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Abstract

We provide a detailed description of the CHIMERA code, a code developed to model core collapse supernovae
(CCSNe) in multiple spatial dimensions. The CCSN explosion mechanism remains the subject of intense research.
Progress to date demonstrates that it involves a complex interplay of neutrino production, transport, and interaction
in the stellar core, three-dimensional stellar core fluid dynamics and its associated instabilities, nuclear burning, and
the fundamental physics of the neutrino–stellar core weak interactions and the equations of state of all stellar core
constituents—particularly, the nuclear equation of state associated with core nucleons, both free and bound in
nuclei. CHIMERA, by incorporating detailed neutrino transport, realistic neutrino–matter interactions, three-
dimensional hydrodynamics, realistic nuclear, leptonic, and photonic equations of state, and a nuclear reaction
network, along with other refinements, can be used to study the role of neutrino radiation, hydrodynamic
instabilities, and a variety of input physics in the explosion mechanism itself. It can also be used to compute
observables such as neutrino signatures, gravitational radiation, and the products of nucleosynthesis associated
with CCSNe. The code contains modules for neutrino transport, multidimensional compressible hydrodynamics,
nuclear reactions, a variety of neutrino interactions, equations of state, and modules to provide data for post-
processing observables such as the products of nucleosynthesis, and gravitational radiation. CHIMERA is an
evolving code, being updated periodically with improved input physics and numerical refinements. We detail here
the current version of the code, from which future improvements will stem, which can in turn be described as
needed in future publications.

Unified Astronomy Thesaurus concepts: Core-collapse supernovae (304); Computational methods (1965);
Reaction rates (2081); Radiative transfer simulations (1967); Supernova neutrinos (1666); Hydrodynamical
simulations (767); Nucleosynthesis (1131)

1. Introduction

Modeling core collapse supernovae (CCSNe) has become an extremely demanding computational problem over the years, requiring
realistic multidimensional, general relativistic, multigroup, neutrino radiation hydrodynamics; sophisticated nuclear equations of
state; and extensive nuclear reaction networks to elucidate the CCSN explosion mechanism and capture some of the important
observables. The sheer breadth of interdependent physics, over a vast range of density and energy scales, is one aspect of the
computational challenge. This includes general relativistic gravity; matter velocities at nonnegligible fractions of the speed of light;
the production, transport, and interaction of neutrinos and anti-neutrinos of all flavors across three regimes: the tight coupling of
neutrinos and matter at high densities in the core, weaker coupling far from the core, and intermediate coupling in between; the
evolution of the nuclear composition both in and out of nuclear statistical equilibrium (NSE) as mediated by both strong and weak
nuclear interactions; and an equation of state that spans a density range that can exceed fourteen orders of magnitude. And there is a
second notable aspect of the computational challenge. The CCSN explosion mechanism also appears to be marginal in the sense that
rather modest changes in the numerical modeling of the neutrino transport and/or the neutrino interactions, and/or the use of
Newtonian versus general relativistic gravity, for example, can change the outcome of a simulation not only quantitatively but
qualitatively as well. Therefore, the physical treatment and numerical implementation of the above-described physics has to be
realistic and highly accurate (in the numerical sense) if meaningful results are to be obtained. Finally, a CCSN simulation may require
millions of time steps to integrate a model forward in time through a sufficiently long period in order to determine outcomes such as
explosion energies and other observables. This requires that the various numerical algorithms implemented in the code be highly
optimized.

Our development of the radiation hydrodynamics code CHIMERA to model CCSNe has drawn on previous codes that have
successfully modeled one or another physical process relevant to CCSNe. The hydrodynamics module has been built on the
dimensionally split, Lagrangian-plus-remap scheme with piecewise parabolic reconstruction as formulated by Colella & Woodward
(1984) and implemented in VH1 as described by Hawley et al. (2012) and Blondin & Lufkin (1993), but extended to include
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multi-species advection, energy absorbed or released due to compositional changes, nuclei coming in or out of NSE,
multidimensional gravity, momentum and energy exchange with neutrinos, and a sliding radial grid algorithm that continually adjusts
the radial grid to resolve structures that arise during the course of a simulation. The neutrino transport stems from the original
formulation in Bruenn (1985) but modified and improved, and with a number of neutrino source terms either refined or added to the
CHIMERA suite of neutrino–matter interactions. The nuclear composition, when material is not under conditions appropriate for NSE,
is evolved by the thermonuclear reaction network code XNet developed by Hix & Meyer (2006) and Travaglio & Hix (2013).
In this paper, we present a detailed description of our CHIMERA code, which has been developed with the aim of realistically

modeling CCSN and the associated observables. In the sections that follow, we describe each of our algorithms in detail. CHIMERA is
under continuous development. When it is deemed that significant improvements or refinements have been implemented and tested,
the version of the code current at that time is frozen, removed from further development, and used to execute and follow new
simulations in our ongoing investigations of CCSNe. These frozen code versions, along with common sets of microphysics inputs are
designated as a lettered “Series” of CHIMERA simulations, where simulations within a “Series” share not only the code base and
algorithm choices, but the default microphysics and control parameters as well.

The first test results from CHIMERA for low-resolution 2D (axisymmetric) simulations were reported in Bruenn et al. (2006), as
was an early description of the code (Messer et al. 2008). The first attempt at production simulations in 2D and 3D, with a reasonably
complete set of physics and with reasonable resolution were reported in Bruenn et al. (2009) and retroactively designated as “Series-
A.” Though some flaws emerged late in the Series-A simulations, the earlier portions of the 2D simulations were used for
gravitational wave extraction analysis (Yakunin et al. 2010). Subsequent to the Series-A simulations, we made several improvements
to and enhanced CHIMERA, as well as updated some input physics. The “Series-B” simulations (Bruenn et al. 2013, 2016) used the
updated code to recompute the four 2D simulations of Series-A, with enhanced resolution, from which we analyzed the gravitational
wave signals (Yakunin et al. 2015) and nucleosynthesis of the ejecta (J. A. Harris et al. 2018, in preparation). The methods and
algorithms described in this paper largely reflect those used in the CHIMERA SeriesB. The next group of models, Series-C, focused
on the 3D modeling (Lentz et al. 2015; E. J. Lentz et al. 2018, in preparation) using the same input microphysics as SeriesB. Direct
analyses of the gravitational wave (Yakunin et al. 2017) and neutrino detector signals (O. E. B. Messer et al. 2018, in preparation)
have been performed for these simulations. The primary differences between Series-B and Series-C were code consolidation and
optimizations, but a few improvements are described herein, including an improved treatment of neutrino transport through the shock
(Section 6.12), a more efficient interpolation of neutrino opacities (Section 8.11), and parallel IO (Section 2.3). Further series will
follow, including a general “Series D” consisting of several 3D models and 2D studies, and a “Series E” focused on the nuclear
equation of state and related code improvements. All of the above mentioned series have employed the so-called ray-by-ray (RbR)
plus approximation to neutrino transport in which spherically symmetric multi-energy neutrino transport is performed along each
radial ray with lateral advection of neutrinos with matter performed in optically thick regions. Fully multi-energy, multi-angle
neutrino transport has recently been implemented in core-collapse simulations with various levels of microphysics Kuroda et al.
(2016, 2018), Ott et al. (2018), Vartanyan et al. (2018), and Skinner et al. (2019) Multi-angle transport will be a future upgrade of
Chimers. Descriptions of the modifications and enhancements for these, and subsequent, series will appear with the simulation
results, as needed.

Section 2 gives a general overview of CHIMERA including the domain decomposition used in implementing parallel computing
architectures, the directional splitting used, and the sequence of computational steps in a complete time cycle. Section 3 details the
implementation of the nuclear reaction network and equations of state, including the technique for juxtaposing more than one
equation of state in adjacent density regimes. Section 4 presents a detailed description of our hydrodynamics algorithms, with test
problems in Section 5. The neutrino transport method and numerical methods are described in Section 6, with a detailed description
of the neutrino transport source terms given in Section 8. Finally, Section 7 presents results of static neutrino transport tests, and
Section 9 presents comparisons of 1D CCSN simulations with the Boltzmann code AGILE-BOLTZTRAN (Liebendörfer et al. 2004,
2005). Additional specific test results verifying a number of our algorithms are presented at the end of the relevant sections.

2. General Overview

To drive the component pieces integrated from other codes, CHIMERA uses a master-data model, where data is stored in a master
copy on each computing element, transposed as needed to appropriate dimensional sweeps, checked-out to constituent codes,
processed, and checked back to the master copy. At the master level, general program control, data input and output, and monitoring
are also managed.

2.1. Directional Splitting

For multidimensional applications, CHIMERA uses the method of dimensional splitting (Strang 1968). In this method, the
numerical solution of the multidimensional problem proceeds by a series of one-dimensional steps or “sweeps” to build up the full
solution. The updated variables after each sweep are used as initial conditions for the next sweep. The order of the sweeps is shown in
Figure 1. For second-order accuracy in time, the time step, Δt, should be selected at the beginning of the sweep sequences, and for
the 2D case, Dt1

2
should be used in the x-y subsequence of the sweep sequence and again in the y-x subsequence. Likewise, in the 3D

case, Dt1

4
should be used for each of the four x-y-z transposition subsequences. In practice, the full time step computed before each

subsequence is used for that subsequence. Since the time steps computed for each of the subsequences are nearly the same,
approximate time-centering is maintained. Furthermore, the larger time steps permit a more refined grid to be used for the same
amount of computer time.
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Figure 1. Panel (a): sweep sequence used in CHIMERA for numerically solving one-, two-, and three-dimensional problems. Panels (b) and (c): sequence of operations
performed during the (b) radial sweep and (c) theta or phi sweep.
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2.2. Domain Decomposition

CHIMERA is designed to numerically evolve CCSNe on spherical polar grids and to run on multiprocessor machines. The domain
decomposition in CHIMERA is dictated, in part, by the present implementation of neutrino transport, which is in the radial direction.
The decomposition is along rays, or bundles of rays, each ray being one zone wide in two dimensions and spanning the entire set of
zones from boundary to boundary along the third. Thus, an x-ray, or radial ray refers to a set of zones along a radial line from the
center to the outer edge of the grid. A y-ray, or angular ray, refers to a set of zones at a given radius and azimuth which, for a 180°
angular grid, spans the arc from the “north” pole to the “south” pole. Finally, a z-ray, or azimuthal ray, refers to a set of zones at a
given radius and polar angle that, in the case of a 360° azimuthal grid, completely encircles the polar axis.

As an extremely simple example of the domain decomposition in CHIMERA, consider a 2D grid consisting of four radial rays, each
radial ray consisting of 12 radial zones with one radial ray per MPI rank, four MPI ranks in all. Figure 2 shows the logical structure of
this grid. The large rectangular block bordered in thick black lines encompasses the logical grid with the x (radial), y (angular), and z
(azimuthal) directions shown at the upper right. Because the grid is two-dimensional, the third or z-dimension is superfluous but is
shown as an elongated cell wall in the z-direction for the sake of comparison with a 3D example below. Each zone is shown in the
figure as a square-sided vertical rectangular volume. The total number of radial, angular, and azimuthal zone-centers are denoted by
imax, jmax, and kmax, respectively, and the total number of zone edges by + 1imax , + 1jmax , and + 1kmax . In this case,

= 12imax , = 4jmax , and kmax=1.
The computation in CHIMERA is directionally split, and the (x-, y-, z-) sweeps—i.e., the (radial-, angular-, azimuthal-) sweeps—

refer to the direction of computation. During the x-sweep, a set number, or bundle, of radial rays (in this example just one) is assigned
to each MPI rank. In Figure 2, a radial ray is shown in green for a particular, but otherwise arbitrary, MPI rank. The dimensions
ij_ray_dim and ik_ray_dim denote the dimensions of a bundle of x-rays in the y- and z-directions, respectively, so that
ij_ray_dim×ik_ray_dim is the number of x-rays in the bundle. In this example, where the bundle of rays per MPI rank
consists of just one ray, both ij_ray_dim and ik_ray_dim are unity. The local indices ij_ray and ik_ray locate a particular
ray within a bundle relative to the upper left corner of the bundle, so that ij_rayä[1, ij_ray_dim] and ik_rayä[1,
ik_ray_dim]. In this example, both of these indices are unity as there is only one ray per bundle. During the x-sweep, the radial
hydrodynamics, radial RbR transport, and nuclear reactions are evolved along with global gravity solves.

Following the x-sweep, a transpose to the y- or z-oriented rays is performed. In this 2D example, the transpose is just to the y-
oriented rays. Because there are 12 radial zones and only four angular zones in this example, each MPI rank now consists of a bundle
of three y-rays, so that the total number of MPI ranks remain the same. This is delineated in Figure 2 by the rays enclosed by red for a
particular, but arbitrary, bundle. Now, (ji_ray, jk_ray) takes the place of (ij_ray, ik_ray) and locates a particular angular ray
in the x–z plane of the bundle. The widths in the x–z plane of each bundle are given by j_ray_dim and ik_ray_dim, which in this
example are equal to 3 and 1, respectively. j_ray_dim and k_ray_dim are the number of radial zones on each MPI rank after
transposing to the y-oriented rays and z-oriented rays, respectively.

Figure 3 illustrates a slight variation of the previous domain decomposition example using the same logical grid. The total number
of radial, angular, and azimuthal zones are the same as before, but in this example, bundles of two x-rays are associated with each
MPI rank, two MPI ranks in all. In Figure 3, a particular, but arbitrary, bundle of x-rays is shown bounded by thick green lines. In this
case, the y–z dimensions of the bundle are given by ij_ray_dim = 2 and ik_ray_dim = 1, respectively, and the particular, but
arbitrary, radial ray designated by the narrow-lined green X at the front and top has the local indices in the bundle (ij_ray=2,
jk_ray=1). Following the x-sweep, a transpose to the y-oriented rays is made, and because there are only two MPI ranks in this
case, the number of y-rays associated with each MPI rank is six, as there are 12 y-rays in all. This is delineated in Figure 3 by the rays

Figure 2. Example CHIMERA domain decomposition for two-dimensional models with one x-ray per MPI rank.
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enclosed by the thick red lines for a particular, but arbitrary, y-bundle, The x–z dimensions of the y-bundles are j_ray_dim=6 and
ik_ray_dim=1, respectively, and the particular, but arbitrary, y-ray designated by the narrow-lined red X at the front and top has
the local indices in the bundle (ji_ray = 5, jk_ray = 1).
Figure 4 illustrates a general domain decomposition example using the same logical grid for the x- and y-rays, but adding a z-ray

consisting of 6 zones. Now there are ´ ´ = ´ ´ =12 4 6 288imax jmax kmax zones in all, and ´ = ´ =4 6 24jmax kmax
x-rays. Let us suppose we wish to compute with 4 MPI ranks. We must then use 4 bundles of x-rays, each bundle assigned to one MPI
rank and consisting of 6 x-rays. One such particular, but arbitrary, bundle is shown in Figure 4, outlined in the thick green lines. The y-z
dimensions of the bundle are ij_ray_dim = 2 and ik_ray_dim = 3, respectively. A particular, but arbitrary, x-ray is shown in this
bundle by a thin-lined green X on its front face, having the local indices (ij_ray = 1, ik_ray = 2); another x-ray located in an
adjacent bundle is delineated by another thin-lined green X on its front face having the local indices (ij_ray = 2, ik_ray = 3). On
executing the x-sweep, each MPI rank performs the computation required to complete the individual x-sweep for each x-ray in its bundle.

Following the x-sweep, a transpose to the y- and z-oriented rays is performed, either in that order, or reversed order, as shown above in
Figure 1. Consider the transpose to the y-oriented rays. There are ´ = ´ =12 6 72imax kmax y-rays. With four MPI ranks, we assign
to each MPI rank four bundles of y-rays with 18 y-rays each, having the x–z dimensions j_ray_dim = 6 and ik_ray_dim = 3,
respectively. A particular, but arbitrary, bundle of y-rays is shown bounded by thick red lines in Figure 4, and a particular, but arbitrary, y-ray
in that bundle is singled out by a thin-lined red X, having the local indices (ji_ray = 4, jk_ray = 3).
Following or preceding the y-sweep, a transpose to the z-oriented rays is performed. There are ´ =imax jmax
´ =12 4 48 z-rays. With four MPI ranks, we assign to each MPI rank four bundles of z-rays with 12 z-rays each, having the

Figure 3. Example CHIMERA domain decomposition for two-dimensional models with two x-rays per MPI rank. Some lines have been slightly offset to render them
visible.

Figure 4. Example CHIMERA domain decomposition for a three-dimensional model. Some of the lines have been slightly offset to render them visible.
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x–y dimensions k_ray_dim = 4 and ij_ray_dim = 2, respectively. A particular, but arbitrary, bundle of z-rays is shown bounded
by thick blue lines in Figure 4, and a particular, but arbitrary, z-ray in that bundle is singled out by a thin-lined blue X, having the
local indices ( = =_ 3, _ 2ki ray kj ray ).

In general, for a 2D or 3D grid with a domain decomposition consisting of x-rays, y-rays, and z-rays, to ensure load balancing, the
number number of rays in x-bundles, y-bundles, and z-bundles must satisfy

=
´
´

=
´
´

=
´
´

N
_ _ _ _ _ _ _ _ _ _ _ _

1MPI
jmax kmax

ij ray dim ik ray dim

imax kmax

j ray dim ik ray dim

imax jmax

ij ray dim k ray dim
( )

where NMPI is the number of MPI ranks.

2.3. IO Subsystem

The input and output (IO) of data by simulation codes presents a significant challenge, and good IO is required to achieve
acceptable computational performance. CHIMERA has several components to its IO subsystem. A typical full explosion model
requires  1000( ) hours to complete. This requires writing checkpoint files for restarting the simulation and data files for later
analysis, plotting, and visualization. We have implemented two schemes for general restart and analysis IO: (1) the original, serial
method used for much of our early 2D work and (2) a parallel method required for effective computation in 3D.

2.3.1. Serial IO Method

The original serial IO scheme had separate components for restart and analysis output. The restart IO consisted of one file written
per MPI rank, containing only the necessary data to restart the simulation and to maintain tracking of conservation, including the
positions of the Lagrangian tracer particles associated with the processors domain (see Section 2.4). These sets of files were written
on typically 100-cycle intervals to alternating files in a pair. At predetermined points in the computation, “permanent” restart files
were saved, to be used to provide the initial data if a simulation had to be “rewound” to fix a problem.

These restart files were supplemented with plot files written on fixed time intervals, typically every 0.2ms after core bounce. Each
file consisted of single variable (e.g., entropy, radial velocity, nē luminosity, etc.) data for the entire grid and was assembled by
gathering the data to the root processor before writing it out. For 3D runs with more than ∼10,000 radial rays, the memory available
on the root node was typically insufficient. These plot files did not contain all information needed for restart, but they did contain
derived quantities (like luminosity) useful for visualization and analysis.

The above binary files were also supplemented with in situ analysis output of global properties (shock radius information, explosion
energies, radial traces along fixed angles, etc.) written to plain text files. To generate the “trace files” for each Lagrangian tracer, the
thermodynamic, abundance, and neutrino quantities were interpolated to the particle position and recorded in a binary tracer file.

2.3.2. Parallel IO Method

To achieve scaling to larger process counts in 3D and improved file performance, we implemented parallel IO with the HDF5 library.9

The HDF5 library permits complex file structures, metadata, and file portability. Initially, the HDF5 implementation was a
replacement for the restart IO, without the alternating file scheme, with the analysis and plotting data added from the binary one-
variable files. To improve the time resolution of the gravitational wave analysis from the Δt=0.2 ms resolution used in Series-A
(Yakunin et al. 2010) and Series-B (Yakunin et al. 2015) analyses, we added a finer-resolution sampling of the quantities needed to
compute the matter contribution to the gravitational wave signal—i.e., density and velocity—to the HDF5 “Restart” files.

For Series-D, we are moving toward a fully HDF5-based system for large IO. We have implemented fixed-time-interval “Frame” HDF5
files, without the extra data for gravitational wave analysis, to replace the single-variable equivalents. The density and velocity information at
finer intervals is retained in “GW” HDF5 at intervals matching those of the “Restart” files from which the “GW” data have now been removed.
This separation of the data renders the “Restart” HDF5 files unnecessary after serving their primary role as checkpoint files for restarting a
simulation. (The “Frames” files contain the exact same data as the “Restart” files and can be used to restart a simulation, as well, if needed.)
The combination of “Frames”+“GW” HDF5 files retained for analysis is smaller than the set of “Restart” HDF5 files retained for the C-series.

2.4. Tracer Particles

In addition to the IO of grid-based data, CHIMERA also outputs data for passive Lagrangian tracer particles. These are used to
record the thermodynamic and neutrino exposure histories of individual mass elements that are then used for post-processing
analysis. Following each directional sweep of the hydrodynamics, the position of a tracer particle in that direction at time t n and
position q fr , ,n n n( ) is advanced to +tn 1 according to the simple Euler method:

= + D+r r u t , 2n n
r
n n1 ( )

q q= + Dq+ u

r
t , 3n n

n
n1 ( )

f f
q

= + Df+
u

r
t

sin
, 4n n

n

n
n1

( )
( )

9 hdfgroup.org
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assuming constant velocity q fu u u, ,r
n n n( ) through the time interval D = -+t t tn n n1 . For the B-series models, which were all 2D and

included 4000–8000 particles, individual output files were maintained for each tracer. These contained the physical quantities of interest,
linearly interpolated in radius to the tracer particle positions from the zone-center (cell-averaged) values of the computational grid; the
lone exception being the interpolation of differential neutrino number fluxes, which are defined at radial zone edges. Output for individual
particles was performed whenever the physical quantities of interest changed by 10% (see Harris et al. 2017, for more details).

For the C-series and later models, which included 3D models with as much as 400,000 tracers, this approach proved impractical; thus,
CHIMERA simply records the tracer positions in “Frames” and “Restart” files, with interpolation of quantities of interest relegated to a
post-processing step. Nucleosynthesis tests by Harris et al. (2017) show that output intervals of Δt∼1ms are sufficient in CCSN to
resolve the features in the thermodynamic profiles needed for accurate post-processing of the Lagrangian tracers. Thus, the computational
time expended on the temporally detailed individual particle traces written out in the B-series models can now be better spent elsewhere.

2.5. Scalability

To test the scalability of CHIMERA, we computed 3D models with all of the standard physics of the B- and C-series, started from
the same 15M☉ progenitor used in the B15-WH07 run (Bruenn et al. 2013, 2016), with 512 radial zones. Models were run from the
onset of collapse for a couple of hours for nθ of 32, 64, 128, and 256, with nf=2nθ, on the Cray XK7 (“Titan”) at OLCF, utilizing
“maximal decomposition” with one radial ray per process (MPI rank). The results plotted in Figure 5 use the version of the code used
for the C15-3D model (Lentz et al. 2015) and show slightly more than doubled wall time for the largest model relative to the smallest,
but the typical size of our actual production 3D runs are closer to the 32768-ray (128×256) model, which takes about 25% longer
than the smallest model to complete 100 steps.

2.6. CHIMERA Series

The lettered series of CHIMERA simulations are not in the strict sense of software engineering and development practices
“versions” of the code, but rather represent a combination of default physics, parameter choices, and a common code base used in
those simulations. As it has occurred, all of the series discussed in this paper have utilized different code bases, with progressive
improvement with each subsequent series, but in the future, we may use the series designation to separate groups of simulations with
different defaults run with the same code. The series label combined with a basic description of the progenitor and any deviations
from the series defaults are used to construct unique simulation designations to identify a model across publications.

Initially, there were separate 2D and 3D branches of the code and both were used for the simulations retroactively designated
“SeriesA” (Bruenn et al. 2009) with the 2D branch using only the binary IO for restart and plotting and the 3D branch using HDF5
for restarts. The Series-B runs included many improvements to the code and simulation design, reflecting the acquired experience of
SeriesA. While the 2D-only SeriesB code was running, the 3D code was optimized and became the only branch of CHIMERA for all
subsequent runs of any dimension and included changes to the code structure needed for the Yin-Yang grid. The Yin-Yang mesh was
not yet satisfactory when SeriesC was started and the major differences between that and SeriesD are the finalized Yin-Yang grid
and an improved radial-mesh motion routine. Major improvements were made to the handling of the NSE state and the boundary
with the non-NSE material handled by the network before Series-B, with geometric upgrades before SeriesD permitting free islands
of NSE or non-NSE material to embed, as necessary, in the other. Some operational choices in the dual EoS scheme were made for
SeriesB, while SeriesE added pre-tabulated equations of state (R. E. Landfield et al. 2020, in preparation). The temporal sub-cycling
of the non-radial sweeps deep in the core generated entropy and was replaced for SeriesB by a frozen core, wherein the non-radial
hydrodynamics was skipped, which was in turn replaced by a spherical averaging scheme late in SeriesB and used in all later series.

In the list that follows, we describe major differences between the code revisions used in the series indicated. For descriptions of the
utilized physics and default choices for resolution, the associated simulation papers should be referenced.

Figure 5. CHIMERA weak scaling for 100 cycles of full calculation on the Cray XK7 (OLCF Titan) for 32×64 (2048) rays to 256×512 (131072) rays, with one ray per core
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1. Series A
(a) EoS:LS180, ρ> ´ -1.7 10 g cm8 3

(b) Hydrodynamics: subcycle lateral sweep
(c) NSE: spherical boundary
(d) IO: binary restart and plot files

2. Series B
(a) EoS: LS220, ρ> ´ -1 10 g cm11 3

(b) Hydrodynamics: frozen core, carbuncle update
(c) NSE: 17-species (α, n, p, Fe56 ), boundary a function of latitude

3. Series C
(a) Opacities: shared points (Section 8.11.5)
(b) Hydrodynamics: averaged core
(c) Transport: shock fix (Section 6.12), Minerbo closure replaces geometric closure
(d) IO: merged restart and plot quantities into single HDF5 file
(e) Mesh: Yin-Yang 3D grid-related changes

3. Equation of State

In order for the hydrodynamics, nuclear transmutations, and neutrino transport to be tied closely to the thermodynamics, the
equation of state (EoS) must be invoked several times each cycle (See Figure 1). Furthermore, the EoS must provide not only the
quantities needed for the hydrodynamics—e.g., the pressure, internal energy, and entropy as a function of density, temperature, and
electron fraction—but the element composition and chemical potentials, as well, as these are needed for the computation of the
opacities which, in turn, are needed in the neutrino transport.

Furthermore, the derivatives of a number of these thermodynamic quantities are needed to compute, by a Newton–Raphson
iteration, updates in one or more independent variables given updates in other independent and dependent variables. For example, we
need the derivative of the internal energy with respect to temperature to update the temperature given updates in the internal energy,
density, and electron fraction. And we need the derivatives of the internal energy with respect to the temperature and electron fraction
(as well as derivatives of the neutrino opacities with respect to these variables) to build the Jacobian for the neutrino transport solve.

3.1. General EoS Methods

Two general cases must be distinguished when considering the thermodynamic state of the fluid, NSE, and non-NSE. In NSE, the
thermodynamic state of the fluid in a given zone is specified by the values of its density, ρ, temperature, T, and electron fraction, Ye. To
accommodate the demand for frequent EoS interrogations and the need for derivatives of some of the dependent thermodynamic
quantities, CHIMERA constructs a thermodynamic grid in ( r T Ylog , log , e)-space defined by a user specified number, dgrid m( ), of
evenly spaced points of rlog per decade change in ρ, a user specified number, tgrid m( ), of evenly spaced points of Tlog per decade
change in T, and a user specified number,ygrid m( ), of points inYe over the range [0, 1]. The index = 1, 2, 3m allows the user to select
three different thermodynamic grid resolutions for the three density ranges r r< 1es( ), r r r< <1 2es es( ) ( ), and r r> 2es( ), where r 1es( )
and ρes(2) are user selected densities. A particular dependent thermodynamic function, corresponding to the thermodynamic state
( r T Ylog , log , e), is computed by linear interpolation from its values at the eight surrounding grid points, which satisfy

r r r< < <+ + +  T T T Y Y Ylog log log , log log log , , 5i i j j k k1 1 e, 1 e e, ( )

where the ρi, Tj, andY ke, are the values of ρ, T, andYe at the grid points. Figure 6 shows a cell of the thermodynamic grid within which
the thermodynamic state, ( r T Ylog , log , e), is located. We will refer to the eight grid points surrounding a given mass zone as the
“surrounding grid points,” and the cell itself simply as the “EoS cell.” We emphasize that not all grid points of the thermodynamic
grid have thermodynamic quantities evaluated and stored there, but only those grid points surrounding the thermodynamic states of
mass zones, with a cell of grid points tied to each zone. Initially, the thermodynamic state of each mass zone gets a suite of
thermodynamic quantities computed and stored at the eight surrounding grid points. During a simulation, when the changing
thermodynamic state of a mass zone causes the state to enter a different EoS cell, the needed thermodynamic quantities are in turn
computed and stored on the grid points of that cell. Thus, thermodynamic quantities (and neutrino opacities) are computed on an “as
needed” basis, keeping the thermodynamic state of each mass zone surrounded by the needed thermodynamic quantities on the eight
nearest ( r T Ylog , log , e)-grid points. Lastly, to avoid involving an excessive number of quantities in internode communication when
transposing from one set of rays (radial, angular, or azimuthal) to another, the EoS grids along these rays are maintained
independently.

A total of 14 dependent EoS variables comprise the thermodynamic vector that is computed and stored at each of the grid points of
a cell surrounding the thermodynamic state of a mass zone. These quantities are the pressure, p; specific internal energy, e; specific
entropy, s; neutron chemical potential, μn; proton chemical potential, μp; electron chemical potential, μe; neutron mass fraction, Xn;
proton mass fraction, Xp; representative heavy nucleus mass fraction XH (nuclei with mass numbers greater than helium), along with
the mass number, A, charge number Z, and mean binding energy per particle bA of the representative heavy nucleus; the adiabatic
exponent rG = ¶ ¶ps s Y, e( ) , and the specific internal energy, eint, with the particle rest masses and arbitrary constants subtracted out.
The helium mass fraction, Xα, is not stored but is computed as = - - -aX X X X1 n p a. The specific internal energy, eint, is used to
compute the quantity rG = +p e 1e int , utilized by the Riemann solver to prevent unphysical G < 4 3e , which can cause post-shock
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oscillations in the some of the thermodynamic variables (Buras et al. 2006b). The formula used to interpolate a thermodynamic
quantity from its values at the eight surrounding grid points is differentiated (exactly) to obtain partial derivatives of that quantity
with respect to either ρ, T, or Ye, as needed.

To provide a sense of the accuracy of our EoS interpolation scheme, Figures 7 and 8 show the relative deviation of the pressure,
specific internal energy, and the neutron and proton chemical potentials obtained by direct output from our stellar EoS (described
below) versus interpolation in the EoS grid, for the grid resolution listed in the figures. The ρ, s, and Ye profiles used for generating

Figure 6. The thermodynamic state, r T Ylog , log , e( ), of a zone inside a grid element in r Tlog , log , and Ye space.

Figure 7. Relative deviation of representative thermodynamic quantities obtained by direct output from the EoS vs. by interpolation, for the listed EoS grid resolutions
and for a “Near Bounce” profile typical of a stellar core just prior to the formation of the bounce shock. Panels (a), (b), (c), and (d) show the relative deviation for the
pressure, internal energy, neutron chemical potential, and proton chemical potential, respectively.
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Figures 7 and 8 are representative of models near bounce but before the formation of the shock, and many tens of ms after bounce
during shock stagnation. We will refer to these profiles as “Near Bounce” (Figure 7) and “Shock Stagnation” (Figure 8). It is clear
from the figures that increasing the density resolution from 10 to 20 grid points per decade in density does not decrease the relative
deviation of these thermodynamic quantities except for densities above nuclear saturation. (The black and red curves lie on top of
each other below the saturation density.) Increasing the temperature resolution from 20 to 40 points per decade in temperature
(orange curve) reduces the relative deviation for all of the graphed quantities throughout most of the density range displayed.
Increasing the electron fraction resolution from 50 to 100 over the range [0, 1] in Ye decreases the relative deviation for quantities
(namely, abundances and chemical potentials) in regimes (low entropy) where there is a strong dependence on Ye—e.g., where there
is partial dissociation. The B-series models were performed with the EoS grid resolution of (d-, t-, ygrid) = 20, 20, 50, which,
except for a few exceptions described below, typically obtains values of interpolated thermodynamic quantities within a percent or so
of the values obtained directly from the EoS (in most cases less than a percent). The D-series models are being performed with the
higher grid resolution of (d-, t-, ygrid) = 20, 40, 100, which typically gives a relative deviation about five times smaller.

A few features of the graphs deserve comment. One feature is the slight kink in the temperature at ρ=1011 -g cm 3 in the “Near
Bounce” profile (Figure 7(a)), and is is due to the LS EoS—C EoS (see Section 3.2) transition at that density. Another is the
substantial relative error in the neutron chemical potential at a density of 2×1014 -g cm 3 for the “Near Bounce” profile, and at a
density of 2.5×1014 -g cm 3 for the “Shock Stagnation” profile. These are the densities for the respective profiles at which the
neutron chemical potentials pass through zero, so any slight deviation in the interpolated versus the directly obtained values for these
quantities will be amplified by their small absolute values when computing their relative deviations. The region where the neutron
chemical potentials change sign is shown in Figure 9 for the “Near Bounce” profile but is representative of the “Shock Stagnation”
profile as well. The spikes in the relative deviation of all quantities at 1.3×1014 -g cm 3 for the “Near Bounce” profile deserve
mention, as well. These are caused by the nuclei–nuclear matter phase transition at that density, and the abrupt change in composition
there. Table interpolation smooths this transition across the width of the density grid, while direct calls to the EoS see this transition
as a discontinuity. These spikes do not appear in the “Shock Stagnation” profile because the higher entropy results in matter being
completely dissociated at the above density, leading to a smoother transition across the nuclei–nuclear matter phase transition.

