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Abstract. This paper elaborates on design and implementation of code
modules for finite element solvers for poroelasticity in our Matlab package
DarcyLite [15]. The Biot’s model is adopted. Both linear and nonlinear
cases are discussed. Numerical experiments are presented to demonstrate
the accuracy and efficiency of these solvers.
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1 Introduction

Poroelasticity problems exist widely in the real world, e.g., drug delivery, food
processing, petroleum reservoirs, and tissue engineering. These problems involve
fluid flow in porous media that are elastic and deform due to fluid pressure.
The Biot’s model for linear and nonlinear poroelasticity has been well accepted
[4,7,12,20,30]. It couples solid displacement u and fluid pressure p through the
following partial differential equations (PDEs) on a bounded domain Ω for a
time period [0, T ]:

{
−∇ · (2με(u) + λ(∇ · u)I) + α∇p = f ,
∂t (α∇ · u + c0p) + ∇ · (−K(u)∇p) = s,

(1)

where ε(u) = 1
2

(
∇u + (∇u)T

)
is the strain tensor, σ(u) = 2μ ε(u) + λ(∇ · u)I

the stress tensor, λ > 0, μ > 0 the Lamé constants, f a given body force, K a
conductivity/permeability tensor, s the fluid source, α (≈ 1) the Biot-Williams
constant, and c0 ≥ 0 the constrained storage capacity. Furthermore, the total
stress is defined as

σ̃(u, p) = σ − α p I. (2)
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Dirichlet and Neumann boundary conditions for solid are posed as

u|Γ E
D

= uD, (σ̃n)|Γ E
N

= tN , (3)

whereas Dirichlet and Neumann boundary conditions for fluid are posed as

p|Γ D
D

= pD, (−K∇p) · n|Γ D
N

= uN , (4)

where n is the outward unit normal vector to ∂Ω, which has a non-overlapping
decomposition ∂Ω = Γ E

D ∪ Γ E
N for solid and another non-overlapping decompo-

sition ∂Ω = ΓD
D ∪ ΓD

N for fluid. As for initial conditions, we have

p(x, 0) = p0, u(x, 0) = u0. (5)

Usually, u0 = 0, i.e., there is no deformation at the beginning of the simulation.
Finite element methods (FEMs) are common tools for solving the Biot’s

model. Depending on the unknown quantities to be solved, poroelasticity solvers
are usually grouped into 3 types:

– 2-field : Solid displacement and fluid pressure are to be solved;
– 3-field : Solid displacement, fluid pressure and velocity are to be solved;
– 4-field : Solid stress & displacement, fluid pressure & velocity are to be solved.

A major issue in numerical solvers for poroelasticity is the poroelasticity lock-
ing, which usually appears as nonphysical pressure oscillations or deteriorating
convergence rates in displacement errors. This happens when the porous media
are low-permeable or nearly incompressible (λ → ∞) [7,21,30].

Early on, the continuous Galerkin (CG) FEMs were applied respectively to
solve for displacement and pressure. But it was soon recognized that such solvers
were subject to poroelasticity locking and the 2-field approach was nearly aban-
doned. The mixed finite element methods can be used to solve for pressure and
velocity simultaneously and meanwhile coupled with a FEM for linear elasticity
that is free of Poisson-locking. Therefore, the 3-field approach has been the main
stream [4,18–20,27,28]. The 4-field approach is certainly worth of investigation,
but it may involve too many unknowns (degrees of freedom) [29].

The weak Galerkin (WG) finite element methods [23] have emerged as a new
class of numerical methods with nice features that can be applied to a wide vari-
ety of problems including Darcy flow and linear elasticity [10,13]. Certainly, WG
solvers can be developed for linear poroelasticity [12], they are free of poroelas-
ticity locking but may involve more degrees of freedom. There have also been
efforts on developing HDG methods for the Biot’s model [6].

This paper elaborates on code modules for poroelasticity recently added to
our DarcyLite package [15], which has gained some popularity. We shall discuss
five solvers with a variety of discretization schemes for linear elasticity and Darcy
flow. A poroelasticity problem may be solved as a monolithic systems (MS) or
through operator splitting (OS). This paper explains the mathematical ideas
behind these solvers, and their implementation with consideration of modularity
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and code re-usability. Numerical experiments are presented to demonstrate their
use, accuracy, and efficiency.

