Airborne Infection Risks of SARS-CoV-2 in U.S. Schools and Impacts of Different

Intervention Strategies

Abstract

The potential airborne transmission of SARS-CoV-2 has triggered concerns as schools continue
to reopen and resume in-person instruction during the current COVID-19 pandemic. It is critical
to understand the risks of airborne SARS-CoV-2 transmission under different epidemiological
scenarios and operation strategies for schools to make informed decisions to mitigate infection
risk. Through scenario-based analysis, this study estimates the airborne infection risk of SARS-
CoV-2in 111,485 U.S. public and private schools and evaluates the impacts of different
intervention strategies, including increased ventilation, air filtration, and hybrid learning. Schools
in more than 90% of counties exhibit infection risk of higher than 1%, indicating the significance
of implementing intervention strategies. Among the considered strategies, air filtration is found
to be most effective: the school average infection risk when applying MERV 13 is over 30% less
than the risk levels correlating with the use of increased ventilation and hybrid learning
strategies, respectively. For most schools, it is necessary to adopt combined intervention
strategies to ensure the infection risk below 1%. The results provide insights into airborne
infection risk in schools under various scenarios and may guide schools and policymakers in
developing effective operations strategies to maintain environmental health.
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1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is identified as the virus that

causes the coronavirus disease 2019 (COVID-19). The outbreak of COVID-19 spreads over 220

countries and territories (JHU, 2021), causing global pandemic and threatening human life,

which reveals the urge of improving human health as an important goal of sustainability

development (Hakovirta & Denuwara, 2020). Schools are considered high-risk environments for

the transmission of infectious diseases due to the close and frequent contact and communication

that occur among students and teachers. The negative impacts of crowded and poorly-ventilated

indoor environments further raise concerns about the student health in schools.

The COVID-19 pandemic has resulted in the enactment of social distancing policies, with school

closures existing among the first actions taken by governments worldwide. In the United States,
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prolonged school closures have affected about 55 million students enrolled in more than 130,000
K—12 schools and their parents in the U.S. (CDC, 2014), impacting their mental and physical
health as well as education due to the variable efficiency of remote learning and by placing
additional childcare burdens on their parents. At this stage in the pandemic, which is marked by
increasing vaccine rollout, many schools in the U.S. are considering reopening or have already
reopened for in-person instruction. However, concerns persist as the chance of contracting and
transmitting COVID-19 increases in crowded indoor environments. Although several studies
have indicated that children are less susceptible to experiencing severe COVID-19 (Yuki et al.,
2020; Lee et al., 2020), those with mild or asymptomatic cases without confirmed diagnoses and
treatment may facilitate rapid transmission of the disease within schools and to households and
the surrounding communities. So far, it is not recommended for K—12 schools to screen all
students for symptoms of COVID-19 on a routine basis (CDC, 2020a), which poses a potential
risk for the spread and outbreak of the disease within schools. In addition, no vaccines have yet
been approved for children and, even in vaccinated people, the risk of SARS-CoV-2 infection is
not entirely eliminated (CDC, 2021b). Due to the important role of schools in children’s growth
and the high prevalence of COVID-19 across the U.S., nonpharmacological interventions are
required to help limit the spread of COVID-19 and other respiratory illnesses and maintain a

healthy environment in schools.

Several studies have demonstrated that SARS-CoV-2, like other respiratory viruses (e.g.,
influenza, tuberculosis, and measles (Ather, Mirza, & Edemekong, 2021), can be transmitted by
way of an airborne route (Morawska & Cao, 2020; Setti et al., 2020), wherein the infectious

aerosols are dispensed and suspended over long distances in the air, and inhaled by the



susceptible individuals (WHO, 2021). The spread of airborne diseases indicates the significance
of dedensification and introducing fresh air into the crowded and poorly-ventilated buildings. For
schools, dedensification can effectively help students to maintain adequate physical distancing
and can be achieved by the use of hybrid learning. Meanwhile, improved ventilation and air
filtration can introduce fresh air and dilute the concentration of airborne infectious particles
indoors. However, the infection risks in schools of different levels (e.g., elementary vs. high
schools) and how different intervention strategies quantitatively influence infection risk in
different pandemic scenarios given various relevant school and disease factors (e.g., occupant

density, school hours, pulmonary ventilation rate) remain elusive.

To close this gap, this study conducted scenario-based analyses to examine the relationship
between the risk for airborne infection and different intervention strategies in 111,485 public and
private schools in the U.S., using the COVID-19 pandemic as the epidemiological context.
Specifically, two epidemiological scenarios were employed to predict both the long- and short-
term risks under different intervention strategies. Monte Carlo simulation (MCS) and sensitivity
analysis were also performed to exploit the impacts of various school characteristics and
epidemic situation. The results provide insights for schools and governments regarding the
control of infection risk using effective mitigation measures. Although this study focuses on
controlling the SARS-CoV-2 infection risk in U.S. schools, the framework can be extended to
other infectious diseases within other indoor environments in other countries, to maintain a

healthy and sustainable environment.



