

Uncertainty quantification in reservoirs with faults using a sequential approach

Samuel Estes¹ · Clint Dawson¹

Received: 24 April 2020 / Accepted: 18 November 2020 / Published online: 15 January 2021
© Springer Nature Switzerland AG 2021

Abstract

Reservoir simulation is critically important for optimally managing petroleum reservoirs. Often, many of the parameters of the model are unknown and cannot be measured directly. These parameters must then be inferred from production data at the wells. This is an inverse problem which can be formulated within a Bayesian framework to integrate prior knowledge with observational data. Markov Chain Monte Carlo (MCMC) methods are commonly used to solve Bayesian inverse problems by generating a set of samples which can be used to characterize the posterior distribution. In this work, we present a novel MCMC algorithm which uses a sequential transition kernel designed to exploit the redundancy which is often present in time series data from reservoirs. This method can be used to efficiently generate samples from the Bayesian posterior for time-dependent models. While this method is general and could be useful for many different models. We consider a Bayesian inverse problem in which we wish to infer fault transmissibilities from measurements of pressure at wells using a two-phase flow model. We demonstrate how the sequential MCMC algorithm presented here can be more efficient than a standard Metropolis-Hastings MCMC approach for this inverse problem. We use integrated autocorrelation times along with mean-squared jump distances to determine the performance of each method for the inverse problem.

Keywords Markov chain Monte Carlo · Reservoir simulation · History matching · Bayesian · Inverse problems

1 Introduction

Accurate simulation of flow in porous media is critically important in many applications such as groundwater contaminant transport, carbon sequestration, and petroleum production. We focus here on applications to petroleum reservoir simulation. Obtaining accurate reservoir models can be extremely challenging due to the difficulty in directly measuring model parameters such as the permeability field or transmissibility of faults directly. This challenge is addressed by the field of history matching. History matching is a type of inverse problem in which observational data collected from a reservoir is used to estimate model parameters which cannot be directly observed [15]. Unfortunately, obtaining history matched models can be extremely expensive due to the large number of model

parameters, nonlinearity of the model, and the high computational cost of running even a single reservoir simulation. For this reason, developing algorithms which take advantage of the unique structure of the history matching inverse problem is extremely important.

It is often convenient to pose the history matching problem as a Bayesian inverse problem. The solution to this problem is then a probability distribution known as the posterior, which combines prior knowledge about model parameters with information from (noisy) observational data. In practice, obtaining useful information from this posterior probability can be difficult and it is common to employ Monte Carlo methods for estimating moments of the posterior. In particular, Markov chain Monte Carlo (MCMC) methods are often used to generate samples which are distributed (approximately) according to the posterior as they tend to suffer from the Curse of Dimensionality less than some other methods. However, MCMC methods can be prohibitively expensive for many history matching applications due to the difficulties outlined above.

In this work, we present an MCMC algorithm which is designed to exploit the structure inherent in many history

✉ Samuel Estes
samuelestes91@gmail.com

¹ Oden Institute, University of Texas at Austin,
Austin, TX, USA

matching problems and apply it to a two-phase reservoir model. The algorithm here relies on a novel sequential transition kernel which may reduce the number of model solves required by MCMC. The key assumption behind the approach is that the time series of production data in reservoirs is often somewhat redundant. To be more precise, consider two distinct vectors of model parameters x_1 and x_2 with corresponding distinct time series model outputs $\{d_1^t\}_{t=1}^T$ and $\{d_2^t\}_{t=1}^T$. The assumption is that for many parameters x_1 and x_2 , if d_1^t more closely matches the observed reservoir data than d_2^t at time $t = 1$, then the rest of the time-series $\{d_1^t\}_{t=2}^T$ will as well. Although this assumption may not hold exactly for every pair of parameters and is complicated by the presence of noise in the data, we show that it can still be leveraged to implement an algorithm which yields increased efficiency over a simple yet commonly used implementation of MCMC in practical circumstances.

2 The forward model

Reservoir simulation involves solving the equations governing the flow of fluid in a porous medium in order to predict future production of hydrocarbons. In this work, we model the flow of fluids in a reservoir, namely water and oil, using a two-phase compressible flow model. Water is the wetting phase while oil is the non-wetting phase. The reservoir is assumed to have faults which are modelled as lower dimensional objects that introduce a discontinuous jump in the pressure field and act as barriers to the flow. The transmissibility of the fault is a parameter which relates the jump in pressure to the flow velocity normal to the fault. The equations are discretized using a finite element formulation in space and an implicit Euler scheme in time. In order to solve the resulting discretized system we use FEniCS, an open source library for solving finite element systems. In this section, we first summarize the equations of two-phase flow in a porous medium. For a more detailed description of porous media flow, see [5, 11]. Second, the representation of faults as lower dimensional objects is discussed and fault transmissibilities are introduced. Modelling fractures and faults as lower dimensional interfaces in reservoir simulation has been discussed in [1, 2, 13]. Finally, the numerical implementation of the forward model using the FEniCS library is described. More information about the FEniCS library can be found in [12].

2.1 Reservoir model with faults

The fluids in the reservoir are assumed to be immiscible and Newtonian, flowing under isothermal conditions.

Neglecting gravity and capillary pressure, we solve the following system of equations for the reservoir flow:

$$\begin{aligned} \mathbf{u} &= -\lambda_t(S)\mathbf{k}\nabla p \\ \phi c \frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} \\ -[c_w\lambda_w(S) + c_n\lambda_n(S)] \frac{\mathbf{u} \cdot \mathbf{u}}{\lambda_t(S)^2 \mathbf{k}} &= q_w + q_n \\ \phi \frac{\partial \rho_w S}{\partial t} + \nabla \cdot [\rho_w f_w(S)\mathbf{u}] &= \rho_w q_w, \end{aligned} \quad (1)$$

where the subscripts w and n denote the wetting and non-wetting phases respectively. The primary variables are the global velocity $\mathbf{u} = \mathbf{u}_w + \mathbf{u}_n$, water saturation $S = S_w$, and the global pressure $p = p_w = p_n$ since capillary pressure is ignored. The absolute permeability of the porous medium is \mathbf{k} . The phase mobilities are $\lambda_w = k_w/\mu_w$ and $\lambda_n = k_n/\mu_n$, where k_w and k_n are the relative permeabilities and μ_w and μ_n are the viscosities. The relative permeabilities are functions of the saturation. The function $\lambda_t = \lambda_w + \lambda_n$ is the total phase mobility. The total compressibility is $c = c_r + (1 - S)c_n + Sc_w$ where c_w and c_n are the fluid compressibilities of each phase and c_r is the rock compressibility. The porosity of the rock matrix is ϕ . Finally, the water phase density is ρ_w , the source terms for the wetting and non-wetting phases are q_w and q_n respectively, and $f_w(S) = \lambda_w/\lambda_t$ is the fractional flow function. The boundary conditions are no-flow. All that remains to complete the forward model is to introduce the representation of faults into the formulation.

A fault is a heterogeneity characterized by a sharp change in the permeability tensor \mathbf{k} over a region with very small width relative to its length and the overall size of the reservoir domain [16]. Typically, the width of faults is on the order of meters while the size of a reservoir is often on the order of hundreds of meters [8]. Although the presence of a fault can have a significant impact on the flow of fluids in a porous medium, their small width may require a very fine mesh leading to excessively high computational costs [8]. One way to deal with this issue is to consider a reduced fault model in which the fault is treated as a surface of codimension one coupled with the rest of the domain. This avoids the need for an extremely fine grid to resolve the (volumetric) fault.

Here, we assume no flow along the fault so that the fault acts as a barrier to the flow and introduces a discontinuous pressure jump as in [14]. Additionally, the source terms q_w and q_n are both assumed to be identically zero inside the fault. This gives the following jump condition for a fault Γ_i in the interior of the domain

$$[[\mathbf{u} \cdot \mathbf{n}^i]]_{\Gamma_i} = 0, \text{ and, } \mathbf{u} \cdot \mathbf{n}^i - t_f^i [[p]]_{\Gamma_i} = 0, \quad (2)$$

where \mathbf{n}^i is a vector normal to the fault and t_f^i is the transmissibility multiplier. The transmissibility multiplier characterizes the extent to which fluid can flow across the fault. A low transmissibility means that the flow will tend to avoid the fault in which case the fault is said to be closed. A high value of the transmissibility means that the fault will have negligible impact on the flow and the fault is said to be open. In this work, we are primarily interested in using techniques from uncertainty quantification to estimate the value of fault transmissibilities from data.