We focus on 2-dim problems with a quasi-uniform triangular mesh Th or
convex quadrilateral mesh Eh. For ease of presentation, we consider a uniform
temporal partition of [0, T ] with Δt = T/N and tn = nΔt for 0 ≤ n ≤ N .

2 Solver I: A 2-Field Penalty-Free Weak Galerkin Finite
Element Solver for Quadrilateral Meshes

Now we consider linear poroelasticity (1) in which K actually does not depend
on u. Then the variational form reads as

{
2μ(ε(u), ε(v)) + λ(∇ · u,∇ · v) − α(p,∇ · v) = (f ,v) + 〈tN ,v〉Γ E

N
,

α(∂t∇ · u, q) + c0(∂tp, q) + (K∇p,∇q) = (s, q) − 〈uN , q〉Γ D
N

(6)

with incorporation of boundary and initial conditions.
We consider WG finite element discretization for both linear elasticity and

Darcy flow. WG(P0, P0;AC0) for Darcy flow has been investigated in [17]. Here
we briefly discuss WG(P 2

0 , P 2
0 ;AC2

0 ) finite elements for linear elasticity.
The classical Raviart-Thomas spaces RT[k](k ≥ 0) for rectangles have some

limitations. The recently developed Arbogast-Correa mixed finite elements are
designed for more general convex quadrilaterals [3]. We shall use the lowest-order
AC0 space, which has a local basis [17] as shown below

[
1
0

]
,

[
0
1

]
,

[
X
Y

]
, PE

[
x̂

−ŷ

]
,

where X = x − xc, Y = y − yc, (xc, yc) is the element center, (x̂, ŷ) are the
coordinates in the reference element [0, 1]2, and PE is the Piola transformation.

Let E be a convex quadrilateral. and AC2
0 (E) be the space of order-2 matrices

whose row vectors are in AC0(E). We consider a typical discrete weak function
v = {v◦,v∂} ∈ WG(P 2

0 , P 2
0 ). Its discrete weak gradient ∇wv is reconstructed

in AC2
0 (E) via integration by parts

(∇wv, τ) = 〈v∂ , τn〉E∂ − (v◦,∇ · τ)E◦ , ∀τ ∈ AC2
0 (E). (7)

Its discrete weak divergence ∇w · v is reconstructed in P0(E) as

(∇w · v, φ) = 〈v∂ , φn〉E∂ − (v◦,∇φ)E◦ , ∀φ ∈ P0(E). (8)

Solver I as a time-marching 2-field finite element scheme for (6) reads as
{

AE
h(u(n)

h ,v) − Bh(p(n)h ,v) = FE
h (v),

Bh(u(n)
h , q) + AD

h (p(n)h , q) = FD
h (q),

(9)



Poroelasticity Modules in DarcyLite 189

where the bilinear forms on the left-hand sides are defined as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

AE
h(u(n)

h ,v) =
∑

E∈Eh

2μ(εw(u(n)
h ), εw(v))E + λ(∇w · u(n)

h ,∇w · v)E ,

AD
h (p(n)h , q) =

∑
E∈Eh

c0(p
(n),◦
h , q◦)E◦ + Δt(K∇wp

(n)
h ,∇wq)E ,

Bh(u(n)
h , q) =

∑
E∈Eh

α(∇w · u(n)
h , q◦)E◦ .

(10)

The linear forms on the right-hand sides are defined as
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

FE
h (v) =

∑
E∈Eh

(f (n),v◦)E◦ +
∑

e∈Γ E
N

〈tN ,v∂〉e,

FD
h (q) =

∑
E∈Eh

Δt(s(n), q◦) + c0(p
(n−1),◦
h , q◦)E◦ + α(∇w · u(n−1)

h , q◦)E◦

−
∑

e∈Γ D
N

Δt 〈uN , q∂〉e.

(11)

Unlike the methods in [12], this WG solver does not need stabilization for either
elasticity or Darcy flow. The degrees of freedom (DOFs) at each time step are

3#Elements + 3#Edges.

