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Abstract
Reservoir simulation is critically important for optimally managing petroleum reservoirs. Often, many of the parameters of
the model are unknown and cannot be measured directly. These parameters must then be inferred from production data at the
wells. This is an inverse problem which can be formulated within a Bayesian framework to integrate prior knowledge with
observational data. Markov Chain Monte Carlo (MCMC) methods are commonly used to solve Bayesian inverse problems
by generating a set of samples which can be used to characterize the posterior distribution. In this work, we present a
novel MCMC algorithm which uses a sequential transition kernel designed to exploit the redundancy which is often present
in time series data from reservoirs. This method can be used to efficiently generate samples from the Bayesian posterior
for time-dependent models. While this method is general and could be useful for many different models. We consider a
Bayesian inverse problem in which we wish to infer fault transmissibilities from measurements of pressure at wells using
a two-phase flow model. We demonstrate how the sequential MCMC algorithm presented here can be more efficient than
a standard Metropolis-Hastings MCMC approach for this inverse problem. We use integrated autocorrelation times along
with mean-squared jump distances to determine the performance of each method for the inverse problem.

Keywords Markov chain Monte Carlo · Reservoir simulation · History matching · Bayesian · Inverse problems

1 Introduction

Accurate simulation of flow in porous media is critically
important in many applications such as groundwater con-
taminant transport, carbon sequestration, and petroleum pro-
duction. We focus here on applications to petroleum reser-
voir simulation. Obtaining accurate reservoir models can
be extremely challenging due to the difficulty in directly
measuring model parameters such as the permeability field
or transmissibility of faults directly. This challenge is
addressed by the field of history matching. History match-
ing is a type of inverse problem in which observational
data collected from a reservoir is used to estimate
model parameters which cannot be directly observed [15].
Unfortunately, obtaining history matched models can be
extremely expensive due to the large number of model
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parameters, nonlinearity of the model, and the high compu-
tational cost of running even a single reservoir simulation.
For this reason, developing algorithms which take advan-
tage of the unique structure of the history matching inverse
problem is extremely important.

It is often convenient to pose the history matching
problem as a Bayesian inverse problem. The solution to
this problem is then a probability distribution known as the
posterior, which combines prior knowledge about model
parameters with information from (noisy) observational
data. In practice, obtaining useful information from this
posterior probability can be difficult and it is common
to employ Monte Carlo methods for estimating moments
of the posterior. In particular, Markov chain Monte Carlo
(MCMC) methods are often used to generate samples which
are distributed (approximately) according to the posterior
as they tend to suffer from the Curse of Dimensionality
less than some other methods. However, MCMC methods
can be prohibitively expensive for many history matching
applications due to the difficulties outlined above.

In this work, we present an MCMC algorithm which is
designed to exploit the structure inherent in many history
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matching problems and apply it to a two-phase reservoir
model. The algorithm here relies on a novel sequential
transition kernel which may reduce the number of model
solves required by MCMC. The key assumption behind
the approach is that the time series of production data
in reservoirs is often somewhat redundant. To be more
precise, consider two distinct vectors of model parameters
x1 and x2 with corresponding distinct time series model
outputs {dt

1}Tt=1 and {dt
2}Tt=1. The assumption is that for

many parameters x1 and x2, if d1
1 more closely matches

the observed reservoir data than d1
2 at time t = 1, then

the rest of the time-series {dt
1}Tt=2 will as well. Although

this assumption may not hold exactly for every pair of
parameters and is complicated by the presence of noise in
the data, we show that it can still be leveraged to implement
an algorithmwhich yields increased efficiency over a simple
yet commonly used implementation of MCMC in practical
circumstances.

2 The forwardmodel

Reservoir simulation involves solving the equations govern-
ing the flow of fluid in a porous medium in order to predict
future production of hydrocarbons. In this work, we model
the flow of fluids in a reservoir, namely water and oil, using
a two-phase compressible flow model. Water is the wetting
phase while oil is the non-wetting phase. The reservoir is
assumed to have faults which are modelled as lower dimen-
sional objects that introduce a discontinuous jump in the
pressure field and act as barriers to the flow. The transmis-
sibility of the fault is a parameter which relates the jump
in pressure to the flow velocity normal to the fault. The
equations are discretized using a finite element formulation
in space and an implicit Euler scheme in time. In order to
solve the resulting discretized system we use FEniCS, an
open source library for solving finite element systems. In
this section, we first summarize the equations of two-phase
flow in a porous medium. For a more detailed description
of porous media flow, see [5, 11]. Second, the representa-
tion of faults as lower dimensional objects is disussed and
fault transmissibilities are introduced. Modelling fractures
and faults as lower dimensional interfaces in reservoir simu-
lation has been discussed in [1, 2, 13]. Finally, the numerical
implementation of the forward model using the FEniCS
library is described. More information about the FEniCS
library can be found in [12].

2.1 Reservoir model with faults

The fluids in the reservoir are assumed to be immiscible
and Newtonian, flowing under isothermal conditions.

Neglecting gravity and capillary pressure, we solve the
following system of equations for the reservoir flow:

u = −λt (S)k∇p

φc
∂p

∂t
+ ∇ · u

− [cwλw(S) + cnλn(S)]
u · u

λt (S)2k
= qw + qn

φ
∂ρwS

∂t
+ ∇ · [ρwfw(S)u] = ρwqw, (1)

where the subscripts w and n denote the wetting and non-
wetting phases respectively. The primary variables are the
global velocity u = uw + un, water saturation S = Sw,
and the global pressure p = pw = pn since capillary
pressure is ignored. The absolute permeability of the porous
medium is k. The phase mobilities are λw = kw/μw and
λn = kn/μn, where kw and kn are the relative permeabilities
and μw and μn are the viscosities. The relative permeabilies
are functions of the saturation. The function λt = λw +
λn is the total phase mobility. The total compressibility
is c = cr + (1 − S) cn + Scw where cw and cn are
the fluid compressibilities of each phase and cr is the
rock compressbility. The porosity of the rock matrix is φ.
Finally, the water phase density is ρw, the source terms
for the wetting and non-wetting phases are qw and qn

respectively, and fw(S) = λw/λt is the fractional flow
function. The boundary conditions are no-flow. All that
remains to complete the forward model is to introduce the
representation of faults into the formulation.

A fault is a heterogeneity characterized by a sharp change
in the permeability tensor k over a region with very small
width relative to its length and the overall size of the
reservoir domain [16]. Typically, the width of faults is on
the order of meters while the size of a reservoir is often on
the order of hundreds of meters [8]. Although the presence
of a fault can have a significant impact on the flow of fluids
in a porous medium, their small width may require a very
fine mesh leading to excessively high computational costs
[8]. One way to deal with this issue is to consider a reduced
fault model in which the fault is treated as a surface of
codimension one coupled with the rest of the domain. This
avoids the need for an extremely fine grid to resolve the
(volumetric) fault.

Here, we assume no flow along the fault so that the fault
acts as a barrier to the flow and introduces a discontinuous
pressure jump as in [14]. Additionally, the source terms qw

and qn are both assumed to be identically zero inside the
fault. This gives the following jump condition for a fault Γi

in the interior of the domain

[[u · ni]]Γi
= 0, and, u · ni − t if [[p]]Γi

= 0, (2)
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where ni is a vector normal to the fault and t if is the
transmissibility multiplier. The transmissibility multiplier
characterizes the extent to which fluid can flow across the
fault. A low transmissibility means that the flow will tend to
avoid the fault in which case the fault is said to be closed.
A high value of the transmissibility means that the fault will
have negligible impact on the flow and the fault is said to
be open. In this work, we are primarily interested in using
techniques from uncertainty quantification to estimate the
value of fault transmissibilities from data.

With the addition of interior jump conditions for the
faults the final system of equations for a reservoir with nf

faults is

u = −λt (S)k∇p

φc
∂p

∂t
+ ∇ · u

− [cwλw(S) + cnλn(S)]
u · u

λt (S)2k
= qt

φ
∂ρwS

∂t
+ ∇ · [ρwfw(S)u] = ρwqw

[[u · ni]]Γi
= 0

u · ni − t if [[p]]Γi
= 0, (3)

where i = 1, . . . , nf and we have introduced the total
source term qt = qw + qn. Along with boundary and initial
conditions, Eq. 3 gives the forward model used in this work.