With the addition of interior jump conditions for the faults the final system of equations for a reservoir with n_f faults is

$$\begin{aligned} \mathbf{u} &= -\lambda_t(S)\mathbf{k}\nabla p \\ \phi c \frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} \\ -[c_w\lambda_w(S) + c_n\lambda_n(S)] \frac{\mathbf{u} \cdot \mathbf{u}}{\lambda_t(S)^2 \mathbf{k}} &= q_t \\ \phi \frac{\partial \rho_w S}{\partial t} + \nabla \cdot [\rho_w f_w(S)\mathbf{u}] &= \rho_w q_w \\ [[\mathbf{u} \cdot \mathbf{n}^i]]_{\Gamma_i} &= 0 \\ \mathbf{u} \cdot \mathbf{n}^i - t_f^i [[p]]_{\Gamma_i} &= 0, \end{aligned} \quad (3)$$

where $i = 1, \dots, n_f$ and we have introduced the total source term $q_t = q_w + q_n$. Along with boundary and initial conditions, Eq. 3 gives the forward model used in this work.

2.2 Discretization

We approximate (3) in space by combining a mixed finite element formulation with a DG scheme. The mixed finite element formulation is used to discretize the pressure and velocity equations while we use a DG scheme for the saturation equation. We use lowest-order Raviart-Thomas elements for the velocity and piecewise constant discontinuous elements for the pressure and saturation [4]. The time derivatives are discretized using an implicit Euler method. Although this leads to a nonlinear system, using the implicit Euler method yields more favorable stability than an explicit Euler scheme. This gives the following problem: Given $S^0, p^0, \forall j = 1, \dots, N$ find $(\mathbf{u}^j, p^j, S^j) \in (\mathbf{V}_h, W_h, Z_h)$ such that

$$\begin{aligned} \left(\left[\mathbf{k} \lambda_t(S^j) \right]^{-1} \mathbf{u}^j, \mathbf{v} \right) + \sum_{i=1}^{n_f} \left\langle \frac{1}{t_f^i} \mathbf{u}^j \cdot \mathbf{n}, \mathbf{v} \cdot \mathbf{n} \right\rangle_{\Gamma_i} \\ - (p^j, \nabla \cdot \mathbf{v}) = 0, \quad \forall \mathbf{v} \in \mathbf{V}_h \\ \left(\phi c \frac{p^j - p^{j-1}}{\Delta t}, w \right) + (\nabla \cdot \mathbf{u}^j, w) \\ - \left(\left[c_w \lambda_w(S^j) + c_n \lambda_n(S^j) \right] \frac{\mathbf{u}^j \cdot \mathbf{u}^j}{\lambda_t(S^j) \mathbf{k}}, w \right) \end{aligned}$$

$$\begin{aligned} &= (q_t, w), \quad \forall w \in W_h \\ \left(\phi \frac{\rho_w(p^j) S^j - \rho_w(p^{j-1}) S^{j-1}}{\Delta t}, z \right) \\ - \left(\rho_w(p^j) f_w(S^j) \mathbf{u}^j, \nabla z \right) \\ + \langle \rho_w(p_{up}^j) f_w(S_{up}^j) \mathbf{u}^j \cdot \mathbf{n}, [[z]] \rangle_e \\ - \left(\rho_w(S^j) q_w, z \right) &= 0, \quad \forall z \in Z_h, \end{aligned} \quad (4)$$

where (\cdot, \cdot) and $\langle \cdot, \cdot \rangle$ denote the usual inner products on the volume and edges of the elements of the mesh respectively, \mathbf{n} is the outward unit normal vector field defined on the edges of the mesh, V_h is the space of lowest order Raviart-Thomas basis functions, and W_h and Z_h are the spaces of piecewise constant discontinuous functions defined on the computational mesh. We use p_{up}^j and s_{up}^j to mean the pressure and saturation values on the edges of the mesh chosen to satisfy upwinding for the numerical fluxes.

For the wells, we take the injection wells to have constant pressure and the producers to be rate wells. The water source term q_w is given by

$$\begin{aligned} q_w = \sum_{i=1}^{N_I} \alpha_I^i \lambda_t(S_I^i) J^i (p_I^i - p) f_w(S_I^i) \phi(x_I^i, \sigma^2) \\ + \sum_{i=1}^{N_P} -\alpha_P^i Q_P^i f_w(S) \phi(x_P^i, \sigma^2), \end{aligned} \quad (5)$$

where the subscripts I and P denote injection and pressure wells respectively, $N_{I,P}$ are the number of injection and production wells, $x_{I,P}$ are the locations of the wells, and ϕ is a Gaussian function with standard deviation given by σ . Here, we take $\sigma \approx 18.768$.¹ The water saturation values at the injection wells are given by S_I , the term $\alpha_{I,P}$ is a multiplication factor for edge and corner wells, p_I is the constant bottom hole pressure at the injection wells, and Q_P is the flow rate at each of the production wells. The multiplication factors $\alpha_{I,P}$ are taken to be 1 for interior wells, 2 for edge wells, and 4 for corner wells. In this work, the only wells considered are corner wells. Finally, J is the well index from Peaceman's model given by

$$J = \frac{2\pi \mathbf{k}}{\ln \left(\frac{r_e}{r_w} \right)}, \quad (6)$$

where r_w is the well radius and r_e is an effective radius. In this case, the effective radius is taken to be

$$r_e = \frac{2\sqrt{2}h}{3} e^{-\frac{\pi}{6}}, \quad (7)$$

¹For the interested reader, we take σ to be the minimum cell diameter of the computational mesh.

where h is the minimum cell diameter of the computational mesh.² Similarly, the source term for the oil phase, q_n is given by

$$q_n = \sum_{i=1}^{N_I} \alpha_I^i \lambda_I(S_I^i) J^i (p_I^i - p) f_n(S_I^i) \phi(x_I^i, \sigma^2) + \sum_{i=1}^{N_P} -\alpha_P^i Q_P^i f_n(S) \phi(x_P^i, \sigma^2). \quad (8)$$

For a more detailed explanation of the numerical implementation of wells see [5].

We assume that the compressibilities c_r , c_n , and c_w , are constant and that the fluids are slightly compressible so that

$$\rho_\alpha = \rho_{0,\alpha} [1 + c_\alpha (p - p_0)], \quad \alpha = w, n, \quad (9)$$

for some reference pressure p_0 and reference densities $\rho_{0,w}$ and $\rho_{0,n}$. The rock compressibility in this work is very small $\sim \mathcal{O}(10^{-10})$ so we treat the porosity ϕ as constant for convenience.

We solve the system using the FEniCS library [12]. This is an open-source computing platform for solving partial differential equations. The mesh is generated using Gmsh [10] and is conforming to the faults. This means that each of the faults will lie entirely along the facets of the mesh.

3 Inverse problems

In this work we investigate uncertainty quantification for inverse problems in petroleum reservoir simulation. This process is known as history matching in the field of petroleum engineering. In this section we describe the formulation of the inverse problem solved in this work. First, we briefly describe history matching, commonly used observational data and inversion targets, and the challenges posed by these types of inverse problems. A more detailed treatment of history matching in reservoirs can be found in [15]. Second, we describe the Bayesian framework for solving inverse problems which is used in this work [9, 19]. Finally, we describe the Markov chain Monte Carlo method which is a common approach to generating samples from the Bayesian posterior in order to estimate moments of the probability distribution [9].

3.1 History matching

History matching is an inverse problem in which observational data collected from a reservoir is used to estimate model parameters that may be difficult to determine through observation alone. Increases in computational power and the

²The mesh used in this work has minimum cell diameter $h = 18.76820539116728$ meters.

adoption of Monte Carlo methods are partially responsible for recent progress in history matching with large amounts of reservoir data [15].

Given a reservoir model $M : X \rightarrow D$ and potentially noisy observational data d_{obs} , the basic problem of history matching is to find the model parameters $x \in X$ such that

$$M(x) = d_{\text{obs}}. \quad (10)$$

Due to observational noise and model error, it may be the case that no set of model parameters x exactly matches the observational data d_{obs} in which case one seeks model parameters x which approximately matches the data. In this case (10) can be replaced by a minimization problem, find

$$\operatorname{argmin}_x \left\{ \frac{1}{2} \|d_{\text{obs}} - M(x)\|_D^2 \right\} \quad (11)$$

for some norm $\|\cdot\|_D$ on the space of admissible model outputs D . Parameters that must be specified in a typical numerical reservoir simulator include porosity, the permeability field, fault transmissibility, initial conditions, etc. The data d_{obs} used to estimate the parameters is typically production data taken at the wells. These can be a time series of measurements of flow rate, pressure, or ratios of flow rates at producing or injecting wells. In this work, we consider fault transmissibilities to be the unknown parameters and use measurements of pressure at the wells as our observational data with which to inform the uncertain parameters.

