/306303


Physical, numerical, and computational challenges of... Page 169 of 174 4

Harada A, Nagakura H, Iwakami W, Okawa H, Furusawa S, Matsufuru H, Sumiyoshi K, Yamada S (2019)
On the neutrino distributions in phase space for the rotating core-collapse supernova simulated with
a Boltzmann-neutrino-radiation-hydrodynamics code. ApJ 872(2):181. https://doi.org/10.3847/1538-
4357/ab0203

Harten A, Lax PD, Leer BV (1983) On upstream differencing and Godunov-type schemes for hyperbolic
conservation laws. SIAM Rev 25(1):35–61. https://doi.org/10.1137/1025002

Hauck CD, McClarren RG (2013) A collision-based hybrid method for time-dependent, linear, kinetic
transport equations. Multiscale Model Simul 11(4):1197–1227. https://doi.org/10.1137/110846610

Hauck CD, Levermore CD, Tits AL (2008) Convex duality and entropy-based moment closures: char-
acterizing degenerate densities. SIAM J Control Optim 47(4):1977–2015. https://doi.org/10.1137/
070691139

Heningburg V, Hauck CD (2020) Hybrid solver for the radiative transport equation using finite volume and
discontinuous Galerkin. arXiv e-prints arXiv:2002.02517

Herant M, Benz W, Colgate SA (1992) Postcollapse hydrodynamics of SN 1987A: two-dimensional simu-
lations of the early evolution. ApJ 395:642–653. https://doi.org/10.1086/171685

Herant M, Benz W, Hix WR, Fryer CL, Colgate SA (1994) Inside the supernova: a powerful convective
engine. ApJ 435:339–361. https://doi.org/10.1086/174817

Hix WR, Messer OEB, Mezzacappa A, Liebendörfer M, Sampaio JM, Langanke K, Dean DJ, Martinez-
Pinedo G (2003) Consequences of nuclear electron capture in core collapse supernovae. Phys Rev Lett
91(20):201102. https://doi.org/10.1103/physrevlett.91.201102

Horowitz CJ (1997) Neutrino trapping in a supernova and the screening of weak neutral currents. Phys Rev
D 55(8):4577–4581. https://doi.org/10.1103/PhysRevD.55.4577

Horowitz CJ (2002) Weak magnetism for antineutrinos in supernovae. Phys Rev D 65(4):043001. https://
doi.org/10.1103/PhysRevD.65.043001

Janka HT (1991) Neutrino transport in type II supernovae and protoneutron stars by Monte Carlo methods.
PhD thesis, Technical Univ. Munich, mPA-587

Janka HT (1992) Flux-limited neutrino diffusion versusMonte Carlo neutrino transport. A&A 256:452–458
Jin S, Levermore CD (1996) Numerical schemes for hyperbolic systems of conservation laws with stiff

diffusive relaxation. J Comput Phys 126:449–467
JunkM (1998)Domain of definition of Levermore’s five-moment system. J Stat Phys 93:1143–1167. https://

doi.org/10.1023/b:joss.0000033155.07331.d9
Juno J, Hakim A, TenBarge J, Shi E, DorlandW (2018) Discontinuous Galerkin algorithms for fully kinetic

plasmas. J Comput Phys 353:110–147. https://doi.org/10.1016/j.jcp.2017.10.009
Just O, Obergaulinger M, Janka HT (2015) A new multidimensional, energy-dependent two-moment

transport code for neutrino-hydrodynamics. MNRAS 453:3386–3413. https://doi.org/10.1093/mnras/
stv1892

Just O, Bollig R, Janka HT, Obergaulinger M, Glas R, Nagataki S (2018) Core-collapse supernova simula-
tions in one and two dimensions: comparison of codes and approximations. MNRAS 481:4786–4814.
https://doi.org/10.1093/mnras/sty2578

Kershaw D (1976) Flux limiting nature’s own way—a new method for numerical solution of the transport
equation. Tech. Rep. UCRL-78378, Lawrence Livermore Laboratory. https://doi.org/10.2172/104974

Kitaura FS, Janka HT, Hillebrandt W (2006) Explosions of O–Ne–Mg cores, the Crab supernova, and
subluminous type II-P supernovae. A&A 450:345–350. https://doi.org/10.1051/0004-6361:20054703

Knoll DA, Rider WJ, Olson GL (2001) Nonlinear convergence, accuracy, and time step control in nonequi-
librium radiation diffusion. J Quant Spectrosc Radiat Transf 70:25–36. https://doi.org/10.1016/s0022-
4073(00)00112-6

Kotake K, Takiwaki T, Fischer T, Nakamura K, Martínez-Pinedo G (2018) Impact of neutrino opacities on
core-collapse supernova simulations. ApJ 853(2):170. https://doi.org/10.3847/1538-4357/aaa716

Kuroda T, Takiwaki T, Kotake K (2016) A new multi-energy neutrino radiation-hydrodynamics code in
full general relativity and its application to the gravitational collapse of massive stars. ApJS 222:20.
https://doi.org/10.3847/0067-0049/222/2/20

