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Airborne Infection Risks of SARS-CoV-2 in U.S. Schools and Impacts of Different 

Intervention Strategies  

 

Abstract 

The potential airborne transmission of SARS-CoV-2 has triggered concerns as schools continue 

to reopen and resume in-person instruction during the current COVID-19 pandemic. It is critical 

to understand the risks of airborne SARS-CoV-2 transmission under different epidemiological 

scenarios and operation strategies for schools to make informed decisions to mitigate infection 

risk. Through scenario-based analysis, this study estimates the airborne infection risk of SARS-

CoV-2 in 111,485 U.S. public and private schools and evaluates the impacts of different 

intervention strategies, including increased ventilation, air filtration, and hybrid learning. Schools 

in more than 90% of counties exhibit infection risk of higher than 1%, indicating the significance 

of implementing intervention strategies. Among the considered strategies, air filtration is found 

to be most effective: the school average infection risk when applying MERV 13 is over 30% less 

than the risk levels correlating with the use of increased ventilation and hybrid learning 

strategies, respectively. For most schools, it is necessary to adopt combined intervention 

strategies to ensure the infection risk below 1%. The results provide insights into airborne 

infection risk in schools under various scenarios and may guide schools and policymakers in 

developing effective operations strategies to maintain environmental health. 

Keywords: 

COVID-19; Airborne infection risks; Intervention strategies; Schools; Policy  



2 
 

Nomenclature 

𝜌  ratio of true infections to confirmed cases 
𝑑!   number of days from February 12, 2020 to the current date 
𝐼𝑅  probability of susceptible individuals becoming infected 
𝐼  number of infectors 
𝑉  room volume (𝑚") 
𝑁  total disinfection rate of the environment (ℎ𝑟#$) 
𝑡  exposure duration of susceptible individuals to infectors (h) 
𝑝  pulmonary ventilation rate (𝑚"/ℎ)  
𝜑  quantum generation rate (quanta/h) 
𝑐%  viral load in the sputum (RNA copies/mL)	 
𝑐&  conversion factor 
𝑝  standardized daily test-positivity rate 
𝐷  droplet diameter (𝑐𝑚) 
𝑉'  volume of a droplet (cm") 
𝑁'  droplet concentration (#/𝑐𝑚") 
𝜆%()*&+,*&-) outdoor ventilation rate (ℎ𝑟#$) 
𝑘.&+*/,*&-) particle removal rate due to filtration (ℎ𝑟#$) 
𝜆/(!&/!0+,*(' recirculation rate (ℎ𝑟#$) 
𝜂.&+*(/  filtration efficiency 
 

1 Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is identified as the virus that 

causes the coronavirus disease 2019 (COVID-19). The outbreak of COVID-19 spreads over 220 

countries and territories (JHU, 2021), causing global pandemic and threatening human life, 

which reveals the urge of improving human health as an important goal of sustainability 

development (Hakovirta & Denuwara, 2020). Schools are considered high-risk environments for 

the transmission of infectious diseases due to the close and frequent contact and communication 

that occur among students and teachers. The negative impacts of crowded and poorly-ventilated 

indoor environments further raise concerns about the student health in schools. 

 

The COVID-19 pandemic has resulted in the enactment of social distancing policies, with school 

closures existing among the first actions taken by governments worldwide. In the United States, 
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prolonged school closures have affected about 55 million students enrolled in more than 130,000 

K–12 schools and their parents in the U.S. (CDC, 2014), impacting their mental and physical 

health as well as education due to the variable efficiency of remote learning and by placing 

additional childcare burdens on their parents. At this stage in the pandemic, which is marked by 

increasing vaccine rollout, many schools in the U.S. are considering reopening or have already 

reopened for in-person instruction. However, concerns persist as the chance of contracting and 

transmitting COVID-19 increases in crowded indoor environments. Although several studies 

have indicated that children are less susceptible to experiencing severe COVID-19 (Yuki et al., 

2020; Lee et al., 2020), those with mild or asymptomatic cases without confirmed diagnoses and 

treatment may facilitate rapid transmission of the disease within schools and to households and 

the surrounding communities. So far, it is not recommended for K–12 schools to screen all 

students for symptoms of COVID-19 on a routine basis (CDC, 2020a), which poses a potential 

risk for the spread and outbreak of the disease within schools. In addition, no vaccines have yet 

been approved for children and, even in vaccinated people, the risk of SARS-CoV-2 infection is 

not entirely eliminated (CDC, 2021b). Due to the important role of schools in children’s growth 

and the high prevalence of COVID-19 across the U.S., nonpharmacological interventions are 

required to help limit the spread of COVID-19 and other respiratory illnesses and maintain a 

healthy environment in schools. 

 

Several studies have demonstrated that SARS-CoV-2, like other respiratory viruses (e.g., 

influenza, tuberculosis, and measles (Ather, Mirza, & Edemekong, 2021), can be transmitted by 

way of an airborne route (Morawska & Cao, 2020; Setti et al., 2020), wherein the infectious 

aerosols are dispensed and suspended over long distances in the air, and inhaled by the 
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susceptible individuals (WHO, 2021). The spread of airborne diseases indicates the significance 

of dedensification and introducing fresh air into the crowded and poorly-ventilated buildings. For 

schools, dedensification can effectively help students to maintain adequate physical distancing 

and can be achieved by the use of hybrid learning. Meanwhile, improved ventilation and air 

filtration can introduce fresh air and dilute the concentration of airborne infectious particles 

indoors. However, the infection risks in schools of different levels (e.g., elementary vs. high 

schools) and how different intervention strategies quantitatively influence infection risk in 

different pandemic scenarios given various relevant school and disease factors (e.g., occupant 

density, school hours, pulmonary ventilation rate) remain elusive. 