Figure 8. As in Figure 7 but for a “Shock Stagnation” profile representative of a stellar core during the epoch of shock stagnation.
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3.2. NSE EoSs

For CCSN simulations, the pressure, specific internal energy, and specific entropy are taken as the sum of contributions from
different species, namely,

= + + = + + = + ++ + +- + - + - +p p p p e e e e s s s s, , , 6ion e e rad ion e e rad ion e e rad ( )

where the subscripts “ion,” “e−+e+,” and “rad” denote contributions from nuclei, electrons and positrons, and photons,
respectively. For the B-, C-, and D-series runs, CHIMERA employs, for densities above 1011 -g cm 3, the K = 220MeV
incompressibility version of the Lattimer & Swesty (1991) (LS) EoS for the ion and photon components. (The retroactively named
A-series used the K= 180MeV version of LS EoS.) The LS EoS utilizes a compressible liquid drop model for nuclei modeled after
the Lamb et al. (1978) (LLPR) formalism, and considers an ion composition of free neutrons and protons, helium, and a
representative heavy nucleus. For matter in NSE at densities below 1011 -g cm 3 with <Ye

26
56, the Cooperstein (1985) (C) EoS is

used. The CEoS does not treat the high-density parameters of the liquid drop model (nuclear incompressibility modulus, surface
energy, symmetry energy) as consistently as the LS EoS, but it computes the mass fraction of helium more accurately than the LS
EoS in the regime below 1011 -g cm 3 where it is being employed. Advection of material across this EoS boundary requires consistent
tracking of the specific internal energy. (See Section 4.4.3 for details.) To improve the fidelity of the composition of matter that may
eventually become part of the ejecta, in regions of NSE where Ye

26
56 (the value of Z/A for Fe56 ) the NSE calculation in C EoS

has been upgraded to a 17-species representation of the composition, including free neutrons, free protons, the 14 even-Z and even-A
nuclei between He4 and Zn60 plus Fe56 . This NSE calculation functions similarly to others in the literature (e.g., Clifford &
Tayler 1965; Hartmann et al. 1985) but is limited by the small isotope set.

3.3. Nuclear Network and Non-NSE Region

In zones where the timescale required to reach NSE is larger than other physical timescales (e.g., those associated with the evolution
of stellar core fluid), the nuclear composition is evolved using the XNet thermonuclear reaction network code. In these regions, the
thermodynamic state depends on the isotopic composition, as well as ρ and T, and the electron fraction (Ye) is calculated from

= åY Z Ye i i i, where Zi is the proton number of an isotope and Yi is the molar abundance of that isotope.
The initial value problem presented by a nuclear reaction network for an isolated region (individual zone) can, in principle, be solved by a

wide range of methods discussed in the literature. However the physical nature of the problem, reflected in the wide range of reaction
timescales, renders these numerical systems stiff. The challenges of solving such stiff astrophysical systems are detailed in a number of
review articles on the subject (see, e.g., Hix & Meyer 2006; Travaglio & Hix 2013). In the A-, B- and C-series of CHIMERA models, XNet
utilizes the fully implicit Backward-Euler method, introduced to nuclear astrophysics by Arnett & Truran (1969). Data for these reactions is
drawn from the REACLIB compilation (Rauscher & Thielemann 2000). Unfortunately, the A- and B-series CHIMERA models neglect
screening of nuclear reactions. The nuclear state is updated for each non-NSE zone in each time step. As needed in each zone, the network is
sub-cycled until the hydrodynamic time step is reached.

Several pre-built networks available in CHIMERA are shown in Table 1. The A- and B-series models all utilize the simple 14-
species a-network alpha. The active nuclear material evolved in XNet excludes free protons, free neutrons, and an auxiliary heavy
nucleus that are advected with the nuclear composition. In the C-series models, we switched to the alpnp network that adds protons
and neutrons to the network, though the free nucleons are effectively inert, as their are no reactions included that connect them to
other species. The properties (mass and charge number, binding energy, and mass fraction) of the auxiliary heavy nucleus are taken
initially from the part of the composition of the progenitor that cannot be mapped onto the network species. For material that has
come out of NSE, the properties are taken from the sum of nuclei not included in the network composition vector. For networks

Figure 9. Neutron chemical potential for the “Near Bounce” profile, obtained directly from the EoS (black line) vs. by interpolation for (d-, t-, ygrid) = 20, 40, 100 (red
line). Slight differences in the chemical potential while it passes through zero at densities 2– ´ -3 10 g cm14 3are the cause of the large relative errors there. The “Shock
Stagnation” profile yields similar results and discrepancies.
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alpha and alpnp, this consists of Fe56 for Ye
26

56, or the representative heavy nucleus from the nuclear EoS for Ye
26

56. For
the various D-series models underway, the base network has been updated to anp56, which adds Fe56 as an additional unconnected,
inert species and permits the network to map directly to the 17-species NSE used by the extended C-EoS and also reduces the mass
fraction traced by the auxiliary heavy nucleus. These modifications to the network infrastructure primarily serve the development of
even larger networks (sn150 and sn160) for CCSN simulations. The D-series includes 2D and 3D simulations utilizing the sn160
network.

When not in NSE, the thermodynamic quantities for the EoS cell are computed assuming the same composition of nuclei on all
eight vertices. This gives rise to an apparent inconsistency, however, as the electron fraction, Ye, at some or all of the EoS grid points
will not correspond to the Ye of the composition of nuclei. Furthermore, the electron–positron contribution to the thermodynamic
vector at each EoS grid point is computed from the values of ρ, T, and Ye at that grid point, the result being that the Ye of the electron–
positron gas is not consistent with the Ye of the composition of nuclei at a grid point. This procedure, however, allows us to take finite
derivatives with respect to the electron fraction, albeit with some approximation, but accurate enough to stabilize the neutrino
transport in the non-NSE regions. At the same time, when the thermodynamic state of a mass zone is interpolated from the EoS cell,
the contribution of the ions will be based on a Ye common to all EoS cell points, while the contributions of the electron–positron gas
will be interpolated to the same Ye, and the two contributions will reflect the same value of Ye. The ions used to compute the
thermodynamic properties are those in the network, the heavy nucleus advected with the active composition, and, in the case of the
original alpha network used in Series A and B, the free nucleon mass fractions whose values are also stored with the
thermodynamic vector.

3.4. NSE Transition

CHIMERA’s treatment of the transition of matter into NSE is comparable to that used in other CCSN codes of similar capability
(Buras et al. 2006a; Müller et al. 2012; Nakamura et al. 2014; Skinner et al. 2019). The transition condition is motivated by the
temperatures and densities at which complete silicon burning would occur within the current global time step. For temperatures above
this threshold, the use of the nuclear network is superfluous, as the network will achieve NSE every time step. For transitioning into
NSE, there will be a slight change in the nuclear binding energy, due to the change of the representative nucleus, the ensemble of nuclei,
etc., and the extent of this change is one metric for gauging the accuracy of our assumption of NSE. In order to maintain hydrodynamic
stability across this transition, we adjust temperature to maintain constant pressure for a given density and electron fraction. This may
result in a small change in the specific internal energy (including binding energy), but the dynamical impact that results from the
transition between inconsistent thermodynamic states is minimized. The advection of material across an NSE/non-NSE interface in
either direction, as well as the transition into NSE and freeze-out from NSE of entire zones, includes the appropriate gain or loss of
nuclear binding energy (see Section 4.4.4 for details). In the A-series simulations, the NSE interface was a sphere of fixed radius, while
in the B-series simulations, the NSE boundary was independent for each radial ray. The C- and later series allow multiple NSE/non-
NSE interfaces along any coordinate direction.

To determine whether a zone is in NSE and may, therefore, be omitted from nuclear burning, CHIMERA applies an empirically
determined linear relationship between the NSE transition temperature, TNSE, and the density:

r
r r

=
+ < ´
´

-
T

C C if 2 10 g cm ;

6.5 10 K otherwise,
7NSE

1 2
8 3

9

⎧⎨⎩( ) ( )

where C1≡5.333 -K g cm1 3 and º ´C 5.433 10 K2
9 . At the beginning of a global timestep, any non-NSE zone for which

T TNSE is transitioned to NSE. A zone which is in NSE at the beginning of a timestep will be transitioned out of NSE if
< - ´T T 2 10 KNSE

8( ) and if the representative heavy nucleus, split into Ni56 and Fe56 , will result in less than half of the mass

Table 1
Available Nuclear Networks

Network Species

alpha He4 , C12 , O16 , Ne20 , Mg24 , Si28 , S32 , Ar36 , Ca40 , Ti44 , Cr48 , Fe52 , Ni56 , Zn60

alpnp na, H1 a, He4 , C12 , O16 , Ne20 , Mg24 , Si28 , S32 , Ar36 , Ca40 , Ti44 , Cr48 , Fe52 , Ni56 , Zn60

anp56 na, H1 a, He4 , C12 , O16 , Ne20 , Mg24 , Si28 , S32 , Ar36 , Ca40 , Ti44 , Cr48 , Fe52 , Fe56 a, Ni56 , Zn60

n, - H1 2 , - He3 4 , - Li6 7 , Be7,9 , B8,10,11 , - C12 14 , - N13 15 , - O14 18 , - F17 19 , - Ne18 22 , - Na21 23 ,
sn150 - Mg23 26 , - Al24 27 , - Si28 32 , - P29 33 , - S32 36 , - Cl33 37 , - Ar36 40 , - K37 41 , - Ca40 48 , - Sc43 49 ,

- Ti44 50 , - V46 51 , - Cr48 54 , - Mn50 55 , - Fe52 58 , - Co53 59 , - Ni56 62 , - Cu57 63 , - Zn59 66

n, - H1 2 , - He3 4 , - Li6 7 , Be7,9 , B8,10,11 , - C12 14 , - N13 15 , - O14 18 , - F17 19 , - Ne18 22 , - Na21 23 ,
sn160 - Mg23 26 , - Al25 27 , - Si28 32 , - P29 33 , - S32 36 , - Cl33 37 , - Ar36 40 , - K37 41 , - Ca40 48 , - Sc43 49 , - Ti44 51 ,

- V46 52 , - Cr48 54 , - Mn50 55 , - Fe52 58 , - Co53 59 , - Ni56 64 , - Cu57 65 , - Zn59 66 , - Ga62 64 , - Ge63 64

Note.
a Inert species, which are advected but not reactive.
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fraction being Fe56 . If this latter condition is not met, NSE is maintained as long as is practical, until the condition is met or until
< ´T 4.9 10 K9 , as the NSE representation of neutron-rich composition is better than that allowed by this limited network.
For simplicity, the transition out of NSE occurs when the temperature drops below this NSE condition (Equation (7) for CHIMERA).

However, for the rapidly changing conditions in expanding CCSN matter, the assumption of NSE has been shown to break down when
the temperature falls below 6GK (Meyer et al. 1998). For transitioning out of NSE using the alpha network (but before evolving the
network), the nuclear binding energy does not change. The NSE composition is evaluated using some analytically calculated state, but
the temperature is then adjusted so that, for a given density and electron fraction, we will get the same specific internal energy (including
binding energy) using a local EoS cube interpolation.

3.5. Electron–Positron EoS

The computation of the electron–positron component of the EoS is divided into five regimes (Figure 10) as described below. The
first major division is based on whether the electrons are relativistic or nonrelativistic. The electron–positron gas is regarded as
nonrelativistic if

< <e m c kT m c0.01 0.01 , 8nr,Fermi e
2

e
2 ( )

where the nonrelativistic electron Fermi energy, enr Fermi, is given by

p
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where = -- +n n ne e e is the net electron number density, -ne is the electron density, and +ne is the positron density. Otherwise, the
electron–positron gas is treated as relativistic.

If the electron–positron gas is relativistic, there are three regimes where different approximations are used: high temperature, very
degenerate, and intermediate. In the intermediate regime, the Fermi integrals for the electron–positron thermodynamic functions are
integrated numerically. Since this is the most computationally intensive procedure, it is first ascertained whether the thermodynamic
state can be considered to be in the high-temperature or the very degenerate regime. If the thermodynamic state is found to be in
neither of those regimes, the calculation of the thermodynamic functions begins with net electron density, given by
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where in the last expression b = m c kTe
2 , h m= kTe e , and the following substitutions have been made: =y p m ce , = +z y 12 2 ,

and b= -x z 1( ). To obtain he, the right-hand side of Equation (10) is integrated numerically by means of a 48-point Gauss–
Laguerre scheme using a guess for ηe, and then iterated for the ηe until the right-hand side equals ne to within one part in 10

6. Once ηe
is obtained, +pe p and +ee p, the latter of which includes the electron–positron rest mass energy, are obtained by 48-point

Figure 10. Regimes in the T–ρ plane, showing the different schemes for computing the electron–positron EoS quantities at =Y 0.5e .
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Gauss–Laguerre numerical integration of the following Fermi integrals
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The entropy is obtained from the pressure, specific internal energy, and chemical potential from the thermodynamic relation
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To determine whether the high-temperature approximation may be applied, Equation (10) is rewritten with the substitution
z=x+β to get
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The high-temperature approximation consists of setting β=0 in Equation (14) and performing the integrations analytically
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where c p= c kT n2 3
e( ) . The high-temperature approximation is then applied if β<2/3, or if β<2 and ηe given by

Equation (16) satisfies ηe>2β. The high-temperature approximation is applied if values of ρ and T lie above and to the right of the
solid red line in Figure 10. The solid red horizontal line at the left is given by the first condition above, the rest of the red line is given
by the second condition. The solid green line terminating in the curved red segment is given by the condition ηe>2β. Once ηe is
obtained, analytic expressions for +pe p and +ee p in the high-temperature approximation are given by
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where the F’s are the usual Fermi integrals. Substituting Equation (19) into Equation (13) for the entropy gives
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After computing the pressure from Equation (17), the entropy is computed from Equation (20), and then the specific internal energy
is computed from the thermodynamic relation

h= + -+ + +e n kT s Y p . 21e p B e p e e e p( ) ( )

The thermodynamic state is considered to be in the very degenerate regime if, as computed by Equation (16) or determined by
iterating Equation (10), ηe>35. In this case, the relativistic Sommerfeld approximation is used for the thermodynamic functions,
starting with
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which is iterated on =hx pc m ce
2, where p is the electron momentum, until the right-hand side is equal to -ne to one part in 106.

Once xη is determined, the other thermodynamic functions are computed as follows:
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If the nonrelativistic criteria in Equations (8) are satisfied, then there are two regimes in which different approximations are
applied. If > kT 35F , the nonrelativistic Sommerfeld approximation is used, otherwise the nonrelativistic Fermi integrals for the
electrons are integrated numerically. In the latter case, the Fermi integral for the electron number density
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is integrated by a 48-point Gauss–Laguerre scheme and iterated on ηe until the right and left sides of Equation (27) are equal to one
part in 106. Once ηe has been obtained, μe is computed by m h= +kT m ce e e

2, and the electron pressure, specific internal energy, and
entropy are obtained by
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In the case that > kT 35F , the Sommerfeld approximations for the nonrelativistic Fermi expressions are used. Thus, the electron
density is given by
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Equation (30) is iterated on ηe as described above, μe is then computed also as described above, and the electron pressure, specific
internal energy, and entropy are obtained by
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The accuracies of the various approximations are indicated by the relative deviations of the electron–positron pressure and specific
internal energy as computed by pairs of these approximations at the boundaries separating their respective regimes of applicability.
This is shown in Figure 11, which indicates that relative deviations are at most a few tenths of a percent. The discontinuity between
approximation regimes is smoothed by the finite resolution of the EoS table.

3.6. Double-γ EoS

A “2γ,” thermodynamically consistent EoS has been developed, simple enough to be completely analytic, yet rich enough to be
used for testing the hydrodynamics and transport modules of CHIMERA. A system of completely degenerate and relativistic free
electrons, partially degenerate interacting neutrons, and nondegenerate free protons, is modeled by the free energy
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Figure 11. Panel(a): for the T profile of the Gauss–Laguerre—Sommerfeld boundary (blue line; right axis), the normalized deviation ( -X X X ;A B B  left axis) for
electron pressure (p ;e black solid line) and electron specific kinetic energy (e ;e, kin red line) between the Gauss–Laguerre integration and Sommerfeld approximation.
The short segments on the right side show the relative deviation of the electron–positron pressure ( +- +p ;e e orange) and the electron–positron specific kinetic energy
( +- +e ;e e ,kin green) as computed with the relativistic and nonrelativistic formalisms at the relativistic–nonrelativistic transition density. Panel(b): for the T profile (blue)
at the boundaries of (i) the high-temperature approximation and Gauss–Laguerre integration regions (solid lines) and (ii) the Relativistic Sommerfeld approximation
and Gauss–Laguerre integration regions (dashed lines), we plot the normalized deviation of electron–positron pressure ( +- +p ;e e black) and specific internal energy
( +- +e ;int,e e red).
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where mB is the baryon mass, gn=gp=2 are the statistical weights of the neutrons and protons, k and h have their usual meanings,
and γ1, γ2, F1, F2, Ecoef, and ºX Np p/ r =mB( ) rº - = - =- +Y N N m X1e e e B n( ) ( ) rN mn B( ) are free parameters. The mass
fraction of free protons, Xp, is typically taken to be 0.5, and the parameters γ1 and F1 are typically chosen to be
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so that the first term on the right-had side of Equation (33) represents completely degenerate and extremely relativistic free electrons.
Given the above expression for the free energy, the pressure is
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We choose F2 so that the contributions of the first two terms for p in Equation (36) become equal at ρnuc, which, for the case in which
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The entropy of the system is given by
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The internal energy of the system is given by
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Lastly, the chemical potentials are given by
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That all of the thermodynamic functions are derived from an analytic thermodynamic potential, namely, the free energy, insures that
the EoS is thermodynamically consistent. Furthermore, being completely analytic and simple, the interpolation scheme described
above is not necessary when using this EoS. Derivatives of thermodynamic functions can be obtained analytically, and expressions
for the independent variables, ρ, T, and Ye can be solved for directly without having to invert a complicated expression by resorting to
an iteration scheme.
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4. Hydrodynamics

CHIMERA’s hydrodynamics are evolved using a dimensionally split, Lagrangian-plus-remap version of the Piecewise Parabolic
Method (PPMLR; Colella & Woodward 1984) as implemented in VH1 (Hawley et al. 2012) but extended to include multi-species
advection, multidimensional gravity, neutrino coupling (energy and momentum) to the hydrodynamics, and radial grid movement.
PPM is a high-order Godunov-type scheme (Godunov 1959; van Leer 1979) in which fluxes at zone interfaces are calculated from
solutions of the Riemann problem and, therefore, are well suited for capturing shocks and contact discontinuities within one or two
zones. The PPMLR evolves the zone averages of the density, ρ, fluid velocity, u, specific internal energy, eint, electron fraction, Ye,
mass fractions, Xn, of nuclear ion species in regions that are not in NSE (non-NSE regions), and zero-angular moments of the
neutrino distribution functions yn

0( ).
There are several advantages to a Lagrangian-plus-remap for CCSN simulations. For explicit differencing, the time step constraints

are less severe, as they are only applied during the Lagrangian step and depend only on the Lagrangian wave speeds rather than the
sum of the Lagrangian wave plus advection speeds. Furthermore, in, for example, a quasi-Eulerian approach, the remap does not
have to map the grid back to its placement prior to the Lagrangian step but can allow the grid to evolve to accommodate itself to
changing physical situations, such as moving with the fluid during core infall, thereby keeping the fluid well resolved or ensuring
adequate zoning in the vicinity of the neutrinosphere during the formation of the density cliff or tracking the interface between two
compositionally different fluids.

While the hydrodynamics can be performed in either Cartesian, cylindrical or spherical coordinates, the neutrino radiation
transport is performed in the “RbR” approximation (Section 6) and requires a spherical coordinate system. We will therefore limit our
discussion to spherical coordinate systems, as these are the coordinate systems that have been used for all CHIMERA CCSN
simulations.

4.1. General Overview

The method of solution of the hydrodynamics equations is a finite-volume method, wherein conserved quantities are represented as
integrated over computational volumes, or zones, and changes to these variables occur by means of sources or sinks or by means of
fluxes through zone boundaries due to the relative velocity between the fluid and these boundaries. CHIMERA uses a Lagrangian-
plus-remap version of the PPM method, which can be described by considering the zone-integrated conserved quantity, xq t,( ),
integrated over a computational element, ΔV(t), whose boundaries may be time-dependent
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where the second line results from the use of the Reynolds transport theorem, with ug, which we will refer to as the grid velocity,
being the velocity of the bounding surface DS t( ) of the zone volume DV t( ). The first term in the third line is the flux of xq t,( )
across the surface ΔS(t) due to the fluid velocity u, assuming linear flux and the surface ΔS(t) to be fixed, and the second term
represents a possible volume source  x t,q( ) of xq t,( ). To calculate dQ dt, CHIMERA splits the calculation into two steps,
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In “step 1,” the grid velocity is set equal to the fluid velocity and the resulting equation
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is solved. This is just the Lagrangian form of the equation for ¶ ¶xQ t t,( ) . In “step 2,” the fluid velocity is set to zero and the initial
configuration of  x t,q( ) is that of its final configuration after “step 1.” The grid is then given a prescribed velocity so that
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If the grid velocity, ug, is chosen to be the negative of the fluid velocity, u, then “step 1” plus “step 2” would be equivalent to
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which is just the Eulerian form of the equation for ¶ ¶xQ t t,( ) . For the θ- and f-grid, we choose to set = -u ug to keep these grids
stationary. For the radial grid, however, we use the freedom of choice for ug to make the grid dynamically adaptive, allowing it to
move in such a way as to maintain good resolution during such epochs as core collapse or the formation of a density cliff in the
vicinity of the neutrinospheres.

4.2. PPM Interpolation Scheme

The solution of the hydrodynamics equations proceeds in a dimensionally split manner. We will describe the solution as it proceeds in
a particular, but otherwise arbitrary, dimension and will refer to a specific dimension (e.g., r, θ, or f) only when expressions specific to
this dimension arise. In order to construct the finite difference representations of the underlying partial differential equations that
CHIMERA solves, a discrete grid is set up dividing the interval ξmin to ξmax into a total of I zones, where ξ is the parameter (r, θ, or f)
specifying the coordinate distance along a ray in a given dimension. Figure 12 illustrates our indexing convection. At each end of the grid,
six ghost zones are appended to hold boundary values of the quantities stored in the real zones 1K I. In a given dimension, both the
Lagrangian and the remap steps in PPMLR hydrodynamics begin by constructing zone interface values of primitive quantities, such as ρ,
p, and the components of u, from zone-average values of these quantities. Lufkin & Hawley (1993) have shown that a differencing
scheme that uses zone averages to represent fluid variables will not converge to the continuity equation (essential for conserving
quantities during advection) unless the interpolation scheme, a(ξ), for the zone-averaged quantities, ai, satisfies
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where Vi is the volume of zone i, and xdV d is the one-dimensional Jacobian determinant for V.
The interpolation scheme used here is the same as that described in Colella & Woodward (1984), as modified by Blondin & Lufkin

(1993) to accommodate curvilinear coordinates while at the same time representing a linear velocity field accurately near coordinate
boundaries—e.g., r=0 in the radial dimension. The procedure for determining the zone interface value at i−1
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A a V . 52i
k i

k k1
2

( )

The desired interpolating polynomial, a(ξ), is given by the integrand of the indefinite integral

ò òx x x x
x

x= ¢ ¢ = ¢
¢

¢
x x

A a dV a
dV

d
d ; 53( ) ( ) ( ) ( ) ( )

that is,

x
x
x x

=
-

a
dA

d

dV

d
. 54

1⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

Figure 12. Schematic representation of the grid used to construct the finite-difference equations for the hydrodynamics in any given dimension. Integer zone indices
represent zones, and half-integer zone indices represent zone interfaces.
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By construction, each cubic polynomial a(ξ) so obtained has the desired property

ò x
x

xD =
¢

¢ = - +
x

x

-

+
a V a

dV

d
d j i i2, , 1. 55j j

j

j

1
2

1
2 ( ) ( )

The interface value, -ai 1
2
, is obtained from Equation (54) by evaluating it at x x= -i 1

2
:

x
x x

=-
- -

-

a
dA

d

dV

d
, 56i

i i

1

1
2

1
2

1
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( ) ( )

where the explicit expression for A(ξ) is given by Equations (12) and (13) in Blondin & Lufkin (1993).
The interpolation for -ai 1

2
given by Blondin & Lufkin (1993) differs from Equations (1.6) and (1.7) of Colella & Woodward

(1984). In the former publication, the zone-averaged quantities ai are multiplied by the geometry-dependent correction factors
xD DVi i. Denoting these geometry corrected quantities by ai*, we have

x
=

D
D

a a
V

, 57i i
i

i

* ( )

where the geometry-dependent correction factor xD DVi i is given by

x

x x x x

x x x q

f

D
D

=

+ +

- D

- - + +

- +

V
r

1

3
, direction

cos cos , direction

1, direction

58i

i

i i i i

i i i

2 2
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2
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1
2

1
2

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) ‐

( ) ‐

‐

( )

and where

x x xD = -+ - . 59i i i1
2

1
2

( )

The average slope, dai*, of the parabolas are then computed from Equation (1.7) of Colella & Woodward (1984) but using the
quantities a ;i* e.g.,

d
x

x x x
x x
x x

x x
x x

=
D

D + D + D
D + D
D + D

D +
D + D

D + D
D

- +

-

+
+

+

-
-a a a

2 2
, 60i

i
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i i
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1 1
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* * *
⎡
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⎤
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where

D = -- -a a a . 61i i i 11
2

* * * ( )

The dai* are then modified as follows (see; Colella & Woodward 1984, Equation (1.8)):

d
d d

=
- - D D >

D D <

+ - + -

+ -

a
a a a a a a a a

a a

min , 2 , 2 sign , if 0,

0 if 0.
62m i

i i i i i i i i

i i

1 1 1
2

1
2

1
2

1
2

*
* * * * * * * *

* *

⎧
⎨⎪
⎩⎪

(∣ ∣ ∣ ∣ ∣ ∣) ( )
( )

The modifications for both cases implement monotonicity constraints, ensuring that no new maxima or minima appear (i.e., that -ai 1
2
lies in

the range of ai* and -ai 1* ), and in the case of D D >+ -a a 0
i i1

2
1
2

* * lead to somewhat steeper representations of discontinuities.

Given ai* and d am i*, the interface value +ai 1
2
is now obtained from the cubic interpolating polynomial, Equation (54), which is

Equation (1.6) of Colella & Woodward (1984) with the geometry-dependent corrections applied as above in Equation (57) and below
in Equation (64):

x
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x
=

¶
¶

+ +
+

-

a a
V

, 64i i
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1
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2 1

2
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x x
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where the values at x = 01
2

are to avoid singularities in Equation (64). Finally, the range of aR i, is limited to be within the range of ai
and +ai 1:

= + +a a a amax , min , , 66R i i i i, 11
2

( ( )) ( )
= +a a a amin , max , , 67R i R i i i, , 1( ( )) ( )

and

=+a a , 68L i R i, 1 , ( )

where +aL i, 1 is the value of a(ξ) at the left interface of zone i+1, and aR i, is its value at the right interface of zone i. At zone
boundaries, aL i, and aR i, must be modified in certain cases as follows. In the r-direction, if x = 01

2
, then aL i, must be modified in a

manner depending on whether the variable is odd (e.g., velocity) or even (e.g., density, specific energy) at the origin:

= = =

= - = =

a a r

a a a a a r

0, 0, odd variables at 0,
5

2

3

2
, even variables at 0. 69

R L

R L L R

,0 ,1

,0 1 ,2 ,1 ,0 ( )

In the θ-direction, if x q= =0 01
2

( ) and reflecting boundary conditions are imposed,

q
q

= = =
= + = =

a a

a a a a a

0, 0, odd variables at 0,

6 7, even variables at 0, 70
R L

R L L R

,0 ,1

,0 1 ,2 ,1 ,0( ) ( )

and if x q p= =+ 0I 1
2

( ),

q p
q p

= = =
= + = =

+

- +

a a

a a a a a

0, 0, odd variables at ,

6 7, even variables at . 71
R I L I

R I I L I L I R I

, , 1

, , 1 , 1 ,( ) ( )

In the presence of shocks, post-shock oscillations sometimes occur in some of the fluid variables, e.g., entropy (Colella &
Woodward 1984, Section 4). One method of suppressing these oscillations is to introduce some additional dissipation in the vicinity
of a shock. The method used here is to lower the order of the interpolation (i.e., flatten the interpolation profile) in the vicinity of a
shock. Thus, in the vicinity of a shock, aL,I and aR,I are modified as follows:

= + -
= + -

a a f a f

a a f a f

1 ,
1 , 72

L I i L I

R I i R I

, ,

, ,

( )
( ) ( )

where the “flattening parameter,” 0�f�1, is zero away from shocks and approaches a user preset value fset�1 in the limit of a
strong shock with a steep profile.

The flattening parameter fi is computed similarly to that described in Fryxell et al. (2000) and begins with the computation of the
pressure profile p iprofile given by

=
-

-
+ -

+ -

p
p p

p p
. 73i

i i

i i
profile

1 1

2 2

( )

The presence of a shock is indicated if this quantity approaches 1, i.e., when - » -+ - + -p p p pi i i i2 2 1 1. For smooth flows,
- » ´ -+ - + -p p p p2i i i i2 2 1 1( ) and »p 1 2iprofile . A pre-flattening parameter f ipre is then computed from

w w= - ´f pmax , 0 , 74i ipre profile 1 2[( ) ] ( )

where ω1 and ω1 are user selected parameters. We have found that 0.75 and 10 work well for ω1 and ω2 during the early stages of a
simulation when the shock is nearly spherically symmetric, completely eliminating post-shock oscillations, and 0.6 and 10 work well
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thereafter better capturing oblique shocks. The pre-flattening parameter is set to zero if

- + -
<+

+ - - +

p p i

p p p p

1

min max , 0.05 , max , 0.05

1

3
, 75i

i i i i

1

1 1 1 1

∣ ∣
[ ( ) ( )]

( )

which indicates an insufficient pressure jump, and if

<- +u u , 76i i1 1 ( )

which indicates a velocity jump in the wrong direction. Finally, the flattening parameter is given by

= - +f f f f fmax 0, min , max , , . 77i i i iset pre 1 pre pre 1{ [ ( )]} ( )

This limits the value of fi to  f0 set and sets the value fi based on the maximum value of fpre in zone i and the neighboring zones.
Experimentation has indicated that fset=1 works well when the shock is approximately spherically symmetric, and fset=0.5 works
well thereafter.

With the values of aL i, and aR i, for each zone i determined, a piecewise parabolic interpolation function, a(ξ), is constructed with
a(ξ) given by a parabolic profile in each zone:

x
x x

x x
x x x= + D + - =

-

-
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+ -
- + a a x a a x x1 , , 78L i i i
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2
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2
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2

( ) ( ( )) ( )

where

D = -a a a , 79i R i L i, , ( )

and where a i6, . The parameter a i6, must now be determined so that Equation (51) is satisfied. The expressions for a i6, are given by
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In addition to the constraints imposed by Equations (62) and (66)–(68), the following monotonicity constraints are imposed to
avoid the possibility of the interpolating function taking on values not between aL i, and aR i, , which could otherwise lead to its
developing spurious oscillations:
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where

=
+ -

=
- +

+ -
 


 

6

3 1 3
,

6

3 1 3
. 89r

r r
r

r r
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The need to use the monotonized expression for the left and right states arises if the parabola exceeds either of these states. With Δai
given by Equation (79), we thus have

= D < Da a a a aif , 90L i L i i i i, , ,mon
2

6,( ) ( )

= D < -Da a a a aif . 91R i R i i i i, , ,mon
2

6,( ) ( )

With these now monotonized values of aL i, and aR i, , the quantities Dai, and a i6, are recomputed from Equations (79) and(80). This
completes the piecewise parabolic interpolation for the profile, a(ξ), of zone-averaged variables ai.

4.3. Lagrangian Step

The equations describing the change in the hydrodynamic variables during the Lagrangian step are:

ò r =
d

dt
dV 0, 92

V t
( )

( )

ò ò òr r= - + - + +nu n f f
d

dt
dV p dS e dV , 93

V t S t V t
grav ccor( ) ˆ [ ] ( )

( ) ( ) ( )

ò ò òr r+ =- + - + n 94u n u f
d

dt
e e dV p dS e dV ,

V t S t V t
int kin grav ( )( ) · ˆ · [ ]

( ) ( ) ( )

ò r =
¶
¶ n

d

dt
Y dV

Y

t
, and 95

V t
e

e

interactions

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( ) ‐

ò r =
¶
¶ n

d

dt
X dV

X

t
, 96

V t
n

n

interactions, nuclear reactions

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( ) ‐

where V(t) and S(t) are the volume and surface of a grid element or mass zone as it comoves with the fluid, n̂ is a unit vector normal
to dS and pointing out of the mass zone, egrav is the gravitational potential, nf is the specific neutrino stress, and fccor denotes the
centrifugal and Coriolis forces. The time derivatives are taken at constant mass (i.e., are Lagrangian time derivatives). The
expressions in the brackets on the right-hand sides of Equations (95) and (96) denote the changes in the electron fraction, Ye, due to
neutrino transport and in the composition mass fractions, Xn, due to both neutrino transport and nuclear reactions, and are calculated
elsewhere in the computational sweep, as described in Sections 6.8 and 3.3. During the Lagrangian hydrodynamics step, these
expressions are set to zero.

Equation (94) is a common formulation of energy conservation on which difference schemes are subsequently constructed (e.g.,
Stone & Norman 1992; Bryan et al. 1995; Fryxell et al. 2000; Sutherland 2010). CHIMERA uses two alternative formulations of
energy conservation, depending on the circumstances. Using Equations (92) and (93) in Equation (94), the following expression for
eint can be derived:

r
r

=
¶
¶

de

dt

p

t
, 97

S Y

int

, e

⎜ ⎟⎛
⎝

⎞
⎠ ( )

which is just the first law in the absence of changes in entropy and electron fraction. This equation is applicable for updating the
specific internal energy during the Lagrangian step in regions well away from shocks. It is more accurate numerically, in some
cases, than updating the specific total energy as it does not ultimately involve the subtraction of potentially large values of the
specific kinetic energy and the gravitational potential (if the latter is also included as a component in the specific total energy). In
the vicinity of shocks, however, the specific total energy must be updated from the solution of the Riemann shock tube problem
for the pressure and velocity at the zone interfaces. To do this, the term involving r u egrav· on the right-hand side of the energy
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Equation (94) is transformed as follows:

ò ò
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Substituting Equation (98) in Equation (94) results in the following equation for the total energy (including gravitational energy)

ò ò òr r r+ + = - + +
¶

¶nu n u f
d

dt
e e e dV p dS

e

t
dV . 99

V t S t V t
int kin grav

grav⎡
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⎤
⎦⎥( ) · ˆ · ( )

( ) ( ) ( )

Equation (99) is used in the radial-sweep to update the specific total energy in the vicinity of a shock. For the θ- and f-sweeps,
changes in the gravitational potential are very small, and Equation (94) is used with the gradient of the gravitational potential on the
right-hand side treated as a force.