3 Solver II: A 3-Field CG+MFEM Solver for Triangular
Meshes

In the 3-field approach, Darcy velocity q is used. The PDEs take the form
⎧⎨
⎩

−∇ · (2με(u) + λ(∇ · u)I) + α∇p = f ,
K−1q + ∇p = 0,

∂t (α∇ · u + c0p) + ∇ · q = s.
(12)

We shall need spaces V = H1(Ω), V0 = H1
0(Ω), W = H(div, Ω), W0 =

H0(div, Ω), S = L2
0(Ω). The variational problem seeks solutions u ∈ V, q ∈ W,

p ∈ S such that for any v ∈ V0, w ∈ W0 and q ∈ S, there holds
⎧⎨
⎩

2μ(ε(u), ε(v)) + λ(∇ · u,∇ · v) − α(p,∇ · v) = (f ,v) + 〈tN ,v〉,(
K−1q,w

)
− (p,∇ · w) = −〈pD,w · n〉,

α(∇ · (∂tu), q) + (∇ · q, q) + c0(∂tp, q) = (s, q).
(13)

Again initial conditions are omitted for ease of presentation.
As presented in [30], one considers a triangular mesh Th for spatial discretiza-

tion and the implicit Euler for temporal discretization. One utilizes the 1st order
Bernardi-Raugel element space Vh for displacement discretization. The mixed
FE pair (RT0, P0) is used for discretization of Darcy flow. The velocity/flux FE
spaces are denoted as Wh and W0

h, for which the edge-based basis functions are
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used [2,14]. This is especially convenient for handling the Neumann boundary
conditions.

Let u(n)
h ,u(n−1)

h ∈ Vh be the approximations to solid displacement at time
moments tn and tn−1, respectively. Similarly, Let q(n)

h ,q(n−1)
h ∈ Wh be the

approximations to Darcy velocity. Let p
(n)
h , p

(n−1)
h ∈ Sh be the approximations

to fluid pressure at time moments tn and tn−1.
Combined with the implicit Euler discretization, one establishes the following

time-marching scheme, for any v ∈ V0
h, w ∈ W0

h, q ∈ S0
h,

⎧⎪⎨
⎪⎩

AE
h(u(n)

h ,v) − Bh(p(n)h ,v) = FE
h (v),

AD
h (q(n)

h ,w) − BD
h (p(n)h ,w) = FD,1

h (w),
Bh(u(n)

h , q) + BD
h (q(n)

h , q) + CD
h (p(n)h , q) = FD,2

h (q),
(14)

where {
AE

h(u(n)
h ,v) = 2μ(ε(u(n)

h ), ε(v)) + λ(∇ · u(n)
h ,∇ · v),

Bh(p(n)h ,v) = α(p(n)h ,∇ · v),
(15)

and ⎧⎪⎨
⎪⎩

AD
h (q(n)

h ,w) = Δt (K−1q(n)
h ,w),

BD
h (q(n)

h , q) = Δt (∇ · q(n)
h , q),

CD
h (p(n)h , q) = c0(p

(n)
h , q).

(16)

Additionally,
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

FE
h (v) =

∑
T∈Th

(f (n),v)T +
∑

e∈Γ E
N

〈tN ,v〉e,

FD,1
h (w) = −

∑
e∈Γ D

D

Δt 〈pD,w · n〉e,

FD,2
h (q) =

∑
T∈Th

Δt(s(n), q)T + c0(p
(n−1)
h , q)T + α(∇ · u(n−1)

h , q)T .

(17)

Note ∇ · v is the elementwise average that represents the reduced integration
technique. The above two equations are further augmented with appropriate
boundary and initial conditions. This results in a large monolithic system at
each time step. The DOFs at each time step are

2#Nodes + #Elements + 2#Edges.

4 Solver III and IV: 2-Field CG+WG Solvers for
Triangular and Quadrilateral Meshes

The MFEM(RT0, P0) discretization for Darcy flow in Solver II can be replaced
by WG(P0, P0;RT0) discretization. This results in a new 2-field solver, which is
easier in implementation, based on our experience. This is labeled as Solver III
in this series. Here we provide a brief description of the scheme.
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Let Th be a quasi-uniform triangular mesh. We use BR1 for displace-
ment discretization (in linear elasticity), as done in [30]. However, we use
WG(P0, P0;RT0) for pressure discretization (in Darcy flow) [13,16]. Let Vh be
the space of BR1 shape functions on Th and V0

h be its subspace with vanishing
values on solid Dirichlet boundary. Similarly, Sh denotes the space of WG(P0, P0)
shape functions on Th and S0

h be its subspace with vanishing values on fluid
Dirichlet boundary. Treatment of initial and boundary conditions involve appro-
priate interpolation and/or projection operators into respective finite element
spaces [26]:

u(0)
h = Phu0, p

(0)
h = Qhp0,

and
u(n)

h |Γ E
D

= PhuD, p
(n,∂)
h |Γ D

D
= Q∂

h(pD).