 

To close this gap, this study conducted scenario-based analyses to examine the relationship 

between the risk for airborne infection and different intervention strategies in 111,485 public and 

private schools in the U.S., using the COVID-19 pandemic as the epidemiological context. 

Specifically, two epidemiological scenarios were employed to predict both the long- and short-

term risks under different intervention strategies. Monte Carlo simulation (MCS) and sensitivity 

analysis were also performed to exploit the impacts of various school characteristics and 

epidemic situation. The results provide insights for schools and governments regarding the 

control of infection risk using effective mitigation measures. Although this study focuses on 

controlling the SARS-CoV-2 infection risk in U.S. schools, the framework can be extended to 

other infectious diseases within other indoor environments in other countries, to maintain a 

healthy and sustainable environment.  
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2 Data and Methods 

2.1 Data Description 

A total of 111,485 schools in the U.S., including 90,160 public schools and 21,325 private 

schools, were analyzed in this study. Basic information about schools was retrieved from the 

National Center for Education Statistics (NCES, 2021), including school type, school level, 

school location, and total numbers of students and teachers. Schools were divided into public 

schools and private schools and, based on the lowest and highest grades offered, stratified as 

follows: pre-kindergarten, elementary, middle, high, and secondary schools for public schools 

and elementary, secondary, and combined schools for private schools, respectively. The school 

population was determined as the sum of students and full-time–equivalent teachers.  

 

To assess the airborne infection risk in schools, the occupant density of school buildings was 

estimated from 1,433 representative schools across different levels. The representative schools 

with clear building characteristics shown in Google Maps (Google, LLC, Mountain View, CA, 

USA) were selected from the aforementioned 111,485 schools to retrieve the gross floor area. To 

reduce human errors in acquiring the gross floor area of the representative schools, a standard 

process was designed and followed: 1) the schools were observed using Google Maps street view 

to ensure that the building boundaries, the number of buildings, and the number of floors of each 

building can be clearly recognized; 2) For the buildings that were clearly recognized, the 

building area was manually collected using the area calculator tool in the Google Maps API by 

drawing an enclosed line along the building boundary; 3) A total of 1,433 schools were finally 

selected to calculate the gross floor area. The gross floor area of each school building was 

computed as the product of the building area and number of floors; The gross floor area of the 
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school was the sum of space of all school buildings. The occupant density of a school was 

computed as the ratio of school gross floor area to the school population. The mean and standard 

deviation values of occupant density of each school level were then estimated based on the 

corresponding representative schools. The relevant descriptive statistics are provided in Table 1.  

 

Table 1. School information descriptive statistics 

School  Total 
Schools 

Representative 
schools 

 Students FTE teachers Occupant density 
(m2/student) 

Mean SD Mean SD Mean SD 
All schools 111,485 1,433 427 432 30 25 14.93 5.45 
Public 90,160 1,106 538 440 33 25 14.99 5.07 
Private 21,325 327 192 250 16 21 14.72 6.6 
PK 1,131 56 175 171 9 10 16.04 5.88 
Elementary 
(K–5) 

64,998 944 396 246 25 15 14.19 5 

Middle 
(grades 6–8) 

16,087 127 595 350 37 21 16.52 5.54 

High 
(grades 9–12) 

20,785 148 717 743 43 41 16.02 5.6 

Secondary 
(grades 6–12) 

2,475 72 306 351 26 26 17.39 6.19 

Combined 
(PK–12) 

6,009 86 242 356 24 31 15.9 7.07 

FTE: full-time–equivalent; PK: pre-kindergarten; SD: standard deviation  

 

2.2 Epidemiological Scenarios 

In this study, the following two epidemiological scenarios were considered: a one-year pandemic 

scenario based on long-term projections of COVID-19 prevalence and the current 

epidemiological scenario across the U.S. based on recorded COVID-19 infection cases to date. 

The one-year pandemic scenario indicated the temporal-varying prevalence, considering the 

seasonal variation and immunity duration of SARS-COV-2, and was used to provide insights 

into long-term strategies in school operations by estimating the general trend of infection risk in 
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schools. Separately, the current epidemiological scenario demonstrated the county-level 

prevalence based on the records of confirmed cases and was used to provide guidance for timely 

adjustment of school operations based on local conditions. 

 

2.2.1 One-year pandemic scenario 

The long-term projection model developed in the study by Kissler et al. (2020) was adopted to 

estimate the nationwide prevalence of SARS-CoV-2 during the post-pandemic period. The 

transmission dynamics of SARS-CoV-2 were determined according to seasonal variation, 

duration of immunity, and cross-immunity due to prior transmission of other coronaviruses (e.g., 

HCoV-OC43, CoV-HKU1). Seasonal variation affected the peak incidence and severity of 

wintertime outbreaks, while the duration of immunity and the level of cross-immunity impacted 

the total incidence and the pattern of recurrent circulation. Specifically, this study used a one-

year pandemic scenario with moderate seasonal forcing (i.e., the R0 in summertime is 0.8 of that 

in wintertime), an immunity duration of 10 weeks, and no cross-immunity between SARS-CoV-

2 and other coronaviruses. The relatively short immunity duration was assumed, considering the 

rapid decrease of SARS-CoV-2 antibody levels and the short duration between reinfections 

(Edridge et al., 2020; Long et al., 2020; Iwasaki, 2020). The resulting prevalence of COVID-19 

(i.e., number of infections per 1,000 people) is illustrated in Figure 1.  
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Figure 1. Prevalence of COVID-19 in the population (generated based on Kissler et al. (2020)). 