To perform the Lagrangian update, the first step is to compute the displacement of the zone interfaces, after which Equations (92),
(93), (95), (96), and(97) or(99) are used to update ρ, the components of u, Ye, and eint. The displacement of each zone interface
during the Lagrangian step is determined by solving a Riemann problem for the velocity of the contact discontinuity at the zone
interface. This requires averages of the needed quantities over the domains of dependences of the left and right states. Rather than
solving the exact Riemann problem, which is time consuming, as it is complicated and involves multiple calls to the EoS, CHIMERA
uses the approximate but very accurate method developed by Colella & Glaz (1985). This method parameterizes the EoS by the
slowly varying quantity γ, given by

g
r

= +
p

e
1, 100

int
( )

and the adiabatic exponent, Γ, defined by

r
G =

¶
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p

. 101
S Y, e

⎛
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⎞
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A solution for the approximate Riemann problem requires the values of the quantities ρ, u (the component of velocity in the
direction of the directional splitting), p, γ, and Γ to the left and right of each zone interface. To maintain high-order accuracy, the
values of each of these quantities are averaged over their domain of dependence of the zone interface as determined by the time step.
This is accomplished for each zone interface by tracing the two characteristics from the interface at time t+Δt to the ξ axis at time t.
Having speeds of ±cs, where cs is the local sound speed, the two characteristics intersect the ξ axis on either side of the interface at

the points x + D+ c ti s1
2

and x - D+ c ti s1
2

. Letting ai represent any one of the above quantities, the average, á ñ +
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where Δai is given by Equation (79), Δξi is given by Equation (59), and r= Gc pi i i is,
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The time-averaged left and right states, á ñ+
+p L i, 1

2
, á ñ+

+p R i, 1
2
, á ñ +u L i, 1

2
, á ñ +u R i, 1

2
of p and u are obtained from Equations (102) and

(103) above, and the time-averaged pressure is then corrected for the presence of gravitational, neutrino, centrifugal, and Coriolis
forces by
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Given the time-averaged states of p and u to the left and right of each zone interface, x +i 1
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Equations (106)–(109) are iterated for +
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1
2
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2 and +
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2 by the secant method.
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2 for each of the zone interfaces, the Lagrangian update proceeds as follows. With the values of
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2 determined, the zone interfaces are considered impenetrable and their positions are updated by
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where the superscripts n and + ¢n 1 denote the value of a variable at time t and at the end of the Lagrangian step at time + Dt t,
respectively. A superscript n+1

2
denotes a time-centered value of a variable. We reserve the superscript +n 1 for the value of a

variable after both the Lagrangian and the remap step have been completed. From Equation (92), the density is then updated by
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Because of the conservation of mass in each zone during the Lagrangian step, as expressed by Equation (92), and in differenced form
by Equation (111), Equation (95) for the change in Ye and Equation (96) for the change in the composition mass fractions, Xi, with
their right-hand sides set to zero, state the obvious: Ye and Xi are unchanged during the Lagrangian step.

Equation (93) with the help of Equation (92) can be rewritten in differential form as
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where, again, the time derivative is a Lagrangian time derivative. In component form, Equation (112) becomes

r

r q q q
q

r q f q f q
q

=-
¶
¶

-
¶

¶
+ +

+

=-
¶
¶

-
¶

¶
+ + -

=-
¶
¶

-
¶

¶
+ - -

n
q f

q
n q

f q

f
n f

q f f

du

dt

p

r

e

r
f

u u

r

du

dt r

p

r

e
f

u

r

u u

r

du

dt r

p

r

e
f

u u

r

u u

r

1
,

1 1 1

sin
cos ,

1 1

sin

1

sin sin
cos . 113

r
r

r

r

grav
,

2 2

grav
,

2

grav
, ( )

For the radial sweep, the neutrino stress term, nf r, , is computed as described by the right-most term on the right-hand side of
Equation (250). Because of the RbR approximation adopted by CHIMERA for neutrino transport, the values for n qf , and n ff , appearing
in the θ- and f-sweeps cannot be obtained directly as an outcome of the transport as can nf r, for the radial sweep. To include n qf , and

n ff , in an approximate way, we regard the matter as being completely neutrino-opaque at densities above 1012 -g cm 3 and completely
transparent at lower densities. The neutrino distribution in each zone is thus assumed to behave like an isotropic, completely
relativistic gas at densities above 1012 -g cm 3, whose effect on the hydrodynamics is computed by means of their corresponding
pressure, np , and specific energy, ne . For densities below 1012 -g cm 3, np and ne are set to zero. The neutrino stress for the θ- and f-
sweeps is either that of an isotropic gas entrained with the matter (above 1012 -g cm 3) or zero (below 1012 -g cm 3). As a result, we set

n qf , and n ff , to zero and include np (nonzero above 1012 -g cm 3) in the material pressure, and the sum is PPM interpolated and

incorporated into +
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2 and is then used to update the specific internal energy, with ne i, incorporated into and later extracted

from e iint, .
The finite difference approximations to Equations (113) are
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is the volume swept out by the change in the position of the ith+1 interface

in the time interval Dt and is given by

q q q q q

f

=

+ +

- -+

+
+ ¢

+
+ ¢

+ +

+ +
+ ¢

+
+ 

+
A

r r r r r direction,

cos cos direction,

1 direction.

116i

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

1

3
1 2 1 2

1 11
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

⎧
⎨
⎪⎪

⎩
⎪⎪

( )( ) ( ) ‐

( ) ( ) ‐

‐

( )

+f i
n

cenfugal,

1
2 includes the last term in Equations (113) for the r-direction sweep and the second-to-last term in Equations (113) for the θ-

direction sweep. The last term in Equation (113) for the θ-direction sweep is an expression for the change in qu due to a change in the
radial position by virtue of angular momentum conservation. Rather than including this term in Equation (113), its contribution to the
change in uθ is updated in the r-sweep by the equivalent expression
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Similarly, the last two terms in Equation (113) for the f-direction sweeps are expressions for angular momentum conservation about
the z-axis due to a change in the θ and radial positions, respectively. Rather than including these terms in Equation (113), their
contributions to the change in uf are updated in the θ- and r-direction sweeps by the equivalent expressions

q

q
= =f f f f

+ ¢
+ ¢

+ ¢
+ ¢

u u
r

r
u u

r

r

sin

sin
, . 118i

n
i

n i i
n

i i
n i

n
i

n i
n

i
n,

1
, 1 ,

1
, 1

( )

26

The Astrophysical Journal Supplement Series, 248:11 (94pp), 2020 May Bruenn et al.



The time-centered value of the gravitational potential, fg, is obtained by extrapolation, as described in Section 4.6. The two
centrifugal force terms are differenced as follows:
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where the time-centering of ri in the r-direction and qi in the θ-direction is performed explicitly by averaging their values at time n
and +n 1, and the time-centering of the other variables is approximately accomplished by the symmetric way in which the
directional splitting is performed, as described in Section 2.1. Finally, the neutrino stress term nf i

n
, is not time centered. A second

execution of the neutrino transport would be required to center it. This term is small and slowly varying in time, so we include it to
the first-order only and avoid the significant additional cost that would be paid were we to include it with second-order accuracy.

The specific internal energy is updated differently depending on whether the zone is in the vicinity of a shock or away from
shocks. In the vicinity of a shock, the results of solving the Rankine–Hugoniot equations must be used, as the flow there is non-
isentropic. In this case, the specific total energy is updated as given, in general form, by Equation (99) for the radial sweep, and
Equation (94) for the θ- and f-sweeps. Specifically, for the radial-sweep, the specific total energy, = + +e e e etot int kin grav, is
updated by
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where + ¢ui
n 1 is given by Equation (114). The ¶ ¶e tgrav term in Equation (99) has been omitted at this stage but is included later in the

radial sweep. For the θ- and f-sweeps, the specific energy, = +¢e e etot int kin, is updated by
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Away from shocks, the specific energy could still be updated as above, but errors might then arise during the remap step when
subtracting the specific kinetic energy from the specific total energy. The problem arises from the use of á ñu 2 in the expression for the
specific kinetic energy rather than á ñu2 . The two expressions can differ importantly in supersonic flow and near reflection boundaries
where the gradient of u can be large (see Blondin & Lufkin 1993, for a discussion of this point). Computing á ñu2 would be costly in a
multidimensional simulation, as it would involve a multidimensional integration over the components of u and may not be well
defined. Instead, CHIMERA updates the specific internal energy using the first law of thermodynamics, assuming isentropic and
constant-composition flow, as non-isentropic changes due to nuclear and neutrino sources are computed elsewhere by operator
splitting.

The update of the specific internal energy thus takes the form
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where the time-centering of the pressure p is accomplished by a predictor-corrector loop, completing the Lagrangian step.

4.4. Remap Step

Following the Lagrangian step, in the case of the θ- and f-sweeps, the grid is remapped back to the configuration that prevailed
before the Lagrangian step, thus, making the combination of a Lagrangian step and a remap step effectively an Eulerian step. In the
case of the radial sweep, the grid is remapped back to a configuration specified by the regridder, which will be described in
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Section 4.5. Via the regridder options, the user can specify that the grid following the Lagrangian step be left as is, remapped back to
the configuration that prevailed before the Lagrangian step, or, by invoking one of the regridder algorithms, remapped to a
configuration that tends to optimize the resolution of structures that develop during a simulation.

4.4.1. Remapping Mass, Momenta, and Angular Momenta

For quantities like the mass, specific momenta (momenta per gram), and specific angular momenta, the remapping procedure is
straightforward. Denoting, as before, the values of the grid and other variables after the Lagrangian step by the superscript + ¢n 1 ,
and after the remap step by the superscript +n 1, the difference dx , between the values of the grid variables at + ¢n 1 and +n 1,
given by
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The zone mass after the remap step, +i
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The remap step is finally completed by performing the advection:
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Negative values of d +
+ ¢
i
n 1

1
2
or d -
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mean simply that the advection proceeds from right to left rather than in the other direction. The

advection step is conservative since the same amount of a given quantity enters a zone as leaves the adjacent zone. Again, the sign of
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i
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determines whether the advection is from zone i to zone +i 1, or vice versa.

4.4.2. Remapping Composition and Electron Fraction

The algorithm for the advection of the composition mass fractions, Xn, and net electron fraction, Ye, depends on whether the matter
on either side of the zone interface is in NSE or not (non-NSE). If the the advection is between zones in NSE, the composition is
given by the EoS as a function of the values of ρ, eint, and Ye of the material being advected. In this case, no explicit advection of
composition mass fractions needs to be performed. The advection of Ye in this case proceeds as described in Section 4.4.1 above. If
the advection is between zones in non-NSE, then along with ρ and eint, the advection of the composition mass fractions, Xn, is carried
out explicitly as described in Section 4.4.1 and in accordance with the consistent multi-fluid advection method of Plewa & Müller
(1999). That is, the average value of each composition mass fraction Xn to be advected is computed by Equations (102) or (103)
depending on whether dx is positive or negative. The resulting composition in the mass to be advected is then normalized to unity
before performing the advection. In order for the net Ye advected in this case to be consistent with the net proton fraction of the
advected composition, the Ye advected is taken to be that of the net Ye of the advected composition.

If the advection is from a zone in non-NSE to one in NSE, the composition of the material to be advected is computed as described
above for the non-NSE to non-NSE case. The material advected is then assumed to become part of the NSE material in the acceptor zone,
and only the independent thermodynamic variables ρ, eint, andYe of the material to be advected are advected. Finally, if material is advected
from a zone in NSE to one in non-NSE, the material advected is first “deflashed,” that is, its NSE composition mass fractions are extracted
from the EoS, stored in a temporary mass fraction array, and advected as described above for the case of two adjacent non-NSE zones.

4.4.3. Multiple EoSs and the Energy Remap

CHIMERA is designed to accommodate multiple EoSs that are applied in contiguous density ranges. As explained above in
Section 3.2, for example, CHIMERA has used the LS EoS at densities above 1011 -g cm 3, and a different EoS below that density.
Since CHIMERA updates the specific energy directly rather than the temperature and uses the updated specific energy and other
needed thermodynamic variables to update the temperature, slight differences in the energy zeros at the boundary between two EoS’s
could result in unphysical temperature updates. Specific energy differences between two EoSs could also arise from peculiarities or
approximations peculiar to each EoS. In either case, we will refer to the potential difference in specific energies given by two EoS’s
for the same thermodynamic state as a zero-energy offset. Unphysical temperature updates could happen, for example, during the
remap step if matter from a zone linked to one EoS is advected into an adjacent zone linked to a different EoS. The quantity of energy
advected would contain the difference in the energy zeros as well as the physically relevant energy. This problem could affect the
radial sweep but not the θ- or f-sweeps as the same EoS is always used along a θ- or f-directed ray.
To avoid this problem, CHIMERA overlaps by four radial zones in either direction the specific internal energy at the boundary between

EoSs as shown in Figure 13, where radial zones i−1 and lower are tied to a particular EoSA, while zones i and higher are tied to a
different EoSB. The two EoSs have different zero-energy offsets, as indicated by their vertical displacement, and an overlap of four

Figure 13. Schematic representation of the advection of energy from the left to the right of zone interface -i 1

2
. Zones -i 1 and below are tied to EoS A while zones

i and above are tied to EoS B. EoS A and EoS B have a zero energy offset indicated by their vertical displacement from each other. In remapping zone interface i−1

2
a distance dx -i 1

2
from its initial location to the location indicated by the red vertical dashed line, the energy within dx -i 1

2
given by EoS A must be advected from zone

i−1 to zone i. This is accomplished by advecting the energy within dx -i 1
2
given by EoS A out of zone i−1, and advecting the energy within the same interval dx -i 1

2
but given by EoS B into zone i. The four-zone overlap on each side exists so that a PPM profile of the energy in zone i−1 can be constructed from both EoSs.
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zones in either direction. This overlap enables PPM profiles of the specific internal energy for zones i−1 and below to be constructed
using EoSA up to the interface i−1

2
. Likewise, PPM profiles of the specific internal energy for zones i and above can be constructed

using EoSB. The example in Figure 13 is one in which the zone interface x -i 1
2
is remapped a distance dx -i 1

2
to the left of its original

position, its new position being indicated by the vertical red dashed line. This entails that a quantity of specific internal energy contained
within dx -i 1

2
be advected from the left to the right of zone interface x -i 1

2
. CHIMERA performs this advection by advecting the energy

within dx -i 1
2
as given by EoSA out of zone i−1, and advecting the energy within the same dx -i 1

2
but as given by EoSB into zone i.

Since the specific internal energy advected out of a zone and into the adjacent zone is consistent with the different EoSs tied to each of
the two zones, the unphysical temperature jump that would occur if the zero-energy offset had not been accounted for in the advection is
avoided.

4.4.4. Nuclear Binding Energy

In advecting the specific energy between two adjacent zones during a remap, the specific internal energy is split into a nuclear
binding energy component, ebind, and the rest of the energy, and the two components are advected separately. For example, the
specific internal energy, eint, is split into ebind and = -e e eth int bind, and remapped as follows:
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where + ¢e i
n
th,

1 and + ¢e i
n
bind,

1 are the specific internal energy minus the specific binding energy, and the specific binding energy,

respectively, of zone i, and d 
+ ¢E
i

n
th,

1
1
2
and d 

+ ¢E
i

n
bind,

1
1
2
are the internal energy minus the binding energy and the binding energy,

respectively, transferred through outer zone edge +i 1

2( ) and inner zone edge -i 1

2( ) of zone i. The masses d + ¢i
n 1 and d +i

n 1 are

the masses of zone i before and after the remap, respectively, as given by Equation (127). This mode of energy advection is
appropriate for advecting non-NSE material during a remap, as the non-NSE material being advected does not necessarily have the
same composition and, therefore, binding energy, as the original material in the zone from which it is being advected. The
composition of the material being advected is obtained by integrating over the PPM profile constructed for each ionic mass fraction,
and then normalizing the sum to unity. Since the PPM profiles of different ionic mass fractions may be differently shaped, the
composition that results after integrating over the portion of the profiles being advected and normalizing can result in a composition
and binding energy different from the original. In the energy advection procedure described above, the binding energy of the
advecting material is computed once its composition is ascertained, and the rest of the advected energy, deth, is also computed by
integrating the PPM profile of = -e e eth int bind over the advecting mass. The net energy advected should thus reflect both the correct
nuclear binding energy of the advecting material, as well as its thermal component.

4.4.5. Energy Remap for the θ- and f-sweeps and the Preliminary Remap for the Radial Sweep

The energy remap described above is the ultimate step in the θ- and f-sweep hydrodynamics, and the penultimate step in the radial
sweep hydrodynamics. Away from shocks, the specific internal energy is remapped as given by Equation (132), as opposed to
remapping the sum of the specific internal plus specific kinetic energy, = +¢e e eitot , int kin. This is permissible as the flow is
isentropic apart from the contributions of nuclear and neutrino source terms, which have been included elsewhere in the radial sweep
(see the text above Equation (124) for the motivation for this approach). In the vicinity of shocks, the specific energy, ¢etot , which has
been evolved during the Lagrangian step using the Rankine–Hugoniot equations, must be remapped, and the specific internal energy
is extracted afterwards. We define = - = +¢¢ ¢e e e e etot tot bind th kin and remap ¢¢etot and ebind separately, as described above. To use
consistent values for the left and right states for calculating a PPM profile of ¢¢etot (i.e., consistent with the velocity remap), we define
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Having calculated the PPM profile of ¢¢etot , the quantity of ¢¢etot advected across a given zone interface is computed by
Equations (127) or (130), and the remapping of ¢¢etot is performed by an equation analogous to Equation (132). After the remapping
of ¢¢etot and ebind, the specific internal energy is extracted from their sum, ¢etot .

4.4.6. Recomputation of the Gravitational Potential and the Computation of ¶ ¶e tgrav

Following the remap in the radial-sweep of the mass, momenta, angular momenta, the independent thermodynamic variables, and
the preliminary remap of the specific energy, the specific gravitational potential, +engrav

1, is computed. In the case in which the
spherically symmetric component of the gravitational potential is computed by means of a general relativistic approximation, the
remapped pressure, specific energy, and neutrino contributions are used as sources of gravity as well as the density, which
necessitated the preliminary remap of the specific energy. It is at this stage of the radial-sweep that the quantity ¶ ¶e tgrav is computed
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and added, in accordance with Equation (99), to the specific total energy, + ¢e ntot
1 , that was computed by Equation (121) during the

Lagrangian step. The most direct procedure for calculating ¶ ¶e tgrav would be to calculate the gravitational potential, + ¢engrav
1 , after the

Lagrangian step, interpolate the initial gravitational potential, engrav, to the Lagrangian grid to get the quantity -e I L
n
grav, , and

approximate ¶ ¶e tgrav by - D+ ¢
-e e tn
I L

n
grav

1
grav,( ) . This would work well for one-dimensional simulations, but for multidimensional

simulations, a given radial grid edge, x +i 1
2
, after the Lagrangian step is a function of θ and/or f, making the gravitational potential

difficult to compute at this point. Instead, the gravitational potential is computed after the remap of the radial grid and interpolated as
a function of θ and/or f to the Lagrangian grid, thereby obtaining -

+e F L
n
grav,

1 . The time derivative of the gravitational potential added to
+ ¢e ntot

1 is thus given, as a function of θ and/or f, by
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4.4.7. Final Radial-sweep Remap of the Total Energy

The final remapping of the specific total energy + +e e ekin int grav( ) in the radial sweep begins with the specific energy, 
+ ¢e i
n
tot ,

1 ,
given by
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where e itot, has been updated during the Lagrangian step, as given by Equation (121). Consistent left and right states of 
+ ¢e i
n
tot ,

1 are

determined as specified by Equations (133), PPM profiles of = +¢
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1
kin,

1 are then obtained, and the amount of ¢
+ ¢e i
n
tot

1 to be
advected across the zone interface are given by Equation (130) and the procedure outlined in the discussion below it. Remapping then
proceeds in accordance with an equation analogous to Equation (132), and the final specific internal energy is extracted from
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This completes the remap step of the radial-sweep hydrodynamics.

4.4.8. Suppression of Carbuncles

When shocks are aligned with one of the coordinate directions in multidimensional simulations, they are susceptible to an “odd–
even decoupling” or “carbuncle” instability (Quirk 1994; Liou 2000; Sutherland et al. 2003). This can lead to a strong rippling of the
shock front, which could, in turn, excite hydrodynamic instabilities in the post-shock region. Our scheme for suppressing this
instability is the use of a “local oscillation filter” similar in philosophy to that described by Sutherland et al. (2003). This approach is
local and does not affect the well-resolved features of the flow elsewhere. To suppress the carbuncle instability in the radial direction,
which is where this instability typically arises in a supernova simulation, the angular (θ) and azimuthal (f) remap steps are each
followed by an examination of the radial velocities along the angular and azimuthal rays to search for radial velocity extrema. If there
are at least three radial velocity extrema in any group of five adjacent zones, and if a shock is present, these zones are marked for
“smoothing.” For the particular case in which zones m and +m 1 are marked for smoothing, the flux d +m 1

2
of the quantity a,

defined by

d = -+ + +  c a a min , , 137m m m m msmooth 1 11
2

( ) ( ) ( )

is computed, wherem is the mass of zone m, and csmooth is an empirical parameter. Experimentation has shown that a value of
0.075 for csmooth works well. The final step in the procedure is to sweep across the angular and azimuthal rays and exchange the flux
d +m 1

2
between the zones marked for smoothing in a step analogous to that described by Equation (131). This reduces the difference

in the values of the quantity a between adjacent zones, thereby inhibiting the growth of this difference. Applying this procedure to the
quantities ur and fu , and to fL (to smooth qu ), proved sufficiently robust to suppress the carbuncle instability.

4.5. Radial Regridder

The PPM Lagrangian-Remap format permits the grid after the Lagrangian step to be remapped to a grid other than the initial grid
from which the Lagrangian step originated. While the θ- and f-grids are remapped back to their initial grids after the Lagrangian step,
making them effectively Eulerian, CHIMERA uses the remapping freedom to provide the user with a number of remapping options for
the radial grid to ensure that the grid continues to resolve important structures that arise during the course of a simulation. One option
is for the radial grid to be remapped back to the initial grid after the Lagrangian step, making the grid effectively Eulerian as it is for
the θ and f grids. Another option is for the remapped grid to follow the mean motion of the fluid, referred to here and below as
pseudo-Lagrangian, making the grid purely Lagrangian in the case of spherically symmetric fluid flow.
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Currently, a number of more sophisticated options are available specific to the pre-bounce or post-bounce phase of a CCSN
simulation. For both the pre-bounce phase and the post-bounce phase, an inner-outer boundary dividing the radial grid into an inner
and an outer section is determined based on a number of user selected criteria. These criteria can differ between the pre-bounce and
the post-bounce phases and can differ at user-selected time intervals during the post-bounce phase. During both the pre-bounce and
the post-bounce phases, the outer grid can be selected to be pseudo-Lagrangian, which is useful if there are sharp chemical
discontinuities in non-NSE material that need to be preserved, or Eulerian if advection through the outer boundary of a prescribed
distribution of material is important. During the pre-bounce phase, the inner grid starts out as pseudo-Lagrangian, but blends into
another grid between two user-selected densities. This second grid is constructed so that adjacent zones satisfy
D = ´ D+r rconstanti i1 , referred to here as a “zoomed grid,” with the properties that the width of the outer zone of this zoomed
grid is equal to the zone width of the first zone of the outer grid, and the inner zone tends to a user selected width when that zone
reaches ´3 1014 -g cm 3. The result is a smooth and smoothly evolving grid that can be tuned to provide the desired grid resolution
at the proto-neutron star surface when it forms. During the post-bounce phase, the inner grid remains a zoomed grid from the core
center to a density of 1014 -g cm 3, with the central zone width such that it would attain a user-selected zone width at a density of
´3 1014 -g cm 3. A second zoomed grid covers the density range from 1014 to 1012 -g cm 3, and a third covers the density range from

1012 to 1010 -g cm 3. Both of these latter two grids have the same number of zones, which are equal to a user-selected value. This
ensures there are a sufficient number of zones to resolve the neutrinosphere as the proto-neutron star shrinks and as the density cliff
forms near its edge. Finally, a fourth zoomed grid covers the region from the density of 1010 -g cm 3 to the outer edge of the inner
grid. The result of this regridding is again a smooth and smoothly evolving user-controlled grid designed to resolve the critical
features that arise during the course of a CCSN simulation.

4.6. Gravity Solver

Self gravity can be chosen to be either one- or multi-dimensional, with a further choice of either a Newtonian or an approximate
general relativistic monopole component. The approximate general relativistic gravitational potential used for the monopole
component in the latter case is a modified Tolman–Oppenheimer–Volkoff (TOV) potential suggested by Marek et al. (2006, Case A)
and described briefly below in Section 4.6.1. Multidimensional gravity is obtained by expanding the Newtonian gravitational
potential in a multipole expansion as described by Müller & Steinmetz (1995) and below in Section 4.6.2. Approximate general
relativistic multidimensional gravity is obtained by replacing the Newtonian monopole in the multipole expansion by the
approximate general relativistic monopole.

4.6.1. One-dimensional Gravitational Potential

Newtonian monopole gravity is trivial. The radial zone-edged and zone-centered gravitational accelerations, +gi 1
2
and gi,

respectively, are given by
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where +Mi 1
2
is the rest mass enclosed in a volume of radius +Ri 1

2
, Ri the mass-averaged zone-centered radius, and G the gravitational

constant. The radial zone-edged and zone-centered gravitational potentials, +e igrav, 1
2
and e igrav, , respectively, are given by

= - D = - D- + + + +e e g R e e g R, , 139i i i i i i i igrav, grav, grav, grav, 11
2

1
2

1
2

1
2

( )

where at the outer edge of the radial grid
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Approximate GR monopole gravity is computed by first iterating the following two equations (Marek et al. 2006, Case A) for
MTOV:
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where e iint, and ne i, are the specific energy densities of matter and neutrinos, respectively, and ur i, is the radial velocity. With M ITOV,

computed as +- +M MI I
1

2 TOV, TOV,1
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( ), the zone-centered gravitational force is computed by
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where p igas, and np i, are the matter pressure and spherically averaged neutrino pressure, respectively. Once gi is computed, +gi 1
2
is

computed as + +g g 2i i 1( ) , with =+g 00 1
2

and +gI 1
2
extrapolated from gI and -gI 1

2
. The zone-edged gravitational potential, +e Igrav, 1

2
, is

then computed by Equation (139), and the zone-centered gravitational potential is given by =gi +- +g g 2i i1
2

1
2

( ) .

4.6.2. Multipole Expansion of the Gravitational Potential—Axisymmetry

To incorporate nonspherical gravity, CHIMERA uses a scheme based on the method described by Müller & Steinmetz (1995) of
expanding the integral Newtonian Poisson equation in a multipole expansion. When implementing approximate general relativistic
gravity, the Newtonian monopole is replaced with the approximate general relativistic monopole (Marek et al. 2006, Case A)
described above. Multipole gravity is implemented in both axisymmetric and three-dimensional simulations.

For axisymmetric simulations, this scheme utilizes the identity
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Q x( ) is the Heaviside function, and Pℓ is the Legendre polynomial of order ℓ , to expand the Poisson integral in a Legendre series:
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Here, the Pℓ
m are the associated Legendre functions and the integral over f¢ has been performed utilizing the assumption of

axisymmetry. In differencing Equation (146), the spherical coordinate system utilized by CHIMERA enables the radius ¢r to be
integrated over each spherical shell and the potential to be computed at zone interfaces. Given the singular nature of the Poisson
equation, this avoids the problem of the gravitational self-interaction, which can lead to a nonconvergence of the multipole
expansion, as pointed out by Couch et al. (2013). Equation (146) in differenced form then becomes
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The Legendre polynomials up to the specified order and the angular integrations of these polynomials over the angular zone widths
are generated as an initialization step. The Legendre polynomials are first computed at the angular zone edges using
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The Legendre polynomials are then integrated over the zone widths, using
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To assess the accuracy of the gravitational potential expansion as a function of the number of multipoles used, and for code
verification, the gravitational potentials computed by Equations (147) and(148) for a Maclaurin spheroid are compared to those
given by an exact analytic solution in Section 5.7.

4.6.3. Multipole Expansion of the Gravitational Potential—Non-axisymmetry

For non-axisymmetric simulations, this scheme utilizes the identity
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to expand the gravitational potential in spherical harmonics, where Yℓ
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where qP cosℓ
m˜ ( ) satisfies the relation
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The normalized associated Legendre functions, qP cosℓ
m˜ ( ), and their integrals, P ℓ m j, ,int ( ), defined below by Equation (172) are

calculated during an initial setup step by using the subroutines developed by NGA10 based on the algorithms of Paul (1978) and
Gerstl (1980).

To transform ¢A r ℓ m, ,( ) into a form suitable for calculation, we first change variables from q¢ to q¢ º ¢y cos , to obtain
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To discretize the ¢A r ℓ m, ,r ( ), we introduce a j index, =j J1, , , and a k index, k=1, L, K, to denote the zone centers of the
angular variable, θ, and the azimuthal variable, f, respectively, analogous to the index i=1, L, I, which is illustrated in Figure 12
and used in this section for the radial index. Half-integer values of i, j, and k refer to zone edges. Primed and unprimed indices will
refer to source and field quantities, respectively. We have
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10 (alf_sr_v121305) http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/new_egm.html.
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To construct the gravitational potential, we have, from Equations (155)–(157) and (160),
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where the real and imaginary parts of ¢B r ℓ m, ,( ) are given by

f f f¢ = ¢ - ¢B r ℓ m m A r ℓ m m A r ℓ m, , , cos , , sin , , , 178r r i( ) ( ) ( ) ( ) ( ) ( )
f f f¢ = ¢ + ¢B r ℓ m m A r ℓ m m A r ℓ m, , , sin , , cos , , . 179i r i( ) ( ) ( ) ( ) ( ) ( )

Using the symmetry conditions expressed by Equations (162) and (170), we have

q f q f¢ - = ¢-
P B r ℓ m P B r ℓ mcos , , , cos , , , , 180ℓ

m
r ℓ

m
r˜ ( ) ( ) ˜ ( ) ( ) ( )

and

q f q f¢ - = - ¢-
P B r ℓ m P B r ℓ mcos , , , cos , , , , 181ℓ

m
i ℓ

m
i˜ ( ) ( ) ˜ ( ) ( ) ( )

which gives

q f q f q f¢ - + ¢ = ¢-
P B r ℓ m P B r ℓ m P B r ℓ mcos , , , cos , , , 2 cos , , , , 182ℓ

m
r ℓ

m
r ℓ

m
r˜ ( ) ( ) ˜ ( ) ( ) ˜ ( ) ( ) ( )

and

q f q f¢ - + ¢ =-
P B r ℓ m P B r ℓ mcos , , , cos , , , 0. 183ℓ

m
i ℓ

m
i˜ ( ) ( ) ˜ ( ) ( ) ( )

Thus, the imaginary part of Equation (177) cancels out when summed over negative and positive m, and Equation (182) for the real
part of f¢ -B r ℓ m, , ,( ) can be used to replace the summation of m from -ℓ to ℓ to a summation from zero to ℓ.

The construction of the gravitational potential in CHIMERA begins with the computation of ¢A r ℓ m, ,( ), defined in Equation (158)
and discretized as described by Equations (171)–(175). With Pint, Sint, and Cint given by Equations (172), (173), and (175),
respectively, and computed in the initial setup, ¢A r ℓ m, ,( ) is computed from
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To assess the accuracy of the gravitational potential expansion as a function of multipole number and to verify the code, the
gravitational potentials computed by Equation (189) for a Maclaurin spheroid are compared to those given by an exact analytic
solution in Section 5.7.

5. Hydrodynamics Test Problems

We have subjected the CHIMERA hydrodynamics code modules to a number of test problems. The key problems are
described here.

5.1. Point-blast Explosion

The ability of a supernova code to simulate a spherical outgoing shock is an important first test. An analytic solution for a spherical
outgoing shock is available for the “point-blast explosion” problem, which consists of the instantaneous deposition of an amount of
energy, E0, at a point in a zero-gravity, stationary, uniform medium of constant density, r0. The energy E0 is required to be very large
in comparison with the initial energy of the medium. The analytic solution for this problem was found by Taylor (1950) and Sedov
(1959), and various parts of the solution can be found in a number of text books, such as Mihalas & Mihalas (1984) or Zel’dovich &
Raizer (1967), with the most complete account being given in Landau & Lifshitz (1959). Because of typos in the publications cited
above, we have rederived the solution and have found that Equation (99.8) of Landau & Lifshitz (1959) should be multiplied by the
square of the normalized radius (see below) and that the expression for n5 in Equation (99.10) of Landau & Lifshitz (1959) should be
replaced by

n
g

=
-
2

1
. 1905 ( )

To set up this problem, a uniform, g = 5 3 gas maintained in hydrostatic equilibrium within a spherical volume by an external
pressure boundary condition and having a constant density r = 0.10

-g cm 3 was divided into 200 zones of equal, 1cm width. The
gas was given a constant ambient temperature of 10−8 MeV. A point explosion at the center of the spherical mass was simulated by
instantaneously depositing an energy, ´E 6.06 100

17 erg, by increasing the temperature of the first zone to 1MeV. Rather than
using a simple gamma-law EoS, we used the CHIMERA non-NSE EoS, consisting of half neutrons and half protons. The electron and
photon contributions were set to zero. In this way, the EoS used was equivalent to a gamma-law EoS with g = 5 3, but the
CHIMERA EoS machinery (e.g., composition remapping, EoS interpolation) described in Section 3 was tested as well.