Solver III as a time-marching finite element scheme is formulated as
{

AE
h(u(n)

h ,v) − Bh(p(n)h ,v) = FE
h (v),

Bh(u(n)
h , q) + AD

h (p(n)h , q) = FD
h (q),

(18)

for any v ∈ V0
h and any q ∈ S0

h. The bilinear forms are defined as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

AE
h(u(n)

h ,v) =
∑

T∈Th

2μ(ε(u(n)
h ), ε(v))T + λ(∇ · u(n)

h ,∇ · v)T ,

AD
h (p(n)h , q) =

∑
T∈Th

Δt
(
K∇wp

(n)
h ,∇wq

)
T

+ c0(p
(n),◦
h , q◦)T ◦ ,

Bh(u(n)
h , q) =

∑
T∈Th

α(∇ · u(n)
h , q◦)T ◦ .

(19)

The linear forms are defined as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

FE
h (v) =

∑
T∈Th

(f (n),v)T +
∑

e∈Γ E
N

〈tN ,v〉e,

FD
h (q) =

∑
T∈Th

Δt(s(n), q◦)T ◦ + c0(p
(n−1),◦
h , q◦)T ◦ + α(∇ · u(n−1)

h , q◦)T ◦

−
∑

e∈Γ D
N

Δt〈uN , q∂〉e.

(20)

It is interesting to see that for each time moment tn, the discrete linear system
(18) has the same size as the discrete linear system (14).

Solver IV for quadrilateral meshes is similar to Solver III (for triangular
meshes). But quadrilateral meshes are equally versatile as triangular meshes in
accommodation of complicated domain geometry but may need less degrees of
freedom for discretization. In certain cases, quadrilateral meshes may hold advan-
tages in alignment with geometric and physical features in the problems to be
solved [9]. With these considerations, Solver IV in two versions for poroelasticity
has already been developed in [8,26].
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The later version of Solver IV in [26] applies to general convex quadrilateral
meshes. It uses the newly developed AC0 space in [3] for Darcy flow discretiza-
tion, which includes the rectangular RT0 as a special case. For discretization
of linear elasticity on quadrilaterals, the BR1 or enriched Lagrangian elements
EQ1 are used. Therefore, for Solver IV, one just needs slight modification in
Eq. (18–20):

– Replace the triangular mesh Th by a quadrilateral mesh Eh;
– Replace the triangular BR1 elements by quadrilateral BR1 elements (the

enriched Lagrangian elements EQ1) [11];
– Replace triangular WG(P0, P0;RT0) by WG(P0, P0;AC0) for quadrilaterals.

The DOFs for Solver IV is also

2#Nodes + #Elements + 2#Edges,

but there are less elements and edges in a quadrilateral mesh.

5 Solver V Based on Operator-Splitting for Problems
with Dilation-Dependent Permeability

Solver V is developed on top of Solver IV but aims at nonlinear poroelasticity in
which permeability may depend on dilation. We adopt the approach of operator
splitting (OS), namely, linear elasticity and Darcy problems are solved separately
within Gauss-Seidel iterations.

For ease of presentation, we consider a convex quadrilateral mesh Eh. We use
EQ1 or BR1 finite elements for elasticity discretization [11] and WG(P0, P0;AC0)
for discretization of Darcy flow [17], as in Solver IV. Treatment of initial and
boundary conditions is similar to that in Solver III or IV.

Solver V as a time-marching finite element scheme is formulated as
{

AE
h(u(n)

h ,v) − Bh(p(n)h ,v) = FE
h (v),

Bh(u(n)
h , q) + AD

h (p(n)h , q;u(n)
h ) = FD

h (q),
(21)

for any v ∈ V0
h and any q ∈ S0

h, where the FE spaces have definitions similar to
those for Solver IV. The bilinear forms AE

h(u(n)
h ,v) and Bh(u(n)

h , q) have similar
definitions as in Eq. (19). But the bilinear form AD

h (p(n)h , q;u(n)
h ) depends on the

numerical displacement as shown below

AD
h (p(n)h , q;u(n)

h ) =
∑

E∈Eh

Δt
(
K(u(n)

h )∇wp
(n)
h ,∇wq

)
E

+ c0(p
(n),◦
h , q◦)E◦ , (22)