 

2.2.2 Current epidemiological scenario across the U.S. 

Identifying the COVID-19 infection rate in local areas is critical to understand the current 

epidemiological scenario and develop corresponding intervention strategies to mitigate infection 

risk in schools. However, the true number of infections is typically underestimated because a 

large proportion of infected individuals—especially those who are asymptomatic or only mildly 

symptomatic—develop the disease without a confirmed diagnosis. A study from the University 

of Texas at Austin (Fox, Lachmann, & Meyers, 2020) indicated that the reported cases should be 

multiplied by 3 to 10 as the lower and upper estimate of true infections. The Centers for Disease 

Control and Prevention (CDC) stated that approximately 1 in 4.3 total infection cases nationwide 

were reported (CDC, 2021b). In this study, the true number of current infection cases in each 

county was estimated based on the method developed by Gu (2021), where the relationship 
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between the ratio of true infections to confirmed cases and the standardized test positivity rate 

can be computed using Equation 1:  

𝜌 =
1500
𝑑! + 50

𝑟1.3 + 2 (1) 

where 𝜌 is the ratio of true infections to confirmed cases; 𝑑! is the number of days from 

February 12, 2020 to the current date; and 𝑟 is the standardized daily test-positivity rate. The 

model standardizes the test-positivity rate across all states in the U.S. due to differences in the 

criteria and units of test reports. Most states use “test encounters” (TE) or “test specimens” (TS) 

to report test totals, but nine states use “unique individuals” (UI). TE, TS, and UI are three ways 

of counting the number of total tests. TE or TS is the number of people or specimens been tested 

per day, including the multiple tests on the same person. UI is the number of individuals being 

tested during the reporting period, with multiple tests on the same person removed. In (Gu, 

2020), TE and TS results are treated as equivalent units, while UI results are converted to TE or 

TS values. The unit conversion factor (𝛼4) was estimated as the daily average ratio of daily test 

totals, reported as TE or TS, to those reported as UI of states that provide data using both units 

(e.g., TE and UI or TS and UI). The adjusted daily TE or TS test total is the product of 𝛼4 and 

the test total reported as UI. The daily standardized test-positivity rate can be determined with 

the state-adjusted test total. The parameters in Equation 1 are determined through curve-fitting 

on historical test positivity, serological surveys, and hospitalization data, where the constants are 

estimated using grid search. The true number of people becoming infected is the product of daily 

confirmed cases and 𝜌, and the county infection rate is computed as the true number of infections 

divided by the county population size.  
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2.3 Infection Risk Modeling 

With a focus on airborne transmission, infection risk in this study was defined as the probability 

that susceptible individuals will be infected via airborne transmission after one day of in-person 

school attendance. Infection risk was calculated using the Gammaitoni–Nucci (G-N) equation, a 

widely adopted method (Gammaitoni & Nucci, 1997) for indoor airborne infection risk 

assessment (e.g., influenza, tuberculosis, SARS-CoV-2). The G-N equation is a variation of an 

earlier model proposed by Wells-Riley et al. (W-R equation) (1978); this latter equation is based 

on the concept of the “quantum of infection,” according to which the probability of infection is 

determined by the intake dose of airborne pathogens in terms of the number of quanta. Randomly 

distributed infectious particles in the air are considered to follow a Poisson distribution. The 

assumption of a steady-state particle concentration is the main limitation of the W-R equation. 

To overcome this limitation, the G-N equation demonstrates concentration changes in quanta 

level using a differential equation and considers the time-weighted average pathogen 

concentration rather than assuming the steady-state concentration (Sze To & Chao, 2010). In the 

G-N equation, the probability of susceptible individuals becoming infected (𝐼𝑅) after a certain 

duration of exposure can be calculated using Equation 2 (Beggs et al., 2010; Hota et al., 2020; G. 

Buonanno et al., 2020a), where 𝐼 is the number of infectors,	𝑉 is the room volume (𝑚"), 𝑁 is the 

total disinfection rate of the environment (ℎ𝑟#$), 𝑡 is the exposure duration of susceptible 

individuals to infectors (h), 𝑝 is the pulmonary ventilation rate (𝑚"/ℎ), and 𝜑 is the quantum 

generation rate (quanta/h).  

𝐼𝑅 = 1 − 𝑒
#5678 9:*;(

!"##$
:$ <

 
(2) 

In this study, I was calculated differently according to the two epidemiological scenarios. In the 

one-year pandemic scenario, I was estimated as the product of the school population and the 
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prevalence of COVID-19 in the population divided by 1,000 (note the prevalence of COVID-19 

is the number of positive cases per 1,000 people in the one-year pandemic scenario). In the 

current epidemiological scenario, I was the product of the county infection rate and school 

population. V was estimated as the product of the occupant density, school population, and the 

height of the classroom, where a height of 3 m was assumed for all schools (DOE, 2009). t was 

set as the number of hours in a typical school day, varying across different states according to 

(NCES, 2008). N is the effect of introducing and circulating fresh air in the building. In this 

study, a ventilation rate of 2 ℎ𝑟#$ was set as the baseline rate (Batterman et al., 2017). Because 𝑝 

varies with different age groups (EPA, 2011), different values were assigned to each school level 

(Table 2), and 𝜑 for SARS-CoV-2 was estimated as a function of 𝑝 using Equation 3 as follows 

according to (G. Buonanno et al., 2020b):  

𝜑 = 𝑐%𝑐&𝑝(C𝑉',&𝑁',&,>

?

&@$

) 
(3) 

where 𝑐% is the SARS-CoV-2 viral load in the sputum, set at 10A RNA virus copies 𝑚𝐿#$ (G. 