2 Data and Methods

2.1 Data Description

A total of 111,485 schools in the U.S., including 90,160 public schools and 21,325 private
schools, were analyzed in this study. Basic information about schools was retrieved from the
National Center for Education Statistics (NCES, 2021), including school type, school level,
school location, and total numbers of students and teachers. Schools were divided into public
schools and private schools and, based on the lowest and highest grades offered, stratified as
follows: pre-kindergarten, elementary, middle, high, and secondary schools for public schools
and elementary, secondary, and combined schools for private schools, respectively. The school

population was determined as the sum of students and full-time—equivalent teachers.

To assess the airborne infection risk in schools, the occupant density of school buildings was
estimated from 1,433 representative schools across different levels. The representative schools
with clear building characteristics shown in Google Maps (Google, LLC, Mountain View, CA,
USA) were selected from the aforementioned 111,485 schools to retrieve the gross floor area. To
reduce human errors in acquiring the gross floor area of the representative schools, a standard
process was designed and followed: 1) the schools were observed using Google Maps street view
to ensure that the building boundaries, the number of buildings, and the number of floors of each
building can be clearly recognized; 2) For the buildings that were clearly recognized, the
building area was manually collected using the area calculator tool in the Google Maps API by
drawing an enclosed line along the building boundary; 3) A total of 1,433 schools were finally
selected to calculate the gross floor area. The gross floor area of each school building was

computed as the product of the building area and number of floors; The gross floor area of the



school was the sum of space of all school buildings. The occupant density of a school was
computed as the ratio of school gross floor area to the school population. The mean and standard
deviation values of occupant density of each school level were then estimated based on the

corresponding representative schools. The relevant descriptive statistics are provided in Table 1.

Table 1. School information descriptive statistics

School Total Representative  Students FTE teachers Occupant density

Schools  schools (m?/student)
Mean SD Mean SD Mean SD

All schools 111,485 1,433 427 432 30 25 14.93 545

Public 90,160 1,106 538 440 33 25 14.99 5.07

Private 21,325 327 192 250 16 21 14.72 6.6

PK 1,131 56 175 171 9 10 16.04 5.88

Elementary 64,998 944 396 246 25 15 14.19 5

(K-5)

Middle 16,087 127 595 350 37 21 16.52 5.54

(grades 6-8)

High 20,785 148 717 743 43 41 16.02 5.6

(grades 9-12)

Secondary 2,475 72 306 351 26 26 17.39 6.19

(grades 6—12)

Combined 6,009 86 242 356 24 31 15.9 7.07

(PK-12)

FTE: full-time—equivalent; PK: pre-kindergarten; SD: standard deviation

2.2 Epidemiological Scenarios

In this study, the following two epidemiological scenarios were considered: a one-year pandemic
scenario based on long-term projections of COVID-19 prevalence and the current
epidemiological scenario across the U.S. based on recorded COVID-19 infection cases to date.
The one-year pandemic scenario indicated the temporal-varying prevalence, considering the
seasonal variation and immunity duration of SARS-COV-2, and was used to provide insights

into long-term strategies in school operations by estimating the general trend of infection risk in



schools. Separately, the current epidemiological scenario demonstrated the county-level
prevalence based on the records of confirmed cases and was used to provide guidance for timely

adjustment of school operations based on local conditions.

2.2.1 One-year pandemic scenario
The long-term projection model developed in the study by Kissler et al. (2020) was adopted to
estimate the nationwide prevalence of SARS-CoV-2 during the post-pandemic period. The
transmission dynamics of SARS-CoV-2 were determined according to seasonal variation,
duration of immunity, and cross-immunity due to prior transmission of other coronaviruses (e.g.,
HCoV-0C43, CoV-HKU1). Seasonal variation affected the peak incidence and severity of
wintertime outbreaks, while the duration of immunity and the level of cross-immunity impacted
the total incidence and the pattern of recurrent circulation. Specifically, this study used a one-
year pandemic scenario with moderate seasonal forcing (i.e., the Ro in summertime is 0.8 of that
in wintertime), an immunity duration of 10 weeks, and no cross-immunity between SARS-CoV-
2 and other coronaviruses. The relatively short immunity duration was assumed, considering the
rapid decrease of SARS-CoV-2 antibody levels and the short duration between reinfections
(Edridge et al., 2020; Long et al., 2020; Iwasaki, 2020). The resulting prevalence of COVID-19

(i.e., number of infections per 1,000 people) is illustrated in Figure 1.
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Figure 1. Prevalence of COVID-19 in the population (generated based on Kissler et al. (2020)).

2.2.2 Current epidemiological scenario across the U.S.
Identifying the COVID-19 infection rate in local areas is critical to understand the current
epidemiological scenario and develop corresponding intervention strategies to mitigate infection
risk in schools. However, the true number of infections is typically underestimated because a
large proportion of infected individuals—especially those who are asymptomatic or only mildly
symptomatic—develop the disease without a confirmed diagnosis. A study from the University
of Texas at Austin (Fox, Lachmann, & Meyers, 2020) indicated that the reported cases should be
multiplied by 3 to 10 as the lower and upper estimate of true infections. The Centers for Disease
Control and Prevention (CDC) stated that approximately 1 in 4.3 total infection cases nationwide
were reported (CDC, 2021b). In this study, the true number of current infection cases in each

county was estimated based on the method developed by Gu (2021), where the relationship



between the ratio of true infections to confirmed cases and the standardized test positivity rate

can be computed using Equation 1:

1500 0
_ 0.5
P=d 150" t2

where p is the ratio of true infections to confirmed cases; d, is the number of days from
February 12, 2020 to the current date; and r is the standardized daily test-positivity rate. The
model standardizes the test-positivity rate across all states in the U.S. due to differences in the
criteria and units of test reports. Most states use “test encounters” (TE) or “test specimens” (TS)
to report test totals, but nine states use “unique individuals” (UI). TE, TS, and Ul are three ways
of counting the number of total tests. TE or TS is the number of people or specimens been tested
per day, including the multiple tests on the same person. Ul is the number of individuals being
tested during the reporting period, with multiple tests on the same person removed. In (Gu,
2020), TE and TS results are treated as equivalent units, while Ul results are converted to TE or
TS values. The unit conversion factor (a,,,) was estimated as the daily average ratio of daily test
totals, reported as TE or TS, to those reported as UI of states that provide data using both units
(e.g., TE and Ul or TS and UI). The adjusted daily TE or TS test total is the product of a,, and
the test total reported as UI. The daily standardized test-positivity rate can be determined with
the state-adjusted test total. The parameters in Equation 1 are determined through curve-fitting
on historical test positivity, serological surveys, and hospitalization data, where the constants are
estimated using grid search. The true number of people becoming infected is the product of daily
confirmed cases and p, and the county infection rate is computed as the true number of infections

divided by the county population size.



2.3 Infection Risk Modeling

With a focus on airborne transmission, infection risk in this study was defined as the probability
that susceptible individuals will be infected via airborne transmission after one day of in-person
school attendance. Infection risk was calculated using the Gammaitoni—Nucci (G-N) equation, a
widely adopted method (Gammaitoni & Nucci, 1997) for indoor airborne infection risk
assessment (e.g., influenza, tuberculosis, SARS-CoV-2). The G-N equation is a variation of an
earlier model proposed by Wells-Riley et al. (W-R equation) (1978); this latter equation is based
on the concept of the “quantum of infection,” according to which the probability of infection is
determined by the intake dose of airborne pathogens in terms of the number of quanta. Randomly
distributed infectious particles in the air are considered to follow a Poisson distribution. The
assumption of a steady-state particle concentration is the main limitation of the W-R equation.
To overcome this limitation, the G-N equation demonstrates concentration changes in quanta
level using a differential equation and considers the time-weighted average pathogen
concentration rather than assuming the steady-state concentration (Sze To & Chao, 2010). In the
G-N equation, the probability of susceptible individuals becoming infected (IR) after a certain
duration of exposure can be calculated using Equation 2 (Beggs et al., 2010; Hota et al., 2020; G.
Buonanno et al., 2020a), where I is the number of infectors, V is the room volume (m?3), N is the
total disinfection rate of the environment (hr 1), t is the exposure duration of susceptible
individuals to infectors (%), p is the pulmonary ventilation rate (m3/h), and ¢ is the quantum

generation rate (quanta/h).

pI(p/Nt+e_Nt—1 (2)
IR=1-¢ "\ W

In this study, / was calculated differently according to the two epidemiological scenarios. In the

one-year pandemic scenario, / was estimated as the product of the school population and the
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prevalence of COVID-19 in the population divided by 1,000 (note the prevalence of COVID-19
is the number of positive cases per 1,000 people in the one-year pandemic scenario). In the
current epidemiological scenario, / was the product of the county infection rate and school
population. V' was estimated as the product of the occupant density, school population, and the
height of the classroom, where a height of 3 m was assumed for all schools (DOE, 2009). ¢ was
set as the number of hours in a typical school day, varying across different states according to
(NCES, 2008). N is the effect of introducing and circulating fresh air in the building. In this

study, a ventilation rate of 2 hr !

was set as the baseline rate (Batterman et al., 2017). Because p
varies with different age groups (EPA, 2011), different values were assigned to each school level
(Table 2), and ¢ for SARS-CoV-2 was estimated as a function of p using Equation 3 as follows
according to (G. Buonanno et al., 2020b):

- 3)

Q= Cvcip(z VaiNaij)
i=1

where ¢, is the SARS-CoV-2 viral load in the sputum, set at 10° RNA virus copies mL™! (G.
Buonanno et al., 2020b); c; is a conversion factor between the infectious quantum and infectious
dose, set as 0.02 (G. Buonanno et al., 2020b); p is the pulmonary ventilation rate based on school
level (m®/h); Vy; is the volume of a droplet calculated by the droplet diameter D;; and Ny ; is
the droplet concentration per cm?3 of droplet diameter i and expiratory activity j (see Table 3 for
details). Since the quantum generation rate is related with the degree of infection, the individual
difference of pulmonary ventilation rate, the activity the patient involved in, and the range of the
quantum generation rate of SARS-CoV-2 varies in the literatures. The quantum generation rate
for different school levels is in accordance with recent studies. Shen et al. (2021) indicated that

the quantum generation rate for children under 16 is 58 = 31 h™!; The quantum generation rate
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used in (G. Buonanno et al.,f 2020b) is 142 h™? for subjects performing speaking and light
activity. The estimated quantum generation rate in (Dai and Zhao, 2020) is 1448 h™1.
Generally, the quantum generation rates are from tens to hundreds in the literatures. In this paper,
the quantum generation rate is set as 31.16, 42.72, and 51.94 h~? for prekindergarten, elementary
and combined school students respectively, and is 61.16 h~! for middle, high, and secondary

school students.