LaiuMP, Hauck CD (2019) Positivity limiters for filtered spectral approximations of linear kinetic transport
equations. J Sci Comput 78:918–950

LangankeK,Martínez-PinedoG, Sampaio JM,DeanDJ,HixWR,MesserOE,MezzacappaA, Liebendörfer
M, Janka HT, Rampp M (2003) Electron capture rates on nuclei and implications for stellar core
collapse. Phys Rev Lett 90(24):241102. https://doi.org/10.1103/physrevlett.90.241102

123

https://doi.org/10.3847/1538-4357/ab0203
https://doi.org/10.3847/1538-4357/ab0203
https://doi.org/10.1137/1025002
https://doi.org/10.1137/110846610
https://doi.org/10.1137/070691139
https://doi.org/10.1137/070691139
http://arxiv.org/abs/2002.02517
https://doi.org/10.1086/171685
https://doi.org/10.1086/174817
https://doi.org/10.1103/physrevlett.91.201102
https://doi.org/10.1103/PhysRevD.55.4577
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1023/b:joss.0000033155.07331.d9
https://doi.org/10.1023/b:joss.0000033155.07331.d9
https://doi.org/10.1016/j.jcp.2017.10.009
https://doi.org/10.1093/mnras/stv1892
https://doi.org/10.1093/mnras/stv1892
https://doi.org/10.1093/mnras/sty2578
https://doi.org/10.2172/104974
https://doi.org/10.1051/0004-6361:20054703
https://doi.org/10.1016/s0022-4073(00)00112-6
https://doi.org/10.1016/s0022-4073(00)00112-6
https://doi.org/10.3847/1538-4357/aaa716
https://doi.org/10.3847/0067-0049/222/2/20
https://doi.org/10.1103/physrevlett.90.241102


4 Page 170 of 174 A. Mezzacappa et al.

LareckiW, Banach Z (2011) Entropic derivation of the spectral Eddington factors. J Quant Spectrosc Radiat
Transf 112:2486–2506. https://doi.org/10.1016/j.jqsrt.2011.06.011

Larsen EW, Morel JE (1989) Asymptotic solutions of numerical transport problems in optically thick,
diffusive regimes II. J Comput Phys 83:212–236. https://doi.org/10.1016/0021-9991(89)90229-5

Lentz EJ, Mezzacappa A, Messer OEB, Hix WR, Bruenn SW (2012a) Interplay of neutrino opacities in
core-collapse supernova simulations. ApJ 760:94. https://doi.org/10.1088/0004-637X/760/1/94

Lentz EJ,Mezzacappa A,Messer OEB, LiebendörferM, HixWR, Bruenn SW (2012b) On the requirements
for realistic modeling of neutrino transport in simulations of core-collapse supernovae. ApJ 747:73.
https://doi.org/10.1088/0004-637X/747/1/73

LentzEJ,BruennSW,HixWR,MezzacappaA,MesserOEB,EndeveE,Blondin JM,Harris JA,Marronetti P,
Yakunin KN (2015) Three-dimensional core-collapse supernova simulated using a 15 M� progenitor.
ApJ 807:L31. https://doi.org/10.1088/2041-8205/807/2/L31

LeVeque RJ (1992) Numerical methods for conservation laws. Birkhäuser, Basel. https://doi.org/10.1007/
978-3-0348-8629-1

LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathemat-
ics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511791253

Levermore CD (1984) Relating Eddington factors to flux limiters. J Quant Spectrosc Radiat Transf
31(2):149–160. https://doi.org/10.1016/0022-4073(84)90112-2

Levermore CD (1996) Moment closure hierarchies for kinetic theory. J Stat Phys 83:1021–1065. https://
doi.org/10.1007/bf02179552

Levermore CD, Pomraning GC (1981) A flux-limited diffusion theory. ApJ 248:321–334. https://doi.org/
10.1086/159157

Li G, Xing Y (2018)Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the
Euler equations with gravitation. J Comput Phys 352:445–462. https://doi.org/10.1016/j.jcp.2017.09.
063

Liebendörfer M, Mezzacappa A, Thielemann FK, Messer OEB, Hix WR, Bruenn SW (2001) Probing the
gravitational well: no supernova explosion in spherical symmetry with general relativistic Boltzmann
neutrino transport. Phys Rev D 63(10):103004. https://doi.org/10.1103/physrevd.63.103004

Liebendörfer M, Messer OEB, Mezzacappa A, Bruenn SW, Cardall CY, Thielemann FK (2004) A finite
difference representation of neutrino radiation hydrodynamics in spherically symmetric general rela-
tivistic spacetime. ApJS 150(1):263–316. https://doi.org/10.1086/380191

Liebendörfer M, Rampp M, Janka HT, Mezzacappa A (2005) Supernova simulations with Boltzmann
neutrino transport: a comparison of methods. ApJ 620:840–860. https://doi.org/10.1086/427203