Buonanno et al., 2020b); 𝑐& is a conversion factor between the infectious quantum and infectious 

dose, set as 0.02 (G. Buonanno et al., 2020b); 𝑝 is the pulmonary ventilation rate based on school 

level (𝑚"/ℎ); 𝑉',& is the volume of a droplet calculated by the droplet diameter 𝐷&; and 𝑁',&,> is 

the droplet concentration per 𝑐𝑚" of droplet diameter 𝑖 and expiratory activity 𝑗 (see Table 3 for 

details). Since the quantum generation rate is related with the degree of infection, the individual 

difference of pulmonary ventilation rate, the activity the patient involved in, and the range of the 

quantum generation rate of SARS-CoV-2 varies in the literatures. The quantum generation rate 

for different school levels is in accordance with recent studies. Shen et al. (2021) indicated that 

the quantum generation rate for children under 16 is 58 ± 31 ℎ#$; The quantum generation rate 
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used in (G. Buonanno et al.,f 2020b) is 142 ℎ#$ for subjects performing speaking and light 

activity. The estimated quantum generation rate in (Dai and Zhao, 2020) is 14–48 ℎ#$. 

Generally, the quantum generation rates are from tens to hundreds in the literatures. In this paper, 

the quantum generation rate is set as 31.16, 42.72, and 51.94 ℎ#$ for prekindergarten, elementary 

and combined school students respectively, and is 61.16 ℎ#$ for middle, high, and secondary 

school students. 

 

Table 2. Pulmonary ventilation rate of each school level based on student age groups 

Parameter PK Elementary Middle High Secondary Combined Reference 
Age (years) 3–5 5–11 11–14 14–18 11–18 3–18 NCES  
Pulmonary 
ventilation 
rate (m3/day) 

7.28 9.98 14.29 14.29 14.29 12.135 Literature 
(EPA, 2011)  

NCES: National Center for Education Statistics; PK: pre-kindergarten 

 

Table 3. Droplet concentration (per 𝑐𝑚") of different droplet size distributions during speaking 

activity (adapted from G. Buonanno et al., 2020b) 

Expiratory activity 𝐷$(0.8 µm) 𝐷B (1.8 µm) 𝐷" (3.5 µm) 𝐷? (5.5 µm) 
Voiced counting 0.236 0.068 0.007 0.011 
Unmodulated 
vocalization 

0.751 0.139 0.139 0.059 

Note: Regarding respiratory activity, speaking is considered the main activity during school 

hours and is defined as the mean value between unmodulated vocalization and voiced counting. 

 

2.4 Modeling the Impact of Different Intervention Strategies 

The impact of different intervention strategies on the airborne infection risk was modeled by 

modifying the parameters in Equation 2. The considered intervention strategies included 
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increasing the outdoor ventilation rate, implementing air filtration, adopting hybrid learning 

(students learning partially online), and a combination of these three strategies. 

1. Increase in outdoor ventilation rate (S1). Increasing the outdoor ventilation rate will 

bring in more fresh outdoor air to dilute contaminated indoor air, thus reducing the 

infection risk. This study modeled the impact of increasing the baseline ventilation rate 

by various levels (from 25% to 200% in steps of 25%) on the infection risk. 

2. Implementation of air filtration (S2). When filtration is applied in a building’s heating, 

ventilation, and air conditioning (HVAC) system, the total disinfection rate of the 

environment (N) can be modeled as a combined effect of outdoor ventilation and 

filtration, computed as 𝑁 =	𝜆%()*&+,*&-) +	𝑘.&+*/,*&-), where 𝑘.&+*/,*&-) is the particle 

removal rate due to filtration (Hota et al., 2020), which can be calculated using Equation 

4 (Azimi & Stephens, 2013) as follows: 

𝑘.&+*/,*&-) =	𝜆/(!&/!0+,*('𝜂.&+*(/ (4) 

where 𝜆/(!&/!0+,*(' is the recirculation rate, set as 6.4 ℎ𝑟#$ (Chan et al., 2016), and 

𝜂.&+*(/ is the filtration efficiency weighted by infectious particle size. American Society 

of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) specifies the 

method by which to determine 𝜂.&+*(/ based on the minimum efficiency reporting value 

(MERV) and particle size range (ASHRAE Standard 52.2-2017) and has suggested that 

filters with MERVs of at least 13 can efficiently capture airborne viruses (ASHRAE 

2020). Therefore, the impact of adopting MERV 13 filters is estimated in this paper. The 

filtration efficiency of MERV 13 filters is 67.5% based on the assumed particle size 

range of SARS-CoV-2. (Morawska et al., 2020) indicates that more than half of the viral 

RNA of SARS-CoV-2 have aerosols smaller than 2.5 𝜇𝑚. In this study, it is assumed that 
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half of the particles are 0.3 to 1 𝜇𝑚 in size (50% average particle size efficiency) and the 

other half are 1 to 3 𝜇𝑚 (85% average particle size efficiency).  

3. Hybrid learning (S3). Having part of the student body learn online reduces the school 

population and thus decreases the number of infectors (𝐼) given the specific prevalence of 

COVID-19 estimated from two epidemiological scenarios. In this paper, the impact of 

switching 10%, 20%, 30%, 40%, and 50% of the students to online learning, respectively, 

was computed. 

4. Combined strategies. The impacts of different combinations of strategies—including 

increasing the ventilation rate and implementing filters (S1 + S2, denoted as S4; 

increasing the ventilation rate and switching part of the student body to online learning 

(S2 + S3, denoted as S5); and increasing the ventilation rate, implementing filtration, and 

switching part of the student body to online learning (S1 + S2 + S3, denoted as S6)—

were considered. 

 

2.5 Modeling the Impact of Parameter Uncertainties 

The risk of COVID-19 infection in schools may vary due to the uncertainty of multiple 

parameters, such as occupant density, pulmonary ventilation rate, and exposure duration. In this 

study, MCS and sensitivity analysis were used to quantify the influence of uncertainties of 

multiple parameters.  