Table 2. Pulmonary ventilation rate of each school level based on student age groups

Parameter PK Elementary Middle High Secondary Combined Reference

Age (years) 3-5  5-11 11-14  14-18 11-18 3-18 NCES
Pulmonary  7.28  9.98 1429 1429 14.29 12.135 Literature
ventilation (EPA, 2011)
rate (m’/day)

NCES: National Center for Education Statistics; PK: pre-kindergarten

Table 3. Droplet concentration (per cm?) of different droplet size distributions during speaking

activity (adapted from G. Buonanno et al., 2020b)

Expiratory activity D;(0.8 pm) D, (1.8 pm) D5 (3.5 pm) D, (5.5 pm)

Voiced counting 0.236 0.068 0.007 0.011
Unmodulated 0.751 0.139 0.139 0.059
vocalization

Note: Regarding respiratory activity, speaking is considered the main activity during school

hours and is defined as the mean value between unmodulated vocalization and voiced counting.

2.4 Modeling the Impact of Different Intervention Strategies
The impact of different intervention strategies on the airborne infection risk was modeled by

modifying the parameters in Equation 2. The considered intervention strategies included

12



increasing the outdoor ventilation rate, implementing air filtration, adopting hybrid learning

(students learning partially online), and a combination of these three strategies.

1.

Increase in outdoor ventilation rate (S1). Increasing the outdoor ventilation rate will
bring in more fresh outdoor air to dilute contaminated indoor air, thus reducing the
infection risk. This study modeled the impact of increasing the baseline ventilation rate
by various levels (from 25% to 200% in steps of 25%) on the infection risk.
Implementation of air filtration (S2). When filtration is applied in a building’s heating,
ventilation, and air conditioning (HVAC) system, the total disinfection rate of the
environment (N) can be modeled as a combined effect of outdoor ventilation and
filtration, computed as N = Apentitation + Krittration» Where Kejieration 18 the particle
removal rate due to filtration (Hota et al., 2020), which can be calculated using Equation

4 (Azimi & Stephens, 2013) as follows:

kfiltration = Arecirculatednfilter (4)

where A, ,circulatea 1S the recirculation rate, set as 6.4 hr~! (Chan et al., 2016), and
Nriter 18 the filtration efficiency weighted by infectious particle size. American Society
of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) specifies the
method by which to determine 7¢;;¢, based on the minimum efficiency reporting value
(MERYV) and particle size range (ASHRAE Standard 52.2-2017) and has suggested that
filters with MER Vs of at least 13 can efficiently capture airborne viruses (ASHRAE
2020). Therefore, the impact of adopting MERYV 13 filters is estimated in this paper. The
filtration efficiency of MERYV 13 filters is 67.5% based on the assumed particle size
range of SARS-CoV-2. (Morawska et al., 2020) indicates that more than half of the viral

RNA of SARS-CoV-2 have aerosols smaller than 2.5 pm. In this study, it is assumed that
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3.

half of the particles are 0.3 to 1 um in size (50% average particle size efficiency) and the
other half are 1 to 3 um (85% average particle size efficiency).

Hybrid learning (S3). Having part of the student body learn online reduces the school
population and thus decreases the number of infectors (I) given the specific prevalence of
COVID-19 estimated from two epidemiological scenarios. In this paper, the impact of
switching 10%, 20%, 30%, 40%, and 50% of the students to online learning, respectively,
was computed.

Combined strategies. The impacts of different combinations of strategies—including
increasing the ventilation rate and implementing filters (S1 + S2, denoted as S4;
increasing the ventilation rate and switching part of the student body to online learning
(S2 + S3, denoted as S5); and increasing the ventilation rate, implementing filtration, and
switching part of the student body to online learning (S1 + S2 + S3, denoted as S6)—

were considered.

2.5 Modeling the Impact of Parameter Uncertainties

The risk of COVID-19 infection in schools may vary due to the uncertainty of multiple
parameters, such as occupant density, pulmonary ventilation rate, and exposure duration. In this
study, MCS and sensitivity analysis were used to quantify the influence of uncertainties of

multiple parameters.

2.5.1 MCS

MCS is a method widely used to calculate possible outcomes as well as the associated

uncertainty using multiple variables with different probability distributions. Based on Equation
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2, a stochastic MCS was developed to represent the uncertainty of infection risk. MCS
demonstrates the uncertainty and stochasticity of the factors, and the outcomes reveal the
possible results with a large variation, indicating both average and extreme case scenarios of
school infection risk (Karsten et al. 2005). In this study, the MCS contained three steps: random
variable determination, random number generation, and simulation result acquisition.

1. Random variable determination. Three parameters with uncertainties that will influence
infection risk in schools were treated as random variables, including occupant density,
pulmonary ventilation rate, and exposure duration in a school day. The possible range and
empirical probability distribution of each variable were estimated based on school
information and existing literature and are detailed in Table 4.