Liu XD, Osher S (1996) Nonoscillatory high order accurate self-similar maximum principle satisfying
shock capturing schemes I. SIAM J Numer Anal 33(2):760–779. https://doi.org/10.1137/0733038

Liu XD, Osher S, Chan T (1994) Weighted essentially non-oscillatory schemes. J Comput Phys 115:200–
212. https://doi.org/10.1006/jcph.1994.1187

Livne E, Burrows A, Walder R, Lichtenstadt I, Thompson TA (2004) Two-dimensional, time-dependent,
multigroup, multiangle radiation hydrodynamics test simulation in the core-collapse supernova con-
text. ApJ 609:277–287. https://doi.org/10.1086/421012

Lou J, Morel J, Gentile N (2019) A variable Eddington factor method for the 1-D grey radiative transfer
equations with discontinuous Galerkin and mixed finite-element spatial differencing. J Comput Phys
393:258–277. https://doi.org/10.1016/j.jcp.2019.05.012

Lowrie R (2004) A comparison of implicit time integration methods for nonlinear relaxation and diffusion.
J Comput Phys 196:566–590. https://doi.org/10.1016/j.jcp.2003.11.016

Lowrie RB, Morel JE (2001) Issues with high-resolution Godunov methods for radiation hydrodynamics.
J Quant Spectrosc Radiat Transf 69:475–489. https://doi.org/10.1016/s0022-4073(00)00097-2

McClarren RG, Hauck CD (2010) Robust and accurate filtered spherical harmonics expansions for radiative
transfer. J Comput Phys 229(16):5597–5614. https://doi.org/10.1016/j.jcp.2010.03.043

McClarrenR, Evans T, LowrieR,Densmore J (2008) Semi-implicit time integration for PN thermal radiative
transfer. J Comput Phys 227:7561–7586. https://doi.org/10.1016/j.jcp.2008.04.029

Melson T, JankaHT, Bollig R, Hanke F,MarekA,Müller B (2015a) Neutrino-driven explosion of a 20 solar-
mass star in three dimensions enabled by strange-quark contributions to neutrino-nucleon scattering.
ApJ 808:L42. https://doi.org/10.1088/2041-8205/808/2/L42

Melson T, Janka HT, Marek A (2015b) Neutrino-driven supernova of a low-mass iron-core progenitor
boosted by three-dimensional turbulent convection. ApJ 801:L24. https://doi.org/10.1088/2041-8205/
801/2/L24

123

https://doi.org/10.1016/j.jqsrt.2011.06.011
https://doi.org/10.1016/0021-9991(89)90229-5
https://doi.org/10.1088/0004-637X/760/1/94
https://doi.org/10.1088/0004-637X/747/1/73
https://doi.org/10.1088/2041-8205/807/2/L31
https://doi.org/10.1007/978-3-0348-8629-1
https://doi.org/10.1007/978-3-0348-8629-1
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1016/0022-4073(84)90112-2
https://doi.org/10.1007/bf02179552
https://doi.org/10.1007/bf02179552
https://doi.org/10.1086/159157
https://doi.org/10.1086/159157
https://doi.org/10.1016/j.jcp.2017.09.063
https://doi.org/10.1016/j.jcp.2017.09.063
https://doi.org/10.1103/physrevd.63.103004
https://doi.org/10.1086/380191
https://doi.org/10.1086/427203
https://doi.org/10.1137/0733038
https://doi.org/10.1006/jcph.1994.1187
https://doi.org/10.1086/421012
https://doi.org/10.1016/j.jcp.2019.05.012
https://doi.org/10.1016/j.jcp.2003.11.016
https://doi.org/10.1016/s0022-4073(00)00097-2
https://doi.org/10.1016/j.jcp.2010.03.043
https://doi.org/10.1016/j.jcp.2008.04.029
https://doi.org/10.1088/2041-8205/808/2/L42
https://doi.org/10.1088/2041-8205/801/2/L24
https://doi.org/10.1088/2041-8205/801/2/L24


Physical, numerical, and computational challenges of... Page 171 of 174 4

Meyer CD, Balsara DS, Aslam TD (2012) A second-order accurate Super TimeStepping formulation for
anisotropic thermal conduction. Mon Not R Astron Soc 422(3):2102–2115. https://doi.org/10.1111/
j.1365-2966.2012.20744.x

Mezzacappa A, Bruenn SW (1993a) A numerical method for solving the neutrino Boltzmann equation
coupled to spherically symmetric stellar core collapse. ApJ 405:669–684. https://doi.org/10.1086/
172395

Mezzacappa A, Bruenn SW (1993b) Stellar core collapse: a Boltzmann treatment of neutrino-electron
scattering. ApJ 410:740–760. https://doi.org/10.1086/172791

Mezzacappa A, Bruenn SW (1993c) Type II supernovae and Boltzmann neutrino transport: the infall phase.
ApJ 405:637–668. https://doi.org/10.1086/172394