 

2.5.1 MCS 

MCS is a method widely used to calculate possible outcomes as well as the associated 

uncertainty using multiple variables with different probability distributions. Based on Equation 
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2, a stochastic MCS was developed to represent the uncertainty of infection risk. MCS 

demonstrates the uncertainty and stochasticity of the factors, and the outcomes reveal the 

possible results with a large variation, indicating both average and extreme case scenarios of 

school infection risk (Karsten et al. 2005). In this study, the MCS contained three steps: random 

variable determination, random number generation, and simulation result acquisition.  

1. Random variable determination. Three parameters with uncertainties that will influence 

infection risk in schools were treated as random variables, including occupant density, 

pulmonary ventilation rate, and exposure duration in a school day. The possible range and 

empirical probability distribution of each variable were estimated based on school 

information and existing literature and are detailed in Table 4. 

2. Infection risk simulation. Given a specific ventilation rate, 10,000 simulations were 

conducted to estimate the school infection risk. In each simulation, a random number was 

generated using repeated random sampling from the empirical distributions of each input 

variable and used to compute the infection risk of all schools. In this study, 10,000 

simulations were performed under a ventilation rate varying from 2 to 6 hr−1. Specifically, 

the peak prevalence of COVID-19 in the one-year pandemic scenario was used when 

calculating the infection risk. 

3. Simulation result acquisition. For each school, 10,000 simulation results could be achieved 

using Equation 2. For each simulation, the average infection risk was computed among all 

schools. The obtained result of 10,000 simulations indicates the distribution of average 

infection risk of schools nationwide. 

 

Table 4. Random variables used in MCS 
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Parameter PK Elementary Middle High Secondary Combined Distribution Reference 
Occupant 
density 
(m2/people) 

5.34–
27.97 

3.49–28.82 6.76– 
28.92 

6.38– 
29.26 

4.08– 
28.64 

4.03– 37.75 Truncated 
normal 

Table 1 

Pulmonary 
ventilation 
rate(m3/day) 

5.29– 
9.27 

7.11–12.85 9.56– 
19.02 

9.56– 
19.02 

9.56– 
19.02 

9.37–14.9 Truncated 
normal 

Literature 
(EPA, 
2011) 

School day 
(hrs/day) 

6.25–7.08 Truncated 
normal 

NCES, 
2008 

NCES: National Center for Education Statistics; PK: pre-kindergarten 

 

2.5.2 Sensitivity Analysis 

Sensitivity analysis was conducted to evaluate the influence of individual parameters, including 

infection rate, exposure time, occupant density, and pulmonary ventilation rate. The estimated 

ranges and default values of the parameters are listed in Table 5. The infection rate was 

determined based on the current epidemiological scenario across the U.S. and ranged from 50% 

of the minimum estimated infection rate to 150% of the maximum estimated infection rate as of 

January 30, 2021. The pulmonary ventilation rate used in the sensitivity analysis was the average 

pulmonary ventilation rate of elementary school students (aged 6–11 years), because elementary 

schools account for more than 50% of the total number of schools nationwide. 

 

Table 5. Parameters used in the sensitivity analysis 

Parameter Max. Min. Default value Reference 
Infection rate 
(%) 

48.9 0 2.18 Literature (Gu, 
2020) 

Exposure time 
(h) 

7.08 6.25 6.67 NCES, 2008 

Occupant 
density 
(m2/people) 

3.48 37.75 14.93 Table 1 

Pulmonary 
ventilation 
rate (m3/day) 

19.02 5.29 9.98 Literature (EPA, 
2011) 
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3 Results 

3.1 Infection Risks Under the One-year Pandemic Scenario 

Adopting the one-year pandemic scenario (Kissler et al., 2020), the infection risk of SARS-CoV-

2 in 111,485 U.S. schools was estimated for a 12-month period and reported per month in Figure 

2. A ventilation rate of two air changes per hour (ACH) in schools (Batterman et al., 2017) was 

used as the baseline to represent normal ventilation operation. The daily infection risk was 

derived based on the exposure time for each single school day, and was considered to remain 

unchanged within a single month. The average infection risks in schools exhibit strong patterns 

of seasonality, reaching a peak in winter months and a trough in summer months (e.g., the school 

average infection risk reaches 6.83% in December and drops to 3.85% in July), suggesting that 

adaptive measures could be implemented as a function of the seasonal risk to control infection. 

The prediction of a greater prevalence of COVID-19 (i.e., number of cases per 1,000 people) 

from November to February (Figure 1) indicates a higher number of infectious students attending 

schools, elevating the infection risk. High schools exhibit the greatest average infection risk, 

followed by middle and secondary schools, while the infection risk in pre-kindergarten and 

elementary schools remains lower. Infection risk is largely affected by human pulmonary 

ventilation rate, which determines the amount of virus in aerosols exhaled by infectious people 

and inhaled by susceptible people. The pulmonary ventilation rate of teenagers (14.29 m3/day) is 

almost twice that of younger children (7.28 m3/day) (EPA, 2011). Thus, with the same baseline 

ventilation and similar occupant density, middle and high schools would have higher risks than 

pre-kindergarten and elementary schools. The differences among schools in terms of infection 

risk suggest that time-varying intervention strategies could be adopted according to a school’s 

risk level and characteristics. 



18 
 

 

 

Figure 2. Monthly average infection risk with normal school operation. 