History matching is uniquely challenging for several reasons. First, the relationship between parameters and model outputs is often highly non-linear. Second, although observations may be taken frequently so that the amount of raw data is large, the information content is often quite low. This is due to the limited number of observation locations and the diffusive nature of the flow [15]. Finally, the number of model parameters to estimate may be several orders of magnitude larger than the amount of independent data. The large number of parameters and low information content of the data means that the solution of the inverse problem is usually ill-posed and must therefore be constrained by prior knowledge. Prior knowledge about the parameters may be included by replacing (11) with the regularized minimization problem find

$$\operatorname{argmin}_x \left\{ \frac{1}{2} \|d_{\text{obs}} - M(x)\|_D^2 + \frac{1}{2} \|x - x_0\|_X^2 \right\} \quad (12)$$

where $\|\cdot\|_X$ is some norm on the parameter space X and x_0 is some set of model parameters. This formulation can be used to eliminate the ill-posedness of Eq. 11.

3.2 The Bayesian inverse problem

We consider a Bayesian formulation for the history matching problem. Rather than solving an optimization

problem as in Eq. 12 the Bayesian approach solves a statistical inference problem. It seeks a probability distribution which updates prior knowledge about the parameters with information from the data which are linked to the parameters through the inverse of the model. The solution to the Bayesian inverse problem is the posterior probability distribution which has the form

$$\pi_{\text{post}}(x|d_{\text{obs}}) \propto \pi_{\text{like}}(d_{\text{obs}}|x) \pi_{\text{prior}}(x). \quad (13)$$

Where π_{prior} represents the prior beliefs about the parameters and π_{like} is the contribution from the data. Note that Eq. 13 gives the posterior distribution up to a normalizing constant.

The likelihood function π_{like} represents the probability that a given parameter could produce the observed data. Often, one assumes that the observed data d_{obs} has some noise so that $d_{\text{obs}} = M(x) + \eta$ where η is some mean zero random variable distributed according to some known probability density function ρ . Then the probability of the observed data d_{obs} given some parameter x is

$$\pi_{\text{like}}(d_{\text{obs}}|x) = \rho(d_{\text{obs}} - M(x)).$$

Evaluating the likelihood function involves solving the model M which can be expensive if, as in this work, the model involves solving a partial differential equation. The prior π_{prior} is some known probability density function which describes prior beliefs about the parameters.

Typically, one is interested in moments of the posterior such as the mean and variance to make decisions. In high dimensions, it may be preferable to estimate these moments using Monte Carlo methods involving samples distributed (approximately) according to the posterior rather than quadrature methods for integration. The central limit theorem then guarantees convergence independent of the dimension of the problem [3]. While the error in estimating moments of a distribution using samples is dimension-independent, generating those samples is in general highly dimension-dependent. One popular method for generating samples from high-dimensional probability distributions are Markov Chain Monte Carlo (MCMC) sampling methods. These methods rely on constructing a Markov chain with some desired stationary distribution, in this case the poseterior π_{post} . In this work we will focus on a specific type of commonly used MCMC algorithm known as Metropolis-Hastings (MH) MCMC.

The Metropolis-Hastings algorithm constructs a Markov Chain $\{x_i\}$ by using a proposal distribution Q which depends only on the current state of the chain x_i . The algorithm proceeds as follows. A move y is sampled from

the probability density function $Q(\cdot; x_i)$. The proposed move y is accepted or rejected with probability given by

$$\alpha(x_i, y) = \min \left\{ 1, \frac{\pi_{\text{post}}(y) Q(x_i; y)}{\pi_{\text{post}}(x_i) Q(y; x_i)} \right\}, \quad (14)$$

where α is the the acceptance probability. If the proposed move is accepted then $x_{i+1} = y$. Otherwise $x_{i+1} = x_i$.

Together, the proposal and the acceptance probability define a transition kernel K . A sufficient condition for a Markov chain to have the posterior π_{post} as its stationary distribution is for it to satisfy the condition of detailed balance with respect to the posterior [9]. The equation of detailed balance is given by

$$\pi_{\text{post}}(x) K(x, y) = \pi_{\text{post}}(y) K(y, x). \quad (15)$$

The Metropolis-Hastings algorithm satisfies the condition of detailed balance with respect to the posterior by construction.

In practice, the chain is truncated after a certain number of iterations and the remaining samples are correlated. An important consideration when designing MH-MCMC algorithms is finding a proposal distribution Q which efficiently explores the posterior. Often, the proposal $Q(\cdot; x_i)$ is chosen to be a Gaussian distribution centered at the point x_i . If the Gaussian proposal $Q(\cdot; x_i)$ has a single covariance matrix independent of the current position of the chain x_i , then the proposal distribution becomes symmetric. In this case, Eq. 14 becomes

$$\alpha(x_i, y) = \min \left\{ 1, \frac{\pi_{\text{post}}(y)}{\pi_{\text{post}}(x_i)} \right\}. \quad (16)$$

The standard deviation of the proposal is known as the step size of the chain. A small step size relative to the spread of the posterior typically leads to high acceptance rates. However, if the step size is too small, the samples will be close to one another and the correlation between them will be high. If the step-size is too large, then the samples from Q are likely to be in low-probability regions of the parameter space and will be rejected leading to many wasted model solves.

history matching

4 Methodology

Here, we develop the framework for a sequential Metropolis-Hastings transition kernel for MCMC when the target distribution is a posterior with likelihood defined by time-series data. First, the Bayesian inverse problem with time-series data is described and the likelihood is factored

into a product of distributions which represent the contribution of the observed data from distinct times. Second, the sequential transition kernel is described. Finally, the sequential transition kernel is applied to an artificial problem and compared with the standard Metropolis-Hastings approach.

There have been other approaches to early rejection MCMC similar to the one presented here. In [18] an early rejection scheme based on time series data is used to avoid computing the full likelihood for low probability proposed points. This is the same idea behind the sequential approach presented here but in this work, a multistage rejection scheme is used whereas in [18] a single rejection stage is performed and proposed points are only rejected when the method is certain that they would be rejected in a Metropolis-Hastings algorithm. Perhaps more similar to the sequential approach are two-stage MCMC approaches [6, 7] in which proposed points are first evaluated by a cheaper approximate model. The exact model is only evaluated if a proposed point is first accepted by the approximate model. The sequential approach differs from these two-stage methods as they require a separate approximate model while the sequential approach, in some sense, treats initial time-steps as approximate models for the full likelihood.

4.1 Problem setup

Consider a time-dependent parameter-to-observable map $\mathcal{M} : X \rightarrow D$ and noisy time-series data $d = \mathcal{M}(x_{\text{true}}) + \eta$ where x_{true} is the unknown true parameter and η is a mean-zero Gaussian random variable so that $\eta \sim \mathcal{N}(0, \Sigma)$. The data likelihood is then $\rho(d|x) = \mathcal{N}(d - \mathcal{M}(x), \Sigma)$. Given some prior π_{prior} the posterior is

$$\pi_{\text{post}}(x) \propto \pi_{\text{prior}}(x) \mathcal{N}(d - \mathcal{M}(x), \Sigma)$$

Now let $\mathcal{M}_t(x)$ denote the parameter-to-observable map for a single time-step t and let d_t denote the subset of data for that time-step. There may be more than one observation at a single time-step, for example if there are observations at multiple spatial locations. We assume that observational noise is uncorrelated in time although there may be correlation between observational noise within a single time-step. This means that Σ is at least block diagonal and that the likelihood can be factored into a product of lower dimensional Gaussian probability density functions. Using this factorization of the likelihood, the posterior can be factored as

$$\pi_{\text{post}}(x) \propto \pi_{\text{prior}}(x) \prod_{t=1}^T \mathcal{N}(d_t - \mathcal{M}_t(x), \Sigma_t) \quad (17)$$

where Σ_t is the block of the covariance matrix Σ corresponding to time-step t .