2. Infection risk simulation. Given a specific ventilation rate, 10,000 simulations were
conducted to estimate the school infection risk. In each simulation, a random number was
generated using repeated random sampling from the empirical distributions of each input
variable and used to compute the infection risk of all schools. In this study, 10,000
simulations were performed under a ventilation rate varying from 2 to 6 hr !, Specifically,
the peak prevalence of COVID-19 in the one-year pandemic scenario was used when
calculating the infection risk.

3. Simulation result acquisition. For each school, 10,000 simulation results could be achieved
using Equation 2. For each simulation, the average infection risk was computed among all
schools. The obtained result of 10,000 simulations indicates the distribution of average

infection risk of schools nationwide.

Table 4. Random variables used in MCS
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Parameter PK Elementary Middle High Secondary Combined Distribution Reference

Occupant 5.34— 3.49-28.82 6.76— 6.38— 4.08- 4.03—37.75 Truncated  Table 1
density 27.97 28.92 29.26 28.64 normal

(m*/people)

Pulmonary 5.29- 7.11-12.85 9.56-  9.56— 9.56— 9.37-149 Truncated  Literature
ventilation ~ 9.27 19.02 19.02 19.02 normal (EPA,
rate(m*/day) 2011)
School day  6.25-7.08 Truncated  NCES,
(hrs/day) normal 2008

NCES: National Center for Education Statistics; PK: pre-kindergarten

2.5.2 Sensitivity Analysis
Sensitivity analysis was conducted to evaluate the influence of individual parameters, including
infection rate, exposure time, occupant density, and pulmonary ventilation rate. The estimated
ranges and default values of the parameters are listed in Table 5. The infection rate was
determined based on the current epidemiological scenario across the U.S. and ranged from 50%
of the minimum estimated infection rate to 150% of the maximum estimated infection rate as of
January 30, 2021. The pulmonary ventilation rate used in the sensitivity analysis was the average
pulmonary ventilation rate of elementary school students (aged 611 years), because elementary

schools account for more than 50% of the total number of schools nationwide.

Table 5. Parameters used in the sensitivity analysis

Parameter Max. Min. Default value Reference
Infection rate 48.9 0 2.18 Literature (Gu,
(%) 2020)
Exposure time 7.08 6.25 6.67 NCES, 2008
(h)

Occupant 3.48 37.75 14.93 Table 1
density

(m?/people)

Pulmonary 19.02 5.29 9.98 Literature (EPA,
ventilation 2011)

rate (m’/day)
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3 Results

3.1 Infection Risks Under the One-year Pandemic Scenario

Adopting the one-year pandemic scenario (Kissler et al., 2020), the infection risk of SARS-CoV-
2 in 111,485 U.S. schools was estimated for a 12-month period and reported per month in Figure
2. A ventilation rate of two air changes per hour (ACH) in schools (Batterman et al., 2017) was
used as the baseline to represent normal ventilation operation. The daily infection risk was
derived based on the exposure time for each single school day, and was considered to remain
unchanged within a single month. The average infection risks in schools exhibit strong patterns
of seasonality, reaching a peak in winter months and a trough in summer months (e.g., the school
average infection risk reaches 6.83% in December and drops to 3.85% in July), suggesting that
adaptive measures could be implemented as a function of the seasonal risk to control infection.
The prediction of a greater prevalence of COVID-19 (i.e., number of cases per 1,000 people)
from November to February (Figure 1) indicates a higher number of infectious students attending
schools, elevating the infection risk. High schools exhibit the greatest average infection risk,
followed by middle and secondary schools, while the infection risk in pre-kindergarten and
elementary schools remains lower. Infection risk is largely affected by human pulmonary
ventilation rate, which determines the amount of virus in aerosols exhaled by infectious people
and inhaled by susceptible people. The pulmonary ventilation rate of teenagers (14.29 m?/day) is
almost twice that of younger children (7.28 m*/day) (EPA, 2011). Thus, with the same baseline
ventilation and similar occupant density, middle and high schools would have higher risks than
pre-kindergarten and elementary schools. The differences among schools in terms of infection
risk suggest that time-varying intervention strategies could be adopted according to a school’s

risk level and characteristics.
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Figure 2. Monthly average infection risk with normal school operation.

Different intervention strategies have different impacts on the infection risk (Figure 3). The
results illustrate that, among the three basic intervention strategies—increasing the ventilation
rate by 100% (S1), implementing MERYV 13 filters (S2), and having half of the student body
learn online (S3)—the infection risk under S3 is slightly lower than that under S1, while S2 is the
most effective strategy and results in a significantly reduced infection risk relative to both S1 and
S3. Among all schools, pre-kindergarten maintains the lowest average infection risk throughout
the year, which can be controlled below a sufficiently low threshold (1% in this study) solely by
implementing S2. In contrast, for the other school levels, combined intervention strategies are
required to keep the infection risk below 1% throughout the year. The considered combined
intervention strategies include the combination of S1 and S2 (denoted as S4), the combination of
S1 and S3 (denoted as S5), and the combination of S1 through S3 (denoted as S6). It was
observed that the effects of S4 and S5 are almost the same, indicating that, if MERV 13 filters

are not compatible with the existing HVAC system, schools may have to consider S5 to achieve
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a similar degree of infection risk reduction. By implementing S6, elementary and combined
schools can keep the infection risk below 1% throughout the year. However, in middle, high, and
secondary schools, the infection risk may exceed 1% during wintertime, where more restrictive
measures (e.g., further increasing the ventilation rate, implementing filters with a higher MERV
rating, and increasing the proportion of students enrolled in online learning) may be necessary to
maintain the infection risk at a sufficiently low level. Given the varying prevalence throughout
the year, schools may select different strategies to ensure an acceptable risk while considering

other factors, such as energy costs and learning outcomes.
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Figure 3. Monthly average infection risk under different intervention strategies.