 

Different intervention strategies have different impacts on the infection risk (Figure 3). The 

results illustrate that, among the three basic intervention strategies—increasing the ventilation 

rate by 100% (S1), implementing MERV 13 filters (S2), and having half of the student body 

learn online (S3)—the infection risk under S3 is slightly lower than that under S1, while S2 is the 

most effective strategy and results in a significantly reduced infection risk relative to both S1 and 

S3. Among all schools, pre-kindergarten maintains the lowest average infection risk throughout 

the year, which can be controlled below a sufficiently low threshold (1% in this study) solely by 

implementing S2. In contrast, for the other school levels, combined intervention strategies are 

required to keep the infection risk below 1% throughout the year. The considered combined 

intervention strategies include the combination of S1 and S2 (denoted as S4), the combination of 

S1 and S3 (denoted as S5), and the combination of S1 through S3 (denoted as S6). It was 

observed that the effects of S4 and S5 are almost the same, indicating that, if MERV 13 filters 

are not compatible with the existing HVAC system, schools may have to consider S5 to achieve 
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a similar degree of infection risk reduction. By implementing S6, elementary and combined 

schools can keep the infection risk below 1% throughout the year. However, in middle, high, and 

secondary schools, the infection risk may exceed 1% during wintertime, where more restrictive 

measures (e.g., further increasing the ventilation rate, implementing filters with a higher MERV 

rating, and increasing the proportion of students enrolled in online learning) may be necessary to 

maintain the infection risk at a sufficiently low level. Given the varying prevalence throughout 

the year, schools may select different strategies to ensure an acceptable risk while considering 

other factors, such as energy costs and learning outcomes. 
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Figure 3. Monthly average infection risk under different intervention strategies. 

 

Figure 4 presents the distribution of infection risk under various ventilation rates obtained using 

MCS. The results illustrate that the variation of infection risk decreases as the ventilation rate 

increases. For schools with the baseline ventilation rate (2 ℎ𝑟#$), the mean infection risk is 

around 7% and the highest infection risk is 10%, demonstrating a high level of uncertainty and 

the significance of adopting intervention strategies. The efficiency of increasing the ventilation 

rate decreases as the ventilation rate increases: the infection risk decreases by 16.5% when the 
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ventilation rate is increased from 2 ℎ𝑟#$ to 2.5 ℎ𝑟#$, while it only decreases by 8% when the 

ventilation rate is increased from 5.5 ℎ𝑟#$ to 6 ℎ𝑟#$. Therefore, to further reduce the infection 

risk, increasing the ventilation rate alone may not be the most efficient strategy when considering 

the energy required. Schools might also contemplate adopting complementary mitigation 

measures to maintain low infection risk levels and energy costs. 

 

 

Figure 4. Distribution of average school infection risk under various ventilation rates. 

 

3.2 Infection Risks Under the Current Epidemiological Scenario 

The infection risk for each state under different intervention strategies is presented in Figure 5. 

The average infection risk of a state is computed as the mean value of the infection risks over all 

counties in the state, and the range of the infection risk of a state is represented as the range of 

the infection risk of the counties with 95% confidence interval. The infection risk for each 

county is computed based on county epidemic situation and the characteristics of schools in the 

county. For most states, schools with the baseline ventilation rate show a high infection risk, with 

an average infection risk of 3.75%. Under the current epidemiological scenario, more than 90% 
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of counties exhibit an infection risk of greater than 1%, indicating the significance of 

implementing intervention strategies to decrease the infection risk. The impacts of increasing the 

ventilation rate by 100% (S1) and having half of students learn online (S3) are similar, resulting 

in average infection risks of 1.98% and 1.90%, respectively. Under both strategies, the infection 

risk of nearly 20% of counties nationwide falls below 1%. Implementing MERV 13 filters (S2) 

outperforms both S1 and S3, with an average infection risk of 1.28%—35% and 33% lower than 

the infection risks calculated under S1 and S3, respectively—resulting in an infection risk below 

1% for approximately 40% of counties nationwide. 

 

The average infection risk of a given county is determined by the infection rate and the 

characteristics of the schools in that county. Counties with higher prevalence rates generally 

exhibit greater infection risk in schools. Figure 5 shows that schools in the southeastern and 

southwestern U.S. are exposed to higher infection risks. Specifically, Arizona, South Carolina, 

Oklahoma, Mississippi, and Georgia are the five states with the highest infection rates (≥

3.18%), and the schools in these states also have the highest levels of infection risk (≥ 5.5%). In 

addition, the infection risk in each county is also influenced by the characteristics of individual 

schools, especially the school level, which determines the school occupant density and the 

student pulmonary ventilation rate. Table 6 shows that the distribution of schools is similar 

across different states, indicating that a state’s average infection risk depends crucially upon the 

infection rate. However, as shown in Table 6, the county-level school distribution varies 

significantly, especially for elementary and high schools, demonstrating that, in addition to the 

county infection rate, school distribution contributes to the variation in infection risk. These 

results suggest that schools and policymakers should consider and adopt specific intervention 
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strategies based on various factors, including the local epidemic situation, school characteristics, 

and school HVAC system conditions. S2 is cost-effective and efficient at reducing infection 

risks. If MERV 13 filters are not accommodated in the school HVAC system, S1 and S2 can be 

used, and further increases in ventilation or in the proportion of hybrid learning may be adopted 

according to the infection risk, school system capacity, and teaching quality. 