2.2 Discretization

We approximate (3) in space by combining a mixed finite
element formulation with a DG scheme. The mixed finite
element formulation is used to discretize the pressure
and velocity equations while we use a DG scheme for
the saturation equation. We use lowest-order Raviart-
Thomas elements for the velocity and piecewise constant
discontinuous elements for the pressure and saturation [4].
The time derivatives are discretized using an implicit Euler
method. Although this leads to a nonlinear system, using the
implicit Euler method yields more favorable stability than
an explicit Euler scheme. This gives the following problem:
Given S0, p0, ∀j = 1, · · · , N find

(
uj , pj , Sj

) ∈
(Vh, Wh, Zh) such that

([
kλt (S

j )
]−1

uj , v
)

+
nf∑

i=1

〈
1

t if

uj · n, v · n
〉

Γi

−
(
pj , ∇ · v

)
= 0, ∀v ∈ Vh

(
φc

pj − pj−1

Δt
, w

)
+

(
∇ · uj , w

)

−
([

cwλw(Sj ) + cnλn(S
j )

] uj · uj

λ2t (S
j )k

, w

)

= (qt , w) , ∀w ∈ Wh
(

φ
ρw(pj )Sj − ρw(pj−1)Sj−1

Δt
, z

)

−
(
ρw(pj )fw(Sj )uj , ∇z

)

+ 〈ρw(p
j
up)fw(S

j
up)uj · n, [[z]]〉e

−
(
ρw(Sj )qw, z

)
= 0, ∀z ∈ Zh,

(4)

where (·, ·) and 〈·, ·〉 denote the usual inner products on the
volume and edges of the elements of the mesh respectively,
n is the outward unit normal vector field defined on the
edges of the mesh, Vh is the space of lowest order Raviart-
Thomas basis functions, and Wh and Zh are the spaces
of piecewise constant discontinuous functions defined on
the computational mesh. We use p

j
up and s

j
up to mean the

pressure and saturation values on the edges of the mesh
chosen to satisy upwinding for the numerical fluxes.

For the wells, we take the injection wells to have constant
pressure and the producers to be rate wells. The water source
term qw is given by

qw =
NI∑

i=1

αi
I λt (S

i
I )J

i
(
pi

I − p
)

fw(Si
I )φ(xi

I , σ
2)

+
NP∑

i=1

−αi
P Qi

P fw(S)φ(xi
P , σ 2),

(5)

where the subscripts I and P denote injection and pressure
wells respectively, NI,P are the number of injection and
production wells, xI,P are the locations of the wells, and φ

is a Gaussian function with standard deviation given by σ .
Here, we take σ ≈ 18.768.1 The water saturation values
at the injection wells are given by SI , the term αI,P is a
multiplication factor for edge and corner wells, pI is the
constant bottom hole pressure at the injection wells, and
QP is the flow rate at each of the production wells. The
multiplication factors αI,P are taken to be 1 for interior
wells, 2 for edge wells, and 4 for corner wells. In this work,
the only wells considered are corner wells. Finally, J is the
well index from Peaceman’s model given by

J = 2πk

ln
(

re
rw

) , (6)

where rw is the well radius and re is an effective radius. In
this case, the effective radius is taken to be

re = 2
√
2h

3
e− π

6 , (7)

1For the interested reader, we take σ to be the minimum cell diameter
of the computational mesh.
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where h is the minimum cell diameter of the computational
mesh.2 Similarly, the source term for the oil phase, qn is
given by

qn =
NI∑

i=1

αi
I λt (S

i
I )J

i
(
pi

I − p
)

fn(S
i
I )φ(xi

I , σ
2)

+
NP∑

i=1

−αi
P Qi

P fn(S)φ(xi
P , σ 2). (8)

For a more detailed explanation of the numerical implemen-
tation of wells see [5].

We assume that the compressiblities cr , cn, and cw, are
constant and that the fluids are slightly compressible so that

ρα = ρ0,α [1 + cα (p − p0)] , α = w, n, (9)

for some reference pressure p0 and reference densities ρ0,w
and ρ0,n. The rock compressibility in this work is very small
∼ O(10−10) so we treat the porosity φ as constant for
convenience.

We solve the system using the FEniCS library [12]. This
is an open-source computing platform for solving partial
differential equations. The mesh is generated using Gmsh
[10] and is conforming to the faults. This means that each
of the faults will lie entirely along the facets of the mesh.

3 Inverse problems

In this work we investigate uncertainty quantification for
inverse problems in petroleum reservoir simulation. This
process is known as history matching in the field of
petroleum engineering. In this section we describe the
formulation of the inverse problem solved in this work.
First, we briefly describe history matching, commonly used
observational data and inversion targets, and the challenges
posed by these types of inverse problems. A more detailed
treatment of history matching in reservoirs can be found
in [15]. Second, we describe the Bayesian framework for
solving inverse problems which is used in this work [9, 19].
Finally, we describe the Markov chain Monte Carlo method
which is a common approach to generating samples from
the Bayesian posterior in order to estimate moments of the
probability distribution [9].

3.1 History matching

History matching is an inverse problem in which observa-
tional data collected from a reservoir is used to estimate
model parameters that may be difficult to determine through
observation alone. Increases in computational power and the

2The mesh used in this work has minimum cell diameter h =
18.76820539116728 meters.

adoption of Monte Carlo methods are partially responsible
for recent progress in history matching with large amounts
of reservoir data [15].

Given a reservoir model M : X → D and potentially
noisy observational data dobs, the basic problem of history
matching is to find the model parameters x ∈ X such that

M(x) = dobs. (10)

Due to observational noise and model error, it may be the
case that no set of model parameters x exactly matches
the observational data dobs in which case one seeks model
parameters x which approximately matches the data. In this
case (10) can be replaced by a minimization problem, find

argminx

{
1

2
||dobs − M(x)||2D

}
(11)

for some norm || · ||D on the space of admissible
model ouputs D. Parameters that must be specified in a
typical numerical reservoir simulator include porosity, the
permeability field, fault transmissibility, intial conditions,
etc. The data dobs used to estimate the parameters is
typically production data taken at the wells. These can be
a time series of measurements of flow rate, pressure, or
ratios of flow rates at producing or injecting wells. In this
work, we consider fault transmissibilities to be the unknown
parameters and use measurements of pressure at the wells
as our observational data with which to inform the uncertain
parameters.

History matching is uniquely challenging for several
reasons. First, the relationship between parameters and
model outputs is often highly non-linear. Second, although
observations may be taken frequently so that the amount of
raw data is large, the information content is often quite low.
This is due to the limited number of observation locations
and the diffusive nature of the flow [15]. Finally, the number
of model parameters to estimate may be several orders of
magnitude larger than the amount of independent data. The
large number of parameters and low information content
of the data means that the solution of the inverse problem
is usually ill-posed and must therefore be constrained by
prior knowledge. Prior knowledge about the parameters
may be included by replacing (11) with the regularized
minimization problem find

argminx

{
1

2
||dobs − M(x)||2D + 1

2
||x − x0||2X

}
(12)

where || · ||X is some norm on the parameter space X and
x0 is some set of model parameters. This formulation can be
used to eliminate the ill-posedness of Eq. 11.

3.2 The Bayesian inverse problem

We consider a Bayesian formulation for the history
matching problem. Rather than solving an optimization
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problem as in Eq. 12 the Bayesian approach solves
a statistical inference problem. It seeks a probability
distribution which updates prior knowledge about the
parameters with information from the data which are linked
to the parameters through the inverse of the model. The
solution to the Bayesian inverse problem is the posterior
probability distribution which has the form

πpost(x|dobs) ∝ πlike(dobs|x) πprior(x). (13)

Where πprior represents the prior beliefs about the param-
eters and πlike is the contribution from the data. Note that
Eq. 13 gives the posterior distribution up to a normalizing
constant.