Denoting the distance of the shock from the origin by the term rs, the time-dependence of rs is given by
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where u, ρ, and p are the fluid velocity, density, and pressure, respectively, between the origin and the shock. The subscript “s”
denotes their immediate post-shock values. Numerically integrating Equation (192), using Equations (99.10) of Landau & Lifshitz
(1959), gives x = 1.17s .
A comparison of rs as a function of time, computed by CHIMERA versus the analytic result given by Equation (191) is shown in

Figure 14(a) and demonstrates agreement to within a few percent. Figure 14(b) shows that the velocity, density, and pressure of the
fluid behind the shock normalized by their immediate post-shock values also agree well with the analytic solutions.
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5.2. Sod Shock Tube Problem

A standard hydrodynamics problem admitting an analytic solution is the Sod shock tube problem (Sod 1978). As Sod’s
formulation was done in the context of a plane-parallel geometry, we approximate such a geometry with CHIMERA’s spherical grid
by working with a variable = -x R r , where =R 105 cm and −2�r�2 cm. We cover the-  r2 2 range of r with a grid
consisting of 200 zones, initially equally spaced. Following Sod’s original formulation (Sod 1978), we set up a Riemann problem
with pressure, p = 1 erg cm−3, density, r = 1 -g cm 3, velocity, u = 0 -cm s 1, for <x 0, and p = 0.1 erg cm−3, r = 0.125 -g cm 3,
and u = 0 -cm s 1, for >x 0. The same EoS was used as described above for the point-blast problem, resulting in a constant γ of 5/3.
The results of the test at time =t 0.5 s are shown in Figure 15.

Numerical hydrodynamics schemes employing Riemann solvers, such as the scheme employed in CHIMERA, can introduce low-
amplitude, post-shock oscillations in flows involving shocks unless extra dissipation is added. To suppress these, CHIMERA
introduces a small amount of dissipation by reducing locally the order of the interpolation scheme in the neighborhood of sufficiently
strong shocks (see Colella & Woodward 1984, Section 4 and Appendix). In particular, the left- and right-hand states are modified by
Equations (4.1) of Colella & Woodward (1984), namely
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where the “flattening parameter”  f0 1i( ) determines the mixture of first-order and higher-order PPM interpolations in
constructing the left and right states. For the test results shown in Figure 15(a), CHIMERA was run in Lagrangian mode with the
Colella & Woodward (1984) suggested value of 0.75 for ω(1) in the equation following their Equation (A.2), and a maximum value of
the flattening parameter, fi=0.5. As can be seen, the agreement between the analytical and the numerical results is very good, but
very-low-amplitude, post-shock oscillations are evident, particularly in the velocity. In Figure 15(b), we show the results of the same
test except that the parameter ω(1) was set to 0.6, and the maximum value of the flattening parameter was set to 1. This introduces
more dissipation, and there is now no evidence of any post-shock oscillations in the numerical solutions. Finally, Figure 15(c) shows
the results of the test with CHIMERA now run in Eulerian mode with the Colella & Woodward (1984) suggested value of ω(1) and the
maximum value of fi set to 0.5, as in the test shown in Figure 15(a). The agreement between the numerical and analytical results is
again very good, and there is no sign of post-shock oscillations.

5.3. Shu–Osher Shock Tube Problem

A test suggested by Shu & Osher (1989) involves structure, testing the resolution of the numerical hydrodynamics scheme: A
moving shock interacts with sine waves in density. Initially, ρ=3.85713 -g cm 3, v=2.639369 -cm s 1, and P=10.33333 erg
cm−3, for x<−0.8, and ρ=1+0.2sin 5x -g cm 3, v=0 -cm s 1, and P=1ergcm−3, for x>−0.8. The results are plotted in
Figure 16. The black line shows the solution obtained with a grid of 3200 evenly spaced zones, which is taken as the reference
solution. The dashed green line and the red “X”s show the solution obtained with a grid of 800 and 200 zones, respectively. Clearly,
the solution has converged with a grid of 800 zones. With 200 zones, the solution still shows the detailed structure, albeit with
somewhat reduced amplitude.

Figure 14. Panel (a): shock radii vs. time for the point-blast explosion problem for CHIMERA (black plus signs) and the analytic expression (red line) given by
Equations (191) and (192). Panel (b): velocity (red), density (green), and pressure (blue) behind the shock as a function of radius, normalized by their immediate post-
shock values for CHIMERA (pluses) relative to the analytic solution given by Equations (99.8) and (99.10) of Landau & Lifshitz (1959) with the corrections noted in
the text.
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Figure 15. Comparison of the analytic solution for g = 5 3 (solid lines) and CHIMERA (crosses) solutions to the Sod shock tube problem for velocity (red), density
(green), and pressure (blue), as a function of distance from the initial discontinuity at 0.5s. CHIMERA simulations were performed (a) in Lagrangian mode with the
values of the flatten parameters suggested by Colella & Woodward (1984), (b) in Lagrangian mode with a different set of flatten parameters that suppress the low-
amplitude post-shock oscillations, and (c) in Eulerian mode with the values of the flatten parameters suggested by Colella & Woodward (1984).

Figure 16. Evolved density for the shock tube test suggested by Shu & Osher (1989), for a grid of 3200 (black solid), 800 (dashed green), and 200 (red with X) zones.
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5.4. Radial Advection Test

A test of the radial advection and, in particular, the geometry corrections for a spherical geometry, given the choice of such a
geometry in CHIMERA, consists of solving the Euler equations with an adiabatic Γ-law EoS for an initial self-similar radial outflow
problem (Mignone 2014) described by
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, 1940 0( ) ( ) ( ) ( ) ( )

where ρ(ξ,0) is an arbitrary function and α0 is a constant. An exact analytic solution of this problem is given, for spherical symmetry,
by
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A test that focuses on the remapping procedure is that of a self-similar outflow at constant density with the imposition of constant
pressure, as described by Blondin & Lundqvist (1993) and Mignone (2014). Following their example, we set α0=100 and utilize a
grid of 100 evenly spaced zones. The solution is characterized by constant velocity/radius and constant density. The solution of this
problem for the first 10 zones, where the geometry-dependent corrections in the remap are most important, is shown in Figure 17.
The numerical solution exhibits a constant velocity/radius that matches the analytic solution.

5.5. Angular Advection Test

As a test of the angular advection algorithms and the logic involved in deflashing a zone (transitioning it from NSE to non-NSE)
and flashing a zone (transitioning it from non-NSE to NSE), an electron fraction Ye pattern was advected in angle (θ) across most of
256 angular zones, beginning at zone 18 (θ=0.22) and continuing across the grid. The Ye pattern consisted of a linear rise over 10
zones, from a value of 0.3472 to a value of 0.4960. A density of ´ -2.47 10 g cm7 3and a temperature of 0.45MeV were chosen,
which are representative of conditions where material flows in or out of NSE. Between zones 80 and 81 (θ=0.98), a transition from
NSE to non-NSE was imposed, and between zones 168 and 169 (θ=2.1), a transition from non-NSE to NSE was imposed. As can
be seen in Figure 18(a), the pattern in Ye is nicely preserved as it is advected across the angular grid. A similar test with similar results
performed for the azimuthal advection algorithms is shown in Figure 18(b).

5.6. Energy Conservation Test

When run in normal mode, the CHIMERA hydrodynamics does not impose total energy conservation, where the total energy is
defined by the integral on the left-hand side of Equation (99); therefore, its ability to conserve total energy is a rigorous test of the
hydrodynamics algorithms. As a test of CHIMERA’s ability to conserve energy with the realistic EoS described in Section 3.2 and its
numerical implementation, we performed two Newtonian hydrodynamics simulations initiated from a 15M☉ Woosley & Heger
(2007) progenitor and carried out for 2s post-bounce, at which point the bounce shock had traversed 38,000 of our 43,000km extent
of the radial grid.

In the first simulation, referred to as NHpar, CHIMERA was run in its normal mode. Away from shocks, the specific internal energy
was updated during the Lagrangian step by the first law, Equation (124), and remapped as described by Equation (132). In the
vicinity of a shock, the specific total energy, defined immediately above Equation (121), was evolved during the Lagrangian step by
Equation (121), Equation (134), and Equation (135), and remapped by an equation analogous to Equation (132), with the specific
internal energy then extracted by Equation (136). In the second simulation, referred to as NHtot, the specific total energy was updated

Figure 17. Numerical solution for velocity/radius for the constant density radial outflow problem. The solid line is the analytic solution with velocity/radius = 99.24,
and the numerical solution is shown by the square symbols for the first 10 zones, where the geometry-dependent interpolations are most important.
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during the Lagrangian step and remapped for all zones, whether they were in the vicinity of a shock or not. Run in this mode,
CHIMERA automatically conserves the total energy apart from the source term given by Equation (134), which is added to the total
energy after the Lagrangian step. Total energy conservation during the Lagrangian step can be ascertained by multiplying

Equation (121) by the mass r+ +Vi
n

i
n1

2
1
2 and noting that the terms involving the pressure cancel in pairs when summed over the zones,

leaving only the surface terms, and noting also that the term nf i
n is zero for these hydrodynamics-only runs. During the remap step, the

terms on the right-hand side of Equation (132) cancel in pairs after multiplying by the zone mass d +i
n 1. Careful bookkeeping kept

track of all nonphysical changes in the specific energy having no dynamical effect, such as occurs most importantly when material is
advected between adjacent spatial zones characterized by different EoSs with slightly different energy zeros, as described in
Section 4.4.3.

The results of this test are shown in Figure 19. The Lagrangian trajectories, at 0.025M☉ intervals, for the NHtot simulation shown
in Figure 19(a) were almost identical to those of the NHpar simulation and, thus, are not shown. The shock trajectories (red and
dashed green lines) for the two simulations, shown in both panels of Figure 19 are essentially on top of each other. The total energy
(blue and violet lines) is shown in Figure 19(b). The same arbitrary constant has been added to the energy of each simulation to bring
the energies within the range of the energy ordinate. They are gratifyingly flat, with both showing a small blip at bounce, and the
NHpar simulation (blue line) shows a small rise of about 1049 erg from 700ms to the end of the simulation. In that simulation, there is
also a small decline in total energy from bounce to about 700ms, which we traced to the remapping of the velocity, thus conserving
momentum by design, rather than remapping the square of the velocity, which would conserve kinetic energy by design. This slight
decline in kinetic energy does not appear in the evolved total energy of the NHtot simulation (violet line). In this case, the specific

Figure 18. Advection of an electron fraction pattern across an NSE to non-NSE transition (solid vertical line) followed by a non-NSE to NSE transition (dashed
vertical line) at several times (colored curves) in the (a) θ-direction and (b) f-direction.

Figure 19. Panel (a): Newtonian hydrodynamics core collapse simulations, NHpar and NH tot, as described in the text. The black lines show the Lagrangian trajectories
of zones enclosing increments of 0.025 M☉ for the NHpar simulation. Shock trajectories for simulations NHpar and NH tot are shown by the solid red and dashed green
lines, respectively. Panel (b): shock trajectories for the two simulations are plotted as in panel (a), and the total energy with arbitrary offset (but the same offset for the
two simulations; right scale) for simulations NHpar (blue) and NH tot (violet).

41

The Astrophysical Journal Supplement Series, 248:11 (94pp), 2020 May Bruenn et al.



total energy is the remapped quantity and therefore automatically conserved, modulo the small source term on the right-hand side of
the specific total energy equation, Equation (134), as noted above. Figures 20(a)and 20(b) plot the evolution of the gravitational,
internal, and kinetic energy components of the total energy for the simulations NHpar (dashed lines) and NHtot (solid lines).
Figure 20(a) plots the evolution of the energy components of the two simulations but at a scale for which differences are not readily
discernible. Figure 20(b) plots the last 200 ms of the two simulations at a much finer scale. The same arbitrary constant has been
added to each pair of energy components of the two simulations so they fit within the energy range of the ordinate. It is seen that the
energy differences are small, with most of the energy differences arising from the ∼3×1049 erg difference in the internal energy and
the ∼1×1049 erg difference in the kinetic energy.

Finally, an important quantity relating to the explosion energy obtained in CCSNe simulations and frequently used in comparing
simulation outcomes between groups is the “diagnostic energy” Ediag, which is the sum of the gravitational, thermal, and kinetic
energy in each zone in turn summed over all zones for which the sum in that zone is positive. At 2500 ms from the initiation of core
collapse, the diagnostic energy for both of the above models had essentially become constant and was 0.477 B for the NHtot

simulation and 0.475 B for the NHpar simulation.
Both simulations, NHpar and NHtot, were performed on an adaptive radial grid of 720 zones, as described in Section 4.5. To

ascertain whether this grid resolution results in a radially converged numerical solution, we have performed the NHpar simulation
with 240 and 480 zones. The results are shown in Figure 21. It is clear that the numerical solutions have essentially converged at a
radial grid resolution of 480 zones but not with a radial grid resolution of 240 zones.

Figure 20. Panel (a): gravitational, internal, and kinetic energy components of the total energy for NH tot (solid lines) and NHpar (dashed lines). The difference between
the two simulations is too small to discern at the scale of a Bethe. Panel (b): gravitational, internal, and kinetic energy components of the final 200 ms for NH tot (solid
lines) and NHpar (dashed lines), with an arbitrary offset (but the same for corresponding pairs of energy components), shown at a scale for which differences are
apparent.

Figure 21. Panel (a): shock trajectory as a function of post-bounce time for the simulation of model NHpar with 240, 480, and 720 radial zones. Panel (b): diagnostic
energy (sum of the total kinetic, gravitational, and internal minus rest-mass energies) as a function of post-bounce time.
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5.7. Gravitational Potential Tests

To verify the accuracy of the gravitational potential expansions given in Sections 4.6.2 and 4.6.3, and to ascertain an appropriate
maximum number of multipoles to use in simulations, we have compared with an analytic solution the results of the axisymmetric,
Equations (147) and(148), and non-axisymmetric, Equations (187)–(189), expansions for the gravitational potential of a Maclaurin
spheroid. We consider the spheroid described by Couch et al. (2013), viz., a spheroid of uniform density of ρ=1 -g cm 3 embedded
in a background of vanishing density. The spheroid has a semimajor axis of 1m, an eccentricity of 0.9, and is located in a spherical
volume of radius 2m. So that Equations (147), (148), and(187)–(189) can be used to compute the gravitational potential, we set up a
spherical computational grid with the spheroid located at the center. A 720×240 grid is used for the axisymmetric multipole
expansion, reflecting the grid resolution in some of our recent 2D simulations, and a grid of 540×180×180 is used for the non-
axisymmetric multipole expansion, reflecting the angular resolution used in some of our 3D simulations. Where the boundary of the
spheroid cuts through a given zone, the density of that zone is adjusted in proportion to the percentage of the zone interior to the
boundary. The analytic solution that we use for a point interior to the spheroid is given by Equation (21) of Couch et al. (2013), and
for a point exterior to the spheroid, we use the solution given by Equation (1) of Hofmeister et al. (2018).

The results of the comparisons are shown in Figure 22. The zone-weighted mean of the deviation from the analytic solutions of our
multipole expansions decreases with ℓmax, the maximum multipole used, and is below 0.02 percent for ℓmax�10. The maximum
deviation also decreases with ℓmax and is below 1% for ℓmax�10. The choice of ℓmax in a simulation is obviously a compromise
between accuracy and computational time. CHIMERA simulations typically use a value of ℓmax=10.

6. Neutrino Transport

Neutrino transport is a key process that must be modeled accurately in the simulation of CCSNe. The neutrino-driven explosion
mechanism depends sensitively on the coupling to matter of a small fraction of the enormous neutrino luminosity that ensues upon
the collapse of the stellar core. Additionally, accurate neutrino transport modeling is important for computing the neutrino emission
expected from a given nearby CCSNe to best enable us to work backward from the sequence of neutrino detections accompanying
such an event to establishing details of the explosion mechanism in the deep interior of the stellar core. In this section, we describe
our algorithms for modeling neutrino transport. Sections 6.1–6.8 provide (i) the derivation of the neutrino Boltzmann equation, which
establishes the metric and independent variables we use and forms the basis of our transport scheme, (ii) the angular moment
equations obtained from the Boltzmann equation, (iii) our method of flux limiting, (iv) of operating splitting the resultant transport
equations into a transport piece and an energy advection piece, and (v) the derivation of the terms required for coupling neutrinos to
the matter hydrodynamics. Finally, in Section 6.9 by means of Equations (273), (274), (278) followed by Equations (277), (291), and
(292), we present the full differencing scheme used to advance the neutrino transport through a Lagrangian step. A number of
velocity-dependent terms are dropped in closing the angular moment equations by replacing the first angular moment equation by a
diffusion-like equation with a flux-limiter. This resulted in transport solutions near shocks that were less than satisfactory due to the
neutrino distribution moments being defined relative to the fluid frame and, therefore, subject to the effects of the large velocity
discontinuities there. Section 6.12 describes a modification of our transport scheme that more accurately models these discontinuities
in the neutrino distribution moments in the presence of shocks. This modification replaces Equations (273) and (274) for the
Lagrangian step by Equations (306) and (300), respectively.

Neutrino energy advection during transport is operator split from spatial advection and is described in Section 6.13. Our scheme
for updating the neutrino zeroth angular moment during a Lagrangian step is detailed by Equations (322)–(325). Because our energy
grid is tied to a lapse function (Equation (216)), Section 6.14 describes the use of the neutrino energy advection machinery developed
in Section 6.13 to update the neutrino distribution due to changes in the lapse function resulting from changes in the configuration of

Figure 22. Panel (a): maximum percentage deviation of the gravitational potentials computed by the axisymmetric multipole expansion (red line) and the non-
axisymmetric multipole expansion (blue line) from the analytic solution, as a function of ℓmax, the maximum multipole used. Panel (b): similar to Panel (a) but for the
zone-weighted mean deviation of the multipole gravitational potentials from the analytic solution, as a function of ℓmax.
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the core during a hydrodynamics step. As our neutrino transport scheme is based on a Lagrangian-Remap formulation of numerical
hydrodynamics, a transport remap step must follow the Lagrangian update. Section 6.15 describes our scheme for spatially
remapping the neutrino distributions that is associated with the remapping of the grid following a Lagrangian hydrodynamics step.
The scheme is summarized by Equations (338) and (339). Section 6.16 specifies the scalar Eddington factors used to represent higher
angular moments of the neutrino distributions in terms of lower moments, the former of which appear in the equations for the lowest
moments.

The derivation of the neutrino transport equations and the energy–momentum transfer between neutrinos and the background
matter have been carried out, with an eye toward future developments of CHIMERA, in full spherically symmetric general relativity.
Several approximations have been made, however, in the current versions of CHIMERA. Some velocity terms have been dropped in
deriving the diffusion-like equation and the flux-limiter relating the first moment of the neutrino distribution function to the zeroth
moment (Equations (224) and (225)). Additionally, the proper length parameter “Γ,” Equation (249), has been set equal to unity. It
was found that retaining Γ as computed by Equation (249) does not significantly affect the neutrino transport during a CCSN
simulation (Bruenn et al. 2001). What we do retain is the redshift parameter “a” as given by Equations (262) and (263), as this
parameter does significantly affect the luminosity and mean energy of neutrinos emerging from the neutrinosphere (Bruenn et al.
2001).

CHIMERA employs multi-neutrino energy transport, and to delineate the neutrino energy grid structure, we use indices
+ = k k N, 0, 1, 2, ,1

2
 —i.e., half-integer values to denote energy-grid zone edges. Energy-grid zone centers are denoted by

indices = k k N, 1, 2, , —i.e., with integer values. With +k 1
2
denoting the value of the neutrino energy at zone edges, the value of

the neutrino energy at zone centers is defined by
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6.1. Boltzmann Equation

The time evolution of the invariant occupation function =f f x p,( ) [number of neutrinos per state at the phase point x p,( )] is
given by the coordinate invariant Boltzmann equation (e.g., Lindquist 1966)
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where ℓ is the affine path-length, which we choose to be defined such that

=a
a

p
dx

dℓ
, 199( )

and the right-hand side of Equation (198) denotes the change in f due to sources—i.e., emission, absorption, and scattering. In the
spirit of the RbR approximation in which transport along each radial ray is assumed to be spherically symmetric, we will consider the
spherically symmetric form of the transport equation. In addition, we will express the Boltzmann equation in the comoving or fluid
frame with the intention of executing our neutrino transport along with the Lagrangian radial hydrodynamics step, to be followed by
a remap of both the matter and the neutrino quantities to the original grid or to the grid displaced according to a regridding algorithm.
We will hereafter denote all quantities defined with respect to the fluid frame by a subscript “0.”

The derivation, leading to Equation (215), of the Boltzmann transport equation for spherically symmetric spacetimes, beginning
with Equation (198), can be found with varying detail in a number of references (e.g., Lindquist 1966; Castor 1972; Mihalas &
Mihalas 1984; Baron et al. 1989; Mezzacappa & Matzner 1989), and we include enough detail so that important quantities used
subsequent to Equation (215) are clearly defined. We assume that neutrinos follow null geodesics between localized interactions, so
that their paths between interactions are given by

a
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where
a

b g{ } is a Christoffel symbol of the second kind (connection coefficients in the coordinate basis), usually denoted by Gbg
a ,

but we reserve the latter symbol to denote the Ricci rotation coefficients (connection coefficients in the orthonormal basis).
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To evaluate the source functions, we choose a local, comoving, orthonormal set of basis vectors ( q fe e e e, , ,t m ) parallel to a
spherical polar coordinate basis to resolve the components of the neutrino four-momentum. In terms of this orthonormal set of basis
vectors, the components of four-vectors, such as the four-momentum, p0

â, are denoted by characters with hatted Latin indices. In
terms of the original components, ap0 , the components with respect to the orthonormal basis are given by

= = =a
a a a

a
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Substituting the second part of Equation (201) into Equation (200) and rearranging the indices, dp dℓâ is given by
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where the Ricci rotation coefficients, Gac
b
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ˆ
, are defined by Equation (202). Using Equations (199), (201), and(202), Equation (198),
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The components of p0
â with respect to the above orthonormal basis are given by
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where 0 and m0 are the neutrino energy and the direction cosine of the neutrino three-momentum with respect to the radial direction,
respectively, both measured in the comoving frame. Because of the mass shell condition
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We choose a synchronous gauge with a spherically symmetric, orthogonal metric given by

q q f= = - + + +ab
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where =x ct0 , =x m1 , q=x2 , and f=x3 . With this metric, the transformation functions relating coordinate and orthonormal
bases are given by
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We choose this form of the metric so that the relativistic equations will closely parallel the Newtonian fluid equations, and various
levels of Newtonian approximations can be easily made. The metric function =a a t m,( ) is the lapse function and relates the interval of
proper time of an observer attached to the motion of a fluid element to an interval of coordinate time, and defined so that coordinate and
proper time are equal at infinity. The metric function =b b t m,( ) will be chosen so that the coordinate m can be identified with the
enclosed rest mass. The metric function R is the areal radius (i.e., the two-sphere area p= R4 2). The condition that ties the coordinate
system to the comoving frame is that the four-velocity of the fluid, nu , be given by tº º =n n nu dx d c dx ds u , 0, 0, 00[ ], which
with the metric given by Equation (207) requires that =u c a0 . This definition of nu implies that

=u
a

dR

dt

1
, 209( )
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where u is the first component of the four-velocity as observed from a frame of constant areal radius R (May &White 1967). To specify b
so that m can be identified with the enclosed rest mass, we note that the rest mass density ρ satisfies the local conservation condition
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where the semicolon denotes covariant differentiation and where we have used the expression for nu given immediately above
Equation (209).

With the metric (Equation (207)), the proper volume, dV, is given by p=dV R b dm4 2 , or, in terms of the rest mass dm contained
in dV, by r=dV dm . It follows from these two expressions for dV that the requisite choice of b is
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With the above choices for a spherical, comoving coordinate system and a comoving, orthonormal four-vector basis, the
coordinate invariant volume elements become
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where g is the determinant of the metric, and dabg and ijk are the Levi-Civita alternating symbols. The invariant distribution function,
f0, introduced at the beginning of this section, is defined so that the number of world lines crossing the volume element, dV, with
four-momenta in the range dP about p0 is given by (Lindquist 1966)
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where the right-hand sides of Equations (212)–(214) are the expressions for dV, dP, and dN in our choice of coordinate system and
four-vector basis. Finally, evaluating the transformation coefficients from the metric (Equation (207)) and using them for the Ricci
coefficients in Equation (203) and using Equations (204) and (206), the Boltzmann equation becomes
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Note that with the substitutions = Fa e , = Lb e , and G = ¶ ¶b R m1 t( )( ) , Equation (215) reduces to Equation (3.7) of Lindquist
(1966). For economy of notation and for clarity of presentation, we have suppressed the dependency of f0 on t, m, 0, and m0, and the
dependencies of the metric variables a, b, Γ, and R on t and m, and will do so with new dependent variables as they are introduced as
long as this brings no ambiguity.

We now modify Equation (215) by transforming from independent variables mt m, , ,0 0( ) to mt m E, , ,0 0( ) where

= E a . 2160 0 ( )

Therefore, with this variable transformation

m m m= = ¢f t m f t m
E

a
f t m E, , , , , , , , , . 2170 0 0 0

0
0 0 0 0

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )
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Though mathematically imprecise, we will use the same symbol to describe the neutrino distribution functions, originally functions
of mt m, , ,0 0( ), as functions of mt m E, , ,0 0( ). We also define Γ by G = ¶ ¶b R m1 t( )( ) so that derivatives with respect to m at
constant time can be replaced by derivatives with respect to R, which is directly related to our grid, by the identity

¶
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Applying the above definition of Γ and variable transformation to Equation (215) gives
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The transformation given by Equation (216) affords several advantages. First, with constant values of +E k0 1
2
anchoring the energy grid,

the energy grid + k0 1
2
will be scaled to higher values as the lapse dips below unity at high densities—i.e., for constant +E k0 1

2
, the neutrino

energy will scale as µ+ a1k0 1
2

. This will permit a smaller upper bound to the neutrino energy grid farther out from the center where
a 1 , resulting in the grid energies being more closely spaced there for a given number of grid points, while still permitting sufficient
energy headroom at high densities to accommodate the high-energy neutrinos that are produced at the high-matter densities prevailing near
the core center. Second, the radial derivative of a in the factor multiplying the energy derivative of f0 in Equation (215) has been replaced
by a time derivative in Equation (219). This factor now contains terms involving only time derivatives and, therefore, vanishes for a static
spacetime. Thus, apart from energy-changing interactions, for a static spacetime, there will be no flow of neutrinos through the neutrino
energy grid as they propagate outward. The gravitational redshifting will consequently be accomplished automatically. In non-static
spacetimes, the advection of neutrinos through the energy grid can be performed algebraically (Sections 6.13 and 6.14), another advantage
of this scheme. Using this choice of energy gridding, we will assume that the spacetime is constant over a time step and make a small
correction to the neutrino distribution at the end of the time step to correct for the change in a during a time step and other processes that
shift the neutrinos in energy, such as their advection across spatial zones with differing lapses.

6.2. Moment Equations

Let the nth angular moment of f0 be denoted by y n
0
( ), that is
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Then the first two angular moments of Equation (219) are given by
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and
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6.3. Flux Limiting

To close this system of moment equations, we employ flux limiting to derive a relation between y0
1( )and y0

0( ). In analogy with the
procedure described in Levermore & Pomraning (1981), let the scalar Eddington factors h n( ) be defined as the ratio of y n

0
( )to y0

0( )so
that y h y=n n

0 0
0( ) ( ) ( ). Substituting y h y=n n

0 0
0( ) ( ) ( ) in Equations (222) and (223), solving Equation (222) for y¶ ¶t m E0

0
, 0( )( ) and

substituting the result into Equation (223) gives
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The factors multiplying y0
0( ) and y¶ ¶E t m0

0
0 ,( )( ) in Equation (224) in both the diffusion limit (h  0;1( ) h  ;2 1

3
( ) h  03( ) ) and the

free streaming limit (h  1n( ) ) are zero. We therefore make the approximation that these two factors are zero everywhere.
Equation (224) then becomes
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Multiplying the right-hand side of Equation (225) by y0
1( )/y0

1( ), i.e., unity, and solving for y0
1( ), we get
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In the diffusion limit, h  01( ) and h 2 1
3

( ) , and Equation (226) reduces to the standard diffusion equation if we neglect the second
term in the numerator and identify the transport mean free path, l t( ), as

l y
= -

ac

E

df

dℓ

1 1
. 227

t
S0 0

1
0

1⎛
⎝⎜

⎞
⎠⎟ ( )( ) ( )

( )

In regimes other than the diffusion regime, we regard h h-2 1 2[ ( ) ]( ) ( ) as a free parameter, which we write as

h h= - 3 . 2282 1 2[ ( ) ] ( )( ) ( )
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Using Equations (227) and (228) in Equation (226), we get a diffusion-like equation for y0
1( ):
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Equations (222) and (229) for each energy zone and for each neutrino species (ne, nē, nmt, nmt¯ ) with a prescription for  are the
MGFLD equations that are solved in CHIMERA for the B-series simulations. The modification of this scheme in the vicinity of
shocks, used for our C-series and later simulations, is described in Section 6.12. The parameter  is referred to as the “flux-limiter,”
and should be unity in the diffusion limit and tend to zero in such a way that y0

1( ) = y0
0( )in the limit of free streaming.

The derivation of Equations (229) and (227) differ from that of the corresponding equations (Equations (A25) and (A26)) in
Bruenn (1985). To derive a diffusion-like equation, there the derivative y¶ ¶t0

1( ) in the nonrelativistic version of Equation (223) and
all velocity dependent terms were set to zero. However, the results are similar. Apart from the relativistic time dilation factor a, the
expressions for l1 i

t( ), given here by Equation (227) and given in Bruenn (1985) by Equation (A26), are the same. Equation (226) for
y0

1( ) here is similar to Equation (A25) y0
1( ) in Bruenn (1985), with the exception here of the relativistic proper distance correction Γ

and the factor of h h-2 1 2[ ( ) ]( ) ( ) , which we take as our flux limiter. The flux limiter in Bruenn (1985) is introduced as a modification
of li

t( ). Finally, the terms in the numerator of Equations (226) here and in Equation (A25) of Bruenn (1985) are neglected, other than
the term involving y¶ ¶R0

0( ) . They involve the redistribution of neutrinos in angle due to anisotropies in the source terms but are
small given that they depend on the product of y0

0( ) and y0
1( ). Equation (229) is given in differenced form by Equation (274).

6.4. Flux Limiter

The flux limiter,  , constructed to satisfy the diffusion and free-streaming limits, consists of two parts. The first part is a specific
implementation of the usual scheme for interpolating between these two limits, namely
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From Equations (229) and (230), we see that in the optically thick, diffusion regime, for which l  0t
0( )( ) ,  1intrp and

Equation (229) limits to the diffusion equation
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while in the optically thin, free-streaming regime, where l  ¥t
0( )( ) , Equation (229) limits to the free-streaming condition

y y=E E . 2320
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As it stands, this scheme suffers from the generic problem of an overly rapid transition to the free-streaming limit (i.e., the angular
distribution becomes too forwardly peaked) when matter goes from optically thick to optically thin abruptly, such as when the
“density cliff” forms in the post-bounce core of a supernova progenitor. To avoid this problem, a second piece of the flux limiter is
constructed. It prevents the neutrino angular distribution from becoming more forwardly peaked than the geometrical limit. This
geometrical limit can be expressed for > nR R , where ºn n R R 0( ) is the radius of the neutrinosphere for a particular flavor and
energy, by y m y= + n 10

1 1

2 0 0 0
0[ ( )]( ) ( ). This expression assumes that the neutrino distribution function f0 is constant for rays

satisfying m m< n0 0 , and zero otherwise, where m n0 is the cosine of the angle subtended between a line extending from a point at R
to the neutrinosphere limb and a line extending from the point at R to the core center, as observed by a comoving observer. This
geometrical piece of the flux-limiter is then given by

m y

l
º =

+

G
>

n

y
n

¶

¶

  R t R R, ,
1

if , 233

i
t

R

geom geom 0

1

2 0 0
0

1

3
0
0

( )
( )

( )
( )

( )
( )

and = R t, , 1geom 0( ) interior to the neutrinosphere, n R R 0( ). The comoving angle m n0 is given in terms of the fixed frame
angle mn by

m
m b

m b
=

+
-n
n

n


1
, 2340 0( ) ( )

where b = v c, and the fixed-frame angle mn is given by
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where  is the correction for gravitational ray bending given by

=
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1 2
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where Mg is the gravitational mass. The geometrical flux limiter, geom, by itself would relate y0
1( ) to y0

0( ) outside the neutrinosphere
by

y m y= + n
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The final flux limiter is given by

=  min , . 238intrp geom[ ] ( )

6.5. Operator Splitting

To solve Equation (222) along with Equation (229), we operator split Equation (222) into a transport equation and an energy
advection equation
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In advancing y0
0( )and y0

1( )over a time step, the pair of Equations (240) and (229) are solved in one step along with the associated
energy and lepton conservation equations introduced below, then Equation (241) is solved in a second step. We will refer to these
two separate steps as a transport step and an energy advection step, respectively, and describe in more detail below how each is
performed.