 

 

Figure 5. Infection risk for each state with different intervention strategies: (a) the baseline 

scenario; (b) with MERV 13 filtration; (c) with 50% of students learning online; and (d) when 

increasing the ventilation rate by 100%. 
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Table 6. School distribution by state and county 

School level Max. Min. Mean SD 
State County State County State County State County 

PK 5.13% 40% 0.00% 0% 1.11% 1.04% 0.011 0.032 
Elementary 67.76% 100% 49.67% 0% 58.15% 51.61% 0.039 0.118 
Middle 24.73% 50% 7.10% 0% 14.47% 15.71% 0.030 0.089 
High 31.21% 100% 11.02% 0% 18.73% 25.63% 0.042 0.113 
Secondary 5.46% 100% 0.53% 0% 2.18% 1.37% 0.011 0.037 
Combined 14.07% 100% 1.97% 0% 5.36% 4.64% 0.026 0.071 

PK: pre-kindergarten; SD: standard deviation  

 

3.3 Sensitivity Analysis 

In addition to different intervention strategies, the infection risk in schools is also sensitive to 

changes in multiple factors, including the infection rate of the population, exposure time in 

schools, occupant density, and the students’ pulmonary ventilation rate. In this study, a 

sensitivity analysis was conducted to quantify the influence of these factors given the estimated 

ranges detailed in Table 5; the results of this analysis are shown in Figure 6. The infection risk 

shows a near-linear relationship with the exposure time. The change in exposure time within the 

estimated range has a limited impact on infection risk because the average number of hours in 

the school day do not vary distinctly across the U.S. The infection risk increases with an increase 

in the infection rate parameter. The infection rate varies significantly across counties, leading to 

great changes in school infection risks. For instance, Forest County, Pennsylvania, exhibits the 

highest infection rate among all counties of 32.6% and a county infection risk of 32.9%, whereas 

the average infection risk for all counties nationwide is only 3.8%. Schools located in counties 

with high infection rates are expected to be exposed to greater risk levels and will need to adopt 

much stricter mitigation measures to effectively control the infection risk. Considering occupant 
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density, the results show a sharp decrease in the infection risk, with the parameter changing from 

3 to 10 square meters per student; the trend then flattens after this point. Nationwide, the 

infection risk reaches 10.8% for schools with the highest occupant density, while the lowest 

value is 1%. The mean and median values are close, and the infection risk is 2.6% with a mean 

value of 14.93 and 2.8% with a median value of 14.04, respectively. These results indicate that, 

for most schools, the current occupant density is appropriate, and further reductions in occupant 

density may not lead to a significantly reduced infection risk. For schools with high occupant 

density (e.g., 3 to 10 square meters per student), it is recommended that the density be reduced to 

the average level (e.g., 14.93 square meters per student). The infection risk increases as the 

pulmonary ventilation rate rises, with the rate of change increasing as well. The annotation in red 

dashed lines in Figure 6(d) indicates the mean pulmonary ventilation rates of different school 

levels (as shown in Table 2) and the corresponding infection risk. The infection risk is 1.4% for 

pre-kindergarten students (aged 3–5 years); 2.6% for elementary school students (aged 5–11 

years); and 5.3% for middle, high, and secondary school students (aged 11–18 years). The 

pulmonary ventilation rate increases with the maturation of children, leading to an even greater 

infection risk. Intervention strategies are necessary for schools with higher levels of infection 

risk to adopt to reduce the infection risk to a sufficiently low level. 
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Figure 6. Sensitivity analysis of parameters: (a) exposure time; (b) infection rate; (c) occupant 

density; and (d) pulmonary ventilation rate. 

 

4 Discussion  

COVID-19 pandemic leads to significant education crisis all over the world. The worldwide school 

closure has affected over 80% of total enrolled students, and half of the students in more than 200 

countries have experienced partially or fully school closures (UNESCO, 2021). Long-time school 

closures raise public concerns about the negative impacts on children health, education, and 

financial burdens on the households (Van Lancker & Parolin, 2020). Therefore, as schools reopen 

and resume in-person instruction, effective operation strategies are essential to maintain a healthy 

and sustainable learning environment.  
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Ventilation, social distancing, and filtration are three broadly utilized strategies during the 

pandemic. Several studies have been dedicated to discussing the impact of these strategies in the 

control of COVID-19 transmission, and achieved compatible results with this paper, despite of 

different pandemic scenario, indoor environment, and countries considered. Sun and Zhai (2020) 

introduced a distance index and a ventilation index in the Wells-Riley model to compute the 

infection risks in buses in China. Similar to our study, their results suggest a near-linear 

relationship between infection risk and the exposure time and demonstrate the efficiency of 

increasing ventilation and reducing occupant density in mitigating the infection risk. Shen et al. 

(2021) discussed the effectiveness of multi-scale strategies for reducing airborne infection risk of 

SARS-CoV-2 using Wells-Riley model for indoor spaces, and suggested the higher efficiency of 

applying filters compared to solely increasing airflow rate, which aligns with our conclusion. 

However, in previous studies, the number of infectors were either set to be 1 for each room 

which is unlikely in the actual situation, or calculated using the infection rate estimated from 

limited sample size. To overcome the limitation, this study leveraged data-driven and scenario-

based analysis to evaluate school infection risk under various intervention strategies considering 

both long-term and short-term realistic pandemic scenarios.  

 

Regarding the selection of intervention strategies in this study, given the importance of in-person 

interaction for student learning, the intervention strategy only considers that up to 50% of students 

would be learning online. Considering the current condition of most school HVAC systems, 

although increasing room ventilation rates is efficient in reducing infection risks, the ventilation 

rate cannot be increased beyond the system capacity. In this paper, doubling the baseline 

ventilation rate was considered to ensure that the proposed strategy would be affordable for most 
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schools. Implementing filters with higher MERV ratings (e.g., MERV 14–16) would only have a 

slight effect on decreasing the infection risk but would generate additional product and energy 

costs. For instance, the average school infection risk in December is 2.34%, 2.04%, 1.96%, and 

1.85% for implementing MERV 13–16 filters, respectively. With the increase of MERV ratings, 

more energy is required to overcome additional pressure drop, and the purchase cost increases 

from $ 11 per filter for MERV 13 filters to $50, $90, $125, $150 for MERV 14–16 filters, 

respectively (Azimi & Stephens, 2013). Thus, implementing MERV 13 filters was adopted as 

filtration intervention strategy. It is found that filtration is most effective in reducing the infection 

risk, resulting in a risk reduction of more than 30% relative to that achieved with either ventilation 

increase or hybrid learning in both considered pandemic scenarios. However, to maintain a healthy 

school environment, it is suggested that multiple intervention strategies be adopted simultaneously. 