The linear forms FE
h (v) and FD

h (q) have definitions similar to those in (19).
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However, (21) is a nonlinear discrete system about u(n)
h , p

(n)
h . This will be

solved via operator-splitting or a Gauss-Seidel type iterative procedure as shown
below {

AE
h(u(n,k)

h ,v) = FE
h (v) + Bh(p(n,k−1)

h ,v),
AD

h (p(n,k)
h , q;u(n,k)

h ) = FD
h (q) − Bh(u(n,k)

h , q).
(23)

As shown later in Sect. 6, a typical nonlinear case is a dilation-dependent
permeability, e.g.,

K(u) = (1 + a∇ · u)K0, (24)

where a is a small constant and K0 is a reference permeability. This requires
calculation of elementwise averages of dilation (divergence of displacement). It is
clear that for Solver IV and hence Solver V, such quantities are readily available.

6 Matlab Implementation of Poroelasticity Solvers

For Matlab implementation of the poroelasticity solvers discussed in this paper
and other similar solvers, we emphasize code modularity. This has implication
in two aspects.

(i) Each module has its entirety and a well-designed interface to the calling
module. Each module fulfills a well-defined scientific computing task that is
clearly separated from other tasks.

(ii) Code modules for similar solvers share uniformity and common features.
Some code segments are conveniently portable or can be re-used after simple
modification.

Besides mesh preparation and presentation of results (physical quantities of inter-
est and errors when exact solutions are known, etc.), a typical finite element
solver usually involves

– Element-wise or edge-wise integration and even node-wise evaluation;
– Assembly of element-wise stiffness matrices and source-type vectors;
– Incorporation and enforcement of boundary conditions;
– Modification of (non-)linear systems due to boundary conditions;
– Solvers for linear or nonlinear systems.

For instance,

– Solver I, IV, V share the same modules for mesh preparation and presentation
of quantities of interest;

– Solver I, IV, V share many common modules of WG(P0, P0;AC0) for pressure
discretization and Darcy velocity computation;

– Solver II, III share common modules for triangle Bernardi-Raugel elements;
– The modules for triangular and quadrilateral BR1 elements share the same

structure and many common features.

Many modules previously developed in our DarcyLite package for weak Galerkin
FEMs for Darcy flow and linear elasticity are also re-used.
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7 Numerical Experiments

This section presents numerical examples to demonstrate the accuracy and
robustness of the finite element solvers for poroelasticity studied in this paper.
We shall focus on Solver I, III, and V. Solver II is essentially equivalent to
Solver III but the latter seems to have some convenience in implementation.
Some numerical experiments on Solver IV can be found in [26].

Example 1 (Locking-Free). Here Ω = (0, 1)2. Analytical solutions for dis-
placement and pressure are given as

u = sin
(π

2
t
) ([

sin2 (πx) sin (2πy)
− sin2 (πy) sin (2πx)

]
+

1
1 + λ

[
sin (πx) sin (πy)
sin (πx) sin (πy)

])
,

p = sin
(π

2
t
) π

1 + λ
sin (π(x + y)) .

Table 1. Ex.1 (λ = 1): Errors and convergence rates of numerical solutions obtained
from Solver I (WG+WG) on rectangular meshes

1/h 1/Δt ‖u − uh‖L2(L2) Rate ‖p − p◦
h‖L2(L2) Rate ‖q − qh‖L2(L2) Rate

8 8 1.2757E−1 – 1.3289E−1 – 4.2093E−1 –

16 16 6.1993E−2 1.04 6.4829E−2 1.03 2.0427E−1 1.04

32 32 3.0529E−2 1.02 3.1964E−2 1.02 1.0056E−1 1.02

64 64 1.5147E−2 1.01 1.5863E−2 1.01 4.9881E−2 1.01

Table 2. Ex.1 (λ = 106): Errors and convergence rates of numerical solutions obtained
from Solver I (WG+WG) on rectangular meshes