The likelihood function πlike represents the probability
that a given parameter could produce the observed data.
Often, one assumes that the observed data dobs has some
noise so that dobs = M(x) + η where η is some mean
zero random variable distributed according to some known
probability density function ρ. Then the probability of the
observed data dobs given some parameter x is

πlike(dobs|x) = ρ(dobs − M(x)).

Evaluating the likelihood function involves solving the
model M which can be expensive if, as in this work, the
model involves solving a partial differential equation. The
prior πprior is some known probability density function
which describes prior beliefs about the parameters.

Typically, one is interested in moments of the posterior
such as the mean and variance to make decisions. In
high dimensions, it may be preferable to estimate these
moments using Monte Carlo methods involving samples
distributed (approximately) according to the posterior rather
than quadrature methods for integration. The central limit
theorem then guarantees convergence independent of the
dimension of the problem [3]. While the error in estimating
moments of a distribution using samples is dimension-
independent, generating those samples is in general highly
dimension-dependent. One popular method for generating
samples from high-dimensional probability distributions are
Markov Chain Monte Carlo (MCMC) sampling methods.
These methods rely on constructing a Markov chain
with some desired stationary distribution, in this case the
poseterior πpost. In this work we will focus on a specific type
of commonly used MCMC algorithm known as Metropolis-
Hastings (MH) MCMC.

The Metropolis-Hastings algorithm constructs a Markov
Chain {xi} by using a proposal distribution Q which
depends only on the current state of the chain xi . The
algorithm proceeds as follows. A move y is sampled from

the probability density function Q(·; xi). The proposed
move y is accepted or rejected with probability given by

α(xi, y) = min

{
1,

πpost(y)Q(xi; y)

πpost(xi)Q(y; xi)

}
, (14)

where α is the the acceptance probability. If the proposed
move is accepted then xi+1 = y. Otherwise xi+1 = xi .

Together, the proposal and the acceptance probability
define a transition kernel K . A sufficient condition for a
Markov chain to have the posterior πpost as its stationary
distribution is for it to satisfy the condition of detailed
balance with respect to the posterior [9]. The equation of
detailed balance is given by

πpost(x)K(x, y) = πpost(y)K(y, x). (15)

The Metropolis-Hastings algorithm satisfies the condition
of detailed balance with respect to the posterior by
construction.

In practice, the chain is truncated after a certain number
of iterations and the remaining samples are correlated.
An important consideration when designing MH-MCMC
algorithms is finding a proposal distribution Q which
efficiently explores the posterior. Often, the proposal
Q(·; xi) is chosen to be a Gaussian distribution centered at
the point xi . If the Gaussian proposal Q(·; xi) has a single
covariance matrix independent of the current position of the
chain xi , then the proposal distribution becomes symmetric.
In this case, Eq. 14 becomes

α(xi, y) = min

{
1,

πpost(y)

πpost(xi)

}
. (16)

The standard deviation of the proposal is known as the step
size of the chain. A small step size relative to the spread
of the posterior typically leads to high acceptance rates.
However, if the step size is too small, the samples will be
close to one another and the correlation between them will
be high. If the step-size is too large, then the samples fromQ

are likely to be in low-probability regions of the parameter
space and will be rejected leading to many wasted model
solves.

history matching

4Methodology

Here, we develop the framework for a sequential
Metropolis-Hastings transition kernel for MCMC when the
target distribution is a posterior with likelihood defined by
time-series data. First, the Bayesian inverse problem with
time-series data is described and the likelihood is factored
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into a product of distributions which represent the contribu-
tion of the observed data from distinct times. Second, the
sequential transition kernel is described. Finally, the sequen-
tial transition kernel is applied to an artificial problem and
compared with the standard Metropolis-Hastings approach.

There have been other approaches to early rejection
MCMC similar to the one presented here. In [18] an early
rejection scheme based on time series data is used to avoid
computing the full likelihood for low probability proposed
points. This is the same idea behind the sequential approach
presented here but in this work, a multistage rejection
scheme is used whereas in [18] a single rejection stage
is performed and proposed points are only rejected when
the method is certain that they would be rejected in a
Metropolis-Hastings algorithm. Perhaps more similar to the
sequential approach are two-stage MCMC approaches [6,
7] in which proposed points are first evaluated by a cheaper
approximate model. The exact model is only evaluated
if a proposed point is first accepted by the approximate
model. The sequential approach differs from these two-
stage methods as they require a separate approximate model
while the sequential approach, in some sense, treats initial
time-steps as approximate models for the full likelihood.

4.1 Problem setup

Consider a time-dependent parameter-to-observable map
M : X → D and noisy time-series data d = M (xtrue) + η

where xtrue is the unknown true parameter and η is a mean-
zero Gaussian random variable so that η ∼ N (0, Σ).
The data likelihood is then ρ (d|x) = N (d − M (x) , Σ).
Given some prior πprior the posterior is

πpost(x) ∝ πprior (x)N (d − M (x) , Σ)

Now let Mt (x) denote the parameter-to-observable map
for a single time-step t and let dt denote the subset of
data for that time-step. There may be more than one
observation at a single time-step, for example if there
are observations at multiple spatial locations. We assume
that observational noise is uncorrelated in time although
there may be correlation between observational noise within
a single time-step. This means that Σ is at least block
diagonal and that the likelihood can be factored into a
product of lower dimensional Gaussian probability density
functions. Using this factorization of the likelihood, the
posterior can be factored as

πpost (x) ∝ πprior (x)

T∏

t=1

N (dt − Mt (x) , Σt ) (17)

where Σt is the block of the covariance matrix Σ

corresponding to time-step t .

4.2 The sequential transition kernel

Consider a standard Metropolis-Hastings MCMC algorithm
in which the goal is to generate samples from the posterior
in Eq. 17. Given the current position of the chain xi = x,
a move y is simulated from a proposal distribution Q (·; x).
This move is accepted with probability

min

{
1,

πpost (y)

πpost (x)

Q (x; y)

Q (y; x)

}
.

If the move is accepted then xi+1 = y. Otherwise, xi+1 =
x. We assume here that the proposal distribution Q(·; x)

is a Gaussian probability density centered at x such that
Q(x; y) = Q(y; x). In this case the acceptance probability
simplifies to the ratio of the posterior evaluated at the
proposed move y and the current position of the chain x. We

denote this ratio by r = πpost(y)

πpost(x)
and have that the acceptance

probability is

min

{
1,

πpost (y)

πpost (x)

}
= min {1, r} .

Using the decomposition of the posterior into separate
time-steps we may write the ratio r as

r = πpost (y)

πpost (x)
= πprior (y)

∏T
t=1N (dt − Mt (y) , Σt )

πprior (x)
∏T

t=1N (dt − Mt (x) , Σt )

= πprior (y)

πprior (x)

T∏

t=1

N (dt − Mt (y) , Σt )

N (dt − Mt (x) , Σt )
.

Let rt = N (dt−Mt (y),Σt )
N (dt−Mt (x),Σt )

for t = 1, · · · , T and let r0 =
πprior(y)

πprior(x)
. Throughout this section, we will refer to r and rt

as defined above for a current position of the chain x and
proposed move y.

We denote the standard Metropolis-Hastings acceptance
probability by α(x, y) and can write this accpetance
probability as

α(x, y) = min

{

1,
T∏

t=0

rt

}

.

For now, assume without loss of generality that the
contribution of the prior r0 is negligible (as in the case of a
very broad prior) so that

α(x, y) = min

{

1,
T∏

t=1

rt

}

. (18)

At the end of this section, we will discuss how to incorporate
the prior into the sequential transition kernel.