Mezzacappa A, Messer OEB (1999) Neutrino transport in core collapse supernovae. J Comput Appl Math
109(1):281–319. https://doi.org/10.1016/s0377-0427(99)00162-4

Mezzacappa A, Liebendörfer M, Cardall CY, Messer OEB, Bruenn SW (2004) Neutrino transport in core
collapse supernovae. In: Fryer CL (ed) Stellar collapse. Astrophysics and Space Science Library, vol
302. Kluwer, Dordrecht, pp 99–131. https://doi.org/10.1007/978-0-306-48599-2_4

Mezzacappa A, Liebendörfer M, Cardall CY, Messer OEB, Bruenn SW (2005) Neutrino transport in core
collapse supernovae. In: Graziani F (ed) Computational methods in transport: Granlibakken 2004.
Lecture notes in computational science and engineering, vol 48. Springer, Berlin, pp 35–68. https://
doi.org/10.1007/3-540-28125-8_3

Minerbo GN (1978) Maximum entropy Eddington factors. J Quant Spectrosc Radiat Transf 20:541–545.
https://doi.org/10.1016/0022-4073(78)90024-9

Morel JE, Larsen EW, Matzen MK (1985) A synthetic acceleration scheme for radiative diffusion calcula-
tions. J Quant Spectrosc Radiat Transf 34(3):243–261. https://doi.org/10.1016/0022-4073(85)90005-
6

Morel JE, Brian Yang TY, Warsa JS (2007) Linear multifrequency-grey acceleration recast for precondi-
tioned Krylov iterations. J Comput Phys 227(1):244–263. https://doi.org/10.1016/j.jcp.2007.07.033

Müller B (2020) Hydrodynamics of core-collapse supernovae and their progenitors. Living Rev Comput
Astrophys 6:3. https://doi.org/10.1007/s41115-020-0008-5

Müller B, Janka HT, Dimmelmeier H (2010) A new multi-dimensional general relativistic neutrino hydro-
dynamic code for core-collapse supernovae. I. Method and code tests in spherical symmetry. ApJS
189:104–133. https://doi.org/10.1088/0067-0049/189/1/104

Müller B, Janka HT, Marek A (2012) A newmulti-dimensional general relativistic neutrino hydrodynamics
code for core-collapse supernovae II. Relativistic explosion models of core-collapse supernovae. ApJ
756:84. https://doi.org/10.1088/0004-637X/756/1/84

Murchikova EM, Abdikamalov E, Urbatsch T (2017) Analytic closures for M1 neutrino transport. MNRAS
469(2):1725–1737. https://doi.org/10.1093/mnras/stx986

Nagakura H, Sumiyoshi K, Yamada S (2014) Three-dimensional Boltzmann hydro code for core collapse in
massive stars. I. Special relativistic treatments. ApJS 214(2):16. https://doi.org/10.1088/0067-0049/
214/2/16

Nagakura H, Iwakami W, Furusawa S, Sumiyoshi K, Yamada S, Matsufuru H, Imakura A (2017) Three-
dimensional Boltzmann-hydro code for core-collapse in massive stars. II. The implementation of
moving-mesh for neutron star kicks. ApJS 229(2):42. https://doi.org/10.3847/1538-4365/aa69ea

Nagakura H, IwakamiW, Furusawa S, OkawaH, Harada A, Sumiyoshi K, Yamada S,Matsufuru H, Imakura
A (2018) Simulations of core-collapse supernovae in spatial axisymmetrywith full Boltzmann neutrino
transport. ApJ 854(2):136. https://doi.org/10.3847/1538-4357/aaac29

O’Connor E (2015) An open-source neutrino radiation hydrodynamics code for core-collapse supernovae.
ApJS 219:24. https://doi.org/10.1088/0067-0049/219/2/24

O’Connor E, Couch S (2018) Exploring fundamentally three-dimensional phenomena in high-fidelity sim-
ulations of core-collapse Supernovae. ApJ 865:81. https://doi.org/10.3847/1538-4357/aadcf7

O’Connor E, Ott CD (2013) The progenitor dependence of the pre-explosion neutrino emission in core-
collapse supernovae. ApJ 762:126. https://doi.org/10.1088/0004-637X/762/2/126

Olbrant E, Hauck CD, FrankM (2012)A realizability-preserving discontinuousGalerkinmethod for theM1
model of radiative transfer. J Comput Phys 231(17):5612–5639. https://doi.org/10.1016/j.jcp.2012.
03.002

Ott CD, Burrows A, Dessart L, Livne E (2008) Two-dimensional multiangle, multigroup neutrino radiation-
hydrodynamic simulations of postbounce supernova cores. ApJ 685:1069–1088. https://doi.org/10.
1086/591440