1/h 1/Δt ‖u − uh‖L2(L2) Rate ‖p − p◦
h‖L2(L2) Rate ‖q − qh‖L2(L2) Rate

8 8 1.2042e−01 – 2.6577e−07 – 8.4154E−7 –

16 16 5.8469e−02 1.04 1.2965e−07 1.03 4.0848E−7 1.04

32 32 2.8786e−02 1.02 6.3926e−08 1.02 2.0110E−7 1.02

64 64 1.4281e−02 1.01 3.1727e−08 1.01 9.9761E−8 1.01

Table 3. Ex.1 (λ = 1): Numerical results of Solver III (CG+WG) on triangular meshes

h = Δt ‖u − uh‖L2(L2) ‖u − uh‖
L∞(H1) ‖σ − σh‖L2(L2) ‖p − p◦

h‖L2(L2) ‖q − qh‖L2(L2)

1/4 6.533E−2 1.401E+0 1.775E+0 1.613E−1 8.760E−1

1/8 1.485E−2 6.648E−1 8.230E−1 7.696E−2 4.186E−1

1/16 3.551E−3 3.265E−1 3.964E−1 3.745E−2 2.038E−1

1/32 8.727E−4 1.624E−1 1.948E−1 1.845E−2 1.004E−1

1/64 2.177E−4 8.113E−2 9.662E−2 9.160E−3 4.986E−2

Conv.rate 2.05 1.02 1.04 1.03 1.03
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Table 4. Ex.1 (λ = 106): Numer. results of Solver III (CG+WG) on triangular meshes

h = Δt ‖u − uh‖L2(L2) ‖u − uh‖
L∞(H1) ‖σ − σh‖L2(L2) ‖p − p◦

h‖L2(L2) ‖q − qh‖L2(L2)

1/4 6.502E−2 1.395E+0 1.814E+0 3.226E−7 1.752E−6

1/8 1.485E−2 6.631E−1 8.537E−1 1.539E−7 8.372E−7

1/16 3.557E−3 3.259E−1 4.132E−1 7.491E−8 4.076E−7

1/32 8.727E−4 1.622E−1 2.033E−1 3.691E−8 2.009E−7

1/64 2.163E−4 8.102E−2 1.008E−1 1.832E−8 9.972E−8

Conv.rate 2.05 1.02 1.03 1.03 1.03

It is interesting to see that ∇ ·u = p and ∇ ·u → 0 as λ → ∞. Dirichlet bound-
ary conditions for both displacement and pressure are specified on the whole
boundary using the exact solutions. Furthermore, K = κI. Direct calculations
show that

f = −∇ · σ̃ = − sin
(π

2
t
) (

2μπ2

[
(1 − 4 sin2(πx)) sin(2πy)

−(1 − 4 sin2(πy)) sin(2πx)

]

− 2μ

1 + λ
π2

[
sin(πx) sin(πy)
sin(πx) sin(πy)

]
+

λ + μ − α

1 + λ
π2

[
cos(π(x + y))
cos(π(x + y))

]) (25)

and

s =
(
(α + c0) cos

(π

2
t
)π

2
+ sin

(π

2
t
)
κ(2π2)

) π

1 + λ
sin(π(x + y)). (26)

For numerical simulations, we set κ = 1, μ = 1, α = 1, c0 = 0, and T = 1.
To examine the locking-free property of these solvers, we consider λ = 1 and
λ = 106, respectively.

We examine errors in displacement (u−uh), stress (σ−σh), pressure (p−p◦
h),

and Darcy velocity (q−qh). For Solver I, see results in Tables 1 and 2. For Solver
III, see results in Tables 3 and 4. Clearly, the convergence rates do not deteriorate
as λ is increased from 1 to 106. In other words, these new 2-field solvers based
on the weak Galerkin methodology are locking-free.

Example 2 (Model’s Problem). This is a frequently tested benchmark that
has known analytical solutions. See [1,5,12,18,22]. The problem involves a poroe-
lastic rectangular slab with extent 2a in the x-direction and extent 2b in the
y-direction being sandwiched by two rigid plates at the top and the bottom.
Two forces of magnitude 2F , pointing to the slab, are applied at the top and
bottom plates, respectively. Due to the rigidity of the plates, the slab remains in
contact with the two plates. Thus the vertical displacement at the top and bot-
tom are uniform. The initial condition for displacement is u(x, y, 0) = 0. Based
on symmetry in the problem, we choose the center of the slab as the origin and
consider the upper-right quadrant. The Mandel’s problem is thus posed for the
domain Ω = (0, a) × (0, b) for a time period [0, T ].