Notice that computing the ratio r requires solving the
model for all T time-steps. This could be computationally
expensive if the model is a PDE with a large number of
time-steps. In many practical problems including reservoir
simulation, the information content of time series data is
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often fairly low [15]. In other words, observations in time
often provide redundant (or nearly redundant) information.
This suggests that one could use model outputs from initial
time-steps to make decisions about whether or not to
reject a proposed move without having to compute the full
likelihood. To be more precise, one could evaluate r1 and
reject the move with probability 1 − r1. This process is
repeated for t = 1, · · · , T and if the jump is not rejected
at any time-step then it is accepted and added to the chain.
If the move is rejected at any point, then xi+1 = x and
no more model solves are performed. After y has been
either accepted or rejected, a new move is sampled from
the proposal and the process is repeated until the desired
number of samples have been generated. This results in
a new simple acceptance probability which we denote by
α̂ (x, y). The probability of not rejecting a move at a time-
step t is min {1, rt }. Since a move is accepted if and only if it
is not rejected at each time-step, the probability of accepting
a move is

α̂(x, y) =
T∏

t=1

min {1, rt } . (19)

The acceptance probability in Eq. 19 is equal to the
standard MH acceptance probability when the rt are
uniformly less than or greater than one. Otherwise, the
acceptance probability for this simple approach is less
than that of the standard MH algorithm. This means that
more proposed moves will be rejected using the sequential
approach rather than the usual MH transition kernel. We can
increase the acceptance probability while still using an early
rejection scheme by using initial high-probability likelihood
evaluations at future time-steps. This can be done as follows,
define a new quantity pt at each time-step where

p1 = r1,

pt = pt−1 rt if pt−1 > 1,

pt = rt otherwise

(20)

and reject at each step t with probability 1 − pt . We denote
this new acceptance probability by α̂seq(x, y) and it is given
by

α̂seq(x, y) =
T∏

t=1

min{1, pt }. (21)

This new algorithm will have acceptance probabilities
greater than or equal to the simple acceptance probability
α̂(x, y). However, the acceptance probability α̂seq(x, y)will
still be less than or equal to that of the standard Metropolis-
Hastings algorithm. In time-dependent problems for which
the time-series of data has some redundancy, one would
expect that the benefits of rejecting low-probability moves
early without computing the full model would outweight the
cost of lower acceptance rates.

One final issue which needs to be addressed is that of
detailed balance for the sequential approach. The transition
kernel defined by the acceptance probability α̂seq(x, y)

does not satisfy the equation of detailed balance with
respect to the posterior. In order to enforce this, we add an
additional rejection stage to the sequential transition kernel.
Let S(x, y) denote the ratio of the sequential acceptance
probability to the standard MH acceptance probability so
that

S(x, y) = α̂seq(x, y)

α(x, y)
. (22)

If a proposed jump y from the current position of the chain x

is not rejected at any time-step t , the transition probabilities
for all four quantities above are computed (note that this
does not require any additional model solves as we have
solved the model for all time-steps for both parameters x

and y). The move is then rejected with probability 1− S(y,x)
S(x,y)

.
This finally gives us the sequential transition kernel used in
this work. We denote the sequential acceptance probability
as αseq(x, y) and it is given by

αseq(x, y) = α̂seq(x, y) min

{
1,

S(y, x)

S(x, y)

}
. (23)

An implementation of this transition kernel is shown in
Eq. 1.

Proposition 1 The sequential transition kernelKseq satifies
the principle of detailed balance with respect to the
posterior πpost.

Proof We need to show that for x �= y

πpost(x)αseq(x, y)Q(y; x) = πpost(y)αseq(y, x)Q(x; y).

Using Eq. 23, this is equivalent to showing that

πpost(x)α̂seq(x, y)min

{
1,

S(y, x)

S(x, y)

}
Q(y; x)

= πpost(y)α̂seq(y, x)min

{
1,

S(x, y)

S(y, x)

}
Q(x; y).

Now without loss of generality, assume that S(y, x) ≥
S(x, y) so that we have

πpost(x)α̂seq(x, y)Q(y; x)

= πpost(y)α̂seq(y, x)
S(x, y)

S(y, x)
Q(x; y).

Now using Eq. 22 this becomes

πpost(x)α̂seq(x, y)Q(y; x)

= πpost(y)α̂seq(y, x)

[
α̂seq(x,y)
α(x,y)

]

[
α̂seq(y,x)
α(y,x)

]Q(x; y).
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Dividing both sides by the quantity
[

α̂seq(x,y)
α(x,y)

]
gives

πpost(x)α̂seq(x, y)

[
α̂seq(x, y)

α(x, y)

]−1

Q(y; x)

= πpost(y)α̂seq(y, x)

[
α̂seq(y, x)

α(y, x)

]−1

Q(x; y)

which is equivalent to

πpost(x)α(x, y)Q(y; x) = πpost(y)α(y, x)Q(x; y).

This is the principle of detailed balance for Metropolis-
Hastings when x �= y which is known to be true.

Finally, if x = y then the equation of detailed balance is
satisfied trivially.

Algorithm 1 Sequential Metropolis-Hastings transition
kernel.

Given current position x and proposed move y

1: Set p0 = 1
2: accept=True
3: for t = 1, · · · , T do
4: Evaluate rt by computing a single-time step of the

model
5: if pt−1 > 1 then
6: pt = pt−1 ∗ rt
7: else
8: pt = rt
9: end if

10: Draw η ∼ U (0, 1)
11: if rt < η then
12: accept=False
13: break
14: end if
15: end for
16: if accept=True then
17: Compute S(x, y) and S(y, x)

18: Draw η ∼ U (0, 1)
19: if S(y,x)

S(x,y)
< η then

20: accept=False
21: end if
22: end if

4.2.1 Including the prior in the sequential transition kernel

At the beginning of this section we assumed that the
contribution of the prior r0 to the ratio of the posterior values
of the parameters x and y was negligible. Relaxing that
assumption, there are several ways in which the prior can
be included in the sequential transition kernel. A natural
approach, and the one taken here, is to simply treat the
prior just like the likelihood ratios resulting from model
evalutations. In this case, one simply needs to add an

extra iteration to the for-loop in the sequential algorithm
described above. One could incorporate the prior in other
ways such as including it at the end of the sequential
algorithm.

4.3 Example

We apply the sequential MCMC algorithm to an artificial
problem and compare its performance to a standard MH-
MCMC approach which ignores the sequential nature of the
model. The choice of step-size in the proposal distribution
is important for performance in both methods. We show in
this example that as the step size increases, the sequential
approach tends to be more efficient than the standard MH
approach.

4.3.1 Inverse problem setup

The simplest possible model with which to demonstrate the
sequential approach is the identity map. In this case we take
our model to beM : R → R

T where

Mt (x) = x, for t = 1, · · · , T . (24)

Although this model is exceedingly simple, it will demon-
strate when one might expect the sequential transition kernel
outlined above to be more efficient that the standard MH
approach. In this case, we choose T = 100 and we assume
that the prior is so broad that its effects are negligible so that
we only consider the likelihood of the posterior. We take
xtrue = 0 and generate synthetic noisy data by corrupting
the true data with Gaussian noise. The observations are then
given by

dobs = M (xtrue) + N
(
0, σ 2

I100

)
, (25)

where I100 is the 100 × 100 identity matrix and the noise is
σ = 0.5. The likelihood is

πlike =
100∏

i=1

N
(
di
obs, 0.5

2
)

, (26)

where di
obs is the i-th datum. The posterior is the product

of Gaussians and is itself a Gaussian with mean μ =
1
100

∑100
i=1 di

obs equal to the average of the observations and

variance σ 2
post = σ 2

100 .

πpost(x) = N
(
μpost, σ

2
post

)
. (27)

4.3.2 Autocorrelation andmeasuring efficiency

In this example we are interested in comparing the relative
performance of the sequential approach to MH MCMC for
this simple problem. Typically, the purpose of running an
MCMC algorithm is to generate a set of samples which are
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distributed approximately according to the posterior. When
the samples are independent, the variance in the estimate
decreases at a rate of 1/N . However, the samples obtained
from MCMC algorithms are not independent. The variance
in the estimate obtained by averaging over samples from
MCMC algorithms decreases at a rate of τ/N where τ is the
integrated autocorrelation time given by

τ = 1 + 2
∞∑

s=1

ρ(s), (28)

and ρ(s) is the autocorrelation function for a given lag s [9].
The quantity N/τ is called the effective sample size of the
chain.