123

https://doi.org/10.1111/j.1365-2966.2012.20744.x
https://doi.org/10.1111/j.1365-2966.2012.20744.x
https://doi.org/10.1086/172395
https://doi.org/10.1086/172395
https://doi.org/10.1086/172791
https://doi.org/10.1086/172394
https://doi.org/10.1016/s0377-0427(99)00162-4
https://doi.org/10.1007/978-0-306-48599-2_4
https://doi.org/10.1007/3-540-28125-8_3
https://doi.org/10.1007/3-540-28125-8_3
https://doi.org/10.1016/0022-4073(78)90024-9
https://doi.org/10.1016/0022-4073(85)90005-6
https://doi.org/10.1016/0022-4073(85)90005-6
https://doi.org/10.1016/j.jcp.2007.07.033
https://doi.org/10.1007/s41115-020-0008-5
https://doi.org/10.1088/0067-0049/189/1/104
https://doi.org/10.1088/0004-637X/756/1/84
https://doi.org/10.1093/mnras/stx986
https://doi.org/10.1088/0067-0049/214/2/16
https://doi.org/10.1088/0067-0049/214/2/16
https://doi.org/10.3847/1538-4365/aa69ea
https://doi.org/10.3847/1538-4357/aaac29
https://doi.org/10.1088/0067-0049/219/2/24
https://doi.org/10.3847/1538-4357/aadcf7
https://doi.org/10.1088/0004-637X/762/2/126
https://doi.org/10.1016/j.jcp.2012.03.002
https://doi.org/10.1016/j.jcp.2012.03.002
https://doi.org/10.1086/591440
https://doi.org/10.1086/591440


4 Page 172 of 174 A. Mezzacappa et al.

Pareschi L, Russo G (2005) Implicit–explicit Runge–Kutta schemes and application to hyperbolic systems
with relaxation. J Sci Comput 25:129–155. https://doi.org/10.1007/bf02728986

Park H, Knoll DA, Rauenzahn RM, Wollaber AB, Densmore JD (2012) A consistent, moment-based,
multiscale solution approach for thermal radiative transfer problems. Transp Theor Stat Phys 41(3–
4):284–303. https://doi.org/10.1080/00411450.2012.671224

Park H, Knoll DA, Rauenzahn RM, Newman CK, Densmore JD, Wollaber AB (2013) An efficient and time
accurate, moment-based scale-bridging algorithm for thermal radiative transfer problems. SIAM J Sci
Comput 35(5):S18–S41. https://doi.org/10.1137/120881075

Park H, Knoll DA, Rauenzahn RM,Wollaber AB, Lowrie RB (2014) Moment-based acceleration of Monte
Carlo solution for multifrequency thermal radiative transfer problems. J Comput Theor Transp 43(1–
7):314–335. https://doi.org/10.1080/00411450.2014.917327

Pennisi S (1992) On third order tensor-values isotropic functions. Int J Eng Sci 30:679–692. https://doi.
org/10.1016/0020-7225(92)90011-5

Peres B, Penner AJ, Novak J, Bonazzola S (2014) General relativistic neutrino transport using spectral
methods. Class Quantum Grav 31(4):045012. https://doi.org/10.1088/0264-9381/31/4/045012

Pons JA, Ibáñez JM, Miralles JA (2000) Hyperbolic character of the angular moment equations of radiative
transfer and numerical methods. MNRAS 317:550–562. https://doi.org/10.1046/j.1365-8711.2000.
03679.x

Radice D, Abdikamalov E, Rezzolla L, Ott CD (2013) A new spherical harmonics scheme for multi-
dimensional radiation transport I. Static matter configurations. J Comput Phys 242:648–669. https://
doi.org/10.1016/j.jcp.2013.01.048

Rahman N, Just O, Janka HT (2019) NADA-FLD: a general relativistic, multidimensional neutrino-
hydrodynamics code employing flux-limited diffusion. MNRAS 490:3545–3572. https://doi.org/10.
1093/mnras/stz2791

Rampp M, Janka HT (2000) Spherically symmetric simulation with Boltzmann neutrino transport of core
collapse and postbounce evolution of a 15 M� star. ApJ 539:L33–L36

Rampp M, Janka HT (2002) Radiation hydrodynamics with neutrinos. Variable Eddington factor method
for core-collapse supernova simulations. A&A 396:361–392. https://doi.org/10.1051/0004-6361:
20021398

Reddy S, Prakash M, Lattimer JM (1998) Neutrino interactions in hot and dense matter. Phys Rev D
58:013009. https://doi.org/10.1103/physrevd.58.013009

Rezzolla L, Zanotti O (2013) Relativistic hydrodynamics. Oxford University Press, Oxford. https://doi.org/
10.1093/acprof:oso/9780198528906.001.0001

Richers SA,McLaughlin GC, Kneller JP, Vlasenko A (2019) Neutrino quantum kinetics in compact objects.
Phys Rev D 99(12):123014. https://doi.org/10.1103/PhysRevD.99.123014

Roberts LF, Ott CD, Haas R, O’Connor EP, Diener P, Schnetter E (2016) General-relativistic three-
dimensional multi-group neutrino radiation-hydrodynamics simulations of core-collapse supernovae.
ApJ 831:98. https://doi.org/10.3847/0004-637X/831/1/98