4.2 The sequential transition kernel

Consider a standard Metropolis-Hastings MCMC algorithm in which the goal is to generate samples from the posterior in Eq. 17. Given the current position of the chain $x_i = x$, a move y is simulated from a proposal distribution $Q(\cdot; x)$. This move is accepted with probability

$$\min \left\{ 1, \frac{\pi_{\text{post}}(y)}{\pi_{\text{post}}(x)} \frac{Q(x; y)}{Q(y; x)} \right\}.$$

If the move is accepted then $x_{i+1} = y$. Otherwise, $x_{i+1} = x$. We assume here that the proposal distribution $Q(\cdot; x)$ is a Gaussian probability density centered at x such that $Q(x; y) = Q(y; x)$. In this case the acceptance probability simplifies to the ratio of the posterior evaluated at the proposed move y and the current position of the chain x . We denote this ratio by $r = \frac{\pi_{\text{post}}(y)}{\pi_{\text{post}}(x)}$ and have that the acceptance probability is

$$\min \left\{ 1, \frac{\pi_{\text{post}}(y)}{\pi_{\text{post}}(x)} \right\} = \min \{1, r\}.$$

Using the decomposition of the posterior into separate time-steps we may write the ratio r as

$$\begin{aligned} r &= \frac{\pi_{\text{post}}(y)}{\pi_{\text{post}}(x)} = \frac{\pi_{\text{prior}}(y)}{\pi_{\text{prior}}(x)} \frac{\prod_{t=1}^T \mathcal{N}(d_t - \mathcal{M}_t(y), \Sigma_t)}{\prod_{t=1}^T \mathcal{N}(d_t - \mathcal{M}_t(x), \Sigma_t)} \\ &= \frac{\pi_{\text{prior}}(y)}{\pi_{\text{prior}}(x)} \prod_{t=1}^T \frac{\mathcal{N}(d_t - \mathcal{M}_t(y), \Sigma_t)}{\mathcal{N}(d_t - \mathcal{M}_t(x), \Sigma_t)}. \end{aligned}$$

Let $r_t = \frac{\mathcal{N}(d_t - \mathcal{M}_t(y), \Sigma_t)}{\mathcal{N}(d_t - \mathcal{M}_t(x), \Sigma_t)}$ for $t = 1, \dots, T$ and let $r_0 = \frac{\pi_{\text{prior}}(y)}{\pi_{\text{prior}}(x)}$. Throughout this section, we will refer to r and r_t as defined above for a current position of the chain x and proposed move y .

We denote the standard Metropolis-Hastings acceptance probability by $\alpha(x, y)$ and can write this acceptance probability as

$$\alpha(x, y) = \min \left\{ 1, \prod_{t=0}^T r_t \right\}.$$

For now, assume without loss of generality that the contribution of the prior r_0 is negligible (as in the case of a very broad prior) so that

$$\alpha(x, y) = \min \left\{ 1, \prod_{t=1}^T r_t \right\}. \quad (18)$$

At the end of this section, we will discuss how to incorporate the prior into the sequential transition kernel.

Notice that computing the ratio r requires solving the model for all T time-steps. This could be computationally expensive if the model is a PDE with a large number of time-steps. In many practical problems including reservoir simulation, the information content of time series data is

often fairly low [15]. In other words, observations in time often provide redundant (or nearly redundant) information. This suggests that one could use model outputs from initial time-steps to make decisions about whether or not to reject a proposed move without having to compute the full likelihood. To be more precise, one could evaluate r_1 and reject the move with probability $1 - r_1$. This process is repeated for $t = 1, \dots, T$ and if the jump is not rejected at any time-step then it is accepted and added to the chain. If the move is rejected at any point, then $x_{i+1} = x$ and no more model solves are performed. After y has been either accepted or rejected, a new move is sampled from the proposal and the process is repeated until the desired number of samples have been generated. This results in a new simple acceptance probability which we denote by $\hat{\alpha}(x, y)$. The probability of not rejecting a move at a time-step t is $\min\{1, r_t\}$. Since a move is accepted if and only if it is not rejected at each time-step, the probability of accepting a move is

$$\hat{\alpha}(x, y) = \prod_{t=1}^T \min\{1, r_t\}. \quad (19)$$

The acceptance probability in Eq. 19 is equal to the standard MH acceptance probability when the r_t are uniformly less than or greater than one. Otherwise, the acceptance probability for this simple approach is less than that of the standard MH algorithm. This means that more proposed moves will be rejected using the sequential approach rather than the usual MH transition kernel. We can increase the acceptance probability while still using an early rejection scheme by using initial high-probability likelihood evaluations at future time-steps. This can be done as follows, define a new quantity p_t at each time-step where

$$\begin{aligned} p_1 &= r_1, \\ p_t &= p_{t-1} r_t && \text{if } p_{t-1} > 1, \\ p_t &= r_t && \text{otherwise} \end{aligned} \quad (20)$$

and reject at each step t with probability $1 - p_t$. We denote this new acceptance probability by $\hat{\alpha}^{\text{seq}}(x, y)$ and it is given by

$$\hat{\alpha}^{\text{seq}}(x, y) = \prod_{t=1}^T \min\{1, p_t\}. \quad (21)$$

This new algorithm will have acceptance probabilities greater than or equal to the simple acceptance probability $\hat{\alpha}(x, y)$. However, the acceptance probability $\hat{\alpha}^{\text{seq}}(x, y)$ will still be less than or equal to that of the standard Metropolis-Hastings algorithm. In time-dependent problems for which the time-series of data has some redundancy, one would expect that the benefits of rejecting low-probability moves early without computing the full model would outweigh the cost of lower acceptance rates.

One final issue which needs to be addressed is that of detailed balance for the sequential approach. The transition kernel defined by the acceptance probability $\hat{\alpha}^{\text{seq}}(x, y)$ does not satisfy the equation of detailed balance with respect to the posterior. In order to enforce this, we add an additional rejection stage to the sequential transition kernel. Let $S(x, y)$ denote the ratio of the sequential acceptance probability to the standard MH acceptance probability so that

$$S(x, y) = \frac{\hat{\alpha}^{\text{seq}}(x, y)}{\alpha(x, y)}. \quad (22)$$

If a proposed jump y from the current position of the chain x is not rejected at any time-step t , the transition probabilities for all four quantities above are computed (note that this does not require any additional model solves as we have solved the model for all time-steps for both parameters x and y). The move is then rejected with probability $1 - \frac{S(y, x)}{S(x, y)}$. This finally gives us the sequential transition kernel used in this work. We denote the sequential acceptance probability as $\alpha^{\text{seq}}(x, y)$ and it is given by

$$\alpha^{\text{seq}}(x, y) = \hat{\alpha}^{\text{seq}}(x, y) \min\left\{1, \frac{S(y, x)}{S(x, y)}\right\}. \quad (23)$$

An implementation of this transition kernel is shown in Eq. 1.

Proposition 1 *The sequential transition kernel K^{seq} satisfies the principle of detailed balance with respect to the posterior π_{post} .*

Proof We need to show that for $x \neq y$

$$\pi_{\text{post}}(x)\hat{\alpha}^{\text{seq}}(x, y)Q(y; x) = \pi_{\text{post}}(y)\hat{\alpha}^{\text{seq}}(y, x)Q(x; y).$$

Using Eq. 23, this is equivalent to showing that

$$\begin{aligned} &\pi_{\text{post}}(x)\hat{\alpha}^{\text{seq}}(x, y) \min\left\{1, \frac{S(y, x)}{S(x, y)}\right\} Q(y; x) \\ &= \pi_{\text{post}}(y)\hat{\alpha}^{\text{seq}}(y, x) \min\left\{1, \frac{S(x, y)}{S(y, x)}\right\} Q(x; y). \end{aligned}$$

Now without loss of generality, assume that $S(y, x) \geq S(x, y)$ so that we have

$$\begin{aligned} &\pi_{\text{post}}(x)\hat{\alpha}^{\text{seq}}(x, y)Q(y; x) \\ &= \pi_{\text{post}}(y)\hat{\alpha}^{\text{seq}}(y, x) \frac{S(x, y)}{S(y, x)} Q(x; y). \end{aligned}$$

Now using Eq. 22 this becomes

$$\begin{aligned} &\pi_{\text{post}}(x)\hat{\alpha}^{\text{seq}}(x, y)Q(y; x) \\ &= \pi_{\text{post}}(y)\hat{\alpha}^{\text{seq}}(y, x) \left[\frac{\frac{\hat{\alpha}^{\text{seq}}(x, y)}{\alpha(x, y)}}{\frac{\hat{\alpha}^{\text{seq}}(y, x)}{\alpha(y, x)}} \right] Q(x; y). \end{aligned}$$

Dividing both sides by the quantity $\left[\frac{\hat{\alpha}^{\text{seq}}(x, y)}{\alpha(x, y)} \right]$ gives

$$\begin{aligned} & \pi_{\text{post}}(x)\hat{\alpha}^{\text{seq}}(x, y) \left[\frac{\hat{\alpha}^{\text{seq}}(x, y)}{\alpha(x, y)} \right]^{-1} Q(y; x) \\ &= \pi_{\text{post}}(y)\hat{\alpha}^{\text{seq}}(y, x) \left[\frac{\hat{\alpha}^{\text{seq}}(y, x)}{\alpha(y, x)} \right]^{-1} Q(x; y) \end{aligned}$$

which is equivalent to

$$\pi_{\text{post}}(x)\alpha(x, y)Q(y; x) = \pi_{\text{post}}(y)\alpha(y, x)Q(x; y).$$

This is the principle of detailed balance for Metropolis-Hastings when $x \neq y$ which is known to be true.