In practice, Markov chains from MCMC algorithms
are finite so the sum in Eq. 28 is truncated for some
s0 << N where N is the length of the chain. We use
the autocorrelation function from the statsmodels python
module [17]. The autocorrelation function in this library
also returns confidence bounds on the autocorrelation
function ρ(s) for each lag s computed according to
Bartlett’s formula. We compute 95% confidence bounds
for the autocorrelation function ρ(s) for each lag s.
We use these confidence bounds in the computation of
the integrated autocorrelation time in order to determine
reasonable confidence bounds on τ .

For a given proposal distribution, the sequential approach
will require fewer model solves than the standard MH
approach but will have larger integrated autocorrelation
τ since the sequential transition kernel has strictly lower
acceptance probability than the MH transition kernel. We
determine the relative efficiency of the sequential approach
to the MH approach as follows. Given a set of data dobs
generated as described above, we run the sequential and
MH approaches for Nseq and NMH iterations respectively
on the resulting posterior (27). We then determine the
average number of model solves required per sample by
each method denoted by n

seq
solves and nMH

solves . Since we
are considering individual time-steps of our model in the
sequential approach the term model solves is somewhat
ambiguous. Here, we use the term model solve to mean
computing one time-step of the model. So in this example,
evaluating the transition kernel for MH-MCMC requires
100 model solves per iteration while for the sequential
approach it will vary. Finally, we use Eq. 28 with the
summation truncated at some s0 << N , to estimate τseq and
τMH , the integrated autocorrelation values for the sequential
and MH approaches, respectively. We then measure the
efficiency of the sequential approach relative to MH by the
ratio

ε = nMH
solves τMH

n
seq
solves τseq

. (29)

The quantity ε in Eq. 29 is the efficiency of the sequential
approach relative to MH-MCMC.

4.3.3 MCMC results

The efficiency, as defined in Eq. 29 depends on the step-
sizes of the chains. It is known that the optimal step size
for MH-MCMC when the target is a univariate Gaussians
is ηopt ≈ 2.4 σpost where σpost is the standard deviation
of the target which is in this case the posterior defined by
Eq. 27. We compare the efficiency of the sequential and
MH approaches using proposal distributions with various
step-sizes scaled by the optimal step size ηopt. In particular,
we apply both approaches to the inverse problem described
above for step sizes of 0.5, 1, 2, 3, 4, 5, 8, and 10, each scaled
by ηopt. We run both the sequential and MH chains for 106

iterations for each step size. No burn-in period was used
because both chains were initialized at the true parameter
xtrue. This was repeated 5 times for different sets of data dobs
in order to determine the average behavior of each method
for this problem.

In Fig. 1a we show the efficiency of the sequential
method relative to the MH method for various step sizes
each scaled by the optimal step-size ηopt. The blue dots
represent the efficiency as defined in Eq. 29 averaged over
the five experiments. We use s0 = 400 lags to compute
the integrated autocorrelation times for both methods.
Clearly, the relative performance of the sequential approach
increases with step-size. At the optimal step-size, the MH
approach outperforms the sequential method. However, as
the step-size increases to 10 ηopt we see that the sequential
approach begins to outperform the MH approach. The
autocorrelation function ρ is a noisy function of the lag.
We compute 95% confidence bounds for the autocorrelation
function for each lag s in both methods. The dotted lines
in Fig. 1a show the efficiency when these bounds are
used in the sum in Eq. 28. The bottom dotted line shows
the efficiency when the upper bounds are used in the
computation of τseq and lower bounds are used in the
computation of τMH while the top dotted line shows the
reverse. Again, these quantities are averaged over all five
experiments with different sets of data dobs. These lines
give us an idea of the range of the efficiency due to noise
in the autocorrelation function. The quantity n

seq
solves is also

a noisy function but it steadies out very quickly as the
number of samples in the chain increases. In general, the
noise in the efficiency is dominated by the noise from the
autocorrelation times for both methods.

In Fig. 1b we show the quantity τ nsolves for both
approaches using different step-sizes. As with efficiency,
the values shown are averaged over all experiments. We see
that the reason for the increase in efficiency in the sequential
approach is that the MH-MCMC method becomes less
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Fig. 1 (a) Plot of efficiency for
various step-sizes using 400 lags
in the integrated autocorrelation
time. b) Model solves times
integrated autocorrelation with
400 lags for the sequential and
MH-MCMC approaches for
various step-sizes scaled by opt

efficient as the step-size increases (as expected), while the
sequential method is less sensitive to larger step-sizes.

Figure 1a shows the efficiency for various step-sizes
averaged over the five experiments. In Table 1, we show
the efficiencies for each experiment. It is clear that the effi-
ciency of the sequential approach is somewhat sensitive
to the noise in generating the data. Although the same noise
model was used in all experiments, some sets of obser-
vational data led to greater efficiency in the sequential
approach than others. It is for this reason that we reported
averaged values in Fig. 1a and b. However, in all cases, as
step-size increased from the optimal ηopt, so did the effi-
ciency of the sequential approach relative to MH-MCMC.

4.3.4 Discussion of example results

The results in the previous section demonstrate an important
situation in which the sequential approach can yield increased
efficiency over the MH-MCMC method. When step-sizes
are taken larger than optimal and when the time-steps of
the model provide somewhat redundant information, the
sequential approach can be more efficient by spending
fewer model solves in areas with low probability since initial
time-steps of the model can be used to determine whether
or not to reject a move without solving the full model.

Table 1 Efficiency from each experiment for step-sizes scaled by ηopt

Efficiency for each experiment

0.5 1.0 2.0 3.0 4.0 5.0 8.0 10.0

1 0.897 0.957 1.482 1.546 1.918 2.35 3.357 4.104

2 0.6 0.535 0.612 0.786 0.971 1.245 1.626 2.146

3 0.909 0.876 1.24 1.614 2.143 2.272 3.407 4.129

4 0.53 0.424 0.497 0.638 0.75 0.876 1.213 1.633

5 0.692 0.63 0.85 1.117 1.379 1.439 2.207 3.013

Note that when a smaller step-size is used in both the
MH and sequential approaches, the MH algorithm tends to
be more efficient. In this example, the time series of model
output is perfectly redundant since the model is simply the
identity map. If we had access to the noise-free data, then
a change in parameters would result in likelihood ratios rt
which are either uniformly less than or greater than one.
However, the noise in the data obscures this correlation.
When using a small step-size, it is likely that most jumps
will result in likelihood ratios rt which are neither uniformly
greater than or uniformly less than one. This is entirely due
to the noise in the data. The reason that larger steps yield
improved relative performance for the sequential approach
is that these steps often explore regions of parameter space
for which the change in model outputs for the parameters is
larger than the scale of the noise so that the likelihood ratios
are more often uniformly greater than or less than one.

Of course, for a general non-Gaussian posterior, an opti-
mal step-size may not be known. The sequential approach
could be useful in generating samples from a posterior until
a more appropriate step-size can be determined. Further-
more, for high-dimensional and extremely non-Gaussian
posteriors it may not be practical to explore the posterior
enough to determine an optimal step-size at all. We show
in the next section how inverse problems using the reser-
voir model described Section 2 can lead to posteriors for
which there is no obvious choice of step-size and how the
sequential approach can lead to improved performance in
this case.

5 Numerical results

In this chapter we apply MCMC using the sequential
transition kernel described in Section 4 to the reservoir
problem described in Section 2. The reservoir has faults and
the transmissibility of the faults are the inversion targets. We
assume here that the faults have constant transmissibility
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although this assumption could be relaxed and one could
describe the transmissibilities as fields defined along the
faults. First, the forward problem setup will be described.
Second, we define the specific inverse problem being
solved. Finally, we apply the sequential MCMC algorithm
to the inverse problem and compare its performance to that
of a MH-MCMC approach.

5.1 Forward problem setup

We solve the system described in Eq. 3 for a square 2D
reservoir domain. The permeability field is assumed to be
uniform and isotropic throughout the reservoir so that it
can be described by a single scalar value. In Table 2 we
summarize the parameters used in the forward model for
these results.