Figure 4 presents the distribution of infection risk under various ventilation rates obtained using
MCS. The results illustrate that the variation of infection risk decreases as the ventilation rate
increases. For schools with the baseline ventilation rate (2 hr~1), the mean infection risk is
around 7% and the highest infection risk is 10%, demonstrating a high level of uncertainty and
the significance of adopting intervention strategies. The efficiency of increasing the ventilation

rate decreases as the ventilation rate increases: the infection risk decreases by 16.5% when the
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ventilation rate is increased from 2 hr~1 to 2.5 hr~1, while it only decreases by 8% when the
ventilation rate is increased from 5.5 hr~! to 6 hr~!. Therefore, to further reduce the infection
risk, increasing the ventilation rate alone may not be the most efficient strategy when considering
the energy required. Schools might also contemplate adopting complementary mitigation

measures to maintain low infection risk levels and energy costs.
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Figure 4. Distribution of average school infection risk under various ventilation rates.

3.2 Infection Risks Under the Current Epidemiological Scenario

The infection risk for each state under different intervention strategies is presented in Figure 5.
The average infection risk of a state is computed as the mean value of the infection risks over all
counties in the state, and the range of the infection risk of a state is represented as the range of
the infection risk of the counties with 95% confidence interval. The infection risk for each
county is computed based on county epidemic situation and the characteristics of schools in the
county. For most states, schools with the baseline ventilation rate show a high infection risk, with

an average infection risk of 3.75%. Under the current epidemiological scenario, more than 90%
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of counties exhibit an infection risk of greater than 1%, indicating the significance of
implementing intervention strategies to decrease the infection risk. The impacts of increasing the
ventilation rate by 100% (S1) and having half of students learn online (S3) are similar, resulting
in average infection risks of 1.98% and 1.90%, respectively. Under both strategies, the infection
risk of nearly 20% of counties nationwide falls below 1%. Implementing MERV 13 filters (S2)
outperforms both S1 and S3, with an average infection risk of 1.28%—35% and 33% lower than
the infection risks calculated under S1 and S3, respectively—resulting in an infection risk below

1% for approximately 40% of counties nationwide.

The average infection risk of a given county is determined by the infection rate and the
characteristics of the schools in that county. Counties with higher prevalence rates generally
exhibit greater infection risk in schools. Figure 5 shows that schools in the southeastern and
southwestern U.S. are exposed to higher infection risks. Specifically, Arizona, South Carolina,
Oklahoma, Mississippi, and Georgia are the five states with the highest infection rates (=
3.18%), and the schools in these states also have the highest levels of infection risk (= 5.5%). In
addition, the infection risk in each county is also influenced by the characteristics of individual
schools, especially the school level, which determines the school occupant density and the
student pulmonary ventilation rate. Table 6 shows that the distribution of schools is similar
across different states, indicating that a state’s average infection risk depends crucially upon the
infection rate. However, as shown in Table 6, the county-level school distribution varies
significantly, especially for elementary and high schools, demonstrating that, in addition to the
county infection rate, school distribution contributes to the variation in infection risk. These

results suggest that schools and policymakers should consider and adopt specific intervention

22



strategies based on various factors, including the local epidemic situation, school characteristics,
and school HVAC system conditions. S2 is cost-effective and efficient at reducing infection
risks. If MERV 13 filters are not accommodated in the school HVAC system, S1 and S2 can be
used, and further increases in ventilation or in the proportion of hybrid learning may be adopted

according to the infection risk, school system capacity, and teaching quality.

2.5% Mean 97.5%
—p—

Figure 5. Infection risk for each state with different intervention strategies: (a) the baseline
scenario; (b) with MERV 13 filtration; (c) with 50% of students learning online; and (d) when

increasing the ventilation rate by 100%.
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Table 6. School distribution by state and county

hool level Max. Min. Mean SD
School leve State County  State County  State County State  County
PK 5.13% 40% 0.00% 0% 1.11% 1.04% 0.011  0.032
Elementary 67.76%  100% 49.67% 0% 58.15% 51.61% 0.039 0.118
Middle 24.73%  50% 7.10% 0% 14.47% 15.71% 0.030  0.089
High 31.21%  100% 11.02% 0% 18.73% 25.63% 0.042  0.113
Secondary  5.46% 100% 0.53% 0% 2.18%  1.37% 0.011  0.037
Combined 14.07%  100% 1.97% 0% 536% 4.64% 0.026  0.071