Finally, if $x = y$ then the equation of detailed balance is satisfied trivially. \square

Algorithm 1 Sequential Metropolis-Hastings transition kernel.

Given current position x and proposed move y

```

1: Set  $p_0 = 1$ 
2: accept=True
3: for  $t = 1, \dots, T$  do
4:   Evaluate  $r_t$  by computing a single-time step of the
   model
5:   if  $p_{t-1} > 1$  then
6:      $p_t = p_{t-1} * r_t$ 
7:   else
8:      $p_t = r_t$ 
9:   end if
10:  Draw  $\eta \sim \mathcal{U}(0, 1)$ 
11:  if  $r_t < \eta$  then
12:    accept=False
13:    break
14:  end if
15: end for
16: if accept=True then
17:   Compute  $S(x, y)$  and  $S(y, x)$ 
18:   Draw  $\eta \sim \mathcal{U}(0, 1)$ 
19:   if  $\frac{S(y, x)}{S(x, y)} < \eta$  then
20:     accept=False
21:   end if
22: end if
```

4.2.1 Including the prior in the sequential transition kernel

At the beginning of this section we assumed that the contribution of the prior r_0 to the ratio of the posterior values of the parameters x and y was negligible. Relaxing that assumption, there are several ways in which the prior can be included in the sequential transition kernel. A natural approach, and the one taken here, is to simply treat the prior just like the likelihood ratios resulting from model evaluations. In this case, one simply needs to add an

extra iteration to the for-loop in the sequential algorithm described above. One could incorporate the prior in other ways such as including it at the end of the sequential algorithm.

4.3 Example

We apply the sequential MCMC algorithm to an artificial problem and compare its performance to a standard MH-MCMC approach which ignores the sequential nature of the model. The choice of step-size in the proposal distribution is important for performance in both methods. We show in this example that as the step size increases, the sequential approach tends to be more efficient than the standard MH approach.

4.3.1 Inverse problem setup

The simplest possible model with which to demonstrate the sequential approach is the identity map. In this case we take our model to be $\mathcal{M} : \mathbb{R} \rightarrow \mathbb{R}^T$ where

$$\mathcal{M}_t(x) = x, \quad \text{for } t = 1, \dots, T. \quad (24)$$

Although this model is exceedingly simple, it will demonstrate when one might expect the sequential transition kernel outlined above to be more efficient than the standard MH approach. In this case, we choose $T = 100$ and we assume that the prior is so broad that its effects are negligible so that we only consider the likelihood of the posterior. We take $x_{\text{true}} = 0$ and generate synthetic noisy data by corrupting the true data with Gaussian noise. The observations are then given by

$$d_{\text{obs}} = \mathcal{M}(x_{\text{true}}) + \mathcal{N}(0, \sigma^2 \mathbb{I}_{100}), \quad (25)$$

where \mathbb{I}_{100} is the 100×100 identity matrix and the noise is $\sigma = 0.5$. The likelihood is

$$\pi_{\text{like}} = \prod_{i=1}^{100} \mathcal{N}(d_{\text{obs}}^i, 0.5^2), \quad (26)$$

where d_{obs}^i is the i -th datum. The posterior is the product of Gaussians and is itself a Gaussian with mean $\mu = \frac{1}{100} \sum_{i=1}^{100} d_{\text{obs}}^i$ equal to the average of the observations and variance $\sigma_{\text{post}}^2 = \frac{\sigma^2}{100}$.

$$\pi_{\text{post}}(x) = \mathcal{N}(\mu_{\text{post}}, \sigma_{\text{post}}^2). \quad (27)$$

4.3.2 Autocorrelation and measuring efficiency

In this example we are interested in comparing the relative performance of the sequential approach to MH MCMC for this simple problem. Typically, the purpose of running an MCMC algorithm is to generate a set of samples which are

distributed approximately according to the posterior. When the samples are independent, the variance in the estimate decreases at a rate of $1/N$. However, the samples obtained from MCMC algorithms are not independent. The variance in the estimate obtained by averaging over samples from MCMC algorithms decreases at a rate of τ/N where τ is the integrated autocorrelation time given by

$$\tau = 1 + 2 \sum_{s=1}^{\infty} \rho(s), \quad (28)$$

and $\rho(s)$ is the autocorrelation function for a given lag s [9]. The quantity N/τ is called the effective sample size of the chain.

In practice, Markov chains from MCMC algorithms are finite so the sum in Eq. 28 is truncated for some $s_0 \ll N$ where N is the length of the chain. We use the autocorrelation function from the *statsmodels* python module [17]. The autocorrelation function in this library also returns confidence bounds on the autocorrelation function $\rho(s)$ for each lag s computed according to Bartlett's formula. We compute 95% confidence bounds for the autocorrelation function $\rho(s)$ for each lag s . We use these confidence bounds in the computation of the integrated autocorrelation time in order to determine reasonable confidence bounds on τ .

For a given proposal distribution, the sequential approach will require fewer model solves than the standard MH approach but will have larger integrated autocorrelation τ since the sequential transition kernel has strictly lower acceptance probability than the MH transition kernel. We determine the relative efficiency of the sequential approach to the MH approach as follows. Given a set of data d_{obs} generated as described above, we run the sequential and MH approaches for N_{seq} and N_{MH} iterations respectively on the resulting posterior (27). We then determine the average number of model solves required per sample by each method denoted by $n_{\text{solves}}^{\text{seq}}$ and $n_{\text{solves}}^{\text{MH}}$. Since we are considering individual time-steps of our model in the sequential approach the term model solves is somewhat ambiguous. Here, we use the term model solve to mean computing one time-step of the model. So in this example, evaluating the transition kernel for MH-MCMC requires 100 model solves per iteration while for the sequential approach it will vary. Finally, we use Eq. 28 with the summation truncated at some $s_0 \ll N$, to estimate τ_{seq} and τ_{MH} , the integrated autocorrelation values for the sequential and MH approaches, respectively. We then measure the efficiency of the sequential approach relative to MH by the ratio

$$\epsilon = \frac{n_{\text{solves}}^{\text{MH}} \tau_{\text{MH}}}{n_{\text{solves}}^{\text{seq}} \tau_{\text{seq}}}. \quad (29)$$

The quantity ϵ in Eq. 29 is the efficiency of the sequential approach relative to MH-MCMC.

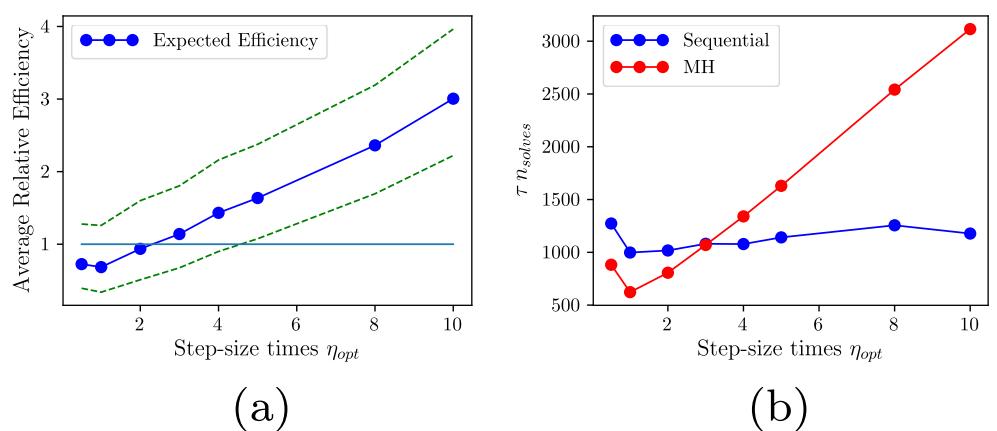
4.3.3 MCMC results

The efficiency, as defined in Eq. 29 depends on the step-sizes of the chains. It is known that the optimal step size for MH-MCMC when the target is a univariate Gaussians is $\eta_{\text{opt}} \approx 2.4 \sigma_{\text{post}}$ where σ_{post} is the standard deviation of the target which is in this case the posterior defined by Eq. 27. We compare the efficiency of the sequential and MH approaches using proposal distributions with various step-sizes scaled by the optimal step size η_{opt} . In particular, we apply both approaches to the inverse problem described above for step sizes of 0.5, 1, 2, 3, 4, 5, 8, and 10, each scaled by η_{opt} . We run both the sequential and MH chains for 10^6 iterations for each step size. No burn-in period was used because both chains were initialized at the true parameter x_{true} . This was repeated 5 times for different sets of data d_{obs} in order to determine the average behavior of each method for this problem.