6.6. Einstein’s Equations

In order to derive the Einstein equations, which are needed to obtain expressions for the gravitational mass, Mg, and the metric
parameters Γ and a, we need the stress-energy tensor, = +m( ) n ( ) , where m( ) and n ( ) are the matter and neutrino
contributions, respectively. Following Mihalas & Mihalas (1984), we begin with the definition of the radiation (i.e., neutrino) stress-
energy tensor

òå=n ab a b
c

h
f p p

d p

cp
, 242

q
q

2

3 0

3

0
( )( )

where the sum q is over all neutrino species. In the local comoving orthonormal frame, the components of the stress-energy tensor are

òå= Wn  
c

hc
f p p d d 243

q
q

ab
2

3 0 0
a

0
b

0 0 0( )
( )( ) ˆ ˆ ˆ ˆ

where, as before, we use Latin indices with hats here to distinguish components with respect to the local comoving orthonormal
frame from those with respect to the coordinate basis (distinguished using Greek letters).
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Using Equations (204) for pâ and pb̂ in Equation (243) for n  ab( ) ˆ ˆ , the radiation stress-energy tensor n  ab( ) ˆ ˆ can be written in terms
of the local neutrino energy density, nE , flux nF , and pressure, nP , as

ò òm
p

y= å W = ån n n    E F c P
hc

f d d
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d, ,
1 4

. 244q q q3 0 0
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0( )
( ) ( )

( )( ) ( )

Transforming n  ab( ) ˆ ˆ written in terms of n n nE F c P, , back to the coordinate basis using Equations (208), and adding the stress-energy
components of a perfect fluid, given by

r= + + +ab
a b

abT c E P
u u

c
P g , 245m 2

m m 2 m( ) ( )( )

with au defined immediately above Equation (209) and abg given by Equation (207), the combined matter–neutrino stress energy
tensor is given by
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where ρ is the proper rest mass density, and Em and Pm are the matter internal energy density and pressure, respectively.
The Einstein field equations are given by

p
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, 247

4
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where n
m is the Ricci tensor. After some algebra (e.g., May & White 1966, 1967), we find from the Einstein equations that the

gravitational mass is given by
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and the metric parameter Γ is given by

G = + -
u
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, 249

2

2

g

2
( )

where u is the velocity, = -u a dR dt m1( ) . Einstein equations can also be used to derive the radial equation of motion, which is given
by
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where w, the specific enthalpy, is given by

r
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and where the sum over ν is a sum over all neutrino and antineutrino species. Equation (250), with = G = =w a 1 (Newtonian
approximation), and with the centrifugal term added, is the radial Equation (113) and, in differenced form, Equation (114). Here, we
consider the neutrino component of these equations; i.e., the last term of Equation (250), which corresponds to the term nf r in the
radial Equation (113). The neutrino contributions to the θ- and f-components of the velocity and energy hydrodynamics equations
are described in the text following Equations (113) and in Equations (115), (122), and (123).
Using Equation (199) and the first of Equation (208), the last term of Equation (250) in the Newtonian approximation can be

written as
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The differenced form of the expression given by the last term in Equation (252) for nf r, is given in Section 6.9.
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6.7. Matter–Neutrino Energy–Momentum Exchange

To determine the energy–momentum exchange between the matter and neutrinos, we begin with the hydrodynamics equation

=a b
b

aT G , 253m
; ( )( )

where, as before, the semicolon denotes covariant differentiation. The left-hand side is the divergence of the stress-energy tensor of
the matter, and aG is the four-force density—i.e., the negative of the matter to neutrino energy–momentum transfer rate per unit
volume. To determine the latter, we operate on Equation (215), or Equation (219), by the negative of the four-momentum density
operator (the integral of the product of the invariant momentum volume element and the neutrino four-momentum), which, in the
orthonormal basis, is given by
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Transforming Equation (255) to the coordinate basis, we have for aG ,
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The energy equation is obtained by projecting Equation (253) along the fluid four-velocity:
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where we have used Equation (256) for aG . Using Equation (245) for abTm( ) on the left-hand side of Equation (253), invoking conservation
of rest mass r r= -b

b b
bu u; ,[ ], and denoting by em the internal energy per unit rest mass ( r=e Em m ), a
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and Equation (257) becomes
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which states that changes in the matter internal energy arise from work by local compression or expansion and from energy exchange
with neutrinos.

The other nontrivial equation in (253) is the radial equation
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Equation (260) gives

ò åp
r

= - +
G

 
d a

dR

dP

dR

c

hc
d

d

dℓ
f

wc

ln 4 1
, 262m

q
q

S
3 0

2
0 0

1

2
⎜ ⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟( )

( )
( )

where w is given by Equation (251).
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Equation (262) relates the spatial gradient of the matter pressure, Pm, and the rate of neutrino–matter momentum exchange to the
spatial gradient of the lapse function. Upon integrating a from the surface using Equation (262), we start with the surface (subscript s)
boundary condition, which we take to be the Schwarzschild solution on the exterior, and neglect the small deviations from this
induced by the radiation; namely,

= -
G

a
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c R
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2 1
, 263s

s

s s
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so that the coordinate time is that of a distant clock. In practice, our models are extended enough that as is extremely close to unity.
The differencing of the lapse is given below by Equations (294) and (295).

6.8. Matter–Neutrino Lepton Exchange

The local lepton number density of the matter, nm
ℓ

( ) , is given from charge conservation by
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Y , 264m
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where np, nB, -ne , and +ne are the proper proton, baryon, electron, and positron number densities, respectively, Ye is the proton
fraction, and mB is the mean baryon mass. Referring to Equation (214), the local lepton number density in neutrinos, n nℓ( ) , is given by
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Transport produces global changes in n nℓ( ) , which, by itself, does not change nm
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( ) (or Ye). Ignoring the effects of transport, the total
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total ( ) ( ) , is a locally conserved quantity, and this allows us to relate the change in Ye to the change in
n nℓ( ) . In particular,
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Expanding the covariant derivative of Ye with the use of Equation (210), which expresses rest mass conservation, Equation (266) can
be written
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Now expanding the covariant derivative of n nℓ( ) , Equation (267) becomes
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With the use of Equations (215) (without the transport terms), (199), (211), and (214), the term on the right-hand side of
Equation (268) becomes
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where the last expression in Equation (269) arises from the fact that the only terms that do not vanish upon integrating over solid
angle and neutrino number are emission and absorption, and the latter are isotropic. Here, n j 0e

( ) and ln 1 a
0e

( ) are the electron-
neutrino emission and absorption per state per unit length, and n j 0e

( )¯ and ln 1 a
0e

( )¯ are the electron–antineutrino counterparts.
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Equations (266)–(269) give the following equation for the evolution of the electron fraction due to sources:
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6.9. Lagrangian Transport Step

In the Lagrangian transport step, the pair of transport Equations (240) and (229) (or, rather, Equation (272) in place of
Equation (240), where Equation (272) is Equation (240) written in conservative form) are solved along with the neutrino-specific
term of the energy Equation (259), namely,
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and Equation (270) for the change in the matter proton number. The pair of Equations (240) and (229) for each neutrino species and
Equation (270) are solved together fully implicitly, while Equation (271) is solved immediately afterwards, as described in more
detail below. It was found that executing Equation (271) subsequent to the others leads to a substantially better conditioned set of
equations and no loss of stability and that the internal energy update could then be easily omitted for those radial zones for which the
internal energy update is derived from a total energy update. The role of neutrinos in the latter case will be described later. In either
case, the updated temperature is obtained from the updated internal energy and electron fraction by numerically inverting the
equation of state.

Equation (240), written in conservative form, is given by
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where we have omitted the superscript T. Consider a radial mesh where, as before, the zone edges are labeled by +i 1
2 and the zone

centers by i. Consider also an energy mesh labeled similarly by k. Let the subscript q denote, as before, the neutrino species, and let
the superscript n denote the nth time slice. Then, for each neutrino species, Equation (272) is differenced conservatively as follows:
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(or by its modification given by Equation (300) below), where p=+ +RArea 4i i
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According to the discussion following Equation (219) and our choice of the lapse function limit, a R t, 1( ) as  ¥R , a neutrino
propagating along a geodesic passing through -Ri 1

2
, Ri, and +Ri 1

2
in a static spacetime will have locally measured energies at these

points related by
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Thus, multiplying Equation (275) by D-
¥ ¥ hc k k

3
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2
0( ) ( ) and using Equation (276), we get
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The left-hand side of Equation (277) is the change in the number of neutrinos in Voli between energies  i k0 , and + D i k i k0 , 0 ,

during the proper time interval D +a ti
n 1

2 . The first term on the right-hand side subtracts the number of neutrinos that leave through the
outer surface of Voli between energies + i k0 ,1

2
and + D+ + i k i k0 , 0 ,1

2
1
2

in proper time D+
+a ti
n1

2

1
2 . The second term on the right-hand

side adds the number of neutrinos that enter through the inner surface of Voli between energies - i k0 ,1
2

and + D- - i k i k0 , 0 ,1
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proper time D-
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2 . The last term is the net number of neutrinos emitted, absorbed, or scattered in/out of Voli between energies

 i k0 , and + D i k i k0 , 0 , in proper time D +a ti
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2 .
Equation (270) is differenced straightforwardly as
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During the Lagrangian transport step, the set of Equations (273) and (274), modified in the presence of shocks as given by
Equations (300), (306), and (278) are solved implicitly for +Y i

n
e,

1and y +
i k q
n

0 , ,
0 1( ) for each neutrino species q.

The temperature change accompanying the Lagrangian transport step is computed following the solutions of Equations (273),
(274), and (278), from the change in the internal energy as given by the following differenced version of Equation (271):
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and the change in Ye given by Equation (278), where nN is the number of neutrino species (typically four), and  qstwt, is the statistical
weight of each neutrino species, q, (typically 1 for ne and nē, and 2 for nmt and nmt¯ ). Specifically,

= +
- + -

r

r

+

+ +
+

+
T T

e e Y Y

. 280i
n

i
n

i
n

i
n

i
n

i
n de

dY Y i

n

de

dT Y i

n
1

int,
1

int, e,
1

e,
,

,

int

e
e

1
2

int

e

1
2

( )
( )
( )

( )

It was found that the temperature change during a time step always had very little effect on the terms in the transport equation, and
therefore on the stability of the difference scheme. On the other hand, including the temperature change as part of the implicit solution of
Equations (273), (274), and (278) caused the system of equations to be rather ill-conditioned. It was therefore deemed numerically
expedient to solve for the temperature change after, rather than simultaneously with, the solution of the transport equations. The solution of
Equations (273), (274), and (278) followed by Equation (279) and (280) completes the Lagrangian transport step.

6.10. Solution of the Transport Equations

The numerical solution of the set of transport equations from time step n to time step +n 1 proceeds by an outer iteration for the
corrections dy +

i k q
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where the superscript “i” denotes the quantities after the ith iteration. When the corrections have become sufficiently small, the
quantities y +
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The transport equations, Equations (273) and (274), when linearized comprise a set ´nN Nk coupled linear equations of the form:
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where the coefficients “LHS0” and “RHS0” are independent of the corrections, and where = - ´nn N q1q ( ) , and the notation
“LHS0” and “RHS0” denote the left-hand side (transport) and right-hand side (sources) of the transport equations, respectively.
Equation (278) provides an additional equation, which is coupled to the preceding set of equations, and when linearized is of the form
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where q = 1 and q = 2 refer to ne and nē, respectively. Equations (283) and (284) are combined to form a matrix equation for the
corrections, of the form
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where the corrections dy +
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, 1 are incorporated in the array d a = ´ +a nu N N, 1, , 1i k,  .

The boundary condition at the center is simply that the neutrino flux is zero; i.e., y == 0i k q0 1, ,
1( ) . Constant luminosity is assumed at

the surface, which requires that y y=+ +R RI k q I I k q I0 1, ,
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where nR k q, is the neutrinosphere radius for neutrinos of energy k and type q.

6.11. Neutrino Stress and the Lapse

Once y +
i k
n

0 ,
0 1( ) has been obtained, the neutrino–matter stress nf r, given by Equation (252) and used in Equations (114) and (121) for

the radial hydrodynamics solve is computed as follows. Using Equation (227) and then (229) in Equation (252), we have
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where in the last equation, we have set Γ and w to their nonrelativistic values of unity. Equation (287) is differenced as
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has been made so the final expression for the neutrino stress will have the correct limiting behavior in the short neutrino mean-free-
path limit ( +
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which is the force per unit mass exerted by an isotropic relativistic gas, and in the long neutrino mean-free-path limit which, with the
help of Equation (229), is given by
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where we assume that at large R, where the neutrino mean free paths are large, + i k i k0 1, 0 , . As before, DMi denotes the zone
mass. Finally, the zone-centered neutrino stress is computed as the average of the edge values, viz.,
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To update the lapse given by Equation (262), note first that a comparison of Equation (262) with Equation (252) shows that
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Setting G = 1, Mg [given by Equation (248)]= ºM Mrest mass, and w = 1, the update of the lapse begins at the outer edge with
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where the zone-centered quantities defined at zone edges are arithmetic averages of their zone-centered values on either side of the
zone edge, and p rD + + +M R4i i i
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has been used for -+R Ri i1 . Zone-edged values of a are defined by = ++ +a a a 2i i 1 11
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6.12. Transport Through a Shock

Comparisons of transport tests with a Boltzmann solver revealed a shortcoming of our flux-limited diffusion scheme when
encountering a discontinuity in the fluid velocity—namely, a shock. The problem arises from our neglect of the velocity-dependent
terms in going from Equation (224) to Equation (225), which should be important for computing the transport at the shock. The
reason was traced ostensibly to the fact that both y 0( ) and y 1( ), being defined with respect to the fluid frame, are therefore physically
both discontinuous at a discontinuity in the fluid velocity. However, as a result of the fact y 1( ) is given by the gradient of y 0( ) (e.g.,
Equation (229) and its differenced version, Equation (274)) y 0( ) is constrained to be continuous across the shock. In the case, in
which the fluid velocity ahead of the shock has a large negative radial velocity that discontinuously transitions to a much smaller
negative post-shock radial velocity, which characterizes the change in the fluid velocity across the bounce shock as it stagnates and
then revives, both y 0( ) and y 1( ) should exhibit, outwardly, a positive discontinuous change through the shock. However, y 0( ), rather
than exhibiting this discontinuous behavior, ramps up over many zones to its final pre-shock value ahead of the shock. This behavior
of y 0( ) is required in order for the required flux through the shock to be computed via Equation (274). This rise of y 0( ) through the
post-shock region, occurring in the neutrino heating region in the case of the bounce shock, has the unfortunate effect of causing a
rise in the mean neutrino energy

ò òy y=
¥ ¥

      d d . 2960 rms
0

0
0

0 0
5

0
0
0

0 0
3( ) ( ) ( )( ) ( )

The result is an unphysical additional neutrino heating in the region behind the bounce shock, potentially causing the shock to revive
too soon.

We illustrate this problem by comparing 1D simulations performed using CHIMERA and the relativistic Boltzmann code AGILE-
BOLTZTRAN, which is described in Section 9. The progenitor used is the 15M☉ model evolved to the point of core collapse by
Woosley & Heger (2007), and the neutrino physics is that described in Bruenn (1985). The rather straightforward collection of
neutrino physics used in this comparison is chosen so that its implementation in both codes can be easily made identical. The
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unphysical rise in the ne-rms and nē-rms energies as computed by CHIMERA is illustrated by the green lines in Figure 23(a). Compared
with the rms energies computed by AGILE-BOLTZTRAN (plotted by the red lines), the rms energies computed by CHIMERA are
1–2MeV higher by the time the neutrinos reach the shock. A consequence of this neutrino rms energy rise is illustrated in
Figure 23(b) by the increase in the shock radius due to increased neutrino heating in the CHIMERA simulation (shown in green) as
compared with that given by the AGILE-BOLTZTRAN simulation (shown in red). The shock position in the CHIMERA simulations has
been pushed about 15km farther out in radius compared with its position as given by AGILE-BOLTZTRAN.

To describe the causes of this problem in more detail and our shock transport algorithm designed to eliminate this problem,
consider Equation (274) at a velocity discontinuity situated at zone interface +i 1

2. In this circumstance, y +
+

i k
n

0 1,
0 1( ) and y +

i k
n

0 ,
0 1( ) are

defined in two different reference frames. In the case of the outwardly directed bounce shock, the former would be defined in the pre-
shock frame, the latter in the post-shock frame. To avoid the unphysical ramping up of y 0( ) toward the shock in the post-shock frame
as we approach the shock from below, y +
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0 , ,
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0 , ,
0 1,( ) in Equation (274), where y + 
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+  ;i k q
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0( )( ) i.e., the reference frame of radial zone +i 1. Note that the energy argument  i0 ,

referenced by the subscript k, is the same in the transformed and untransformed function y 0( ), reflecting the velocity independence of
the CHIMERA energy grid.

To obtain an expression for y + 
i k q
n

0 , ,
0 1,( ) , let the quantities with subscripts i and i+1 denote their values defined with respect to the

frame corresponding to radial coordinate i and i+1, respectively. The transformed neutrino functions will be denoted by y + 
i k q
n

0 , ,
0 1,( ) ,

as above, to emphasize that they are transformed from frame i to frame i+1 rather than originally residing in radial zone i+1.
Suppressing the indices k, n, and q, we use the invariance of mf ,0 0 0( )—e.g., m m=+ + + f f, ,i i i i i i0 1 0 1 0 1 0 0 0( ) ( )—and the

Figure 23. Panel (a): ne-rms and nē-rms energies at =t 100bounce ms; Panel (b): shock radius as a function of post-bounce time using CHIMERA with (blue) and without
(green) the shock transport algorithm, compared to a calculation using AGILE-BOLTZTRAN (red); Panel (c): total energy as a function of time for the two CHIMERA
simulations redone using Newtonian gravity; and Panel (d): Egrav, total gravitational potential energy, Einternal, total internal energy, Eke, total kinetic energy, nE , total
on-grid neutrino energy, and Erad, neutrino energy lost by neutrinos exiting the grid for the CHIMERA runs plotted in Panel (c). The sum of these energies is the total
energy plotted in Panel (c).
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transformation properties of the independent variables 0 and m0 ,
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to derive Equation (298) below, where we have kept terms to order  v c( ). The use of y + 
i k q
n

0 , ,
0 1,( ) in place of y +
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2. When computed at interface -i 1
2, y +

i k q
n

0 , ,
0 1( ) is not

modified.
To implement this part of the shock transport algorithm, CHIMERA computes yd i k q0 , ,
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A modification is needed in Equation (273) to complete this scheme. In Equation (273), the change in y +
i k q
n

0 , ,
0 1( ) due to transport is

determined by the fluxes through the outer zone edge, +i 1
2, proportional to y
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1 1( ) . However, y
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1 1,( ) , where the latter is the former transformed from the

frame at +i 1 to the frame at i. This will ensure that the fluxes computed through both the inner and outer edges of zone i are with
respect to the same frame.

To derive an expression for y
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, ,

1 1,( ) , we will be transforming quantities from the frame at radial zone +i 1 to the frame at radial

zone i. To keep the notation manageable, we will again suppress the indices k, n, and q, and denote quantities defined at frame i and
+i 1, as before, by subscript i and +i 1, respectively, and neutrino functions transformed from frame +i 1 to frame i by a down-

arrow to distinguish them from neutrino functions actually residing at radial zone i. In particular, the quantity y
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The transformation is obtained by equating the number of neutrinos passing through an area dS perpendicular to the radial direction
in a time dt as seen from the two frames (Mihalas & Mihalas 1984, p.413); namely,
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Dividing by  c d dS dti i i0
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0 0 and considering terms to order  v c( ),
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To implement this part of the shock transport algorithm, CHIMERA computes y + d
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Numerical experiments have shown that rolling in this algorithm from -+v vi i1∣ ∣=0.01–0.02 c with a corresponding rollout of the
energy advection algorithm—i.e., at the shock, this algorithm replaces the energy-advection algorithm—gave excellent results. In the
above comparisons of the neutrino rms energies and shock trajectories computed with the CHIMERA and AGILE-BOLTZTRANcodes,
the CHIMERA results with the use of the above shock transport algorithm, plotted in Figure 23 by the lines in blue, show much better
agreement with the results from AGILE-BOLTZTRAN. The discontinuities in y0

0( )are clearly evident, as is the absence of the
unphysical rise in y0

0( )as the shock is approached from below. Further examples of CHIMERA test results without the use of this
scheme (Series B) and with the use of this scheme (Series C) are given in Sections 7 and 9 and demonstrate the scheme’s ability to
give accurate transport solutions across a shock.

As a test of the ability of CHIMERA to conserve total energy, the simulations described above were redone with the Newtonian
gravitational potential substituted for the general relativistic monopole potential. Substitution of the general relativistic monopole in
place of the Newtonian monopole in the multipole expansion of the self-gravitational potential is not conservative and, therefore, not
suitable for a test of total energy conservation. We also set the lapse function to unity. The results are shown in Figure 23, Panels (c)
and (d). In both simulations, energy is conserved with high accuracy up to bounce, where a discontinuous change in energy of about
−0.35 B occurs in both simulations. Thereafter, the total energy of the simulation with the shock transport algorithm turned off is
essentially flat for the next ∼140 ms, after which it decreases by about −0.1 B during the subsequent ∼100 ms. The total energy of
the simulation with the shock transport algorithm turned on increases by about 0.1 B for the ∼140 ms following bounce and then
remains essentially flat for the next ∼100 ms. The components of the total energy of the two CHIMERA simulations are plotted in
Panel (d). There are small differences discernible in the components of the total energy in the two simulations, particularly between
300 and 400 ms.

6.13. Neutrino Energy Advection Step

Following the Lagrangian transport step, CHIMERA executes the Lagrangian energy advection step, which consists of solving
Equation (241), which has been operator split along with the “transport” Equation (240) from Equation (222). Omitting the
superscript E from y¶ ¶t m E0

0
, 0( )( ) with the understanding that this time derivative will hereafter refer to the change in y0

0( ) due to the
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energy advection step, and considering for the moment only the terms in Equation (241) involving y0
0( )(terms involving y0

2( )will be
considered shortly), we rearrange these terms as follows:
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Note that we could have multiplied Equation (307) by any power of E0 in deriving the final form of Equation (308), but the second
term would always have been left with one more power of E0 than the first term, and this feature will be important below. The
motivation for our choice of the quantity y 0

2
0
0( ) is two fold: (1) this choice enables us to absorb the inhomogeneous terms involving

y0
0( )into the energy derivative operator, and (2) it facilitates a physical interpretation, described below, which provides a useful guide

for differencing, and is based on the fact that yE0
2

0
0( ) is proportional to the neutrino number density per unit energy.

Consider now the terms in Equation (241) involving y0
2( ). To derive an expression which, after multiplying by E0

2, is similar to the
second term in Equation (308), we rearrange the terms involving y0

2( )as
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Substituting Equation (308) and (309) (the latter multiplied by E0
2) in Equation (241), the energy advection equation becomes
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where we have again introduced the scalar Eddington factor, h h= R t, ,2 2
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If we take into account the factor of E0 in  and neglect the possible dependence of h 2( ) on E0 over a time step, then writing
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where the general solution has been particularized by requiring that Y  Y+ +m t E m t E, , , ,n n
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A convenient expression from which the finite differencing of Equation (316) can be developed, which additionally lends itself to a
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where r=V m , and Equation (317) (first factor on the right-hand side of Equation (316)) has been used to replaceD +E n
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0

1
0

1 1 within the energy width D = D+ + + E an n n
0

1
0

1 1 in a comoving spatial volume V of mass m after the
energy advection step, and the right-hand side is D nN m t E, ,n n

0( ), the number of the same set of neutrinos before the energy
advection step. Equation (318) therefore states that the neutrinos, numbering D nN m t E, ,n n

0( ), in a comoving volume Vn with
energies between = E an n n

0 0 and + D = + D  E E an n n n n
0 0 0 0( ) are shifted in energy, while conserving number, to energies

between =+ + + E an n n
0

1
0

1 1 and + D = + D+ + + + +  E E an n n n n
0

1
0

1
0

1
0

1 1( ) , where E n
0 and +E n

0
1 are related by Equation (317).

As a particular example of this scheme, consider the neutrino diffusion limit in which h =2 1
3

( ) . Recalling that p r=b R1 4 2( ),
Equation (313) with E0 factored out becomes
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and using Equation (320) in Equation (317), we finally get
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which states that in the diffusion limit, the neutrino energy scales as ρ1/3 under compression or expansion, which is the expected
property of a relativistic gas.

Given the solutions, Equations (317) and (318), of the neutrino energy advection Equation (241), the CHIMERA numerical scheme
for updating the neutrinos in energy proceeds in three steps and is implemented during the radial sweep (Figure 1) after the
Lagrangian hydrodynamics step in which the density ρ and the areal radius R are updated. The steps are as follows:

1. We begin with an energy Lagrangian step arising from the changes in ρ, R, or a. This shifts the neutrino energies to their new
values and modifies y0

0( ) through Equations (317) and (318) in a way that conserves the total number of neutrinos in a given
comoving fluid volume. Labeling the values of quantities after this Lagrangian step with the superscript ¢ +n 1,
Equations (317) and (318), in differenced form, give for this step
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where the energy grid is displaced by
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where da, dR, and db are the changes in a, R, and b resulting from the Lagrangian hydrodynamics step or the update of the
gravitational potential.
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2. Next, we perform a remap of the energy grid, which has been displaced during step 1 from E k
n
0 to ¢+E k

n
0

1, back to the initial set
of values E k

n
0 . That is, letting quantities with the superscript +n 1 denote their final values at the completion of the remap, this

step entails
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This step uses the PPM advection technology and is described in more detail in Section 6.14. Briefly, for a given radial zone i, the
quantities y i k i k q0 ,

2
0 , ,
0( ) , which are proportional to the neutrino number density per unit energy, are given piecewise parabolic profiles

as a function of energy, which are then averaged over the displacement of the energy grid occasioned by the remap. These averages
provide a high-order representation of the neutrino fluxes at the energy grid edges, which are used to remap the energy grid to its final
values. While the neutrino number densities are automatically conserved in this step, the fluxes are scaled by a constant overall factor
of the order unity to ensure that the total neutrino energy in a given spatial volume before and after this remap is conserved as well.
(This remap step just shifts the energy grid and should therefore conserve both neutrino number and energy.) For more details of this
latter procedure, refer to Equations (335)–(337) and the accompanying discussion.

3. In the third step, the neutrino occupation probabilities y0
0( ) are checked to ensure that none exceed unity. If y > 1i k q0 , ,

0( ) for one or

more values of k for a given i, each such y i k q0 , ,
0( ) is then subject to the following variant of the algorithm described in Bruenn (1985,

Equation (B8)), which conserves number and energy but limits y  10
0( ) .

To describe the algorithm used here, let yD-
i k q0 , ,

0( ) ( ) and yD-
+i k q0 , 2,

0( ) ( ) correspond to the number of neutrinos removed from

zone (i, k) and zone +i k, 2( ), respectively, and let yD+
+i k q0 , 1,

0( ) ( ) correspond to the number of neutrinos added to zone +i k, 1( ).
Then, specifying yD-

i k q0 , ,
0( ) ( ) and using the conservation of number and energy are sufficient to fix the values of yD+

+i k q0 , 1,
0( ) ( ) and

yD-
+i k q0 , 2,

0( ) ( ) so that number and energy is conserved. In particular, neutrino number conservation requires that
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while energy conservation requires that
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For a given yD-
i k q0 , ,

0( ) ( ) , Equations (326) and (327) give
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Proceeding from k=0 to -N 2k , y i k q0 , ,
0( ) is checked, and if found to exceed unity, then y yD = -- 1i k q i k q0 , ,

0
0 , ,
0( ) ( ) ( ) is applied to

Equations (328) and (329) and the computed values of yD+
+i k q0 , 1,

0( ) ( ) and yD-
+i k q0 , 2,

0( ) ( ) are added and removed from zones
+i k, 1( ) and +i k, 2( ), respectively. The neutrino energies - i N0 , 1k and  i N0 , k are always chosen to be large enough so that they

are never overfilled. Finally, if yD-
+i k q0 , 2,

0( ) ( ) is found to exceed y +i k q0 , 2,
0( ) , yD-

i k q0 , ,
0( ) ( ) is adjusted to prevent y +i k q0 , 2,

0( ) from
becoming negative. In this case, the algorithm only works approximately. In practice, conservation of leptons is always found to be
conserved to machine accuracy, so if the above algorithm is ever employed, it never encounters a value of yD-

i k q0 , ,
0( ) ( ) that would

cause y +i k q0 , 2,
0( ) to become negative.

6.14. Neutrino Energy Advection Due to Changes in the Lapse

The lapse function, a, is given by Equations (262) and (263) and in differenced form by Equations (294) and (295). During the evolution
of the core, the lapse function ai of mass shell i may change as a result of a hydrodynamics step due to changes in the configuration of the
core. New values of the lapse are computed in CHIMERA after the gravitational potential update, which follows the Lagrangian
hydrodynamics step and remap, and after the gravitational potential update, which immediately precedes the transport solve. A change in
lapse also affects neutrinos radially advected between adjacent zones, as described in Section 6.15, as these zones may have different
lapses. Because our energy grid is tied to the lapse, these changes in the lapse change the energy grid, viz., =+ + E ai k k i0 , 01

2
1
2

. As before,

the =+ + ¥E k k0 0 ,1
2

1
2

are the energy grid edges at radius infinity. Let  +a ai
n

i
n 1 be the change in the lapse as a result of the evolution

preceding a gravitational potential update. Let the superscript n and +n 1 now denote the values of quantities given after the prior energy
advection update and after the current energy advection update, respectively. Then the change in the energy grid from n to +n 1 is given
by

=  =
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and y i k0 ,
0( ) must change in such a way that the total number and energy of neutrinos in each radial zone i remain the same. Ignoring

factors common to both sides, we must have
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which is just Equation (318) with =+V Vn n1 and =+E En n
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1
0 . As in the energy remap step following the energy advection step

described above, we also must have
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The quantity D + i k
n
0 ,

1 3( ) is defined similarly, and the equivalence sign is a consequence of our definition of  i k0 , , Equation (196).
To compute y +

i k q
n

0 , ,
0 1( ) from y i k q

n
0 , ,
0( ) due to a change in the lapse, the quantities y i k
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0( ) ( ) , related to the neutrino number density

per unit energy, are PPM interpolated to the grid edges +
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( ) ( ) , the flux + +Flxi k q1
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, across

the grid boundary—i.e., the number of neutrinos in the overlapping shells between the old and new grid—is computed from the grid
displacement given by Equation (330). With +Flxi k q, 1

2
, in hand, y +

i k q
n

0 , ,
0 1( ) is then computed from y i k q

n
0 , ,
0( ) by performing the advection

step
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Equation (334), when summed from 1 to N , automatically conserves neutrino number if the fluxes at the boundaries are zero; i.e.,
= =- +Flx Flx 0i q i N q,1 , , ,1

2
1
2

, as the two terms on the right-hand side of this equation will then sum to zero, leaving us with
Equation (331). However, neutrino energy is not necessarily conserved. To ensure energy conservation, we modify Equation (334)
by multiplying the two flux terms by a constant factor x ;i q, i.e.,
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Equation (335) with any constant value for the parameter xi q, automatically conserves total neutrino number, as does Equation (334),
but the parameter is now adjusted so that Equation (335) conserves energy as well. To determine xi q, , we equate the initial neutrino
energy, nE i q, , to the final energy, nE f q, , , the latter being given by the right-hand side of Equation (335) summed over k. We get,
substituting Equation (335) into Equation (332),
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Solving Equation (335) for xi q, gives

x
y

=
- å D

- +
n =

+

+ - +
+

 



E

Flx Flx
. 337i q

i q k
N

i k q
n

i k
n

i k
n

i k q i k q i k
n,

, 1 0 , ,
0

0 ,
3

0 ,
1

, , , , 0 ,
11

2
1
2 1

2

( )
( )

( )
( )

Equation (335), with xi q, given by Equation (337), conserves total neutrino number and energy and is the method by which CHIMERA

advances y i k q
n

0 , ,
0( ) due to a change in the lapse.

6.15. Neutrino Spatial Advection Step

As described in Section 4.5, following the Lagrangian hydrodynamics step in the case of the θ- and f-sweeps, the grid is remapped
back to the configuration that prevailed before the Lagrangian step. In the case of the radial sweep, the grid is remapped back to a
configuration specified by the regridder. In either case, the zero moments of the neutrino distribution functions must be advected through
the grid in the remapping step. The procedure is similar to that described in Section 4.4.1 for the mass-specific quantities like the mass-
specific momenta, and mass-specific angular momenta but simpler, since the quantities to be remapped are volume specific rather than
mass specific, thus omitting the necessity of first computing the advected mass.
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If dx <+ 0i 1
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, where dx +i 1
2
is the displacement of the grid element x +i 1

2
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If dx >+ 0i 1
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i.e., from +i 1 to i. In this case,
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In either case, the advection then proceeds as
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where again we denote the variables after the Lagrangian step but before the remap step by the superscript + ¢n 1 , and after the
remap step by the superscript +n 1.

When CHIMERA is run in relativistic mode, the lapse function becomes a function of the location in the core, and the neutrino energy
zones also become a function of location through the lapse, as given by Equation (216). In this case, CHIMERA adds a couple of steps to the
procedure described above for remapping y0

0( ). If dx <+ 0i 1
2

, neutrinos are advected from zone i to zone +i 1, and the different lapse

functions in these two zones must be accounted for. This is accomplished by appropriately advecting in energy á ñ +
+ ¢a
L i k q
n

, , ,
1

1
2

before

computing d +
+ ¢
i k q
n

, ,
1
1
2

by Equation (338). This energy advection is performed by the algorithm described by Equations (322)–(325), with ai
replacing an, +ai 1 replacing + ¢an 1 , and with r r= + ¢n n 1 , dR=0, and db=0. If dx >+ 0i 1

2
, the neutrinos are advected from zone +i 1 to

i, and a similar modification of á ñ +
+ ¢a
R i k q
n

, , ,
1

1
2

is performed by the neutrino energy advection algorithms just described but with +ai 1 replacing

an, and ai replacing + ¢an 1 .

6.16. Scalar Eddington Factors

The scalar Eddington factor, h y y=2
0
2

0
0( ) ( ) ( ), appears in the neutrino energy advection Equations (310), (313), and (323).

Consider first the case for > nR R , where nR is the radius of the neutrinosphere and is a function of both neutrino energy and flavor.
Analogous to the derivation of the geometric piece of the flux limiter, Equation (233), we use Equation (220) for y0

2( )to write

y m m y= + +
1

3
1 , 3400

2
0 0

2
0
0( ) ( )( ) ( )

where this assumes that the neutrino distribution function f0 is constant for rays satisfying m m< n0 0 , and zero otherwise, where
m n0 is defined in the text above Equation (233). The angle m0 is given by Equations (234)–(236).