Salam A (1968) Weak and electromagnetic interactions. In: Elementary particle theory. Relativistic groups
and analyticity. In: Proceedings of the eighth Nobel symposium held May 19–25, 1968. Wiley, pp
367–377. https://doi.org/10.1142/9789812795915_0034

Sawyer RF (2005) Speed-up of neutrino transformations in a supernova environment. Phys Rev D
72(4):045003. https://doi.org/10.1103/PhysRevD.72.045003

Schneider F (2016) Kershaw closures for linear transport equations in slab geometry I: Model derivation. J
Comput Phys 322:905–919. https://doi.org/10.1016/j.jcp.2016.02.080

Shibata M, Kiuchi K, Sekiguchi Y, Suwa Y (2011) Truncated moment formalism for radiation hydro-
dynamics in numerical relativity. Prog Theor Phys 125:1255–1287. https://doi.org/10.1143/ptp.125.
1255

ShuCW (1998) Essentially non-oscillatory andweighted essentially non-oscillatory schemes for hyperbolic
conservation laws. In: Quarteroni A (ed) Advanced numerical approximation of nonlinear hyperbolic
equations: Cetraro, Italy 1997. Lecture notes in mathematics, vol 1697. Springer, Berlin, pp 325–432.
iCASE Report No. 97-65, NASA/CR-97-206253, NASA Langley Research Center. https://doi.org/
10.1007/BFb0096355

Shu CW (2016) High order WENO and DG methods for time-dependent convection-dominated PDEs: a
brief survey of several recent developments. J Comput Phys 316:598–613. https://doi.org/10.1016/j.
jcp.2016.04.030

123

https://doi.org/10.1007/bf02728986
https://doi.org/10.1080/00411450.2012.671224
https://doi.org/10.1137/120881075
https://doi.org/10.1080/00411450.2014.917327
https://doi.org/10.1016/0020-7225(92)90011-5
https://doi.org/10.1016/0020-7225(92)90011-5
https://doi.org/10.1088/0264-9381/31/4/045012
https://doi.org/10.1046/j.1365-8711.2000.03679.x
https://doi.org/10.1046/j.1365-8711.2000.03679.x
https://doi.org/10.1016/j.jcp.2013.01.048
https://doi.org/10.1016/j.jcp.2013.01.048
https://doi.org/10.1093/mnras/stz2791
https://doi.org/10.1093/mnras/stz2791
https://doi.org/10.1051/0004-6361:20021398
https://doi.org/10.1051/0004-6361:20021398
https://doi.org/10.1103/physrevd.58.013009
https://doi.org/10.1093/acprof:oso/9780198528906.001.0001
https://doi.org/10.1093/acprof:oso/9780198528906.001.0001
https://doi.org/10.1103/PhysRevD.99.123014
https://doi.org/10.3847/0004-637X/831/1/98
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1103/PhysRevD.72.045003
https://doi.org/10.1016/j.jcp.2016.02.080
https://doi.org/10.1143/ptp.125.1255
https://doi.org/10.1143/ptp.125.1255
https://doi.org/10.1007/BFb0096355
https://doi.org/10.1007/BFb0096355
https://doi.org/10.1016/j.jcp.2016.04.030
https://doi.org/10.1016/j.jcp.2016.04.030


Physical, numerical, and computational challenges of... Page 173 of 174 4

Shu CW, Osher S (1988) Efficient implementation of essentially non-oscillatory shock-capturing schemes.
J Comput Phys 77(2):439–471. https://doi.org/10.1016/0021-9991(88)90177-5

Skinner MA, Burrows A, Dolence JC (2016) Should one use the ray-by-ray approximation in core-collapse
supernova simulations? ApJ 831:81. https://doi.org/10.3847/0004-637X/831/1/81

Skinner MA, Dolence JC, Burrows A, Radice D, Vartanyan D (2019) FORNAX: a flexible code for multi-
physics astrophysical simulations. ApJS 241:7. https://doi.org/10.3847/1538-4365/ab007f

Smit JM, Cernohorsky J (1996) Legendre expansion of the neutrino-electron scattering kernel. A&A
311:347–351

Stone JM, Norman ML (1992) ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows
in two space dimensions. II. The magnetohydrodynamic algorithms and tests. ApJS 80:791. https://
doi.org/10.1086/191681

Sumiyoshi K, Yamada S (2012) Neutrino transfer in three dimensions for core-collapse supernovae. I. Static
configurations. ApJS 199(1):17. https://doi.org/10.1088/0067-0049/199/1/17

Summa A, Janka HT, Melson T, Marek A (2018) Rotation-supported neutrino-driven supernova explosions
in three dimensions and the critical luminosity condition. ApJ 852(1):28. https://doi.org/10.3847/
1538-4357/aa9ce8

Suresh A, Huynh HT (1997) Accurate monotonicity-preserving schemes with Runge–Kutta time stepping.
J Comput Phys 136:83–99. https://doi.org/10.2514/6.1997-2037