In Fig. 1a we show the efficiency of the sequential method relative to the MH method for various step sizes each scaled by the optimal step-size η_{opt} . The blue dots represent the efficiency as defined in Eq. 29 averaged over the five experiments. We use $s_0 = 400$ lags to compute the integrated autocorrelation times for both methods. Clearly, the relative performance of the sequential approach increases with step-size. At the optimal step-size, the MH approach outperforms the sequential method. However, as the step-size increases to $10 \eta_{\text{opt}}$ we see that the sequential approach begins to outperform the MH approach. The autocorrelation function ρ is a noisy function of the lag. We compute 95% confidence bounds for the autocorrelation function for each lag s in both methods. The dotted lines in Fig. 1a show the efficiency when these bounds are used in the sum in Eq. 28. The bottom dotted line shows the efficiency when the upper bounds are used in the computation of τ_{seq} and lower bounds are used in the computation of τ_{MH} while the top dotted line shows the reverse. Again, these quantities are averaged over all five experiments with different sets of data d_{obs} . These lines give us an idea of the range of the efficiency due to noise in the autocorrelation function. The quantity $n_{\text{solves}}^{\text{seq}}$ is also a noisy function but it steadies out very quickly as the number of samples in the chain increases. In general, the noise in the efficiency is dominated by the noise from the autocorrelation times for both methods.

In Fig. 1b we show the quantity τn_{solves} for both approaches using different step-sizes. As with efficiency, the values shown are averaged over all experiments. We see that the reason for the increase in efficiency in the sequential approach is that the MH-MCMC method becomes less

Fig. 1 (a) Plot of efficiency for various step-sizes using 400 lags in the integrated autocorrelation time. b) Model solves times integrated autocorrelation with 400 lags for the sequential and MH-MCMC approaches for various step-sizes scaled by η_{opt}



efficient as the step-size increases (as expected), while the sequential method is less sensitive to larger step-sizes.

Figure 1a shows the efficiency for various step-sizes averaged over the five experiments. In Table 1, we show the efficiencies for each experiment. It is clear that the efficiency of the sequential approach is somewhat sensitive to the noise in generating the data. Although the same noise model was used in all experiments, some sets of observational data led to greater efficiency in the sequential approach than others. It is for this reason that we reported averaged values in Fig. 1a and b. However, in all cases, as step-size increased from the optimal η_{opt} , so did the efficiency of the sequential approach relative to MH-MCMC.

4.3.4 Discussion of example results

The results in the previous section demonstrate an important situation in which the sequential approach can yield increased efficiency over the MH-MCMC method. When step-sizes are taken larger than optimal and when the time-steps of the model provide somewhat redundant information, the sequential approach can be more efficient by spending fewer model solves in areas with low probability since initial time-steps of the model can be used to determine whether or not to reject a move without solving the full model.

Table 1 Efficiency from each experiment for step-sizes scaled by η_{opt}

	Efficiency for each experiment								
	0.5	1.0	2.0	3.0	4.0	5.0	8.0	10.0	
1	0.897	0.957	1.482	1.546	1.918	2.35	3.357	4.104	
2	0.6	0.535	0.612	0.786	0.971	1.245	1.626	2.146	
3	0.909	0.876	1.24	1.614	2.143	2.272	3.407	4.129	
4	0.53	0.424	0.497	0.638	0.75	0.876	1.213	1.633	
5	0.692	0.63	0.85	1.117	1.379	1.439	2.207	3.013	

Note that when a smaller step-size is used in both the MH and sequential approaches, the MH algorithm tends to be more efficient. In this example, the time series of model output is perfectly redundant since the model is simply the identity map. If we had access to the noise-free data, then a change in parameters would result in likelihood ratios r_t which are either uniformly less than or greater than one. However, the noise in the data obscures this correlation. When using a small step-size, it is likely that most jumps will result in likelihood ratios r_t which are neither uniformly greater than or uniformly less than one. This is entirely due to the noise in the data. The reason that larger steps yield improved relative performance for the sequential approach is that these steps often explore regions of parameter space for which the change in model outputs for the parameters is larger than the scale of the noise so that the likelihood ratios are more often uniformly greater than or less than one.

Of course, for a general non-Gaussian posterior, an optimal step-size may not be known. The sequential approach could be useful in generating samples from a posterior until a more appropriate step-size can be determined. Furthermore, for high-dimensional and extremely non-Gaussian posteriors it may not be practical to explore the posterior enough to determine an optimal step-size at all. We show in the next section how inverse problems using the reservoir model described Section 2 can lead to posteriors for which there is no obvious choice of step-size and how the sequential approach can lead to improved performance in this case.

5 Numerical results

In this chapter we apply MCMC using the sequential transition kernel described in Section 4 to the reservoir problem described in Section 2. The reservoir has faults and the transmissibility of the faults are the inversion targets. We assume here that the faults have constant transmissibility

although this assumption could be relaxed and one could describe the transmissibilities as fields defined along the faults. First, the forward problem setup will be described. Second, we define the specific inverse problem being solved. Finally, we apply the sequential MCMC algorithm to the inverse problem and compare its performance to that of a MH-MCMC approach.

5.1 Forward problem setup

We solve the system described in Eq. 3 for a square 2D reservoir domain. The permeability field is assumed to be uniform and isotropic throughout the reservoir so that it can be described by a single scalar value. In Table 2 we summarize the parameters used in the forward model for these results.

We take the reservoir domain Ω to be $[0, 500]^2$ in meters with boundary $\partial\Omega$. There are two faults Γ_1 and Γ_2 . The fault Γ_1 runs from [125, 225] to [225, 125] while Γ_2 runs from [200, 350] to [350, 200]. The total simulation time is $T \approx 50.53$ months and the time-step discretization is $dt \approx 12.81$ days so that the model runs for 120 time-steps. The relative permeability functions for the water and oil phases are given by $k_{r,w} = S^2$ and $k_{r,o} = (1 - S)^2$ respectively. We assume no-flow conditions along the boundary $\partial\Omega$. Finally, the injection well is located in the bottom left corner of the reservoir and is taken to be a pressure well (constant bottom hole pressure). The production wells are located in the remaining three corners and are rate wells. The mesh for the problem is generated using the finite element

Table 2 Parameters for the reservoir model

Parameter	Value	Units
Reservoir length	500	m
Initial pressure	$1e7$	Pa
Flow rate, (producers)	$1e - 4$	m^3/s
Bottom hole pressure, (injector)	$1.2e7$	Pa
Well radius	0.125 ^a	m
Reference density, water	1000	kg/m^3
Reference density, oil	900	kg/m^3
Reference pressure	$1.01325e5$	Pa
Viscosity, water	$3e - 4$	$Pa\ s$
Viscosity, oil	$6e - 4$	$Pa\ s$
Compressibility, water	$4.35e - 10$	Pa^{-1}
Compressibility, oil	$4.35e - 10$	Pa^{-1}
Compressibility, rock	$1.45e - 10$	Pa^{-1}
Permeability	$1e - 13$	m^2
Porosity	0.3	

^aExact value of well radius is 0.12512136927444853 m. This value was based off the minimum cell diameter of the mesh

mesh generator Gmsh [10]. The mesh is unstructured and conforming to the fault with a mesh size of 25m. Plots of both the geometry of the reservoir domain and the computational mesh are shown in Fig. 2.