PK: pre-kindergarten; SD: standard deviation

3.3 Sensitivity Analysis

In addition to different intervention strategies, the infection risk in schools is also sensitive to
changes in multiple factors, including the infection rate of the population, exposure time in
schools, occupant density, and the students’ pulmonary ventilation rate. In this study, a
sensitivity analysis was conducted to quantify the influence of these factors given the estimated
ranges detailed in Table 5; the results of this analysis are shown in Figure 6. The infection risk
shows a near-linear relationship with the exposure time. The change in exposure time within the
estimated range has a limited impact on infection risk because the average number of hours in
the school day do not vary distinctly across the U.S. The infection risk increases with an increase
in the infection rate parameter. The infection rate varies significantly across counties, leading to
great changes in school infection risks. For instance, Forest County, Pennsylvania, exhibits the
highest infection rate among all counties of 32.6% and a county infection risk of 32.9%, whereas
the average infection risk for all counties nationwide is only 3.8%. Schools located in counties
with high infection rates are expected to be exposed to greater risk levels and will need to adopt

much stricter mitigation measures to effectively control the infection risk. Considering occupant
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density, the results show a sharp decrease in the infection risk, with the parameter changing from
3 to 10 square meters per student; the trend then flattens after this point. Nationwide, the
infection risk reaches 10.8% for schools with the highest occupant density, while the lowest
value is 1%. The mean and median values are close, and the infection risk is 2.6% with a mean
value of 14.93 and 2.8% with a median value of 14.04, respectively. These results indicate that,
for most schools, the current occupant density is appropriate, and further reductions in occupant
density may not lead to a significantly reduced infection risk. For schools with high occupant
density (e.g., 3 to 10 square meters per student), it is recommended that the density be reduced to
the average level (e.g., 14.93 square meters per student). The infection risk increases as the
pulmonary ventilation rate rises, with the rate of change increasing as well. The annotation in red
dashed lines in Figure 6(d) indicates the mean pulmonary ventilation rates of different school
levels (as shown in Table 2) and the corresponding infection risk. The infection risk is 1.4% for
pre-kindergarten students (aged 3—5 years); 2.6% for elementary school students (aged 5-11
years); and 5.3% for middle, high, and secondary school students (aged 11-18 years). The
pulmonary ventilation rate increases with the maturation of children, leading to an even greater
infection risk. Intervention strategies are necessary for schools with higher levels of infection

risk to adopt to reduce the infection risk to a sufficiently low level.
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Figure 6. Sensitivity analysis of parameters: (a) exposure time; (b) infection rate; (c) occupant

density; and (d) pulmonary ventilation rate.

4 Discussion

COVID-19 pandemic leads to significant education crisis all over the world. The worldwide school
closure has affected over 80% of total enrolled students, and half of the students in more than 200
countries have experienced partially or fully school closures (UNESCO, 2021). Long-time school
closures raise public concerns about the negative impacts on children health, education, and
financial burdens on the households (Van Lancker & Parolin, 2020). Therefore, as schools reopen
and resume in-person instruction, effective operation strategies are essential to maintain a healthy

and sustainable learning environment.
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Ventilation, social distancing, and filtration are three broadly utilized strategies during the
pandemic. Several studies have been dedicated to discussing the impact of these strategies in the
control of COVID-19 transmission, and achieved compatible results with this paper, despite of
different pandemic scenario, indoor environment, and countries considered. Sun and Zhai (2020)
introduced a distance index and a ventilation index in the Wells-Riley model to compute the
infection risks in buses in China. Similar to our study, their results suggest a near-linear
relationship between infection risk and the exposure time and demonstrate the efficiency of
increasing ventilation and reducing occupant density in mitigating the infection risk. Shen et al.
(2021) discussed the effectiveness of multi-scale strategies for reducing airborne infection risk of
SARS-CoV-2 using Wells-Riley model for indoor spaces, and suggested the higher efficiency of
applying filters compared to solely increasing airflow rate, which aligns with our conclusion.
However, in previous studies, the number of infectors were either set to be 1 for each room
which is unlikely in the actual situation, or calculated using the infection rate estimated from
limited sample size. To overcome the limitation, this study leveraged data-driven and scenario-
based analysis to evaluate school infection risk under various intervention strategies considering

both long-term and short-term realistic pandemic scenarios.

Regarding the selection of intervention strategies in this study, given the importance of in-person
interaction for student learning, the intervention strategy only considers that up to 50% of students
would be learning online. Considering the current condition of most school HVAC systems,
although increasing room ventilation rates is efficient in reducing infection risks, the ventilation
rate cannot be increased beyond the system capacity. In this paper, doubling the baseline