Swesty FD, Myra ES (2009) A numerical algorithm for modeling multigroup neutrino-radiation hydrody-
namics in two spatial dimensions. ApJS 181:1–52. https://doi.org/10.1088/0067-0049/181/1/1

Tamborra I, Hüdepohl L, Raffelt GG, Janka HT (2017) Flavor-dependent neutrino angular distribution in
core-collapse supernovae. ApJ 839(2):132. https://doi.org/10.3847/1538-4357/aa6a18

Thorne KS (1981) Relativistic radiative transfer: moment formalisms. MNRAS 194:439–473. https://doi.
org/10.1093/mnras/194.2.439

Toro EF, SpruceM, SpearesW (1994) Restoration of the contact surface in the HLL-Riemann solver. Shock
Waves 4(1):25–34. https://doi.org/10.1007/BF01414629

Tubbs DL, Schramm DN (1975) Neutrino opacities at high temperatures and densities. ApJ 201:467–488.
https://doi.org/10.1086/153909

van Leer B (1974) Towards the ultimate conservative difference scheme. II. Monotonicity and conserva-
tion combined in a second-order scheme. J Comput Phys 14:361–370. https://doi.org/10.1016/0021-
9991(74)90019-9

Van Leer B (1977) Towards the ultimate conservative difference scheme. IV. A new approach to numerical
convection. J Comput Phys 23(3):276–299. https://doi.org/10.1016/0021-9991(77)90095-X

VartanyanD,BurrowsA,RadiceD, SkinnerMA,Dolence J (2019)A successful 3D core-collapse supernova
explosion model. MNRAS 482:351–369. https://doi.org/10.1093/mnras/sty2585

Vaytet NMH, Audit E, Dubroca B, Delahaye F (2011) A numerical model for multigroup radiation hydro-
dynamics. J Quant Spectrosc Radiat Transf 112:1323–1335. https://doi.org/10.1016/j.jqsrt.2011.01.
027

Weinberg S (1967) Amodel of leptons. Phys Rev Lett 19:1264–1266. https://doi.org/10.1103/PhysRevLett.
19.1264

Willert J, Kelley CT, Knoll DA, Park H (2013) Hybrid deterministic/Monte Carlo neutronics. SIAM J Sci
Comput 35(5):S62–S83. https://doi.org/10.1137/120880021

Willert J, Park H, Taitano W (2015) Using anderson acceleration to accelerate the convergence of neutron
transport calculations with anisotropic scattering. Nucl Sci Eng 181(3):342–350. https://doi.org/10.
13182/NSE15-16

Wilson JR (1971) A numerical study of gravitational stellar collapse. ApJ 163:209. https://doi.org/10.1086/
150759

Wilson JR (1974) Coherent neutrino scattering and stellar collapse. Phys Rev Lett 32:849–852. https://doi.
org/10.1103/PhysRevLett.32.849

Wilson JR (1985) Supernovae and post-collapse behavior. In: Centrella JM, LeBlanc JM, Bowers RL (eds)
Numerical astrophysics. Jones and Bartlett, Boston, p 422

Wilson JR, Couch R, Cochran S, Le Blanc J, Barkat Z (1975) Neutrino flow and the collapse of stellar cores.
In: Bergman PG, Fenyves EJ, Motz L (eds) Seventh Texas symposium on relativistic astrophysics.
Annals of the NewYork Academy of Sciences, vol 262. NewYork, pp 54–64. https://doi.org/10.1111/
j.1749-6632.1975.tb31420.x

123

https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.3847/0004-637X/831/1/81
https://doi.org/10.3847/1538-4365/ab007f
https://doi.org/10.1086/191681
https://doi.org/10.1086/191681
https://doi.org/10.1088/0067-0049/199/1/17
https://doi.org/10.3847/1538-4357/aa9ce8
https://doi.org/10.3847/1538-4357/aa9ce8
https://doi.org/10.2514/6.1997-2037
https://doi.org/10.1088/0067-0049/181/1/1
https://doi.org/10.3847/1538-4357/aa6a18
https://doi.org/10.1093/mnras/194.2.439
https://doi.org/10.1093/mnras/194.2.439
https://doi.org/10.1007/BF01414629
https://doi.org/10.1086/153909
https://doi.org/10.1016/0021-9991(74)90019-9
https://doi.org/10.1016/0021-9991(74)90019-9
https://doi.org/10.1016/0021-9991(77)90095-X
https://doi.org/10.1093/mnras/sty2585
https://doi.org/10.1016/j.jqsrt.2011.01.027
https://doi.org/10.1016/j.jqsrt.2011.01.027
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1137/120880021
https://doi.org/10.13182/NSE15-16
https://doi.org/10.13182/NSE15-16
https://doi.org/10.1086/150759
https://doi.org/10.1086/150759
https://doi.org/10.1103/PhysRevLett.32.849
https://doi.org/10.1103/PhysRevLett.32.849
https://doi.org/10.1111/j.1749-6632.1975.tb31420.x
https://doi.org/10.1111/j.1749-6632.1975.tb31420.x