In Fig. 3 we show the saturation field in the reservoir after 30, 60, 90, and 120 time-steps. This corresponds to roughly 12.5, 25, 37.5, and 50 months from the start of the simulation. The fault transmissibilities in this case are taken to be the true transmissibility used in the inverse problem described in the next section. Figure 4 shows the pressure field using the same values of transmissibility after 60 time-steps or approximately 25 months from the start of the simulation.

5.2 Inverse problem setup

We wish to invert for fault transmissibilities using pressure data at the wells. For convenience, we non-dimensionalize the fault transmissibilities by the quantity $t_{f,0} = K_0/L\mu_0$ where L is the length of one side of the square reservoir domain and K_0 and μ_0 are reference permeability and viscosity values respectively. We take the reference permeability equal to the permeability of the reservoir (which is a scalar) and the reference viscosity equal to the wetting phase viscosity μ_w . This gives

$$t_{f,0} = \frac{10^{-13}}{500 \times 3 \times 10^{-4}} = \frac{1}{15} \times 10^{-11}. \quad (30)$$

Furthermore, we choose to invert for the log-transmissibility of the faults. Therefore, our inversion targets are $x = \log(t_f/t_{f,0})$ where t_f are the fault transmissibilities. Clearly, there is a one-to-one relationship between x and t_f so that inverting for one is equivalent to inverting for the other.

Similar to the example in Section 4.3 we use a true parameter x_{true} to generate noisy synthetic observed data

$$d_{\text{obs}} = \mathcal{M}(x_{\text{true}}) + \eta \quad (31)$$

where η is some mean-zero random variable representing the noise in the observation. Here we use

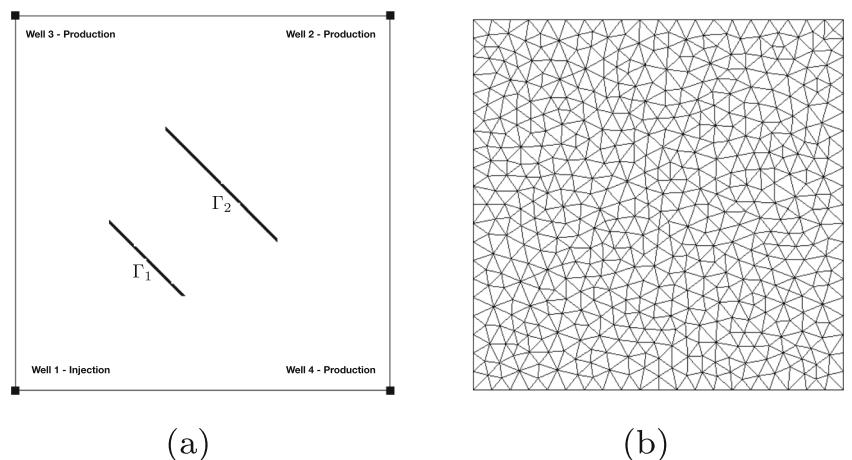
$$x_{\text{true}} = [2.0, 1.5]. \quad (32)$$

We take η to be mean-zero Gaussian noise. The observations are pressure values at the four wells. Let d_{obs}^i be the time-series of observed pressure data at a well i for $i = 1, 2, 3, 4$ with corresponding noise η^i . Then we assume that for each well, η^i , the covariance matrix is given by $\sigma^2 I_T$ where I_T is the $T \times T$ identity matrix and σ is the standard deviation of the noise. We take

$$\sigma = 0.025 * \max(\mathcal{M}^i(x_{\text{true}})), \quad (33)$$

where \mathcal{M}^i is the parameter-to-observable map for time-series pressure data at well i .

Fig. 2 (a) Geometry of the reservoir domain with faults, injection and production wells. (b) Computational mesh used in forward model



In Fig. 5 we show the pressure observations generate by x_{true} for each well along with the noise-corrupted observation d_{obs} .

We take our prior to be a uniform distribution on $[-8, 12]^2$. The parameter space is only two-dimensional for this problem. We take a grid of parameters over the bounds

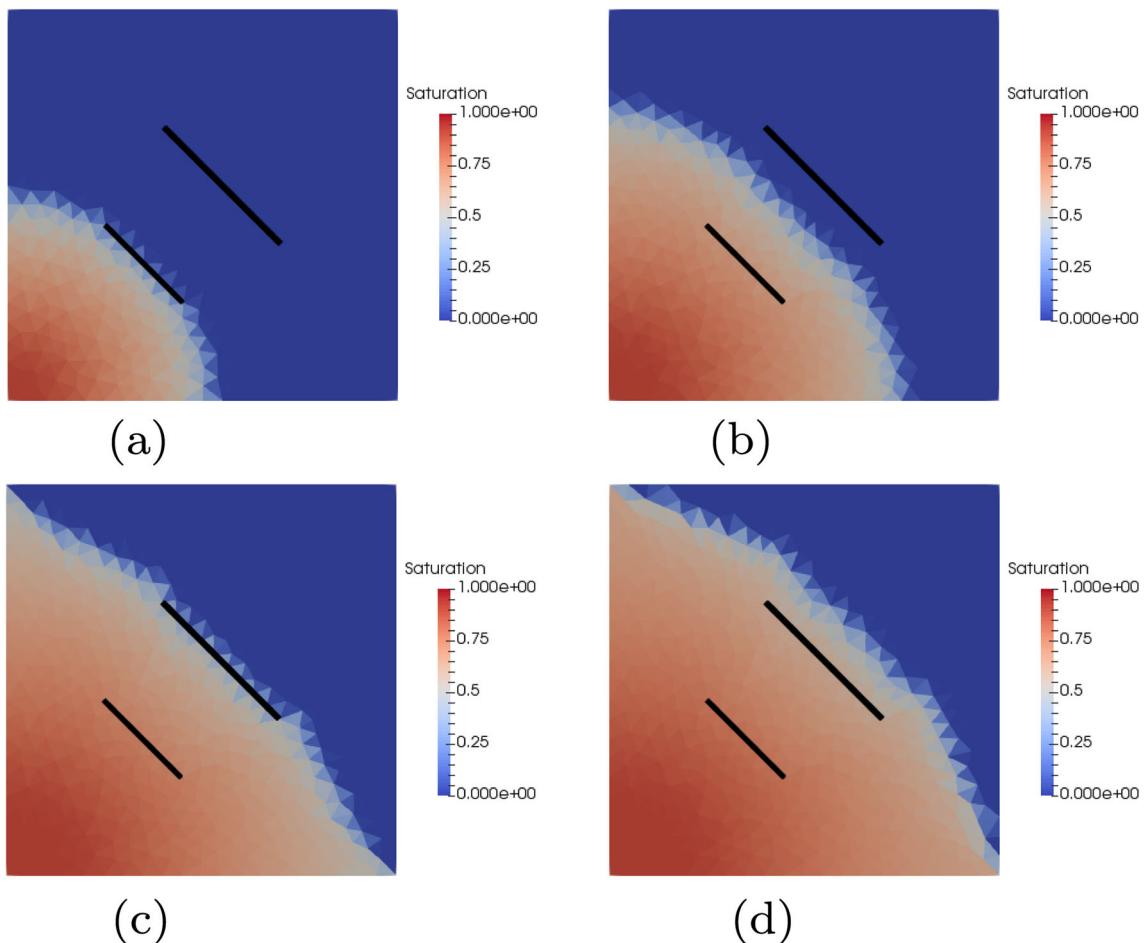


Fig. 3 Water saturations. (a) Saturation at 30 timesteps. (b) Saturation at 60 timesteps. (c) Saturation at 90 timesteps. (d) Saturation at 120 timesteps

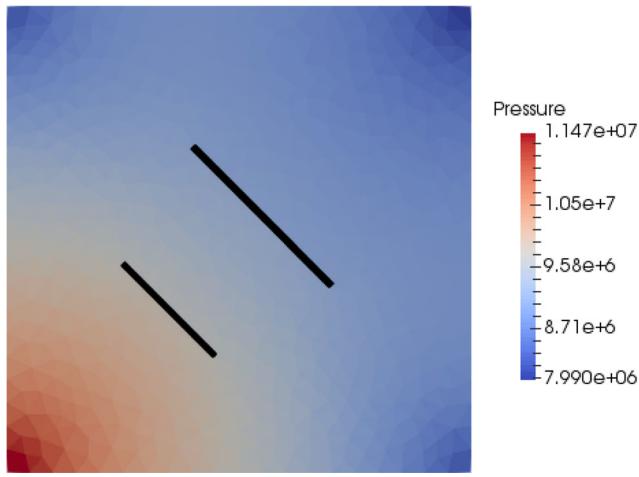


Fig. 4 Pressure at 60 time-steps

of the prior and evaluate the posterior. We show the resulting plot of the posterior in Fig. 6.