Where < nR R , the diffusion limit applies, y0
1( )is well defined, and we solve the equation y m y= + n10

1 1

2 0 0
0( )( ) ( ) for m0 to get

m h= -2 1, 3410
1 ( )( )

where the flux factor h 1( ) is the ratio of y0
1( )to y0

0( ). Using Equation (341) in Equation (340), we get the correct behavior in the strong
diffusion limit, where y  00

1( ) , as this implies that h  01( ) and h 2 1
3

( ) .
Versions of CHIMERA subsequent to version C) have used the Minerbo closure (Minerbo 1978), constructed on the maximum

entropy principle. This closure is the classical limit of the of closure constructed by Cernohorsky & Bludman (1994) on the same
principle but using the Fermi–Dirac distribution, and it is much easier to implement and gives very similar results (Murchikova et al.
2017). For this closure, the quantity p is defined by

h
h h= + - +p

1

3

2

15
3 3 , 342

1 2
1 1 2( ) [ ( ) ] ( )

( )
( ) ( )

and h 2( ) is given by

h h h=
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+
-p p3 1

2

3 1

2
, 3432

thick
2

thin
2( ) ( )( ) ( ) ( )

where h = 1 3thick
2( ) , h = 1thin

2( ) , and as before, h y y=1 1 0( ) ( ) ( ). The closure given by Equations (342) and (343) gives results slightly
closer to those given by a Boltzmann solver than those given by Equations (340) and (341).
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7. Stationary State Transport Tests

In the spirit of the tests suggested by Müller et al. (2010), involving the stationary solution of the transport equations, we set up
several analogous test problems. As in Müller et al. (2010), we consider a central source consisting of a homogeneous isothermal
sphere of radius R of energy-independent absorption opacity and zero scattering opacity radiating into a medium of negligible
absorption and scattering opacities.

7.1. Gravitational Redshift

In this test, we assume that the medium external to the central source is static and impose a lapse profile as a function of R given by

= - = >a R R R R R1 , 2.04 km, 4 km, 3440 0( ) ( )

where R0 is chosen so that =a 4km 0.70( ) . Equation (344) for a(R) is suggested by the behavior of a(R) outside a spherically
symmetric source of gravity in the post-Newtonian approximation and numerically approximates the behavior of a(R) in realistic core
collapse models ∼50–100ms after bounce. An analytic expression for y R E,0

1
0( )( ) can be derived for this problem, from which

follows an analytic expression for the neutrino luminosity L(R). With the assumption of a static medium, the derivatives with respect
to t all vanish, and Equation (222) becomes
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where Rp is some fiducial radius and =a a Rp p( ). Using Equation (346), the neutrino luminosity, L(R), is then given by
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The luminosity from the central source thus goes as -a R2 ( ) in the surrounding static medium for this problem. Figure 24(a) compares
the analytic expression (Equation (347)) with the solutions for the ne and nē luminosities given by CHIMERA. The numerical solutions
agree extremely well with the analytic solution, which is not surprising, given that the variable transformation (Equation (216)) and
the subsequent differencing of the transport equation essentially guarantee this agreement.

An analytic expression for the mean neutrino energy can also be derived. With the assumption of a static medium, Equation (223)
becomes
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Figure 24. Panel (a): comparison of ne (red) and nē (blue) luminosities with the analytic solution of Equation (347). Panel (b): same as (a), but for the mean energies,
compared to the analytic solution given by Equation (350). The solutions have been normalized to unity at R = 1000km.
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where the scalar Eddington factor h2 is defined below Equation (223). In the limit of a small angular diameter source, h  12( ) and
Equation (348) reduces to an equation for y0

0( )similar to Equation (345) for y0
1( ), with a solution similar to Equation (346). More

generally, we note that the condition of the energy independence of the absorption and emission opacities, in addition to the static
condition, implies that h h=R E R,2

0
2( ) ( )( ) ( ) . Therefore, Equation (348) for y0

0( )depends only on R, and the solution can be written as

y c y=R E R R E, , , 349p0
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where again y R E,p0
0

0( )( ) is the value of y R E,0
0

0( )( ) at some fiducial radius Rp, and c R( ) is the solution of Equation (348) for c R( )
with y R E,p0

0
0( )( ) substituted for y R E,0

0
0( )( ) , under the condition that c =R 1p( ) . The mean energy is therefore given by
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For this problem, the mean energy from the central source thus goes as -a R1( ) in the surrounding static medium. Figure 24(b)
shows that the analytic expression (Equation (350)) agrees extremely well with the solutions for the ne and nē mean energies given by
CHIMERA.

7.2. Imposed Shock Velocity Profile

In this test, a radial velocity field is imposed that mimics the velocity profile encountered during the accretion phase of a CCSN.
The velocity profile suggested by Müller et al. (2010) is
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Inside the homogeneous, isotropic central spherical source of 4 km radius, we again turn off all scattering opacities and, rather than
employ a frequency-independent absorption opacity as in the preceding test, employ instead the Bruenn (1985) free nucleon
absorption opacity corresponding to the state (r T Y, , e) = ( -10 g cm , 4 MeV, 0.511 3 ). Outside the central source, the absorption and
scattering opacities vanish, so the luminosity L and the mean neutrino energy á ñE are constant with R in the lab frame. The nonzero
velocity regime is at a large enough radius, compared with the source radius, that the neutrino flow can be well approximated as
radially free streaming. In this case, both mf ,( ) and mf ,0 0 0( ), the invariant neutrino occupation probabilities, vanish except at
m p= , m p=0 , respectively. The comoving neutrino energy density nE0 is then related to the lab frame energy density nE by
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Likewise, the comoving neutrino number density, nN0 , is related to the lab frame number density, nN , by
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The comoving neutrino luminosity is related to the (constant) lab frame luminosity by
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and the comoving mean neutrino energy, á ñnE0 , is related to the (constant) lab frame mean neutrino energy, á ñnE , by
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Figure 25 shows the results of the B-series and the C-series CHIMERA transport, versus the analytical expressions given by
Equations (354) and (355) for the neutrino luminosity and mean energies, respectively. Measured from zero, the luminosity and the
mean energy as given by the B-series transport overshoot the correct luminosity and mean energy at the shock by ∼7% and ∼13%,
respectively, and these solutions remain above the analytic solution at large R by ∼6%. Moreover, the B-series solution for the
comoving mean energy fails to resolve the steep rise of the mean energy at the shock, as given by the analytic solution. The C-series
solutions for both the luminosity and the mean energy, however, agree quite well with the analytic solutions, only deviating below
the analytic solution at large R by ∼1.5%, demonstrating the impact of the added special treatment of transport across the shock,
discussed in Section 6.12.

67

The Astrophysical Journal Supplement Series, 248:11 (94pp), 2020 May Bruenn et al.



8. Transport Sources

Solving the neutrino radiation hydrodynamics also requires detailed neutrino–matter interactions to couple the radiation field to the
fluid, which drives heating, cooling, and changes inYe. Table 2 lists the scattering, absorption-emission, and pair-production opacities
currently incorporated in CHIMERA. For each zone, the logarithms of the opacities are stored at each of the eight corners of a cell in
ρ–T–Ye lattice space that surrounds the r T Y, , e( ) value of each zone. The values at r T Y, , e( ) and the Ye-derivatives needed by the
Jacobian for the solution of the transport equation are then obtained by a three-dimensional interpolation from the eight corner values
in the same manner as for the thermodynamic variables of the EoS. The spacing of the ρ–T–Ye grid matches the user-selected spacing
of the EoS grid but is typically 20 points per decade in rlog and Tlog , with 0.01 intervals in Ye. This resolution ensures that
interpolated opacities match those that are computed directly, to within 1%.

8.1. Scattering: General

In spherical symmetry, the rate of change of the neutrino occupation probability, m f ,0 0( ), (we still suppress the dependence of f
on t and R), due to scattering process “XX” is given by
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where q¢ R , , cosXX
out

0 0( ) is the “out-scattering kernel,” (i.e., the neutrino-unblocked rate per final and initial neutrino state for
scattering from energy 0 to energy ¢ 0 through angle θ), q¢ R , , cosXX

in
0 0( ) is the “in-scattering kernel,” (i.e., the neutrino-unblocked

rate per final and initial neutrino state for scattering from energy ¢ 0 to energy 0 through angle θ), and θ is given in terms of the
individual neutrino propagation directions, m j,0( ) and m j¢ ¢,0( ), by

q m m m m dj= ¢ + - - ¢cos 1 1 cos , 3570 0 0
2

0
2( )( ) ( )

where dj j j= ¢ - is the azimuthal direction between the incident and scattered neutrino. The Fermi blocking of neutrino states is
incorporated explicitly in Equation (356) by the - f1( ) factors rather than in the scattering kernels. The scattering kernels RXX

out in

have the symmetry

q q¢ = ¢   R R, , cos , , cos , 358XX
in

0 0 XX
out

0 0( ) ( ) ( )

Figure 25. Comoving ne (a) luminosities and (b) mean energies computed with B-series CHIMERA (green) and C-series CHIMERA (red; including the shock transport
treatment in Section 6.12) compared with the analytic solution for luminosity (Equation (354), Panel (a)) and mean energy (Equation (355), Panel (b)) for the velocity
profile specified in Equation (351). Solutions have been normalized to unity at R = 10 km. Normalized results for nē are similar, but the actual nē luminosities are
considerably reduced in magnitude, and the actual mean energies are slightly reduced in magnitude.
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which follows simply from the fact that an in-scattering from ¢ 0 to 0 is the same as an out-scattering from ¢ 0 to 0. Additionally, the
kernels are related to each other by detailed balance at b = kT1 ( ):

q q¢ = ¢b ¢ -    R e R, , cos , , cos , 359XX
in

0 0 XX
out

0 0
0 0( ) ( ) ( )( )

which follows by substituting equilibrium Fermi–Dirac distributions for f in Equation (356) and setting the left-hand side of that
equation to zero. Both Equations (358) and (359) should be respected in any approximation scheme.
For neutrino scattering, the complication that the occupation functions f and ¢f are expressed in terms of m0 and m¢0, respectively,

while the scattering kernels are expressed in terms of θ, where m0, m¢0, and θ are related by Equation (357), is overcome by Legendre
expanding the scattering kernels and keeping only the terms to the first order; i.e.,
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where the Legendre coefficients are given by
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Applying the moment operators òp W- d4 1( ) and òp m W- d4 1
0( ) to Equation (356) and using the definitions in Equations (357),

(360), and (220), we get the moments of the scattering terms of the collision integral:
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8.2. Neutrino–Electron Scattering

For neutrino–electron scattering (NES), the scattering functions F ¢ ,0,NES
in

0 0( ) and F ¢ ,1,XX
out

0 0( ) are taken from Equation (C50) of
Bruenn (1985). The scattering functions for down-scattering and isoenergetic scattering are computed directly, using Equation (362)

Table 2
Summary of Neutrino Opacities

Process Description References

n n+ + e e Sections 8.2, 8.3 Bruenn (1985), Mezzacappa & Bruenn (1993b)
n n+ +A A Section 8.4 Bruenn & Mezzacappa (1997), Horowitz (1997)
n n+ +n p n p, , Section 8.5 Reddy et al. (1998), Buras et al. (2006b)
n + +-n e pe Section 8.6 Bruenn (1985), Mezzacappa & Bruenn (1993b)
n + ++p e nē Section 8.6 Bruenn (1985), Mezzacappa & Bruenn (1993b)
n + ¢ +-A e Ae Section 8.7 Langanke et al. (2003), Hix et al. (2003)
n n+ +- + e ee ē Sections 8.8, 8.9 Bruenn (1985), Mezzacappa & Bruenn (1993b)

n n+ + + +n p n p n p n p, , , , e ē Sections 8.8, 8.10 Hannestad & Raffelt (1998)
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where possible, and up-scattering is computed by use of the Equation (363). Figure 26 shows some representative inverse mean free
paths and fractional energy transfers computed with thermodynamic states chosen to be the same as those of Buras et al. (2006b), for
comparison, assuming empty neutrino final states for both a typical CHIMERA geometrically spaced energy grid of 20 zone-centered
energies from 4–250MeV and a much finer evenly spaced grid from 1–300MeV.

8.3. Neutrino–Positron Scattering

Neutrino–positron scattering is computed using the same scattering functions as NES but with the coefficient function of CV and
CA interchanged, + -C C C CV A V A

2 2( ) ( ) , and the chemical potentials in the Fermi functions replaced by their negatives,
m m= -+ -e e . Figure 27 shows the inverse mean free paths and fractional neutrino energy transfers due to neutrino–positron scattering
using the same reference states as for NES (Figure 26).

8.4. Neutrino–Nucleus Scattering

Neutrino–nucleus (nA) scattering is treated as isoenergetic such that

q q
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Figure 26. Inverse mean free path (left scale, black) and fractional energy transfer, -  0 final 0 initial 0 initial( ) (right scale, red), as a function of the incident neutrino
energy for ne–electron scattering (solid) and nē–electron scattering (dashed). The symbols (ne, circles; nē, triangles) show the results for the typical CHIMERA grid of 20
energy zones geometrically spaced from 4–250MeV. The solid lines are the results of a reference calculation using 600 zones evenly spaced from 1–300 MeV. The
thermodynamic conditions are the same as those in Buras et al. (2006b), for comparison.
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with the moments
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The calculations of F n 0, A
out

0( ) and F n 1, A
out

0( ) are performed using the formalism of Bruenn & Mezzacappa (1997), and results for the
inverse mean free path are plotted in Figure 28 for the indicated thermodynamic conditions. The symbols show the results using the
typical CHIMERA neutrino energy grid of 20 energy zones geometrically spaced from 4–250MeV, the solid lines show the results
obtained using a 600-zone energy grid evenly spaced from 1 to 300MeV. These thermodynamic conditions were chosen as
representative of the infall epoch when material entropy is low and nuclei dominate the composition. As expected for an isoenergetic
scattering process, the fineness of the neutrino energy grid does not affect the inverse mean free paths, as they depend only on the
incident neutrino energy. The nuclear form factor correction of the scattering rates that reduces the inverse mean free paths at high
energies, where the incident neutrino wavelengths become comparable to or smaller than the inter-nucleon distances in the nuclei, is
included. The black lines and symbols show the inverse mean free paths uncorrected for the liquid structure function (ion–ion
correlations). The red lines and symbols show inverse mean free paths with the liquid structure function included, computed as
described by Horowitz (1997). The liquid structure function has the effect of substantially reducing the inverse mean free paths at low
energies, as can be seen by comparing the black and red lines for n  10 MeV0 .

Figure 27. Same as Figure 26 but for ne–positron scattering and nē–positron scattering.
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8.5. Neutrino–Nucleon Scattering

Differential rates for neutrino elastic scattering on free nucleons are calculated using the formalism of Reddy et al. (1998). These
rates include nucleon recoil and degeneracy effects, as well as special relativity, and the implementation of these rates in CHIMERA is
similar to that of NES but differs in several important respects. First, analytic expressions for the Legendre moments of these rates are
not available, necessitating their calculation by numerical integration. Second, energy transfer between a neutrino and a nucleon is
small but is an important component of the energy transfer between neutrinos and matter, as the scattering rates are relatively large.
The smallness of the energy transfer is illustrated in Figure 29, which shows the maximum relative energy transfer of a neutrino
scattering from a stationary nucleon. In the important energy range 5–30MeV, typical of the energies of neutrinos emerging from the
neutrinosphere, the maximum relative change in neutrino energy is only 0.01 to 0.05. The actual change in energy depends on the
angle between the scattered and incident neutrino and tends to zero as this angle tends to zero. As the relative width of the neutrino
energy zoning typically used in CHIMERA (viz. 20 energy zones geometrically spaced from 4 to 250MeV) is ∼0.26, and therefore
considerably larger than the neutrino–nucleon energy exchange in a scattering except for neutrino energies larger than ∼200MeV, a
much finer energy grid is needed to adequately resolve the energetics of this process.

In the case of neutrino–electron or neutrino–positron scattering, for example, where the energy transfer is not small in comparison
with the widths of our energy grid, Equation (356) is differenced using zone-centered values of energy in both the neutrino
distribution function and the scattering kernels; i.e.,
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Figure 28. Neutrino–nucleus neutral-current scattering inverse mean free paths for neutrinos (solid lines) and anti-neutrinos (dashed lines), with the nuclear form
factors included for the indicated thermodynamic conditions. Black lines and symbols show neutrino–nucleus scattering without ion–ion correlation corrections. Red
lines and symbols show the scattering with the ion–ion correlations applied. Filled circles (neutrinos) and triangles (anti-neutrinos) show the results for the typical
CHIMERA neutrino energy grid of 20 geometrically spaced energy zones. The solid lines show the results using a 600-zone energy grid evenly spaced from
1–300 MeV. The ordinate is log scaled to show the effect of the ion–ion correlation corrections, which for these conditions, mainly affects low-energy neutrinos,
which have small inverse mean free paths.

Figure 29. Maximum relative change in the energy of a neutrino, scattering on a stationary nucleon, as a function of the incident neutrino energy. The insert shows
details for incident energies typical of neutrinos emerging from the neutrinosphere.
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However, for small energy transfers compared with the energy grid width, the scattering kernel q¢ R , , cosk kXX
a

0 0( ) will be
effectively zero if ¹ ¢ k k0 0 , and the scattering will become essentially isoenergetic, with negligible energy transfer. To develop a
better approximation for the energy transfer via smaller energy transfer scatterings, we continue to evaluate the neutrino distribution
function at the energy zone centers, but evaluate the scattering kernels on a refined energy grid. To accomplish this, we regard the
scattering kernels as functions of 0 and  0 and operate on Equation (368) by the unity operator
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The left-hand side, being a constant operand, is unchanged by this operation. However, by integrating over  0
3, the right-hand side of

Equation (368) becomes proportional to m dE dt, k0 0( ) , which we desire to compute accurately. Operating on the right-hand side of
Equation (368) by Equation (369) gives
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The integrals in Equation (370) over 0 and  0 can now be replaced by summations over a refined energy grid.
The Legendre coefficientsF ¢ ,ℓ,XX

in out
0 0( ) of the scattering kernels are given by Equation (361) and used in the collision integrals of

the transport equations as given by Equation (364). In the computation of the Legendre coefficients for neutrino–nucleon scattering,
the summations of the scattering kernels over refined energy grids in Equation (370) are directly incorporated by defining
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where F ¢ ,ℓ k k,n,p
in

0 0( ) is obtained from F ¢ ,ℓ k k,n,p
out

0 0( ) by Equation (359), and where, as in Equation (370), the integrals in
Equation (371) can be replaced by summations over a refined energy grid.

Technically, the lower and upper limits of the energy integrals in Equation (371) should be the zone-edged energies - k0 1
2
and

+ k0 1
2
in the initial energy integral, and ¢- k0 1

2
and ¢+ k0 1

2
in the final. However, the scattering kernels can become so narrow in

energy that restricting the integration range to a narrower energy width does not change the result and allows a given energy grid to
be spread more finely over the smaller energy integration width. A useful integration range for energy as given by the widths of the
scattering kernels is angle dependent and within the interval 0 L to 0 U where
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and where α is a free parameter. Experiments found that the choice of a = 52 gives good results in the sense that the scattering kernel
is essentially negligible outside these limits. The derivation of Equations (372) and (373) is given by Equations (378)–(382) below.
Whether the zone-edged energies of the CHIMERA energy grid or the energies given by Equation (372) are used as integration limits
is case-dependent and described below.

Three cases are considered depending on the relative values of =  k0
in

0 and = ¢  k0
out

0 , where  k0 and ¢ k0 are the zone-centered,
incoming and outgoing neutrino energy group.

1. If = ¢k k , the initial energy integration over 0 as given by the right-hand side of Equation (371) is omitted, the zone centered
energy  k0 is used as input, and the final energy integration is performed with a 32-point Gauss–Legendre integration from
0 L,f to 0 U,f , where

= =- +     max , , min , . 374k k0 L,f 0 L 0 1
2

0 U,f 0 U 0 1
2

( ) ( ) ( )
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The first two Legendre moments F  ,ℓ k k,n,p
out

0 0( ) are then obtained by a 32-point Gauss–Legendre angular quadrature
appropriately weighted by the Legendre polynomials qP cosℓ ( ).

2. If ¢ = -k k 1, the zero and first Legendre moments are then obtained from Equation (371) by first executing eight-point Gauss–
Legendre energy quadratures for each of the energy integrations. The integration limits for the initial energy integration are
from 0 L,i to 0 U,i, given by

= =- +    , min , 375k k0 L,i 0 1
2

0 U,i 0 U 0 1
2

( ) ( )

where 0 U is given by Equation (372) evaluated at the boundary value + k0 1
2
. The limits of integration for the final energy are

from 0 L,f to 0 U,f , where

= =- -    max , , 376k k0 L,f 0 L 0 3
2
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where 0 L is given by Equation (372) evaluated at + k0 1
2
. A 32-point Gauss–Legendre angular quadrature appropriately

weighted by the Legendre polynomials qP cosℓ ( ) is then executed to obtain the Legendre coefficients.
3. If ¢ < -k k 1, the differences between initial and final energy falls outside the small energy scattering range, so the necessity of

refining the energy grids is less critical. The zero and first Legendre moments are obtained from Equation (371) by first
integrating the scattering functions over the initial energy from - k0 1

2
to + k0 1

2
and the final energy grid from ¢- k0 1

2
to ¢+ k0 1

2

using four-point Gauss–Legendre energy quadratures. The Legendre moments are then obtained by a four-point Gauss–
Legendre angular quadrature.

We have also included corrections for weak magnetism to the scattering rates by the procedure outlined by Buras et al. (2006b),
which disentangles the weak magnetism correction from the corrections given by Horowitz (2002) for both weak magnetism and
recoil, cWM,Rec

nc,n,p , and the corrections given for recoil only, cRec
nc,n,p. The resulting weak magnetism correction factor, x nc

0( ), is given by
the ratio

x
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where nn and np are the number densities of free neutrons and protons, respectively. The Reddy rates, which do not include weak
magnetism, are corrected for weak magnetism by multiplying the scattering Legendre moments by x nc

0( ).
The inverse mean free paths and mean relative energy transfers are plotted for ne in Figure 30 and for nē in Figure 31. The figures

compare the scattering opacities computed with the procedure described above (solid lines) with those computed without including
weak magnetism (dotted lines) and with those computed without including weak magnetism and with the isoenergetic approximation
described by Bruenn (1985) (dashed lines). The effect of including recoil, nucleon final-state blocking, and special relativity (Reddy
et al. 1998) is to reduce the rates compared with the isoenergetic approximation. This is mainly because the isoenergetic
approximation is equivalent to assuming that the nucleon has an infinite mass. Including recoil takes into account the finite nucleon
mass and, therefore, reduces the center of mass energy of the colliding system, thus reducing the opacity for a given incident neutrino
energy. Final-state blocking and special relativity work in the same direction but are less important for the conditions considered
here. The effect of weak magnetism is to increase the opacities for neutrinos and decrease them for antineutrinos. The net effect of
including recoil, blocking, and relativistic corrections and weak magnetism corrections on the magnitude of the opacities is, thus,
considerably more pronounced for antineutrinos than for neutrinos. The effect of including the above corrections is essential for
including the neutrino–nucleon energy transfer. The mean relative energy transfers are shown in Figures 30 and 31. They are
obviously zero when computed using the isoenergetic approximation, but they are nonzero and can play a significant role when recoil
is taken into account. The effect of weak magnetism is to modify the magnitude of the cross sections but has little if any effect on the
relative energy transfer.

As a reference, the dotted, dashed, and solid lines showing the inverse mean free paths and relative energy transfers were all
obtained using an energy grid of 1500 zones, evenly spaced from 1 to 300MeV. An energy grid of the same number of zones but
geometrically spaced in the same energy range, rather than evenly spaced, gave very similar results except for very low incident
neutrino energies (2 MeV). The filled circles show the inverse mean free paths and relative energy transfers computed with the
above corrections using the typical CHIMERA energy grid of 20 energy zones (with sub-grids as described above) increasing
geometrically between 4 and 250MeV. The inverse mean free paths computed with the CHIMERA energy grid reproduce nicely those
computed with the much more refined grid. The relative energy transfers, however, are somewhat overestimated at low energies. The
reason, most likely, is that CHIMERA stores the lowest two moments of the scattering functions, which are computed using the sub-
grid and from which the inverse mean free paths are directly related, while the relative energy transfers are not stored but computed
from the relatively coarse 20-energy-zone CHIMERA grid.

To derive Equations (372) and (373), we begin with the dynamic structure function S q q,0( ¯) for neutrino–nucleon scattering by
setting m m m= - = 02 4ˆ and =z q T0 in the expression for neutrino–nucleon absorption (Equations (21) and (22) of Reddy et al.
1998) to obtain
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0
out, = -q p pin out¯ ¯ ¯ are, respectively, the energy and momentum transferred by the neutrino, the subscripts

“2” and “4” refer to the incident and final nucleon, respectively, μ is the nucleon chemical potential, M is the nucleon mass, and θ is
the angle between the incident and scattered neutrino directions. In the nondegenerate limit m 0( )
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Figure 30. Inverse mean free paths for scattering on free nucleons by ne-neutrinos (black, scale on left) and the relative energy transfer to the neutrino (red, scale on
right), for the thermodynamic conditions listed on the upper left of the plots. The dashed lines give the inverse mean free paths using the isoenergetic approximation of
Bruenn (1985) uncorrected for weak magnetism, the dotted lines give the inverse mean free paths as given by the formalism of Reddy et al. (1998), which include
recoil, nucleon final-state blocking, and special relativity but not weak magnetism corrections, and the solid lines are the latter inverse mean free paths corrected for
weak magnetism. The inverse mean free paths plotted by the solid, dashed, and dotted lines were computed using a 1500-zone neutrino energy grid evenly spaced
between 1 and 300 MeV. The symbols show the inverse mean free paths computed with recoil, etc. and weak magnetism corrections, using the typical CHIMERA
energy grid of 20 zones geometrically spaced between 4 and 250 MeV.
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where we have set m m m= =2 4 . Using Equation (380) in Equation (378), we get
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Neglecting the third term in the numerator of the exponential, Equation (382) is a quadratic in out with the two solutions given by
Equation (372) above.

Figure 31. Same as Figure 30 but for nē–nucleon scattering.
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8.6. Neutrino Absorption and Emission on Free Nucleons

Emission and absorption of neutrinos is an important process, for which we plot in Figure 32, for ne the inverse mean free paths
(black lines), given by

l c c= +  1 , 3830 a
0

0 e
0

0( ) ( ) ( ) ( )( ) ( )

where ca
0( ) and ce

0( ) are the absorption and emission inverse mean free paths, respectively, and - n 0 e 0 (red lines) is the difference
between the energies of the emitted electron and the absorbed neutrino. Figure 33 shows the same for nē. The dashed lines give the
inverse mean free paths for the isoenergetic approximation of Bruenn (1985), uncorrected for weak magnetism. The dotted lines give
the inverse mean free paths as given by Reddy et al. (1998), which include recoil, nucleon final-state blocking, and special relativity
but not weak magnetism corrections. The solid lines give the inverse mean free paths for the latter but corrected for weak magnetism.
Like neutrino scattering on free nucleons, the inverse mean free path for absorption and emission on free nucleons is reduced when
recoil is taken into account by the reduced center of mass energy of the collision. At very low incident energies the emitted electron
energy, 0 e, tends to be greater than the incident ne energy, n0 , because of the neutron–proton mass difference and the thermal
motions of the nucleons. At high energies, 0 e decreases below n0 due to part of the incident collision energy being taken up by the
final nucleon. The same is true for nē except that the neutron–proton mass difference is negative in this case. In the isoenergetic
approximation, - n 0 e 0 is just the neutron–proton mass difference, positive for ne, and negative for nē.

Figure 32. Inverse mean free paths for the absorption/emission on free nucleons of ne-neutrinos (black, scale on left) and the difference in energy between the
absorbed neutrino and emitted electron (red, scale on right), for the thermodynamic conditions listed on the upper left of the plots. The dashed lines give the inverse
mean free paths for the isoenergetic approximation of Bruenn (1985), uncorrected for weak magnetism, the dotted lines give the inverse mean free paths as given by
(Reddy et al. 1998), which include recoil, nucleon final-state blocking, and special relativity but not weak magnetism corrections, and the solid lines are the latter
inverse mean free paths corrected for weak magnetism. The inverse mean free paths plotted by the solid, dashed, and dotted lines were computed using a neutrino
energy grid of 1500 zones spaced between 1 and 300 MeV. The symbols (circles for ne, triangle for nē) show the inverse mean free paths computed with the typical
CHIMERA energy grid of 20 zones geometrically spaced between 4 and 250 MeV.
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As a reference, the l1 and - n 0 e 0 shown by the dashed, dotted, and solid lines were computed for a given angle θ between the
incident neutrino and emitted electron, by integrating the final electron energy using an energy grid of 1500 zones of equal width
spaced between 1 and 300MeV. The first two Legendre moments of the absorption and emission kernels were then computed with a
64-point Gauss–Legendre angular quadrature. The filled circles show l1 and - n 0 e 0 as computed by CHIMERA with the typical
energy grid of 20 zones geometrically spaced between 4 and 250MeV. To compute l1 , CHIMERA uses a 64-point Gauss–Legendre
quadrature to integrate over the final electron energy, with limits given by Equation (372) above with the term = -dm c M M c2

1 2
2( )

added, whereM1 andM2 are the initial and final nucleon masses, respectively. A 64-point Gauss–Legendre angular quadrature is then
used to compute the first two Legendre moments of the absorption and emission inverse mean free paths.

8.7. Neutrino Absorption and Emission on Nuclei

Calculation of the rate of electron capture on heavy nuclei and the resulting neutrino emission in the collapsing core requires three
components: the appropriate electron capture reaction rates, the spectra of emitted neutrinos, and knowledge of the nuclear
composition. In simulations of the collapsing stellar iron core, the composition is calculated by the equation of state assuming NSE,
instead of being tracked in detail via a reaction network. As discussed in Section 3.2, the information on the nuclear composition
typically provided by the equation of state is limited to the mass fractions of free neutrons and protons, α-particles, and the sum of all
heavy nuclei, as well as the identity of an average heavy nucleus. In CHIMERA, we use a prescription for nuclear electron capture first
utilized by Langanke et al. (2003) and Hix et al. (2003). This treatment is based on shell model electron capture rates from Langanke
& Martínez-Pinedo (2000, LMP) for < A45 65 and 80 reaction rates from a hybrid Shell-Model-Monte-Carlo (SMMC)—
Random-Phase-Approximation (RPA) calculation (Langanke et al. 2001a, 2003, LMS) for a sample of nuclei with  A66 112.
The approximation of Langanke et al. (2001b) is used for the distribution of emitted neutrinos. To calculate the needed abundances of
the heavy nuclei, a Saha-like NSE is assumed, including Coulomb corrections to the nuclear binding energy (Hix & Thielemann
1996; Bravo & García-Senz 1999), but neglecting the effects of degenerate nucleons (El Eid & Hillebrandt 1980). The combined set

Figure 33. Same as Figure 32 but for nē absorption/emission on free nucleons.
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of LMP and LMS model rates is used to calculate an average neutrino emissivity per heavy nucleus. The full neutrino emissivity is
then the product of this average and the number density of heavy nuclei calculated by the equation of state. With the limited coverage
of rates for >A 65, this approach provides a reasonable estimate of what the total electron capture rate would be if rates for all nuclei
were available. This averaging approach also makes the rate of electron capture consistent with the composition returned by the
equation of state, while minimizing the impact of the limitations of our NSE treatment. A public version of an updated version of this
rate tabulation is available from Juodagalvis et al. (2010). This tabulation, which is planned for inclusion in a future version of
CHIMERA, includes more extensive coverage of heavier, more neutron-rich nuclei via a Fermi–Dirac (FD) parameterization of level
occupation in place of the more costly SMMC approach.

In Figure 34, we plot the ne inverse mean free paths for absorption and emission on nuclei for both the IPM as formulated by
Bruenn (1985) and the more sophisticated LMP–LMS formulations. Both the solid and dashed lines are the results of computations
using a linear energy grid of 200 zones aligned with the energy grid of the electron capture table on which the LMP–LMS inverse
mean free paths were tabulated. The filled circles are the results obtained using the typical CHIMERA energy grid. At densities below
a few times 1010 -g cm 3, the inverse mean free paths given by the IPM dominate (top frame of Figure 34), but at higher densities,
electron capture reduces Ye and drives the nuclear abundances toward neutron richness, including nuclei with neutron numbers

>N 40. The IPM results in the vanishing of the electron capture inverse mean free paths for N 40 nuclei due to the filling of the
neutron f1 5 3 orbital. In the LMS treatment of electron captures on nuclei, it was shown that Pauli blocking due to the filling of the

neutron f1 5 3 orbital is overcome by correlations and temperature effects. Consequently, at densities above a few times 1010 -g cm 3,
the LMS–LMP inverse mean free paths remain finite, whereas those given by the IPM vanish (see Figure 34(b) and (c)).