We take the reservoir domain Ω to be [0, 500]2 in meters
with boundary ∂Ω . There are two faults Γ1 and Γ2. The
fault Γ1 runs from [125, 225] to [225, 125] while Γ2 runs
from [200, 350] to [350, 200]. The total simulation time is
T ≈ 50.53 months and the time-step discretization is dt ≈
12.81 days so that the model runs for 120 time-steps. The
relative permeability functions for the water and oil phases
are given by kr,w = S2 and kr,o = (1−S)2 respectively. We
assume no-flow conditions along the boundary ∂Ω . Finally,
the injection well is located in the bottom left corner of
the reservoir and is taken to be a pressure well (constant
bottom hole pressure). The production wells are located
in the remaining three corners and are rate wells. The
mesh for the problem is generated using the finite element

Table 2 Parameters for the reservoir model

Parameter Value Units

Reservoir length 500 m

Initial pressure 1e7 Pa

Flow rate, (producers) 1e − 4 m3/s

Bottom hole pressure, (injector) 1.2e7 Pa

Well radius 0.125a m

Reference density, water 1000 kg/m3

Reference density, oil 900 kg/m3

Reference pressure 1.01325e5 Pa

Viscosity, water 3e − 4 Pa s

Viscosity, oil 6e − 4 Pa s

Compressibility, water 4.35e − 10 Pa−1

Compressibility, oil 4.35e − 10 Pa−1

Compressibility, rock 1.45e − 10 Pa−1

Permeability 1e − 13 m2

Porosity 0.3

aExact value of well radius is 0.12512136927444853m. This value
was based off the minimum cell diameter of the mesh

mesh generator Gmsh [10]. The mesh is unstructured and
conforming to the fault with a mesh size of 25m. Plots
of both the geometry of the reservoir domain and the
computational mesh are shown in Fig. 2.

In Fig. 3 we show the saturation field in the reservoir
after 30, 60, 90, and 120 time-steps. This corresponds to
roughly 12.5, 25, 37.5, and 50 months from the start of the
simulation. The fault transmissibilities in this case are taken
to be the true transmissbility used in the inverse problem
described in the next section. Figure 4 shows the pressure
field using the same values of transmissibility after 60 time-
steps or approximately 25 months from the start of the
simulation.

5.2 Inverse problem setup

We wish to invert for fault transmissibilities using pressure
data at the wells. For convenience, we non-dimensionalize
the fault transmissibilities by the quantity tf,0 = K0/Lμ0

where L is the length of one side of the square
reservoir domain and K0 and μ0 are reference permeability
and viscosity values respectively. We take the reference
permeability equal to the permeability of the reservoir
(which is a scalar) and the reference viscosity equal to the
wetting phase viscosity μw. This gives

tf,0 = 10−13

500 × 3 × 10−4
= 1

15
× 10−11. (30)

Furthermore, we choose to invert for the log-transmissibility
of the faults. Therefore, our inversion targets are x =
log

(
tf /tf,0

)
where tf are the fault transmissibilities.

Clearly, there is a one-to-one relationship between x and tf
so that inverting for one is equivalent to inverting for the
other.

Similar to the example in Section 4.3 we use a true
parameter xtrue to generate noisy synthetic observed data

dobs = M(xtrue) + η (31)

where η is some mean-zero random variable representing
the noise in the observation. Here we use

xtrue = [2.0, 1.5] . (32)

We take η to be mean-zero Gaussian noise. The
observations are pressure values at the four wells. Let di

obs
be the time-series of observed pressure data at a well i for
i = 1, 2, 3, 4 with corresponding noise ηi . Then we assume
that for each well, ηi , the covariance matrix is given by
σ 2 IT where IT is the T × T identity matrix and σ is the
standard deviation of the noise. We take

σ = 0.025 ∗ max(Mi (xtrue)), (33)

where Mi is the parameter-to-observable map for time-
series pressure data at well i.
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Fig. 2 (a) Geometry of the
reservoir domain with faults,
injection and production wells.
(b) Computational mesh used in
forward model

In Fig. 5 we show the pressure observations generate
by xtrue for each well along with the noise-corrupted
observation dobs.

We take our prior to be a uniform distribution on
[−8, 12]2. The parameter space is only two-dimensional for
this problem. We take a grid of parameters over the bounds

Fig. 3 Water saturations. (a) Saturation at 30 timesteps. (b) Saturation at 60 timesteps. (c) Saturation at 90 timesteps. (d) Saturation at 120 timesteps
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Fig. 4 Pressure at 60 time-steps

of the prior and evaluate the posterior. We show the resulting
plot of the posterior in Fig. 6.

5.2.1 Potential for improved performance by the sequential
approach

The sequential approach to MCMC can be more efficient
than a standard MH-MCMC approach when two conditions
are met. First, the time-series of data should be some-
what redundant, which is a reasonable assumption for many
physical models. Second, the step-sizes used should be rel-
atively large. For a Gaussian probability density there is an

Fig. 6 Non-normalized posterior for the reservoir problem with
uniform prior

optimal step-size for MH-MCMC when the proposal distri-
bution is also Gaussian. We demonstrated in Section 4.3 that
when the posterior distribution is a Gaussian, taking larger
than optimal step-sizes led to an increase in the efficiency of
the sequential approach relative to MH-MCMC. However,
for an arbitrary posterior which may be very non-Gaussian,
an optimal choice of step-size may not be obvious. We
now describe why the inverse problem solved here may be
amenable to the sequential approach to MCMC.

Figure 6 shows that the posterior is extremely non-
Gaussian and that choosing a single step-size for MCMC

Fig. 5 Observed pressure data
from each well. (a) Data from
well 1. (b) Data from well 2. (c)
Data from well 3. (c) Data from
well 3
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may be difficult. For the region of parameter space for
which x2 > 2.5 and 0 < x1 < 5, a step-size with large
variance in the x2 parameter and small variance in x1 may
be most efficient for MH-MCMC. However, for the region
of parameter space for which x1 > 5 and 0 < x2 < 2.5
the reverse is true. A step-size with high variance in the
x1 parameter and low variance in the x2 parameter may
be preferable. In Section 4.3 we showed that using the
sequential approach for MCMC can be more efficient than
MH-MCMC when larger step-sizes are used in the proposal
distribution. We will show that the sequential approach
with a relatively large step size outperforms standard MH-
MCMC for a variety of step sizes.

Now, the assumption behind the sequential approach is
that model output from initial time-steps often contains
some information about future time-steps. If this is not
the case, we should not expect the sequential approach to
yield improved performance. To determine whether or not
one expects the reservoir problem to be a good candidate
for the sequential approach, one could examine some of
the pressure curves generated by various parameters to
see if this is a reasonable assumption. In Fig. 7 we show
pressure curves at wells 1 and 2 generated from various
parameters. The parameter values which led to each of
the pressure curves are shown in the legend. The pressure
curve generated by the true parameter xtrue = [2.0, 1.5] is
also shown. For ease of presentation, these curves are only
shown for time-steps 10 to 39 which corresponds to a time
horizon of about 384.3 days.

What Fig. 7 shows is that, over the time window, many
of the parameters shown lead to pressure curves which do
not cross each other so that initial time-steps can be used to
decide whether or not a jump leads to a large decrease in
posterior probability. To be more precise, consider Fig. 7b.
If one had access to noiseless data, i.e. the blue dotted line
in the figure, one would only need to evaluate one time-
step of the model for each of these parameters to decide
which one produces model output which is closest to the
(noise-free) data. In Fig. 7a we see that of the pressure
curves shown, only the one corresponding to parameter x =
[1.5, −3] crosses some of the others. This pressure curve is
an example of a situation in which the entire time-series of
data may be necessary to decide whether or not the given

Fig. 7 Model outputs from wells. (a) Well 2. (b) Well 3

parameter leads to model output closer to or farther away
from the data (in a least-squares sense). In Fig. 7 we have
only shown pressure curves from a few parameters at two
of the four wells for a small window of time. This is for
ease of presentation as displaying more pressure curves over
a longer time-window would be too crowded. The purpose
of Fig. 7 is to provide some intuition for situations in
which one might expect the sequential approach to perform
well relative to MH-MCMC and why the inverse problem
considered here may be one such situation.