The boundary conditions for the solid and fluid are, see Fig. 1(a),

(i) Symmetry or partial Dirichlet: u1 = 0 for x = 0; u2 = 0 for y = 0;
(ii) Neumann or traction-free: σ̃n = 0 for x = a;
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Fig. 1. Mandel’s problem (ν = 0.4) solved by Solver III on uniform triangular meshes.
(a) Problem illustration; (b) Numerical pressure on the center line (y = 0) at final
time T = 50 with h = 1/32; (c) Numerical displacement and dilation with h = 1/8;
(d) Numerical pressure and velocity with h = 1/8.

(iii) Specially, for y = b (the top side), it is subject to the traction condition
σ̃n = [0,−2F ] along with the “rigid plate” constraint, which requires u2

stays the same for the whole top side;
(iv) Dirichlet: p = 0 for x = a (drained);
(v) Neumann or no-flow: (−K∇p) · n = 0 for x = 0, y = 0, y = b.

An easier but equivalent treatment for (iii) is to impose a partial Dirichlet bound-
ary condition for u2 using the known exact solution for displacement [5,22,26].

Example 3 (A Nonlinear Problem). Here we consider an example in which
the permeability depends on the dilation. In particular,

K(u) = (1 + a∇ · u)κ I, (27)

where a is a small constant and κ is a reference permeability. Furthermore, we
consider a case with known analytical solutions for displacement and pressure:

u = sin
(π

2
t
)[

sin(πx) sin(πy)
sin(πx) sin(πy)

]
, p = sin

(π

2
t
)

(1 + cos(πy)) . (28)
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This allows examination of accuracy and efficiency of Solver V. Furthermore,
Ω = (0, 1)2, T = 1, λ = μ = 1, κ = 1, a = 0.1, c0 = 0, and α = 1. Dirichlet
boundary conditions are posed for both displacement and pressure.

Table 5. Ex.3 (Solver V): Convergence rates of errors of numerical solutions obtained
from combining EQ1 and WG(P0, P0; AC0) on rectangular meshes with Δt = h

1/h ‖p − p◦
h‖ Rate ‖q − qh‖ Rate |u − uh| Rate ‖σ − σh‖ Rate Runtime

4 5.119E−1 – 1.366E+0 – 1.260E−1 – 1.503E−1 – 0.59 s

8 2.528E−1 1.01 6.527E−1 1.06 6.023E−2 1.06 6.398E−2 1.23 1.26 s

16 1.260E−1 1.00 3.177E−1 1.03 2.931E−2 1.03 2.944E−2 1.11 4.12 s

32 6.297E−2 1.00 1.565E−1 1.02 1.444E−2 1.02 1.413E−2 1.05 26.57 s

64 3.148E−2 1.00 7.770E−2 1.01 7.169E−3 1.01 6.931E−3 1.02 333.46 s

Fig. 2. Example 3: numbers of Gauss-Seidel iterations during time-marching

We test Solver V on rectangular meshes with Δt = h. Following the common
practices, we examine the discrepancy (difference) of two successive approximate
solutions within the Gauss-Seidel iteration. We set discrepancy threshold as δ =
10−12 and check whether the following conditions are satisfied:

‖u(n,k)
h − u(n,k−1)

h ‖L2 < δ,

‖p
(n,k)
h − p

(n,k−1)
h ‖L2 < δ.

(29)

Table 5 demonstrates good performance of Solver V on this nonlinear poroe-
lasticity problem. For these particular choices of parameters, the numbers of
Gauss-Seidel iterations during the time-marching are reported in Fig. 2.
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8 Concluding Remarks

In this paper, we have discussed five different finite element solvers for linear and
nonlinear poroelasticity problems, along with Matlab implementation of these
solvers. It is demonstrated that weak Galerkin finite element methods can be
well integrated with other types of finite element methods. This is also reflected
in the modularity of our code development. Under the guidelines discussed in
this paper, more modules for finite element solvers for poroelasticity can be
integrated into our code package DarcyLite [15].

These poroelasticity modules can also provide computed physical quantities
that are needed in finite element solvers for other physical processes. It is par-
ticularly interesting to see integration of these poroelasticity solvers with (mass,
positivity) property-preserving transport solvers in development of numerical
simulators for transport in poroelastic media. This is currently under our inves-
tigation and will be reported in our future work.

The work in this paper emphasizes easy access of poroelasticity solvers on
the platform offered by Matlab. It echoes our efforts in [24,25] for efficient imple-
mentation of WG solvers in deal.II and C++ for large-scale computing tasks.
More results from such efforts will be reported in our future work.
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