Figure 34. Inverse mean free paths for the ne emission (black lines and circles) and ne absorption (green lines and circles) on nuclei, for the thermodynamic conditions
listed on the upper left of the plots. The dashed lines give the inverse mean free paths calculated from the independent particle model (IPM) as formulated by Bruenn
(1985). The solid lines give the inverse mean free paths computed from tables based on the LMS-LMP formulation. Data plotted by both the solid and dashed lines
were computed using a linear energy grid of 200 zones from 0 to 100 MeV, exactly matching the energy grid of the LMS-LMP electron capture table. Filled circles
show the inverse mean free paths computed with the typical CHIMERA energy grid of 20 zones geometrically spaced between 4 and 250 MeV.
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8.8. Pair Production: General

In spherical symmetry, the rate of change of the neutrino (antineutrino) occupation probability, m f ,0 0( ), due to pair production
process “XX” is given by
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where m¢ ¢f ,0 0
¯ ( ) is the antineutrino (neutrino) occupation probability, q¢ R , , cosXX

a
0 0( ) and q¢ R , , cosXX

p
0 0( ) are, respectively, the

neutrino–antineutrino annihilation and neutrino–antineutrino unblocked-creation rates per neutrino–antineutrino states for process
XX, 0 is the neutrino energy, m0 is the cosine of the neutrino propagation direction with respect to the radial direction, f is the
azimuthal propagation directions, and qcos is defined in Equation (357). Unprimed quantities refer to neutrinos (antineutrinos), and
primed quantities refer to antineutrinos (neutrinos). RXX

a and RXX
p are related by
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where -Ee and +Ee are the associated electron and positron energies, respectively. Expanding the annihilation and creation kernels in a
Legendre expansion and keeping the first two terms, as was done in Equation (360) for the scattering kernels, gives
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Applying the moment operators òp W- d4 1( ) and òp m W- d4 1
0( ) to Equation (384) and using the definitions in Equations (357), (386),

(384), and (220), gives the moments of the pair interaction terms:
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The pair annihilation kernels in Equation (387) have been multiplied by angular cutoff correction factors, c ¢ ,0 0( ), to account for
the non-isotropic nature of the neutrino flow (e.g., Goodman et al. 1987; Cooperstein et al. 1987). For CHIMERA, these angular
correction factors are derived as follows. The pair neutrino–antineutrino annihilation rate is proportional to the square of the center-
of-mass energy, or to - n nn n1 2( · )¯ , where nn and nn¯ are unit vectors in the propagation direction of ν and n̄ , respectively. Inside the
neutrinosphere, the anisotropy of the neutrino distributions are small, and the occupation distributions f and f̄ can be approximated
by
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which follows from the definitions in Equation (220). Using Equation (357) for n nn n· ¯ , we find that the ratio, c1, of - n nn n1 2( · )¯
evaluated with an anisotropic neutrino distribution in the numerator and an isotropic neutrino distribution in the denominator, having
the same number and energy spectrum, is given by
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Outside the neutrinospheres, the neutrino occupation distributions become increasingly anisotropic and the neutrino–antineutrino
center of mass collision energy becomes increasingly smaller as the beaming becomes radial and more nearly collinear. Assuming
that the neutrinosphere emits isotropically and that f is constant along rays leading back to the neutrinosphere, outside the
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neutrinosphere, f is given by

m m
y m m m

m m
= -

= - >

<

n n


   



 
f

R R R R
,

2

1
1 1

0
, 390i

i i

i

0 0 0
0
0

0 0 0 0 0 0 0
2

0 0 0

⎧
⎨⎪
⎩⎪

( )
( ) ( ) ( ) ( ( ) )

( )
( )

( )

m m
y m m m

m m

¢ ¢ = - ¢
¢ ¢ ¢ ¢ = - ¢ >

¢ < ¢

n n


   



 
f

R R R R
,

2

1
1 1

0

, 391i
i i

i

0 0 0
0
0

0 0 0 0 0 0 0
2

0 0 0

⎧
⎨⎪

⎩⎪
¯ ( )

( ) ( ) ( ) ( ( ) )

( )
( )

( )
¯ ¯

where n R 0( ) and ¢n R 0( )¯ are the radii of the neutrinospheres of the neutrinos and antineutrinos, respectively, and R is the radial
coordinate at which the correction is being applied. Using Equations (390) and (391) for the anisotropic neutrino radiation, we find
that the ratio, c2, of - n nn n1 2( · )¯ evaluated, as before, with an anisotropic neutrino distribution in the numerator and an isotropic
neutrino distribution in the denominator, having the same number and energy spectrum, is given by
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We note that in the case m m¢ = i i0 0 0 0( ) ( ), c  ,2 0 0( ) reduces to
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To smoothly transition between c1 and c2, we define the neutrino–antineutrino pair annihilation angular corrections, χ, to be given by

c c c= min , 3941 2( ) ( )

and extend the definitions of m i0 (and m¢ i0 ) in Equation (390) (and (391)) to
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2
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(similarly for m¢ i0 ). Equation (395) will cause m i0 to rapidly approach −1 and c2 to approach 1 as R decreases below nR , and
Equation (394) will then cause χ to be governed by c1.

To test the above angular cutoff correction factor, we compare in Figure 35 the pair annihilation rates computed by CHIMERA
without and with the angular cutoff correction factor to the rates computed by the Boltzman solver BOLTZTRAN with three different
beam resolutions. Because the angular dependence of the transport has not been integrated over in BOLTZTRAN, the angular
resolution is limited only by the number of beams employed, and the BOLTZTRAN rates can therefore be regarded as a reference
modulo the number of beams employed. The core configuration used in this comparison was obtained by evolving the progenitor
s15s7b2 (Woosley & Weaver 1995) in 1D to 100 ms post-bounce, at which point the core configuration was frozen and the neutrino
transport was continued until a steady state was achieved. Without the angular cutoff correction factor, the pair annihilation rates
computed by CHIMERA become significantly larger than the BOLTZTRAN rates beyond 70 km, which is 10 km beyond the mean
radius of the neutrinosphere. They become several orders of magnitude larger beyond 170 km. With the angular cutoff correction
factor included, the behavior of the pair annihilation rates computed by CHIMERA more closely approximates those of BOLTZTRAN,
though differences of the order of five are seen beyond 120 km.

8.9. Neutrino–Antineutrino Pair Annihilation and Production from Electron–Positron Pairs

The zero and first moments of the kernels for neutrino–antineutrino pair annihilation into electron–positron pairs and the inverse
process are taken from the analytic expressions of Bruenn (1985, Equations (C62)–(C74), with a typo corrected by removing the term
-a0 from the bracket in Equation (C68)). The integration over the electron energy, Ee, was performed for the case that > ¢ 0 0 by a
24-point Gauss–Legendre energy quadrature for each of the intervals from zero to ¢ 0, from ¢ 0 to 0, and from 0 to + ¢ 0 0, with a
similar set of integrations for the case that ¢ > 0 0.

In Figure 35, we plot the inverse mean free path,
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where for neutrinos (antineutrinos) we have taken y n 0
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0( )( ) for the neutrinos (antineutrinos) to be zero and y ¢0
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0
¯ ( )( ) for the

antineutrinos (neutrinos) to be in thermal equilibrium with the matter at the stated thermodynamic conditions, and plotted is the
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Figure 35. Pair annihilation rates computed by CHIMERA without (green) and with (red) angular cutoff correction factors, compared with the rates computed by
BOLTZTRAN with eight-point (black), 12-point (orange), and 16-point (blue) angular quadrature.

Figure 36. Inverse mean free path (black) for electron–positron annihilation and pair production for ne (solid) and nē (dashed), computed from Equation (396) on a
600-point evenly spaced energy grid from 0–300MeV, for listed thermodynamic conditions. Inverse mean free paths were computed with the ne (nē) occupation
distribution set to zero and the nē(ne) distribution equilibrated with the matter and energy production rates per baryon for ne (solid) and nē (dashed) computed from
Equation (397) with both the ne and nē occupation distributions set to zero. Filled circles (ne) and triangles (nē) are for values computed with a typical CHIMERA energy
grid of 20 logarithmic energy zones.
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neutrino (antineutrino) spectral energy production rate per baryon,
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where we have set the neutrino–antineutrino blocking factors to zero.

8.10. Neutrino–Antineutrino Pair Annihilation and Production from Nucleon–Nucleon Bremsstrahlung

Neutrino–antineutrino pair annihilation and production from nucleon–nucleon bremsstrahlung has been computed at various levels
of approximation (Friman & Maxwell 1979; Raffelt & Seckel 1995; Hannestad & Raffelt 1998). The last paper examined the process
and provided an interpolation scheme that interpolates the nucleon–nucleon bremsstrahlung kernel between the nucleon
nondegenerate limit treated by Raffelt & Seckel (1995) and the degenerate limit treated (for the case of axion emission) by Ishizuka
& Yoshimura (1990). We use Equation (35) in Equation (23) of Hannestad & Raffelt (1998), which naturally breaks up into
F ¢ ,0,brem

a p
0 0( ) and F ¢ ,1,brem

a p
0 0( ) terms. We also use Equation (394) for the neutrino–antineutrino pair annihilation correction. In

Figure 37, we plot the inverse mean free paths, given by Equation (396), and the spectral energy production rates per baryon, given
by Equation (397), with the nucleon–nucleon bremsstrahlung kernels substituted for the electron–positron pair annihilation kernels
for select thermodynamic states.

Mathematically, inelastic neutrino scattering on nucleons is the bremsstrahlung process with a final-state neutrino crossed into the
initial state and could be included with the same kernel. Moreover, this process should reduce to elastic neutrino–nucleon scattering
when the nucleon–nucleon interaction tends to zero. However, the formulation of Hannestad & Raffelt (1998) neglects nucleon
recoil, and we have used instead of the Hannestad & Raffelt (1998) formalism for inelastic neutrino–nucleon scattering the formalism
of Reddy et al. (1998), described earlier, for elastic neutrino scattering on nucleons, which includes recoil effects as well as nucleon
degeneracy and relativistic effects. At very high densities, where inelastic neutrino scattering on nucleons becomes important, we
have therefore neglected this mode of energy exchange between the neutrinos and the matter, with the hope of recovering a
significant part of it through the inclusion of nucleon recoil.

8.11. Opacity Interpolation

As noted earlier in this section, the CHIMERA method for building and interpolating neutrino interactions in r T Ylog , log , e( ) uses
a local cube of points in r T Y, , e( ) that bracket the r T Y, , e( )-value of each spatial cell and that lie on a regular mesh in

r T Ylog , log , e( )-space (cf. Section 3.1; Mezzacappa & Bruenn 1993a). The derivatives computed within the local r T Y, , e( )-cube are
fully consistent with the interpolated value. This method has a disadvantage with the on-the-fly re-computation of opacities to fill the
local r T Y, , e( )-cubes when the values no longer bracket the cell values. Computation of some of the opacities is expensive, notably
the opacities with the sub-grid integration described in Section 8.5, and could consume up to ∼25%–40% of the simulation time.
This cost was compounded by computational load imbalance from the irregular number of local r T Y, , e( )-cubes updates required for
each transport time step, which typically numbered between zero and a few new r T Y, , e( )-cubes.

Starting with the C-series models, we implemented the scheme described below, which greatly reduced the on-the-fly
computations and is better suited to future use of pre-computed tables. Specifically, we chose to implement a sparse “local pool” of
r T Y, , e( )-tuples. Using such a “local pool,” rather than retaining the existing individual r T Y, , e( )-cubes for each cell with the
addition of a “reuse” algorithm, has lower memory requirements, as many cells use the same logical cube of r T Y, , e( )-points. The
memory savings is potentially larger when computing transport on multiple adjacent “rays” that are similar in r T Y, , e( )-space. The
reduced memory usage was particularly helpful when using machines with smaller memory footprints (∼1–2 GB of memory
per core).

8.11.1. Energy Interpolation

The energy grid used in the CHIMERA neutrino transport solver is not the comoving observer’s energy, 0, but the energy of a
comoving observer outside the gravitational well of the supernova, ºa E0 0 (Equation (216)), which depends on radius and, thus,
complicates the sharing of opacity r T Y, , e( )-points. To account for this difference, we must interpolate the energy grid of the opacity
table into the specific points needed for the a grid in each group, from a reference grid, without changing the total interaction rate.

The energy grid, both  k0 and E k0 , are logarithmically spaced at the group centers
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for any value of the energy.
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8.11.2. A Simple Integral Scheme

Informed by the requirements of the CHIMERA energy grid, we can construct a more general interpolation scheme for any function,
f, tabulated on a logarithmically spaced grid, eı̄ , to another logarithmically spaced grid, ei, that differs by a multiplicative constant that
changes with time, e e a=ı i¯ , where both grids have the same logarithmic spacing
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Here and in the following, we will omit the subscript naught and all subscripts will refer to the energy grid. The integral scheme
comes from the need to evaluate integrals in the form ò e ef d( ) numerically by summation of the terms deSfi i, where de e e= -+i i i1

and de fi i is the integration of f over that same interval, dei. When the shift, alog 1( ), is smaller than the grid spacing, zlog , we can
define the overlap between the dei and deı̄ zones as
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which is the same for all zones, i. The integral over ı̄ is then

de b de b de= + - + +f f f1 . 402ı ı i i i i1 1( ) ( )¯ ¯

Figure 37. Inverse mean free paths for ne (black solid lines) and nē (black dashed lines) computed from Equation (396) for nucleon–nucleon-bremsstrahlung kernels on
an energy grid of 600 evenly spaced zones from 0 to 300 MeV, for the thermodynamic conditions listed. The ne (nē) inverse mean free paths were computed with the ne
(nē) occupation distribution set to zero and the nē(ne) distribution equilibrated with the matter. Inverse mean free paths were computed with the CHIMERA energy grid of
20 energy zones for ne (black circles) and nē (black triangles). Energy production rates per baryon from ne (solid red lines) and nē (dashed red lines) were computed
from Equation (397) for the nucleon–nucleon-bremsstrahlung kernels on the above-described 600 zone energy grid, with both the ne and nē occupation distributions set
to zero. The spectral energy production from ne (red circles) and nē (red triangles) was computed with the 20 energy zone CHIMERA energy grid.
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If the left-most zone has a coordinate e = 01 , we must modify the above equation to include the whole of the first zone value
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For grid shifts that are larger than the single-zone spacing, a z>log 1 log( ) , a small modification is required. First, we define a
“shift index”
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where z j refers to ζ to the jth power, which can be used in an extended version of Equation (402):
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The additional zones shifted for e = 01 grids must be added to Equation (403):
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These last two equations reduce to the earlier forms when j = 0.

8.11.3. Interpolation of Two-variable Functions

If we have a function, e e ¢f ,i ı( ), which needs to be remapped to a shifted grid, e e ¢f ,ı ı( )¯ ¯ , we can extend the single-variable method
given above. We assume that both the ei and e ¢ı grids are the same (i.e., e e= ¢i ı if = ¢i ı ) and therefore have the same shift and
spacing parameters, z b a j, , 1 ,( ). We start with a partially shifted version of Equation (402) where i is shifted but ¢ı is not, and then
apply the shift to ¢ı to get the shifted double-grid formula:
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For grids shifted such that the shift index >j 0, we can generalize Equation (408) to
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for cases when > ¢ >i ı1, 1. When either i = 1 or ¢ =ı 1, we need to generalize the equations above:
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8.11.4. Interpolation of CHIMERA Opacities

For the interpolation of opacities in CHIMERA, we choose to store the raw opacities on a grid, e , that numerically matches the
specified E0 grid, which makes a = a. Note that this is not a frame transform, just a convenient choice of variables, as all opacities
are evaluated in the 0 frame of the moving fluid. For single-energy opacities (absorption and emission), f is the inverse mean free
path multiplied by  0

2. For two-energy opacities (scattering and pair processes), f is the Legendre coefficients of the kernels multiplied
by ¢ 0

2
0

2. The ¢0
2 term arises from within the collisions integrals, while the  0

2 arises from integrating the collision integral with the
operator ò  d0

2
0 to conserve the total integral interaction rate.

8.11.5. Local Pool Algorithm

The local pool is implemented for each opacity by first identifying the eight r T Y, , e( )-points needed for each zone using that opacity
on each MPI rank by generating an integer hash value that uniquely maps to the potential grid of r T Y, , e( )-points, removing duplicates,
and sorting them. The sorted list is then compared to the points in the existing pool to generate a list of points that need to be added to
the pool. The list of additions is added to the pool by calling the opacity generation routines for each missing point. The integer hash
values for the eight r T Y, , e( )-points for each zone are then regenerated and cross-linked to their pool index numbers. During
interpolation, the eight points indicated by the pool index numbers are used to interpolate the kernels for specific cells.

Implementation of this sharing algorithm reduced the opacity generation and management costs to a few percent of the total run
time. It had the extra benefit of reducing the opacity interpolation costs by 5%–10%, as the r T Y, , e( )-points needed for interpolating
the opacity for one cell frequently fully, or partially, overlap with those needed for the next cell, allowing data stored in processor
cache to be reused. This was not possible under the old scheme, as every zone had its own eight points even if they were duplicates of
a neighboring cell’s points. Implementation was checked with tests that were computed using a 1D reference simulation, with
comparisons of critical transport and hydrodynamics variables made at core bounce and at several other times.

9. Comparison with Other Codes

Supernova codes are complex entities, involving the numerical solution of hydrodynamics supplemented by one or more equations of
state, neutrino transport with multiple sources of absorption and scattering opacities, nuclear transmutations, and relativistic gravity, with
fluid densities ranging over more than ten orders of magnitude. Different numerical techniques have their individual strengths and
weaknesses, reinforcing the importance of code validation for a particular choice of techniques and their implementation. In this section, we
make a detailed comparison of results of a spherically symmetric simulation performed by CHIMERA using the code versions utilized in our
B-series and C-series simulations with the results of two other codes that have been compared in Liebendörfer et al. (2005): AGILE-
BOLTZTRAN and PROMETHEUS-VERTEX. A recent comparison of CCSN codes was presented in O’Connor et al. (2018), using updated
physics, particularly the EoS, and a comparison of CHIMERA with those results will be reported in the future using a later version of
CHIMERA than described here.

9.1. Description of Comparison Simulations and Codes

AGILE-BOLTZTRAN was developed by an Oak Ridge–Basel collaboration and is a code that solves the general relativistic
hydrodynamics equations in a time-implicit fashion, with a dynamical adaptive grid, coupled to a solver for the general relativistic
Boltzmann equations for the neutrino distribution functions based on a discrete-ordinates (SN) in angle and finite-difference in space and
neutrino energy discretization, all for spherically symmetric spacetimes (Mezzacappa & Bruenn 1993a; Mezzacappa & Messer 1999;
Liebendörfer et al. 2002, 2004).
PROMETHEUS-VERTEX is a code for multidimensional neutrino radiation hydrodynamics, here used in the context of studies

assuming spherical symmetry, developed by the Garching group. It consists of a code to solve the hydrodynamics equations, based
on a finite-volume discretization PROMETHEUS (Fryxell et al. 1989), coupled in an operator-split fashion to a code that solves the
equations for two-moment neutrino transport, closed using a variable Eddington factor. This factor is derived from a formal solution
of a model Boltzmann equation for the counterpart spherically averaged matter configuration corresponding to the actual
multidimensional matter configuration for a given time step (Rampp & Janka 2002; Buras et al. 2006b).

From CHIMERA, we include runs from two versions of the code. The first, CHIMERA-B, uses the same code as the B-series models
reported in Bruenn et al. (2013, 2016) but with microphysics (EoS and opacities) and progenitor (Woosley & Weaver 1995) to match
the Liebendörfer et al. (2005) comparison models. The second, dubbed CHIMERA-C, is the code used for the C-series models (Lentz
et al. 2015; E. J. Lentz et al. 2018, in preparation) and differs from CHIMERA-B in some code refinements, particularly the
modification of the transport scheme in the vicinity of large velocity discontinuities (i.e., shocks) to properly account for the large
changes in the comoving reference frames described in Section 6.12.

The AGILE-BOLTZTRAN and PROMETHEUS-VERTEX comparisons have been documented in Liebendörfer et al. (2005), as noted
above, and in Müller et al. (2010). The progenitor and choice of physics we will use for our comparisons is referred to as model G15
in Liebendörfer et al. (2005), and we also will refer to it as G15. Of the two models used for the comparisons in that work, it is the
model that implements the more extensive choice of physics and, thus, more closely approximates the set of physics included in
current state-of-the-art CCSN simulations. The progenitor used to initiate the G15 simulations is the 15M☉ progenitor of Woosley &
Weaver (1995), widely used in the literature, and representative of the star in the middle- to upper-mass range likely to end its life as
a supernova. From the highest densities to a density of ´ -6 10 g cm7 3, the EoS used in all codes is the compressible liquid drop
model of Lattimer & Swesty (1991) with incompressibility modulus K = 180MeV. It assumes a composition in NSE consisting of
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neutrons, protons, α-particles, a representative heavy nucleus, electrons, positrons, and photons. At densities below ´ -6 10 g cm7 3

each code switches to an EoS consisting of a composition of electrons, positrons, photons, nucleons, and nuclei, with the latter two
treated as an ideal gas. The detailed treatment of the EoS in the lower-density regime differs among the codes; therefore, our comparisons
will be limited to important phenomena occurring above ´ -6 10 g cm7 3. AGILE-BOLTZTRAN is fully general relativistic, while both
PROMETHEUS-VERTEX and CHIMERA approximate the gravitational potential by including corrections terms due to pressure and energy
of the stellar medium and neutrinos, as described in Marek et al. (2006). We plot the results of two PROMETHEUS-VERTEX simulations,
which we label as VERTEX-1 and VERTEX-2. The VERTEX-1 simulation was performed with gravitational potential “R” of Marek et al.
(2006) and is described in Liebendörfer et al. (2005), while the VERTEX-2 simulation was performed with gravitational potential “A” and is
described in Müller et al. (2010). Both PROMETHEUS-VERTEX and CHIMERA include gravitational redshifting and time dilation in the
transport solution but ignore the difference between coordinate and proper radial distances, which has little effect on the transport (Bruenn
et al. 2001). The hydrodynamics in both codes is Newtonian.

Neutrinos of all flavors are included in model G15, with the neutrino–matter interactions shown in Table 3. The AGILE-
BOLTZTRAN simulation was performed using 103 adaptive spatial zones from the center to the edge of the included progenitor,
which was about 7000km, and a constant-pressure boundary condition was applied at the outer surface. The neutrino energy grid
was resolved with 20 geometrically spaced bins, the first centered at 3MeV and the last at 300MeV. The propagation directions
were discretized into six angles suitable for Gaussian quadrature. Neutrino flavors were divided into four independently transported
species, ne, nē, nmt (nm and nt), and nmt¯ (nm¯ and nt¯ ). The PROMETHEUS-VERTEX simulation was performed on separate radial fluid and
transport grids. The fluid grid consisted of 400 zones that moved with the fluid during collapse and were rezoned shortly after core
bounce such that inside a radius of 400 km the fluid grid coincides with the transport grid. The latter consisted of an Eulerian radial
grid of 235 radial zones spaced logarithmically between 0 and 10,000 km. Forty additional radial zones were added to both grids after
200ms post-bounce to resolve the steepening density gradient at the surface of the nascent neutron star. The neutrino spectrum was
discretized with 19 energy zones between 0 and 380MeV. Neutrino flavors were divided into three independently transported
species, ne, nē, and nx (nmt and nmt¯ ). The CHIMERA simulations were performed with 512 adaptive radial zones. The zones moved with
the fluid during collapse and thereafter adjusted to maintain an approximately constantDr r while maintaining a maximum value of
r rD to maintain good resolution in the vicinity of the steepening density gradient at the surface of the nascent neutron star as the

simulation progresses past bounce. The neutrino spectrum was resolved with 20 energy zones between 0 and 279MeV with mid-
energies of 2.57 and 250MeV in the first and last zone for the four species: ne, nē, nmt, and nmt¯ . Because the CHIMERA neutrino energy
grid is defined at infinity and the actual grid is radially dependent (the local grid energies are the energies at infinity divided by the
local value of the lapse function), the grid expands toward the core center as the latter contracts to higher densities. At bounce, the
mid-zone energies at the core center range from 2.92 to 285MeV, and at 100 ms post-bounce, the mid-zone energies at the core
center range from 3.20 to 313MeV.

9.2. Infall

The evolution of the entropy, electron fraction, and lepton fraction during infall is shown in Figure 38. Prior to the ∼10ms after
shock formation, the CHIMERA-B and CHIMERA-C results are essentially identical and are shown simply as “CHIMERA” in graphs
until such times as the differences between them become significant. Before trapping, the entropy evolution is almost identical for all
three simulations. Trapping occurs slightly later for VERTEX-1 compared with CHIMERA. Trapping seems to occur for AGILE-
BOLTZTRAN near that of CHIMERA, but the entropy continues to slowly increase thereafter, likely because of zones moving away
from the center to resolve the forming shock. This causes the central zone to encompassing more and more mass of higher entropy,
causing the zone-average entropy to rise.

9.3. Bounce

Figure 39 displays the material and neutrino configurations of model G15 at bounce. The results of all simulations are quite similar
at this time. Figure 39(a) plots the neutrino luminosities, with the ne-luminosity for CHIMERA between 0.8 and 1.3M☉ slightly lower
than that for the others—a difference that may be related to the slightly lower core densities (Figure 39(b)) and slightly lower trapped

Table 3
Summary of Neutrino Opacities in Model G15

Interaction References

n n+ + e e Bruenn (1985), Mezzacappa & Bruenn (1993b)
n n+ +A A Bruenn & Mezzacappa (1997), Horowitz

(1997)
n n+ +n p n p, , Bruenn (1985), Mezzacappa & Bruenn (1993b)
n + +-n e pe Bruenn (1985), Mezzacappa & Bruenn (1993b)
n + ++p e nē Bruenn (1985), Mezzacappa & Bruenn (1993b)
n + ¢ +-A e Ae Bruenn (1985), Mezzacappa & Bruenn (1993b)
n n+ +- + e e¯ Bruenn (1985), Mezzacappa & Bruenn (1993b)

n n+ + + +N N N N ¯ Hannestad & Raffelt (1998)
ion–ion correlations Itoh (1975), Horowitz (1997), Bruenn &

Mezzacappa (1997)
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entropy (Figures 39(d) and 38). The nē-luminosities are still too small to be shown, and the nmt-luminosities are just beginning to
develop. The ne-rms energies (Figure 39(c)) are almost the same for all models, while the nmt-rms energies are slightly smaller in the
core in the CHIMERA simulation. The jump in the entropy and electron fraction at an enclosed mass of 1.18M☉ in the CHIMERA

Figure 38. Evolution of entropy (a), and electron (solid) and lepton (dashed) fractions (b) vs. density in the central zone during infall, for CHIMERA (red), AGILE-
BOLTZTRAN (black), and VERTEX-1 (green) simulations.

Figure 39. Snapshots at bounce for (a) luminosity, (b) density and velocity, (c) rms-energies, and (d) entropy and Ye of the G15 profile, for the AGILE-BOLTZTRAN
(black), VERTEX-1 (green), and CHIMERA (red) simulations.
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simulation (Figure 39(d)) occurs at about 1.28M☉ in the other two simulations. These jumps in the CHIMERA simulation appear in
the initial model at the same enclosed mass, so it is not a feature that has evolved during infall by CHIMERA.

9.4. Comparisons at 3 ms after Bounce

Figure 40 displays the material and neutrino configurations of ModelG15 3ms after bounce. Again, the results of all simulations
are quite similar at this time, but small differences can be observed. The velocity profiles (Figure 40(b)) are almost identical, with the
CHIMERA and AGILE-BOLTZTRAN shock being slightly farther out in enclosed mass. The CHIMERA density in the region from
0.5M☉ to the shock is slightly higher than the VERTEX-1 density, which in turn is slightly higher than the AGILE-BOLTZTRAN
density. This probably accounts for the similar hierarchy in the ne-rms energy in that region (Figure 40(c)). The CHIMERA shock at
formation is slightly weaker than that of VERTEX-1, which is slightly weaker than that of AGILE-BOLTZTRAN, as inferred by the
entropy profile behind the shock (Figure 40(d)), which likely accounts for the differences in the neutrino luminosities at this time
(Figure 40(a)).

9.5. Comparisons as a Function of Time

Figures 41(a-d) compare the shock trajectories, neutrino luminosities, and neutrino rms energies computed by the codes as a
function of time from bounce to 300ms post-bounce. Figure 41(a) plots the position of the shocks as a function of time. The
outwardly directed “hump” in the shock trajectories at about 170ms, not seen in the AGILE-BOLTZTRAN results, is a feature that is
due to the passage through the shocks of the silicon layer, with its associated drop in density and consequent reduction in the
inwardly directed ram pressure on the shocks. It should be noted that after about 150ms, the shock exits the region covered by the
Lattimer-Swesty EoS and enters a region where the EoS is treated differently by each code, making comparisons problematic. The
CHIMERA-B shock trajectory is very close to that of AGILE-BOLTZTRAN for the first 60ms post-bounce, then, after that, rises some
20km above it. The CHIMERA-C shock trajectory is initially close to that of AGILE-BOLTZTRAN, falls below it by up to 5km from
30 to 80ms, then stays within 2km of it from 90ms to the end of the plot. The VERTEX-1 shock trajectory is initially within a few
km of that of AGILE-BOLTZTRAN, then retreats more rapidly after 70ms post-bounce, falling below it by about 5km by 100ms

Figure 40. As in Figure 39 but for 3ms after bounce.
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post-bounce. The VERTEX-2 shock trajectory follows closely but slightly above that of AGILE-BOLTZTRAN. Both the VERTEX-1 and
VERTEX-2 shocks exhibit the outwardly directed hump due to the passage through the shock of the silicon layer about 20–30 ms after
those of the CHIMERA shocks.

Figures 41(b)–(d) plot, respectively, the ne-, nē-, and one of the nmt-, nmt¯ -luminosities and rms energies as a function of time. The
CHIMERA-B and CHIMERA-C ne-luminosities exhibit a lower peak at bounce than those of AGILE-BOLTZTRAN or VERTEX-1, 2, but
track the AGILE-BOLTZTRAN luminosities very closely thereafter, except for a slight decline at 170ms when the shock reaches the
large density decrement in the progenitor, which AGILE-BOLTZTRAN fails to adequately resolve. The VERTEX-1 luminosities are
above those of the other simulations, reflecting its more rapid shock retraction, while the VERTEX-2 ne-luminosities track AGILE-
BOLTZTRAN closely until about 170 ms at which point they, like the CHIMERA luminosities, fall below. The nē-luminosities of
CHIMERA-B and CHIMERA-C fall between those of AGILE-BOLTZTRAN and VERTEX-1 after bounce, rising about ´5 1051 erg s−1

above those of AGILE-BOLTZTRAN after bounce and falling below AGILE-BOLTZTRAN after 150 ms. The VERTEX-2 nē-luminosities
track those of AGILE-BOLTZTRAN until about 150 ms at which point they too fall below. The nmt-, nmt¯ -luminosities of CHIMERA-B
and CHIMERA-C also fall between those of AGILE-BOLTZTRAN and VERTEX-1 after bounce, rising about ´5 1051 erg s−1 above
AGILE-BOLTZTRAN until about 170 ms. VERTEX-2 tracks AGILE-BOLTZTRAN closely until about 170 ms at which point it falls
below.

The rms energies exhibit a similar pattern after bounce. The ne- and nē-rms energies of both CHIMERA-B and CHIMERA-C are
between those of AGILE-BOLTZTRAN and VERTEX-1 before bounce, tracking closely those of AGILE-BOLTZTRAN after bounce and
rising slightly above AGILE-BOLTZTRAN after 190 ms. The ne- and nē-rms energies of VERTEX-1 veer above those of AGILE-
BOLTZTRAN after bounce while those of VERTEX-2 track AGILE-BOLTZTRAN closely after bounce veering slightly below AGILE-
BOLTZTRAN after 50–100ms. The nmt-, nmt¯ -rms energies of CHIMERA-B, CHIMERA-C, and VERTEX-1 track each other within
1MeV, all three of which lie about 2MeV higher than those of AGILE-BOLTZTRAN, while those of VERTEX-2 and AGILE-
BOLTZTRAN lie within 1MeV of each other.

Figure 41. Evolution of the (a) model G15 shock radius and the (b) ne, (c) nē, and (d) nx neutrino luminosities and rms energies, for AGILE-BOLTZTRAN (black),
VERTEX-1 (green) and VERTEX-2 (turquoise), CHIMERA-B (blue), and CHIMERA-C (red) simulations.
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9.6. Comparisons at 100 ms after Bounce

At 100 ms post-bounce (Figure 42), the CHIMERA-B and CHIMERA-C shocks are, respectively, about 20 km and 8 km farther out
than that of AGILE-BOLTZTRAN, the front of the CHIMERA-C shock being close to that of AGILE-BOLTZTRAN. The VERTEX-2 shock
radius is close to that of AGILE-BOLTZTRAN while the VERTEX-1 shock has retreated about 10 km inward. Aside from the positions
of the shocks, the densities and velocities as a function of radius, shown in Figure 42(a), agree with each other quite closely. The
entropy profiles, shown in Figure 42, also agree with each other modulo the position of the shock. Those of CHIMERA-B and
CHIMERA-C exhibit entropy wiggles behind the shock. These are not due to the computation of the effective index, Ge (Buras et al.
2006b), but the use of the Colella & Woodward (1984) suggested parameters for supplying dissipation in the vicinity of strong
shocks. These wiggles disappear with a somewhat more aggressive parameter choice for shock dissipation, and this choice is now
used in current versions of CHIMERA. The electron fraction profiles are quite similar up to 30km and beyond 150km but are
displaced horizontally relative to each other in between these distances. This displacement is also reflected in the entropy profiles but
is less obvious, as the plots themselves are more horizontal. The origin of these differences is unclear but may reflect the slight
differences in the shock trajectories as a function of time, and the somewhat higher infall velocities in the case of VERTEX-1.

Figure 43 compares the ne, nē, and nx luminosity and rms neutrino energy profiles at 100 ms post-bounce. Compared with the
AGILE-BOLTZTRAN luminosities, CHIMERA-B and VERTEX-1 tend to overestimate these quantities in the region behind the shock,
while the agreement between the results from CHIMERA-C, VERTEX-2, and AGILE-BOLTZTRAN for these quantities is extremely
good. CHIMERA-B and CHIMERA-C tend to compute larger shock jumps than does AGILE-BOLTZTRAN, while the shock jumps
computed by VERTEX-2 and AGILE-BOLTZTRAN are in good agreement. Both VERTEX-1 and CHIMERA-B compute rms energies
larger than those of AGILE-BOLTZTRAN. The ne rms energies computed by CHIMERA-C are quite close to those of AGILE-
BOLTZTRAN, while the nx rms energies computed by VERTEX-2 and AGILE-BOLTZTRAN are in excellent agreement. In other cases,
the rms neutrino energies computed by CHIMERA-C, VERTEX-2, and AGILE-BOLTZTRAN are typically within an MeV of each other.