In summary, we expect the inverse problem considered
here to be one for which the sequential approach to MCMC
is a better choice than MH-MCMC for two reasons. First,
the shape of the posterior means that choosing a single
global step-size for which MH-MCMC performs well in
all regions of the posterior may be difficult. Second, the
time-series data seems to have some redundancy which we
can exploit with a sequential approach. Using the sequential
MCMC algorithm allows one to take larger step-sizes and
rely on initial time-steps to reject proposed jumps which
occur in low-probability regions of the posterior.

5.3 Results

We run the MH-MCMC approach with isotropic step-sizes
of 3.0, 5.0, 7.5, and 10.0 and we run the sequential approach
to MCMC with an isotropic step-size of 10. We only choose
one step-size for the sequential approach because we expect
large step-sizes to work best for the method. Further, even
if a smaller step-size would lead to increased performance
of the method, we expect this improvement to be slight. We
initialize all chains at [0, 0] and run each of the MH chains
for 25200 iterations and the sequential chain for 250200
iterations. For each chain, we discard the first 200 samples
to allow for a burn-in period. This means that we effectively
have 25000 samples for each of the MH chains and 250000
samples for the sequential method. The prior is uniform,
so for both methods, when a jump is proposed outside the
bounds of the prior, we reject without solving the model.

We compare the efficiency of each method as in
Section 4.3 by computing

ε = nMH
solves τMH

n
seq
solves τseq

, (34)

where nMH
solves and n

seq
solves are the average number of solves

per sample for MH and sequential MCMC respectively and
τMH and τseq are the integrated autocorrelation times for
MH and sequential MCMC respectively. In this problem,
because the prior is uniform, for both methods when a jump
is proposed outside the bounds of the prior it is rejected
with zero model solves. This means that nMH

solves will not
necessarily be equal to the number of time-steps of the
model as it was in the example in Section 4 but will instead
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be some number between 0 and 120. For this problem, we
compute τx1 and τx2 , the integrated autocorrelation times for
the mean of each of the two parameters.

In practice, it is somewhat difficult to make an accurate
comparison of the effectiveness of the two methods due to
the noise in the autocorrelation function ρ(s) for a given lag
s. Resolving the noise for a large number of lags requires
generating many samples which in turn requires solving
the model many times which can be prohibitive. In order
to account for this, we carefully choose how many lags
to include in the summation from Eq. 28 when computing
the autocorrelation times τx1 and τx2 for each chain. To
determine an appropriate number of lags for each integrated
autocorrelation time, we compute 95% confidence bounds
for the autocorrelation function ρ(s) for each lag s < 1000.
We then find the smallest number of lags s0 for which the
value of ρ(s0 + 1) is smaller than half of the confidence
interval. For each integrated autocorrelation time τ we use
s0 lags in the summation so that the noise in each term is
not too large relative to the value of ρ(s). That is, for each
chain in each parameter, we compute

τ = 1 + 2
s0∑

s=1

ρ(s), (35)

Figure 8 shows the autocorrelation functions for each chain
in both parameters x1 and x2. The confidence intervals are
shown as dotted lines. Once the autocorrelation function
falls below this threshold we can be reasonably sure that the
noise is larger than the signal and we do not use any more
lags in the computation of the integrated autocorrelation
times τ in the results. The largest number of lags before
which this happens, s0, is shown in each plot in Fig. 8
as a blue dot. Table 3 shows s0 for each chain in each
variable. This is the maximum number of lags we use when
computing the integrated autocorrelation times τ for each
chain. As in Section 4.3 we use the autocorrelation function
in the statsmodels python package [17].

In Tables 4 and 5 we show the quantities τx1 nsolves

and τx1 nsolves respectively for each method using the lags
in Table 3. The best and worst case values are computed
using the lower and upper 95% confidence bounds in
the autocorrelation function while the expected values are
computed using the expected values of ρ(s).

Tables 6 and 7 shows the corresponding relative
efficiencies of the sequential MCMC approach with a step-
size of 10.0 compared to MH with step-sizes 3.0, 5.0, 7.5,
and 10.0.

These show that, the MH chain with a step-size of
10.0 seems to perform best among all the MH chains
when estimating x1 while the MH chain with a step-
size of 7.5 is slightly more efficient than the other MH
chains for estimating x2. The sequential approach is more

efficient than any of the MH chains for estimating both
parameters x1 and x2. Even in the worst case, it is
roughly 220% more efficient than the MH approach when
estimating the parameter x1 and 320% more efficient when
estimating x2. Furthermore, the worst case efficiencies are
extremely pessimistic. We expect that the actual integrated
autocorrelation times are well within the confidence bounds
computed.

Table 8 gives the acceptance rates for each method. It
also shows the acceptance rate per full model solve. We
emphasize that, up to this point, we have considered a model
solve to be computing one time-step of the model. In this
case, we report the number of accepted samples per full
model solve (i.e. evaluating 120 time-steps of the reservoir
model). This is a natural metric considering any time we
accept a proposed jump with the sequential approach we
must evaluate the full model. We note that, while the
acceptance rates for each method are extremely low, the
acceptance rate per full model solve for the sequential
approach is roughly 28.3%. The sequential approach has
an acceptance rate per full model solve fairly close to this
value while the MH approaches even with relatively small
step-sizes are much worse. Finally, we consider the mean
squared jump distance per accepted sample. It is common
to compute the mean squared jump distance for a chain as
it can be an indicator of how well the chain is mixing. In
this case, only considering the mean squared jump distance
of accepted samples is more natural because iterations of
each method require different numbers of model solves on
average. Since we are interested in how well the chain
is mixing per model solve, considering acceptance rates
per full model solve together with the mean squared jump
distance per accepted sample provides some insight into
how efficiently the method is performing (Fig. 9).

We use an evenly spaced grid of 6400 points to estimate
the mean and variance of the posterior denoted μtrue and
σ 2
true respectively. We show in Fig. 10 how the estimates of

the mean of both parameters obtained from the samples of
the sequential chain converge to the correct values as the
number of samples increases.

The mean of the samples from the full sequential chain
in each parameter is μseq ≈ [3.1656, 4.9176] while the grid
mean for each parameter is μtrue ≈ [3.1147, 4.9552] so that
the difference between them is

|μseq − μtrue| ≈ [0.0509, 0.0376] . (36)

The integrated autocorrelation times for each parameter in
the sequential chain are τx1 ≈ 244.26 and τx2 ≈ 238.40 so
that the effective sample size (neff) for the sequential chain
in each parameter is

neff ≈ [1023, 1049] . (37)
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Fig. 8 Autocorrelation functions
for each chain in the experiment
for both parameters x1 and x2.
The dotted lines are 95%
confidence bounds and the blue
dots are s0. (a) Autocorrelation
function for x1 from sequential
chain. (b) Autocorrelation
function for x2 from sequential
chain. (c) Autocorrelation
function for x1 from MH chain
with step-size 3:0. (d)
Autocorrelation function for x2
from MH chain with step-size
3:0. (e) Autocorrelation function
for x1 from MH chain with
step-size 5:0. (f) Autocorrelation
function for x2 from MH chain
with step-size 5:0. (g)
Autocorrelation function for x1
from MH chain with step-size
7:5. (h) Autocorrelation function
for x2 from MH chain with
step-size 7:5. (i) Autocorrelation
function for x1 from MH chain
with step-size 10:0. (j)
Autocorrelation function for x2
from MH chain with step-size
10:0
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Table 3 Maximum number of lags s0 used in computing the integrated
autocorrelation times for each chain in parameters x1 and x2

Sequential MH 3.0 MH 5.0 MH 7.5 MH 10.0

x1 375 108 141 124 90

x2 386 104 135 89 158

Table 4 τx1nsolves for each of the methods used. Worst and best cases
are computed using the 95% confidence bounds in the autocorrelation
function

Sequential MH 3.0 MH 5.0 MH 7.5 MH 10.0

Worst case 1,334.62 11,056.85 8,122.5 6,484.94 4,118.11

Expected 1,190.3 9,378.6 6,435.28 5,303.43 3,529.18

Best case 1,045.98 7,700.35 4,748.06 4,121.91 2,940.25

Table 5 τx2nsolves for each of the methods used. Worst and best cases
are computed using the 95% confidence bounds in the autocorrelation
function