ventilation rate was considered to ensure that the proposed strategy would be affordable for most
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schools. Implementing filters with higher MERYV ratings (e.g., MERV 14-16) would only have a
slight effect on decreasing the infection risk but would generate additional product and energy
costs. For instance, the average school infection risk in December is 2.34%, 2.04%, 1.96%, and
1.85% for implementing MERV 13-16 filters, respectively. With the increase of MERYV ratings,
more energy is required to overcome additional pressure drop, and the purchase cost increases
from $ 11 per filter for MERV 13 filters to $50, $90, $125, $150 for MERV 14-16 filters,
respectively (Azimi & Stephens, 2013). Thus, implementing MERV 13 filters was adopted as
filtration intervention strategy. It is found that filtration is most effective in reducing the infection
risk, resulting in a risk reduction of more than 30% relative to that achieved with either ventilation
increase or hybrid learning in both considered pandemic scenarios. However, to maintain a healthy
school environment, it is suggested that multiple intervention strategies be adopted simultaneously.
Beside the direct impact of intervention strategies to the airborne infection risk, it has been proved
that poor air quality caused by pollutants (e.g., particulate matters and volatile compounds) may
lead to acceleration of the contagion of SARS-CoV-2 (Agarwal et al., 2021). The intervention
strategies can also improve the indoor air quality, and further reduce the transmission of SARS-
CoV-2. Other technologies can be considered for sustainable building retrofitting together with the
intervention strategies (e.g., natural ventilation, botanical biofilters (Irga et al., 2017; Abdo et al.,
2019), passive cooling techniques (Abdo et al., 2020) to maintain healthy indoor environment and

human comfort.

The infection risk may vary significantly across countries due to the differences in population
size, disease prevalence, infection-hospitalization ratios, fraction of immunity, etc. However, the

findings in this study can provide insights for other countries regarding the risk control during
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the pandemic. For instance, the effectiveness of intervention is analyzed and compared,
including filtration, ventilation, and social distancing achieved by online learning, indicating that
filtration strategy can be widely adopted for schools worldwide. In addition, the framework can
be extended to other infectious diseases in other counties by considering specific disease

characteristics and epidemic and operation scenarios.

5 Conclusion

The airborne infection risk of SARS-CoV-2 in U.S. schools has been estimated under different
epidemiological scenarios. Multiple intervention strategies, including increased ventilation, air
filtration, and hybrid learning, are modeled to evaluate their effectiveness in reducing the
infection risk. Two epidemiological scenarios were considered, including a one-year pandemic
scenario and a current epidemiological scenario. A series of findings and important insights were
derived as follows, which will provide insights for schools and governments to develop
guidelines on adopting appropriate intervention strategies to mitigate airborne infection risk
considering epidemic situation and school characteristics.

1. The airborne infection risk in schools exhibits seasonal patterns, with the average infection
risk in all schools ranging from 3.85% in the summer to 6.83% in the winter under the one-
year pandemic scenario, indicating the necessity of adjusting mitigation measures over the
year.

2. The effectiveness of intervention strategies varies with different school levels and pandemic
periods and, thus, requires individual schools to adopt variable intervention strategies over
the long term. In general, schools with higher school level experience higher risk. For

instance, the infection risk in pre-kindergarten remains low throughout the year, and the
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implementation of MERYV 13 filters can limit the infection risk to below 1%. For elementary
schools, implementing all strategies are suggested in most months, while, in months with
lower prevalence rates (e.g., summertime), schools can adopt fully in-person learning in
concert with filtration and increased ventilation. For other school levels (e.g., middle,
secondary, and high schools), the infection risk may persist above 1% in some months even
after implementing all strategies. Additional mitigation measures, such as wearing masks and
enacting further social distancing, are needed to ensure an acceptable risk level.

The relationships between infection risk and ventilation rates are depicted using Monte Carlo
simulation, illustrating the efficiency of increasing the ventilation rate on reducing the
infection risk and demonstrating the significance of combined intervention strategies when
considering the capacity of school systems.

The infection risk for each state is computed based on the infection risk of the counties in the
state under normal operations as well as various intervention strategies based on the current
epidemiological scenario. Schools with the baseline ventilation rate show a high infection
risk across the U.S., with more than 90% of the counties exhibit an infection risk of greater
than 1%, indicating the necessity of intervention strategies to maintain a sustainable indoor
environment. The results show that increasing the ventilation rate by 100% and having half
of students learn online have similar impacts on reducing infection risks, while implementing
air filtration is more efficient than either of the strategies, with over 30% less than the risk
levels correlating with ventilation enhancement and hybrid learning.

Sensitivity analysis is conducted to further illustrate the impact of the characteristics of
schools and the epidemic situation on infection risk. In general, the infection risk shows a

near-linear relationship with the exposure time in schools. It is also found that the current
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occupant density is appropriate for most schools, while it is recommended that the density be
reduced to the average level (e.g., 15 square meters per student) for schools with higher

occupant density.

There remain some limitations in this paper. First, the estimated infection risk indicates the daily
infection risk based on the exposure time in a single day, ignoring the effect of probability
transition due to continuous exposure in schools, which may result in the underestimation of the
result. Future study may consider the effect from the previous school days according to the
specific schedule. Second, the model used in this study assumes that the infectious particles are
well mixed throughout the whole school building, without considering the separation of rooms in
the building and the separation of buildings if a school has multiple buildings. This is a
simplification for national assessment of school infection risks. To accurately model the
infection risk in a specific school, future research is needed to develop new simulation-based
approach to incorporate detailed information of the school. Third, as a scenario-based analysis,
derived results and findings regarding infection risk and intervention strategies are based on a
one-year pandemic scenario and a short-term county-level epidemiological scenario, which
might be different from actual situations. Leveraging the findings and insights regarding impacts
of various intervention strategies on infection risk under different scenarios, schools and
governments can design their own strategies based on their specific characteristics and epidemic

conditions.
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