10. Summary

This report has documented the development and construction of the CHIMERA code through its C-series implementations.
CHIMERA has been designed to simulate CCSNe throughout the entire neutrino-driven explosion phase, with outputs that can be used
to extract important associated observables, such as element synthesis and dispersal, neutrino signatures, and gravitational radiation.
The code couples a multidimensional, PPM-plus-remap, Newtonian hydrodynamics module with radial-ray-plus, multi-group flux-
limited diffusion neutrino transport and a multi-species nuclear reaction network. The transport module stems from a general
relativistic treatment and currently retains the most important element of general relativity, namely the lapse function, which ensures
proper redshifting of neutrinos as they propagate out of the gravitational well. General relativity enters the computation of self gravity
through a monopole correction to the Newtonian gravitational potential. CHIMERA evolves all six neutrino and antineutrino
distributions and includes an extensive suite of neutrino weak interactions, including sophisticated treatments of nuclear electron
capture and non-isoenergetic scattering on nucleons, as well as industry-standard equations of state.

We have subjected CHIMERA to a suite of test problems and made comparisons with two other sophisticated neutrino radiation-
hydrodynamics codes: (1) AGILE-BOLTZTRAN, a code based on general relativistic gravity, hydrodynamics, and six-species
Boltzmann neutrino kinetics, and (2) PROMETHEUS-VERTEX, a code similar in many respects to CHIMERA but based on a more
sophisticated, two-moment neutrino transport scheme closed by a variable Eddington factor computed from approximate Boltzmann
kinetics.

Development of CHIMERA continues to include new features and other enhancements beyond those described herein and will be
reported, as appropriately, with the associated results.

Figure 42. Snapshots of model G15 at 100ms after bounce for (a) velocity and density, and (b) entropy andYe for the AGILE-BOLTZTRAN (black), VERTEX-1 (green),
VERTEX-2 (turquoise), and CHIMERA-B (blue), CHIMERA-C (red) simulations.
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Figure 43. Snapshot of model G15 neutrino properties at 100 ms after bounce, for the AGILE-BOLTZTRAN (black), VERTEX-1 (green), VERTEX-2 (turquoise),
CHIMERA-B (blue), and CHIMERA-C (red) simulations. Neutrino luminosities are plotted on the left in Panels (a), (c), and (e) and rms-energies on the right in Panels
(b), (d), and (f), with ne in Panels (a) and (b), nē in Panels (c) and (d), and nx (or nmt) in Panels (e) and (f).
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supported by the U.S. Department of Energy Offices of Nuclear Physics and Advanced Scientific Computing Research.

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-00OR22725, and the National Energy Research Scientific Computing Center, which is
supported by the U.S. DOE Office of Science under Contract No. DE-AC02-05CH11231. This research also utilized resources of the
NSF TeraGrid provided by the National Institute for Computational Sciences under grant number TG-MCA08X010.

P.M. is supported by the National Science Foundation through its employee IR/D program. The opinions and conclusions
expressed herein are those of the authors and do not represent the National Science Foundation.

We wish to thank John C. Hayes for his assistance early in the development of CHIMERA as well as our many colleagues in the
CCSN simulation community, and other of our colleagues, from whom we have benefited greatly through discussions related to
supernova simulation.

ORCID iDs

Stephen W. Bruenn https://orcid.org/0000-0003-0999-5297
John M. Blondin https://orcid.org/0000-0001-9691-6803
W. Raphael Hix https://orcid.org/0000-0002-9481-9126
O. E. Bronson Messer https://orcid.org/0000-0002-
5358-5415
Anthony Mezzacappa https://orcid.org/0000-0001-
9816-9741
Eirik Endeve https://orcid.org/0000-0003-1251-9507
J. Austin Harris https://orcid.org/0000-0003-3023-7140
Reuben D. Budiardja https://orcid.org/0000-0003-0395-8532

References

Arnett, W., & Truran, J. 1969, ApJ, 157, 339
Baron, E., Myra, E. S., Cooperstein, J., & van den Horn, L. J. 1989, ApJ,

339, 978
Blondin, J. M., & Lufkin, E. A. 1993, ApJS, 88, 589
Blondin, J. M., & Lundqvist, P. 1993, ApJ, 405, 337
Bravo, E., & García-Senz, D. 1999, MNRAS, 307, 984
Bruenn, S. W. 1985, ApJS, 58, 771
Bruenn, S. W., De Nisco, K. R., & Mezzacappa, A. 2001, ApJ, 560, 326
Bruenn, S. W., Dirk, C. J., Mezzacappa, A., et al. 2006, J. Phys. Conf. Ser.,

46, 393
Bruenn, S. W., Lentz, E. J., Hix, W. R., et al. 2016, ApJ, 818, 123
Bruenn, S. W., & Mezzacappa, A. 1997, PhRvD, 56, 7529
Bruenn, S. W., Mezzacappa, A., Hix, W. R., et al. 2009, J. Phys. Conf. Ser., 180,

012018
Bruenn, S. W., Mezzacappa, A., Hix, W. R., et al. 2013, ApJL, 767, L6
Bryan, G. L., Norman, M. L., Stone, J. M., Cen, R., & Ostriker, J. P. 1995,

CoPhC, 89, 149
Buras, R., Janka, H.-T., Rampp, M., & Kifonidis, K. 2006a, A&A, 457, 281
Buras, R., Rampp, M., Janka, H.-T., & Kifonidis, K. 2006b, A&A, 447, 1049
Castor, J. I. 1972, ApJ, 178, 779
Cernohorsky, J., & Bludman, S. A. 1994, ApJ, 433, 250
Clifford, F. E., & Tayler, R. J. 1965, MmRAS, 69, 21
Colella, P., & Glaz, H. M. 1985, JCoPh, 59, 264
Colella, P., & Woodward, P. 1984, JCoPh, 54, 174
Cooperstein, J. 1985, NuPhA, 438, 722
Cooperstein, J., van den Horn, L. J., & Baron, E. 1987, ApJL, 321, L129
Couch, S. M., Graziani, C., & Flocke, N. 2013, ApJ, 778, 181
El Eid, M. F., & Hillebrandt, W. 1980, A&AS, 42, 215
Friman, B. L., & Maxwell, O. V. 1979, ApJ, 232, 541
Fryxell, B., Müller, E., & Arnett, D. 1989, in Proc. 5th Workshop on Nuclear

Astrophysics, ed. W. Hillebrandt & E. Müller (Garching: MPI für
Astrophysik), 100

Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273
Gerstl, M. 1980, ManGe, 5, 181

Godunov, S. K. 1959, Mat. Sb., 47, 271, http://www.mathnet.ru/php/archive.
phtml?wshow=paper&jrnid=sm&paperid=4873&option_lang=eng

Goodman, J., Dar, A., & Nussinov, S. 1987, ApJL, 314, L7
Hannestad, S., & Raffelt, G. 1998, ApJ, 507, 339
Harris, J. A., Hix, W. R., Chertkow, M. A., et al. 2017, ApJ, 843, 2
Hartmann, D., Woosley, S. E., & El Eid, M. F. 1985, ApJ, 297, 837
Hawley, J., Blondin, J., Lindahl, G., & Lufkin, E. 2012, VH-1: Multidimensional

ideal compressible hydrodynamics code, Astrophysics Source Code Library,
ascl:1204.007

Hix, W. R., Messer, O. E. B., Mezzacappa, A., et al. 2003, PhRvL, 91, 201102
Hix, W. R., & Meyer, B. S. 2006, NuPhA, 777, 188
Hix, W. R., & Thielemann, F.-K. 1996, ApJ, 460, 869
Hofmeister, A. M., Criss, R. E., & Criss, E. M. 2018, P&SS, 152, 68
Horowitz, C. J. 1997, PhRvD, 55, 4577
Horowitz, C. J. 2002, PhRvD, 65, 43001
Ishizuka, N., & Yoshimura, M. 1990, PThPh, 84, 233
Itoh, N. 1975, PThPh, 54, 1580
Juodagalvis, A., Langanke, K., Hix, W. R., Martínez-Pinedo, G., &

Sampaio, J. M. 2010, NuPhA, 848, 454
Kuroda, T., Kotake, K., Takiwaki, T., & Thielemann, F.-K. 2018, MNRAS,

477, L80
Kuroda, T., Takiwaki, T., & Kotake, K. 2016, ApJS, 222, 20
Lamb, D. Q., Lattimer, J. M., Pethick, C. J., & Ravenhall, D. G. 1978, PhRvL,

41, 1623
Landau, L. D., & Lifshitz, E. M. 1959, Fluid Mechanics (London: Pergamon)
Langanke, K., Kolbe, E., & Dean, D. J. 2001a, PhRvC, 63, 32801
Langanke, K., & Martínez-Pinedo, G. 2000, NuPhA, 673, 481
Langanke, K., Martínez-Pinedo, G., & Sampaio, J. M. 2001b, PhRvC, 64, 55801
Langanke, K., Martínez-Pinedo, G., Sampaio, J. M., et al. 2003, PhRvL, 90,

241102
Lattimer, J., & Swesty, F. D. 1991, NuPhA, 535, 331
Lentz, E. J., Bruenn, S. W., Hix, W. R., et al. 2015, ApJL, 807, L31
Levermore, C. D., & Pomraning, G. C. 1981, ApJ, 248, 321
Liebendörfer, M., Messer, O. E. B., Mezzacappa, A., et al. 2004, ApJS, 150, 263
Liebendörfer, M., Rampp, M., Janka, H.-T., & Mezzacappa, A. 2005, ApJ,

620, 840
Liebendörfer, M., Rosswog, S., & Thielemann, F.-K. 2002, ApJS, 141, 229
Lindquist, R. W. 1966, AnPhy, 37, 487
Liou, M.-S. 2000, JCoPh, 160, 623
Lufkin, E. A., & Hawley, J. F. 1993, ApJS, 88, 569
Marek, A., Dimmelmeier, H., Janka, H.-T., Müller, E., & Buras, R. 2006, A&A,

445, 273
May, M. M., & White, R. H. 1966, PhRv, 141, 1232
May, M. M., & White, R. H. 1967, MComP, 7, 219
Messer, O. E. B., Bruenn, S. W., Blondin, J. M., Hix, W. R., & Mezzacappa, A.

2008, J. Phys.: Conf. Ser., 125, 012010
Meyer, B. S., Krishnan, T. D., & Clayton, D. D. 1998, ApJ, 498, 808
Mezzacappa, A., & Bruenn, S. W. 1993a, ApJ, 405, 669
Mezzacappa, A., & Bruenn, S. W. 1993b, ApJ, 410, 740
Mezzacappa, A., & Matzner, R. A. 1989, ApJ, 343, 853
Mezzacappa, A., & Messer, O. E. B. 1999, JCoAM, 109, 281
Mignone, A. 2014, JCoPh, 270, 784
Mihalas, D., & Mihalas, B. 1984, Foundations of Radiation Hydrodynamics

(New York: Oxford Univ. Press)

93

The Astrophysical Journal Supplement Series, 248:11 (94pp), 2020 May Bruenn et al.

https://orcid.org/0000-0003-0999-5297
https://orcid.org/0000-0003-0999-5297
https://orcid.org/0000-0003-0999-5297
https://orcid.org/0000-0003-0999-5297
https://orcid.org/0000-0003-0999-5297
https://orcid.org/0000-0003-0999-5297
https://orcid.org/0000-0003-0999-5297
https://orcid.org/0000-0003-0999-5297
https://orcid.org/0000-0001-9691-6803
https://orcid.org/0000-0001-9691-6803
https://orcid.org/0000-0001-9691-6803
https://orcid.org/0000-0001-9691-6803
https://orcid.org/0000-0001-9691-6803
https://orcid.org/0000-0001-9691-6803
https://orcid.org/0000-0001-9691-6803
https://orcid.org/0000-0001-9691-6803
https://orcid.org/0000-0002-9481-9126
https://orcid.org/0000-0002-9481-9126
https://orcid.org/0000-0002-9481-9126
https://orcid.org/0000-0002-9481-9126
https://orcid.org/0000-0002-9481-9126
https://orcid.org/0000-0002-9481-9126
https://orcid.org/0000-0002-9481-9126
https://orcid.org/0000-0002-9481-9126
https://orcid.org/0000-0002-5358-5415
https://orcid.org/0000-0002-5358-5415
https://orcid.org/0000-0002-5358-5415
https://orcid.org/0000-0002-5358-5415
https://orcid.org/0000-0002-5358-5415
https://orcid.org/0000-0002-5358-5415
https://orcid.org/0000-0002-5358-5415
https://orcid.org/0000-0002-5358-5415
https://orcid.org/0000-0002-5358-5415
https://orcid.org/0000-0001-9816-9741
https://orcid.org/0000-0001-9816-9741
https://orcid.org/0000-0001-9816-9741
https://orcid.org/0000-0001-9816-9741
https://orcid.org/0000-0001-9816-9741
https://orcid.org/0000-0001-9816-9741
https://orcid.org/0000-0001-9816-9741
https://orcid.org/0000-0001-9816-9741
https://orcid.org/0000-0001-9816-9741
https://orcid.org/0000-0003-1251-9507
https://orcid.org/0000-0003-1251-9507
https://orcid.org/0000-0003-1251-9507
https://orcid.org/0000-0003-1251-9507
https://orcid.org/0000-0003-1251-9507
https://orcid.org/0000-0003-1251-9507
https://orcid.org/0000-0003-1251-9507
https://orcid.org/0000-0003-1251-9507
https://orcid.org/0000-0003-3023-7140
https://orcid.org/0000-0003-3023-7140
https://orcid.org/0000-0003-3023-7140
https://orcid.org/0000-0003-3023-7140
https://orcid.org/0000-0003-3023-7140
https://orcid.org/0000-0003-3023-7140
https://orcid.org/0000-0003-3023-7140
https://orcid.org/0000-0003-3023-7140
https://orcid.org/0000-0003-0395-8532
https://orcid.org/0000-0003-0395-8532
https://orcid.org/0000-0003-0395-8532
https://orcid.org/0000-0003-0395-8532
https://orcid.org/0000-0003-0395-8532
https://orcid.org/0000-0003-0395-8532
https://orcid.org/0000-0003-0395-8532
https://orcid.org/0000-0003-0395-8532
https://doi.org/10.1086/150072
https://ui.adsabs.harvard.edu/abs/1969ApJ...157..339A/abstract
https://doi.org/10.1086/167352
https://ui.adsabs.harvard.edu/abs/1989ApJ...339..978B/abstract
https://ui.adsabs.harvard.edu/abs/1989ApJ...339..978B/abstract
https://doi.org/10.1086/191834
https://ui.adsabs.harvard.edu/abs/1993ApJS...88..589B/abstract
https://doi.org/10.1086/172366
https://ui.adsabs.harvard.edu/abs/1993ApJ...405..337B/abstract
https://doi.org/10.1046/j.1365-8711.1999.02694.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.307..984B/abstract
https://doi.org/10.1086/191056
https://ui.adsabs.harvard.edu/abs/1985ApJS...58..771B/abstract
https://doi.org/10.1086/322319
https://ui.adsabs.harvard.edu/abs/2001ApJ...560..326B/abstract
https://doi.org/10.1088/1742-6596/46/1/054
https://ui.adsabs.harvard.edu/abs/2006JPhCS..46..393B/abstract
https://ui.adsabs.harvard.edu/abs/2006JPhCS..46..393B/abstract
https://doi.org/10.3847/0004-637X/818/2/123
https://ui.adsabs.harvard.edu/abs/2016ApJ...818..123B/abstract
https://doi.org/10.1103/PhysRevD.56.7529
https://ui.adsabs.harvard.edu/abs/1997PhRvD..56.7529B/abstract
https://doi.org/10.1088/1742-6596/180/1/012018
https://doi.org/10.1088/2041-8205/767/1/L6
https://ui.adsabs.harvard.edu/abs/2013ApJ...767L...6B/abstract
https://doi.org/10.1016/0010-4655(94)00191-4
https://ui.adsabs.harvard.edu/abs/1995CoPhC..89..149B/abstract
https://doi.org/10.1051/0004-6361:20054654
https://ui.adsabs.harvard.edu/abs/2006A&A...457..281B/abstract
https://doi.org/10.1051/0004-6361:20053783
https://ui.adsabs.harvard.edu/abs/2006A&A...447.1049B/abstract
https://doi.org/10.1086/151834
https://ui.adsabs.harvard.edu/abs/1972ApJ...178..779C/abstract
https://doi.org/10.1086/174640
https://ui.adsabs.harvard.edu/abs/1994ApJ...433..250C/abstract
https://ui.adsabs.harvard.edu/abs/1965MmRAS..69...21C/abstract
https://doi.org/10.1016/0021-9991(85)90146-9
https://ui.adsabs.harvard.edu/abs/1985JCoPh..59..264C/abstract
https://doi.org/10.1016/0021-9991(84)90143-8
https://ui.adsabs.harvard.edu/abs/1984JCoPh..54..174C/abstract
https://doi.org/10.1016/0375-9474(85)90015-6
https://ui.adsabs.harvard.edu/abs/1985NuPhA.438..722C/abstract
https://doi.org/10.1086/185019
https://ui.adsabs.harvard.edu/abs/1987ApJ...321L.129C/abstract
https://doi.org/10.1088/0004-637X/778/2/181
https://ui.adsabs.harvard.edu/abs/2013ApJ...778..181C/abstract
https://ui.adsabs.harvard.edu/abs/1980A&AS...42..215E/abstract
https://doi.org/10.1086/157313
https://ui.adsabs.harvard.edu/abs/1979ApJ...232..541F/abstract
https://ui.adsabs.harvard.edu/abs/1989nuas.conf..100F/abstract
https://doi.org/10.1086/317361
https://ui.adsabs.harvard.edu/abs/2000ApJS..131..273F/abstract
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4873&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4873&option_lang=eng
https://doi.org/10.1086/184840
https://ui.adsabs.harvard.edu/abs/1987ApJ...314L...7G/abstract
https://doi.org/10.1086/306303
https://ui.adsabs.harvard.edu/abs/1998ApJ...507..339H/abstract
https://doi.org/10.3847/1538-4357/aa76de
https://ui.adsabs.harvard.edu/abs/2017ApJ...843....2H/abstract
https://doi.org/10.1086/163580
https://ui.adsabs.harvard.edu/abs/1985ApJ...297..837H/abstract
http://ascl.net/1204.007
https://doi.org/10.1103/PhysRevLett.91.201102
https://ui.adsabs.harvard.edu/abs/2003PhRvL..91t1102H/abstract
https://doi.org/10.1016/j.nuclphysa.2004.10.009
https://ui.adsabs.harvard.edu/abs/2006NuPhA.777..188H/abstract
https://doi.org/10.1086/177016
https://ui.adsabs.harvard.edu/abs/1996ApJ...460..869H/abstract
https://doi.org/10.1016/j.pss.2018.01.005
https://ui.adsabs.harvard.edu/abs/2018P&SS..152...68H/abstract
https://doi.org/10.1103/PhysRevD.55.4577
https://ui.adsabs.harvard.edu/abs/1997PhRvD..55.4577H/abstract
https://doi.org/10.1103/PhysRevD.65.043001
https://ui.adsabs.harvard.edu/abs/2002PhRvD..65d3001H/abstract
https://doi.org/10.1143/ptp/84.2.233
https://ui.adsabs.harvard.edu/abs/1990PThPh..84..233I/abstract
https://doi.org/10.1143/PTP.54.1580
https://ui.adsabs.harvard.edu/abs/1975PThPh..54.1580I/abstract
https://doi.org/10.1016/j.nuclphysa.2010.09.012
https://ui.adsabs.harvard.edu/abs/2010NuPhA.848..454J/abstract
https://doi.org/10.1093/mnrasl/sly059
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477L..80K/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477L..80K/abstract
https://doi.org/10.3847/0067-0049/222/2/20
https://ui.adsabs.harvard.edu/abs/2016ApJS..222...20K/abstract
https://doi.org/10.1103/PhysRevLett.41.1623
https://ui.adsabs.harvard.edu/abs/1978PhRvL..41.1623L/abstract
https://ui.adsabs.harvard.edu/abs/1978PhRvL..41.1623L/abstract
https://doi.org/10.1103/PhysRevC.63.032801
https://ui.adsabs.harvard.edu/abs/2001PhRvC..63c2801L/abstract
https://doi.org/10.1016/S0375-9474(00)00131-7
https://ui.adsabs.harvard.edu/abs/2000NuPhA.673..481L/abstract
https://doi.org/10.1103/PhysRevC.64.055801
https://ui.adsabs.harvard.edu/abs/2001PhRvC..64e5801L/abstract
https://doi.org/10.1103/PhysRevLett.90.241102
https://ui.adsabs.harvard.edu/abs/2003PhRvL..90x1102L/abstract
https://ui.adsabs.harvard.edu/abs/2003PhRvL..90x1102L/abstract
https://doi.org/10.1016/0375-9474(91)90452-C
https://ui.adsabs.harvard.edu/abs/1991NuPhA.535..331L/abstract
https://doi.org/10.1088/2041-8205/807/2/L31
https://ui.adsabs.harvard.edu/abs/2015ApJ...807L..31L/abstract
https://doi.org/10.1086/159157
https://ui.adsabs.harvard.edu/abs/1981ApJ...248..321L/abstract
https://doi.org/10.1086/380191
https://ui.adsabs.harvard.edu/abs/2004ApJS..150..263L/abstract
https://doi.org/10.1086/427203
https://ui.adsabs.harvard.edu/abs/2005ApJ...620..840L/abstract
https://ui.adsabs.harvard.edu/abs/2005ApJ...620..840L/abstract
https://doi.org/10.1086/339872
https://ui.adsabs.harvard.edu/abs/2002ApJS..141..229L/abstract
https://doi.org/10.1016/0003-4916(66)90207-7
https://ui.adsabs.harvard.edu/abs/1966AnPhy..37..487L/abstract
https://doi.org/10.1006/jcph.2000.6478
https://ui.adsabs.harvard.edu/abs/2000JCoPh.160..623L/abstract
https://doi.org/10.1086/191833
https://ui.adsabs.harvard.edu/abs/1993ApJS...88..569L/abstract
https://doi.org/10.1051/0004-6361:20052840
https://ui.adsabs.harvard.edu/abs/2006A&A...445..273M/abstract
https://ui.adsabs.harvard.edu/abs/2006A&A...445..273M/abstract
https://doi.org/10.1103/PhysRev.141.1232
https://ui.adsabs.harvard.edu/abs/1966PhRv..141.1232M/abstract
https://ui.adsabs.harvard.edu/abs/1967MComP...7..219M /abstract
https://doi.org/10.1088/1742-6596/125/1/012010
https://doi.org/10.1086/305562
https://ui.adsabs.harvard.edu/abs/1998ApJ...498..808M/abstract
https://doi.org/10.1086/172395
https://ui.adsabs.harvard.edu/abs/1993ApJ...405..669M/abstract
https://doi.org/10.1086/172791
https://ui.adsabs.harvard.edu/abs/1993ApJ...410..740M/abstract
https://doi.org/10.1086/167756
https://ui.adsabs.harvard.edu/abs/1989ApJ...343..853M/abstract
https://ui.adsabs.harvard.edu/abs/1999JCoAM.109..281M/abstract
https://doi.org/10.1016/j.jcp.2014.04.001
https://ui.adsabs.harvard.edu/abs/2014JCoPh.270..784M/abstract


Minerbo, G. N. 1978, JQSRT, 20, 541
Müller, B., Janka, H.-T., & Dimmelmeier, H. 2010, ApJS, 189, 104
Müller, B., Janka, H.-T., & Marek, A. 2012, ApJ, 756, 84
Müller, E., & Steinmetz, M. 1995, CoPhC, 89, 45
Murchikova, E. M., Abdikamalov, E., & Urbatsch, T. 2017, MNRAS, 469, 1725
Nakamura, K., Takiwaki, T., Kotake, K., & Nishimura, N. 2014, ApJ, 782, 91
O’Connor, E., Bollig, R., Burrows, A., et al. 2018, JPhG, 45, 104001
Ott, C. D., Roberts, L. F., da Silva Schneider, A., et al. 2018, ApJL, 855, L3
Paul, M. K. 1978, BGeod, 52, 177
Plewa, T., & Müller, E. 1999, A&A, 342, 179
Quirk, J. J. 1994, IJNMF, 18, 555
Raffelt, G., & Seckel, D. 1995, PhRvD, 52, 1780
Rampp, M., & Janka, H.-T. 2002, A&A, 396, 361
Rauscher, T., & Thielemann, F. 2000, ADNDT, 75, 1
Reddy, S., Prakash, M., & Lattimer, J. M. 1998, PhRvD, 58, 013009
Sedov, L. I. 1959, Similarity and Dimensional Methods in Mechanics (New

York: Academic)
Shu, C.-W., & Osher, S. 1989, JCoPh, 83, 32
Skinner, M. A., Dolence, J. C., Burrows, A., Radice, D., & Vartanyan, D. 2019,

ApJS, 241, 7

Sod, G. A. 1978, JCoPh, 27, 1
Stone, J. M., & Norman, M. L. 1992, ApJS, 80, 753
Strang, G. 1968, SJNA, 5, 506
Sutherland, R. S. 2010, Ap&SS, 327, 173
Sutherland, R. S., Bisset, D. K., & Bicknell, G. V. 2003, ApJS, 147, 187
Taylor, G. 1950, RSPSA, 201, 159
Travaglio, C., & Hix, W. R. 2013, FrPhy, 8, 199
van Leer, B. 1979, JCoPh, 32, 101
Vartanyan, D., Burrows, A., Radice, D., Skinner, M. A., & Dolence, J. 2018,

MNRAS, 477, 3091
Woosley, S. E., & Heger, A. 2007, PhR, 442, 269
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181
Yakunin, K. N., Marronetti, P., Mezzacappa, A., et al. 2010, CQGra, 27,

194005
Yakunin, K. N., Mezzacappa, A., Marronetti, P., et al. 2015, PhRvD, 92,

084040
Yakunin, K. N., Mezzacappa, A., Marronetti, P., et al. 2017, arXiv:1701.

07325
Zel’dovich, Y. B., & Raizer, Y. P. 1967, Physics of Shock Waves and High-

temperature Hydrodynamic Phenomena (New York: Academic)

94

The Astrophysical Journal Supplement Series, 248:11 (94pp), 2020 May Bruenn et al.

https://doi.org/10.1016/0022-4073(78)90024-9
https://ui.adsabs.harvard.edu/abs/1978JQSRT..20..541M/abstract
https://doi.org/10.1088/0067-0049/189/1/104
https://ui.adsabs.harvard.edu/abs/2010ApJS..189..104M/abstract
https://doi.org/10.1088/0004-637X/756/1/84
https://ui.adsabs.harvard.edu/abs/2012ApJ...756...84M/abstract
https://doi.org/10.1016/0010-4655(94)00185-5
https://ui.adsabs.harvard.edu/abs/1995CoPhC..89...45M/abstract
https://doi.org/10.1093/mnras/stx986
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.1725M/abstract
https://doi.org/10.1088/0004-637X/782/2/91
https://ui.adsabs.harvard.edu/abs/2014ApJ...782...91N/abstract
https://doi.org/10.1088/1361-6471/aadeae
https://ui.adsabs.harvard.edu/abs/2018JPhG...45j4001O/abstract
https://doi.org/10.3847/2041-8213/aaa967
https://ui.adsabs.harvard.edu/abs/2018ApJ...855L...3O/abstract
https://doi.org/10.1007/BF02521771
https://ui.adsabs.harvard.edu/abs/1978BGeod..52..177P/abstract
https://ui.adsabs.harvard.edu/abs/1999A&A...342..179P/abstract
https://doi.org/10.1002/fld.1650180603
https://ui.adsabs.harvard.edu/abs/1994IJNMF..18..555Q/abstract
https://doi.org/10.1103/PhysRevD.52.1780
https://ui.adsabs.harvard.edu/abs/1995PhRvD..52.1780R/abstract
https://doi.org/10.1051/0004-6361:20021398
https://ui.adsabs.harvard.edu/abs/2002A&A...396..361R/abstract
https://doi.org/10.1006/adnd.2000.0834
https://ui.adsabs.harvard.edu/abs/2000ADNDT..75....1R/abstract
https://doi.org/10.1103/PhysRevD.58.013009
https://ui.adsabs.harvard.edu/abs/1998PhRvD..58a3009R/abstract
https://doi.org/10.1016/0021-9991(89)90222-2
https://ui.adsabs.harvard.edu/abs/1989JCoPh..83...32S/abstract
https://doi.org/10.3847/1538-4365/ab007f
https://ui.adsabs.harvard.edu/abs/2019ApJS..241....7S/abstract
https://doi.org/10.1016/0021-9991(78)90023-2
https://ui.adsabs.harvard.edu/abs/1978JCoPh..27....1S/abstract
https://doi.org/10.1086/191680
https://ui.adsabs.harvard.edu/abs/1992ApJS...80..753S/abstract
https://doi.org/10.1137/0705041
https://ui.adsabs.harvard.edu/abs/1968SJNA....5..506S/abstract
https://doi.org/10.1007/s10509-010-0336-8
https://ui.adsabs.harvard.edu/abs/2010Ap&SS.327..173S/abstract
https://doi.org/10.1086/374795
https://ui.adsabs.harvard.edu/abs/2003ApJS..147..187S/abstract
https://doi.org/10.1098/rspa.1950.0049
https://ui.adsabs.harvard.edu/abs/1950RSPSA.201..159T/abstract
https://doi.org/10.1007/s11467-013-0315-y
https://ui.adsabs.harvard.edu/abs/2013FrPhy...8..199T/abstract
https://doi.org/10.1016/0021-9991(79)90145-1
https://ui.adsabs.harvard.edu/abs/1979JCoPh..32..101V/abstract
https://doi.org/10.1093/mnras/sty809
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.3091V/abstract
https://doi.org/10.1016/j.physrep.2007.02.009
https://ui.adsabs.harvard.edu/abs/2007PhR...442..269W/abstract
https://doi.org/10.1086/192237
https://ui.adsabs.harvard.edu/abs/1995ApJS..101..181W/abstract
https://doi.org/10.1088/0264-9381/27/19/194005
https://ui.adsabs.harvard.edu/abs/2010CQGra..27s4005Y/abstract
https://ui.adsabs.harvard.edu/abs/2010CQGra..27s4005Y/abstract
https://doi.org/10.1103/PhysRevD.92.084040
https://ui.adsabs.harvard.edu/abs/2015PhRvD..92h4040Y/abstract
https://ui.adsabs.harvard.edu/abs/2015PhRvD..92h4040Y/abstract
http://arxiv.org/abs/1701.07325
http://arxiv.org/abs/1701.07325

	1. Introduction
	2. General Overview
	2.1. Directional Splitting
	2.2. Domain Decomposition
	2.3. IO Subsystem
	2.3.1. Serial IO Method
	2.3.2. Parallel IO Method

	2.4. Tracer Particles
	2.5. Scalability
	2.6. Chimera Series

	3. Equation of State
	3.1. General EoS Methods
	3.2. NSE EoSs
	3.3. Nuclear Network and Non-NSE Region
	3.4. NSE Transition
	3.5. Electron–Positron EoS
	3.6. Double-γ EoS

	4. Hydrodynamics
	4.1. General Overview
	4.2. PPM Interpolation Scheme
	4.3. Lagrangian Step
	4.4. Remap Step
	4.4.1. Remapping Mass, Momenta, and Angular Momenta
	4.4.2. Remapping Composition and Electron Fraction
	4.4.3. Multiple EoSs and the Energy Remap
	4.4.4. Nuclear Binding Energy
	4.4.5. Energy Remap for the θ- and ϕ-sweeps and the Preliminary Remap for the Radial Sweep
	4.4.6. Recomputation of the Gravitational Potential and the Computation of ∂egrav/∂t
	4.4.7. Final Radial-sweep Remap of the Total Energy
	4.4.8. Suppression of Carbuncles

	4.5. Radial Regridder
	4.6. Gravity Solver
	4.6.1. One-dimensional Gravitational Potential
	4.6.2. Multipole Expansion of the Gravitational Potential—Axisymmetry
	4.6.3. Multipole Expansion of the Gravitational Potential—Non-axisymmetry


	5. Hydrodynamics Test Problems
	5.1. Point-blast Explosion
	5.2. Sod Shock Tube Problem
	5.3. Shu–Osher Shock Tube Problem
	5.4. Radial Advection Test
	5.5. Angular Advection Test
	5.6. Energy Conservation Test
	5.7. Gravitational Potential Tests

	6. Neutrino Transport
	6.1. Boltzmann Equation
	6.2. Moment Equations
	6.3. Flux Limiting
	6.4. Flux Limiter
	6.5. Operator Splitting
	6.6. Einstein’s Equations
	6.7. Matter–Neutrino Energy–Momentum Exchange
	6.8. Matter–Neutrino Lepton Exchange
	6.9. Lagrangian Transport Step
	6.10. Solution of the Transport Equations
	6.11. Neutrino Stress and the Lapse
	6.12. Transport Through a Shock
	6.13. Neutrino Energy Advection Step
	6.14. Neutrino Energy Advection Due to Changes in the Lapse
	6.15. Neutrino Spatial Advection Step
	6.16. Scalar Eddington Factors

	7. Stationary State Transport Tests
	7.1. Gravitational Redshift
	7.2. Imposed Shock Velocity Profile

	8. Transport Sources
	8.1. Scattering: General
	8.2. Neutrino–Electron Scattering
	8.3. Neutrino–Positron Scattering
	8.4. Neutrino–Nucleus Scattering
	8.5. Neutrino–Nucleon Scattering
	8.6. Neutrino Absorption and Emission on Free Nucleons
	8.7. Neutrino Absorption and Emission on Nuclei
	8.8. Pair Production: General
	8.9. Neutrino–Antineutrino Pair Annihilation and Production from Electron–Positron Pairs
	8.10. Neutrino–Antineutrino Pair Annihilation and Production from Nucleon–Nucleon Bremsstrahlung
	8.11. Opacity Interpolation
	8.11.1. Energy Interpolation
	8.11.2. A Simple Integral Scheme
	8.11.3. Interpolation of Two-variable Functions
	8.11.4. Interpolation of Chimera Opacities
	8.11.5. Local Pool Algorithm


	9. Comparison with Other Codes
	9.1. Description of Comparison Simulations and Codes
	9.2. Infall
	9.3. Bounce
	9.4. Comparisons at 3 ms after Bounce
	9.5. Comparisons as a Function of Time
	9.6. Comparisons at 100 ms after Bounce

	10. Summary
	References