Sequential MH 3.0 MH 5.0 MH 7.5 MH 10.0

Worst Case 1,309.49 11,151.82 9,905.64 5,915.18 7,289.35

Expected 1,161.72 9,511.99 8,096.76 5,090.9 5,942.7

Best Case 1,013.95 7,872.16 6,287.87 4,266.62 4,596.05

Table 6 Relative efficiency ε of the sequential approach compared to
MH with various step-sizes in estimating parameter x1

MH 3.0 MH 5.0 MH 7.5 MH 10.0

Best case 10.57 7.77 6.2 3.94

Expected 7.88 5.41 4.46 2.96

Worst case 5.77 3.56 3.09 2.2

Table 7 Relative efficiency ε of the sequential approach compared to
MH with various step-sizes in estimating parameter x2

MH 3.0 MH 5.0 MH 7.5 MH 10.0

Best case 11 9.77 5.83 7.19

Expected 8.19 6.97 4.38 5.12

Worst case 6.01 4.8 3.26 3.51

Table 8 Table shows the average acceptance rate, acceptance rate per
model solve, and mean squared jump distance per accepted sample for
each method

Sequential MH 3.0 MH 5.0 MH 7.5 MH 10.0

Acceptance 0.012 0.118 0.066 0.037 0.023

Acceptance per solve 0.283 0.134 0.084 0.064 0.056

Average jump 29.341 7.877 18.18 29.189 32.956

Fig. 9 MCMC chains for the sequential and MH approaches with
step-sizes of 10.0 each. (a) Sequential chain. (b) MH chain

The variance of each parameter computed using the grid of
samples is

σ 2
true ≈ [7.3742, 12.9291] . (38)

Now, using the effective sample size in Eq. 37 along with
the grid variance in Eq. 38, we can estimate the standard
deviation of the sample mean error of the sequential chain
[9] as
√

σ 2
true

neff
≈ [0.0849, 0.1110] . (39)

From Eqs. 36 and 39, we see that the difference between
the sample mean of the sequential chain and the grid mean
is within a standard deviation of the sample mean error
computed using the integrated autocorrelation times for the
sequential chain and from the grid means and variances.
This indicates that the sample means of the sequential chain
are converging to the correct means for parameters x1 and
x2 as expected.

Finally, we note that the variance of the samples
from the sequential chain for each parameter is σ 2

seq ≈
[7.7297, 12.8770]. The difference between the sample
variance from the sequential chain and the variance from the
grid of samples is

|σ 2
true − σ 2

seq| ≈ [0.3555, 0.0521] . (40)

This shows that the sample variance of the sequential chain
agrees well with the grid variance.

Fig. 10 Convergence of sequential sample means to grid means. The
sequential chain sample means are the solid blue lines. Grid means are
shown as flat solid orange lines
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5.4 Discussion

We have shown that the sequential approach with a large
step-size is more efficient for this problem than MH-
MCMC for a variety of step-sizes. The reasons for this
improved performance are the redundancy of time-series
data in this reservoir model and the shape of the posterior
which makes choosing a single step-size difficult. The fact
that model output from initial time-steps is often correlated
with future time-steps allows one to reject steps which lead
to extremely low-probability regions of parameter space
with relatively few model solves. The posterior having two
distinct, elongated tails necessitates this larger step-size.

Crucial to this comparison is the limitation that both
methods use a single step-size for the entire parameter
space. In principle, one could choose multiple step-
sizes for different regions of parameter space to improve
performance. In this case, one would expect the sequential
approach to be less efficient than MH-MCMC as the
choice of such a proposal would depend on the shape of
the posterior which implicitly contains information about
the entire time-series of data. In practice choosing such
a step-size would require significant exploration of the
parameter space and would be extremely impractical for
even moderately expensive models in higher dimensions.
The utility of the sequential approach is that it allows
one to choose a single step-size which is very large and
use information from initial time-steps to reduce model-
solves in low-probability regions which makes it extremely
practical for problems such as the one considered here.

We acknowledge that choosing a step-size which is
not isotropic could lead to increased performance in MH-
MCMC. The posterior has some symmetry about the
diagonal x1 = x2 but more probability mass in the region
where x2 > 2.5. To account for this it may be more
appropriate to choose a step-size which is tuned for that
region of parameter space more than the other regions.
Finding such a step-size would have required running many
more MH-MCMC chains to determine one with an optimal
step-size in both directions. This was beyond the scope of
the current work but may be interesting for future research.
We expect that improved performance from this anisotropic
step-size for MH-MCMC would be fairly modest as the
posterior is somewhat symmetric as noted earlier. Due to
the magnitude of the relative efficiency of the sequential
approach to the MH algorithm for all step-sizes we believe
that the sequential approach would still outperform MH-
MCMC even with a well-chosen anisotropic step-size.
Regardless, as for choosing multiple step-sizes for different
regions of parameter space, choosing such an anisotropic
step-size could be difficult and would require knowledge
of the shape of the posterior which, in practice, could only

be obtained by exploring parameter space using MCMC or
some other approach. So at worst, the sequential approach
seems to lead to improved performance for isotropic step-
sizes and could be used for initial exploration of parameter
space until one obtains more knowledge about the shape of
the posterior and can choose a step-size accordingly.

6 Conclusions and future work

In this work, we have presented an MCMC algorithm
which can efficiently generate samples from a Bayesian
posterior when the likelihood involves time-series data.
The connection between the efficiency of this sequential
approach relative to a standard Metropolis-Hastings MCMC
algorithm and the step-size used in the proposal distribution
was demonstrated through a simple problem in which
the optimal step-size was known. This sequential MCMC
algorithm was then applied to a Bayesian inverse problem in
which the forward model was a two-phase reservoir model.
We demonstrated that the sequential MCMC approach
presented here was more efficient than Metropolis-Hastings
for a variety of step-sizes when applied to this problem.

We acknowledge that the sequential approach has some
limitations. It relies on the assumption that time-series data
has some redundancy. Although this assumption need not
hold exactly, for models in which data at different time-
steps informs distinct directions in parameter space, we
expect the sequential approach presented here to perform
poorly relative to a standard MH approach. In the case of
noisy data, we have shown that the sequential approach
only outperforms standard MH-MCMC when step-sizes are
relatively large. The inverse problem defined in Section 5 is
an example of an inverse problem which yields a posterior
which has no obvious optimal step-size. In this situation, the
sequential MCMC algorithm can be a practical method for
efficiently generating samples from the posterior.

The sequential approach described in this work is very
general and could be applied to a variety of other problems
beyond petroleum reservoirs. In principle, any problem in
which the model is time-dependent and the time series
data has some redundancy is a candidate for the method.
Examining application of the method to other problems and
application areas should be the focus of future work.

Additionally, here, we have implemented the sequential
approach using a rejection stage at every time-step of the
model. It may be more natural in some problems to only
perform a rejection stage after multiple time-steps of the
model have been computed for a proposed jump. This idea
could also be helpful if one is using the sequential approach
with a large step-size to generate samples in order to explore
parameter space and determine a more appropriate step-
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size for a standard MH algorithm. We have shown that,
for a Gaussian posterior with known optimal step-size, the
sequential approach is less efficient than the standard MH
approach. In this case however, one could use the sequential
approach described here with a rejection stage at every time-
step. As the step-size is tuned to the posterior, one could
gradually increase the number of model solves evaluated
before a rejection stage is performed. We expect that this
scheme would allow the use of initial time-steps to inform
the algorithm while yielding fewer false rejections as the
step-size potentially decreases in some directions.

Finally, although we do not show the results here, the
sequential approach seems to be very efficient for burn-in
periods when the chain is initialized far from a mode of
the posterior. This is likely because when one starts very
far from regions of high posterior probability, a proposed
jump away from a region of high probability is likely to
yield a degradation in the likelihood function for all time-
steps. Conversely, a proposed jump towards a region of high
posterior probability is likely to yield an increase in the
likelihood function for each time-step so that false rejections
are unlikely to occur. This is another area in which future
work is required.
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