Beside the direct impact of intervention strategies to the airborne infection risk, it has been proved 

that poor air quality caused by pollutants (e.g., particulate matters and volatile compounds) may 

lead to acceleration of the contagion of SARS-CoV-2 (Agarwal et al., 2021). The intervention 

strategies can also improve the indoor air quality, and further reduce the transmission of SARS-

CoV-2. Other technologies can be considered for sustainable building retrofitting together with the 

intervention strategies (e.g., natural ventilation, botanical biofilters (Irga et al., 2017; Abdo et al., 

2019), passive cooling techniques (Abdo et al., 2020) to maintain healthy indoor environment and 

human comfort. 

 

The infection risk may vary significantly across countries due to the differences in population 

size, disease prevalence, infection-hospitalization ratios, fraction of immunity, etc. However, the 

findings in this study can provide insights for other countries regarding the risk control during 
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the pandemic. For instance, the effectiveness of intervention is analyzed and compared, 

including filtration, ventilation, and social distancing achieved by online learning, indicating that 

filtration strategy can be widely adopted for schools worldwide. In addition, the framework can 

be extended to other infectious diseases in other counties by considering specific disease 

characteristics and epidemic and operation scenarios. 

 

5 Conclusion  

The airborne infection risk of SARS-CoV-2 in U.S. schools has been estimated under different 

epidemiological scenarios. Multiple intervention strategies, including increased ventilation, air 

filtration, and hybrid learning, are modeled to evaluate their effectiveness in reducing the 

infection risk. Two epidemiological scenarios were considered, including a one-year pandemic 

scenario and a current epidemiological scenario. A series of findings and important insights were 

derived as follows, which will provide insights for schools and governments to develop 

guidelines on adopting appropriate intervention strategies to mitigate airborne infection risk 

considering epidemic situation and school characteristics.  

1. The airborne infection risk in schools exhibits seasonal patterns, with the average infection 

risk in all schools ranging from 3.85% in the summer to 6.83% in the winter under the one-

year pandemic scenario, indicating the necessity of adjusting mitigation measures over the 

year.  

2. The effectiveness of intervention strategies varies with different school levels and pandemic 

periods and, thus, requires individual schools to adopt variable intervention strategies over 

the long term. In general, schools with higher school level experience higher risk. For 

instance, the infection risk in pre-kindergarten remains low throughout the year, and the 
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implementation of MERV 13 filters can limit the infection risk to below 1%. For elementary 

schools, implementing all strategies are suggested in most months, while, in months with 

lower prevalence rates (e.g., summertime), schools can adopt fully in-person learning in 

concert with filtration and increased ventilation. For other school levels (e.g., middle, 

secondary, and high schools), the infection risk may persist above 1% in some months even 

after implementing all strategies. Additional mitigation measures, such as wearing masks and 

enacting further social distancing, are needed to ensure an acceptable risk level.  

3. The relationships between infection risk and ventilation rates are depicted using Monte Carlo 

simulation, illustrating the efficiency of increasing the ventilation rate on reducing the 

infection risk and demonstrating the significance of combined intervention strategies when 

considering the capacity of school systems.  

4. The infection risk for each state is computed based on the infection risk of the counties in the 

state under normal operations as well as various intervention strategies based on the current 

epidemiological scenario. Schools with the baseline ventilation rate show a high infection 

risk across the U.S., with more than 90% of the counties exhibit an infection risk of greater 

than 1%, indicating the necessity of intervention strategies to maintain a sustainable indoor 

environment. The results show that increasing the ventilation rate by 100% and having half 

of students learn online have similar impacts on reducing infection risks, while implementing 

air filtration is more efficient than either of the strategies, with over 30% less than the risk 

levels correlating with ventilation enhancement and hybrid learning.  

5. Sensitivity analysis is conducted to further illustrate the impact of the characteristics of 

schools and the epidemic situation on infection risk. In general, the infection risk shows a 

near-linear relationship with the exposure time in schools. It is also found that the current 
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occupant density is appropriate for most schools, while it is recommended that the density be 

reduced to the average level (e.g., 15 square meters per student) for schools with higher 

occupant density. 

 

There remain some limitations in this paper. First, the estimated infection risk indicates the daily 

infection risk based on the exposure time in a single day, ignoring the effect of probability 

transition due to continuous exposure in schools, which may result in the underestimation of the 

result. Future study may consider the effect from the previous school days according to the 

specific schedule. Second, the model used in this study assumes that the infectious particles are 

well mixed throughout the whole school building, without considering the separation of rooms in 

the building and the separation of buildings if a school has multiple buildings. This is a 

simplification for national assessment of school infection risks. To accurately model the 

infection risk in a specific school, future research is needed to develop new simulation-based 

approach to incorporate detailed information of the school. Third, as a scenario-based analysis, 

derived results and findings regarding infection risk and intervention strategies are based on a 

one-year pandemic scenario and a short-term county-level epidemiological scenario, which 

might be different from actual situations. Leveraging the findings and insights regarding impacts 

of various intervention strategies on infection risk under different scenarios, schools and 

governments can design their own strategies based on their specific characteristics and epidemic 

conditions.  
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