4 Page 174 of 174 A. Mezzacappa et al.

Wu K, Tang H (2016) Physical-constraint-preserving central discontinuous Galerkin methods for special
relativistic hydrodynamicswith a general equation of state. ApJS 228:3. https://doi.org/10.3847/1538-
4365/228/1/3

Zhang X, Shu CW (2010a) On maximum-principle-satisfying high order schemes for scalar conservation
laws. J Comput Phys 229:3091–3120. https://doi.org/10.1016/j.jcp.2009.12.030

Zhang X, Shu CW (2010b) On positivity preserving high order discontinuous Galerkin schemes for com-
pressible Euler equations on rectangular meshes. J Comput Phys 229:8918–8934. https://doi.org/10.
1016/j.jcp.2010.08.016

Zhang X, Shu CW (2011) Maximum-principle-satisfying and positivity-preserving high-order schemes for
conservation laws: survey and new developments. Proc R Soc London Ser A 467(2134):2752–2776.
https://doi.org/10.1098/rspa.2011.0153

Zhang W, Howell L, Almgren A, Burrows A, Dolence J, Bell J (2013) CASTRO: a new compressible
astrophysical solver. III. Multigroup radiation hydrodynamics. ApJS 204:7. https://doi.org/10.1088/
0067-0049/204/1/7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Anthony Mezzacappa1 · Eirik Endeve1,2 ·O. E. Bronson Messer1,3,4 ·
Stephen W. Bruenn5

B Anthony Mezzacappa
mezz@utk.edu

Eirik Endeve
endevee@ornl.gov

O. E. Bronson Messer
bronson@ornl.gov

Stephen W. Bruenn
bruenn@fau.edu

1 Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN
37831, USA

3 National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN
37831, USA

4 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

5 Department of Physics, Florida Atlantic University, Boca Raton, FL 33431, USA

123

https://doi.org/10.3847/1538-4365/228/1/3
https://doi.org/10.3847/1538-4365/228/1/3
https://doi.org/10.1016/j.jcp.2009.12.030
https://doi.org/10.1016/j.jcp.2010.08.016
https://doi.org/10.1016/j.jcp.2010.08.016
https://doi.org/10.1098/rspa.2011.0153
https://doi.org/10.1088/0067-0049/204/1/7
https://doi.org/10.1088/0067-0049/204/1/7
http://orcid.org/0000-0001-9816-9741
https://orcid.org/0000-0003-0999-5297

	Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae
	Abstract
	1 Preface
	2 Setting the stage
	3 Design specifications
	4 The equations of neutrino radiation hydrodynamics
	4.1 The need for a kinetic description of neutrinos
	4.2 The choice of phase-space coordinates
	4.3 The general relativistic Boltzmann equation
	4.4 The 3 + 1 formulation of general relativity
	4.5 3 + 1 general relativistic hydrodynamics
	4.6 The 3 + 1 general relativistic Boltzmann equation
	4.7 Multi-frequency moment kinetics and the closure problem
	4.7.1 Lagrangian decompositions
	4.7.2 Eulerian decompositions
	4.7.3 Two-moment kinetics
	4.7.4 The closure problem
	4.7.5 One-moment kinetics


	5 Neutrino interactions
	5.1 An intertwined history
	5.2 The relevant neutrino interactions
	5.2.1 Boltzmann collision term
	5.2.2 Two-moment collision terms

	5.3 Neutrino-matter coupling

	6 Phase-space discretizations and implementations
	6.1 Boltzmann kinetics: spatial and energy finite differencing plus discrete ordinates
	6.1.1 Phase-space coordinates
	6.1.2 Spherical symmetry
	6.1.3 Challenges: relativistic effects and the simultaneous conservation of lepton number and energy
	6.1.4 Challenges: neutrino–nucleon (small-energy) scattering
	6.1.5 Axisymmetry
	6.1.6 Three spatial dimensions

	6.2 Boltzmann kinetics: spatial discontinuous Galerkin discretization plus spectral multigroup PN
	6.3 Boltzmann kinetics: spectral decomposition across phase space
	6.4 Boltzmann kinetics: Monte Carlo methods
	6.5 Two-moment kinetics
	6.5.1 Spatial discretization
	6.5.2 Energy discretization
	6.5.3 Time integration approaches
	6.5.4 Lepton number and energy conservation

	6.6 One-moment kinetics
	6.6.1 Newtonian-gravity, O(v/c), finite-difference implementation
	6.6.2 General-relativistic, finite-difference implementation
	6.6.3 Newtonian-gravity, O(v/c), finite-volume implementation

	6.7 Structure-preserving methods
	6.7.1 Preamble: discontinuous Galerkin methods
	6.7.2 Bound-preserving methods
	6.7.3 Realizability-preserving moment methods

	6.8 Hybrid methods

	7 Solution methods
	7.1 Simulation requirements
	7.2 Implementation on heterogeneous architectures

	8 Summary and outlook
	Acknowledgements
	References