5.2.1 Potential for improved performance by the sequential approach

The sequential approach to MCMC can be more efficient than a standard MH-MCMC approach when two conditions are met. First, the time-series of data should be somewhat redundant, which is a reasonable assumption for many physical models. Second, the step-sizes used should be relatively large. For a Gaussian probability density there is an

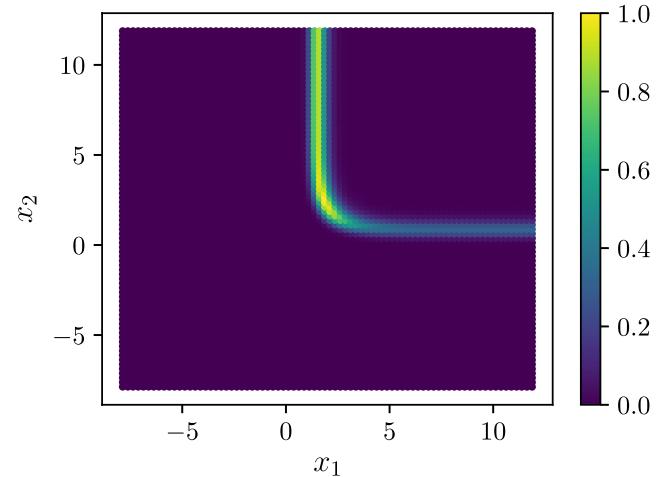
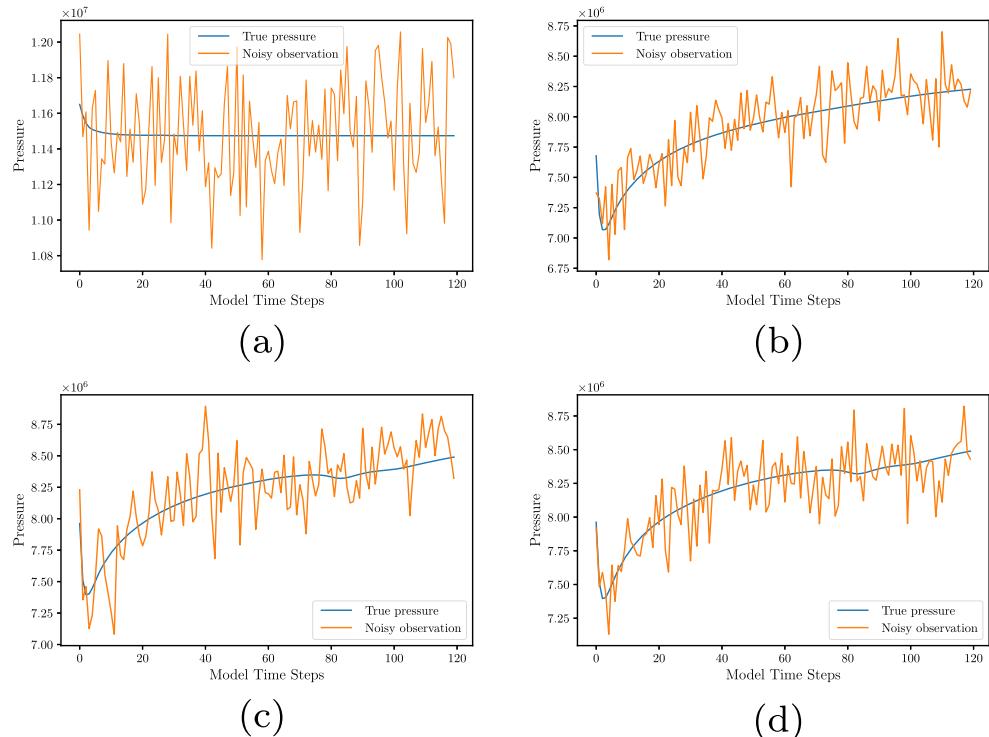


Fig. 6 Non-normalized posterior for the reservoir problem with uniform prior

optimal step-size for MH-MCMC when the proposal distribution is also Gaussian. We demonstrated in Section 4.3 that when the posterior distribution is a Gaussian, taking larger than optimal step-sizes led to an increase in the efficiency of the sequential approach relative to MH-MCMC. However, for an arbitrary posterior which may be very non-Gaussian, an optimal choice of step-size may not be obvious. We now describe why the inverse problem solved here may be amenable to the sequential approach to MCMC.

Figure 6 shows that the posterior is extremely non-Gaussian and that choosing a single step-size for MCMC

Fig. 5 Observed pressure data from each well. (a) Data from well 1. (b) Data from well 2. (c) Data from well 3. (d) Data from well 3



may be difficult. For the region of parameter space for which $x_2 > 2.5$ and $0 < x_1 < 5$, a step-size with large variance in the x_2 parameter and small variance in x_1 may be most efficient for MH-MCMC. However, for the region of parameter space for which $x_1 > 5$ and $0 < x_2 < 2.5$ the reverse is true. A step-size with high variance in the x_1 parameter and low variance in the x_2 parameter may be preferable. In Section 4.3 we showed that using the sequential approach for MCMC can be more efficient than MH-MCMC when larger step-sizes are used in the proposal distribution. We will show that the sequential approach with a relatively large step size outperforms standard MH-MCMC for a variety of step sizes.

Now, the assumption behind the sequential approach is that model output from initial time-steps often contains some information about future time-steps. If this is not the case, we should not expect the sequential approach to yield improved performance. To determine whether or not one expects the reservoir problem to be a good candidate for the sequential approach, one could examine some of the pressure curves generated by various parameters to see if this is a reasonable assumption. In Fig. 7 we show pressure curves at wells 1 and 2 generated from various parameters. The parameter values which led to each of the pressure curves are shown in the legend. The pressure curve generated by the true parameter $x_{\text{true}} = [2.0, 1.5]$ is also shown. For ease of presentation, these curves are only shown for time-steps 10 to 39 which corresponds to a time horizon of about 384.3 days.

What Fig. 7 shows is that, over the time window, many of the parameters shown lead to pressure curves which do not cross each other so that initial time-steps can be used to decide whether or not a jump leads to a large decrease in posterior probability. To be more precise, consider Fig. 7b. If one had access to noiseless data, i.e. the blue dotted line in the figure, one would only need to evaluate one time-step of the model for each of these parameters to decide which one produces model output which is closest to the (noise-free) data. In Fig. 7a we see that of the pressure curves shown, only the one corresponding to parameter $x = [1.5, -3]$ crosses some of the others. This pressure curve is an example of a situation in which the entire time-series of data may be necessary to decide whether or not the given

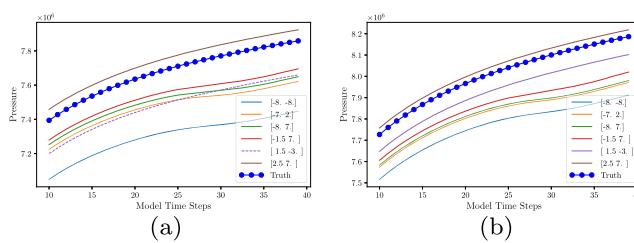


Fig. 7 Model outputs from wells. (a) Well 2. (b) Well 3

parameter leads to model output closer to or farther away from the data (in a least-squares sense). In Fig. 7 we have only shown pressure curves from a few parameters at two of the four wells for a small window of time. This is for ease of presentation as displaying more pressure curves over a longer time-window would be too crowded. The purpose of Fig. 7 is to provide some intuition for situations in which one might expect the sequential approach to perform well relative to MH-MCMC and why the inverse problem considered here may be one such situation.

In summary, we expect the inverse problem considered here to be one for which the sequential approach to MCMC is a better choice than MH-MCMC for two reasons. First, the shape of the posterior means that choosing a single global step-size for which MH-MCMC performs well in all regions of the posterior may be difficult. Second, the time-series data seems to have some redundancy which we can exploit with a sequential approach. Using the sequential MCMC algorithm allows one to take larger step-sizes and rely on initial time-steps to reject proposed jumps which occur in low-probability regions of the posterior.

5.3 Results

We run the MH-MCMC approach with isotropic step-sizes of 3.0, 5.0, 7.5, and 10.0 and we run the sequential approach to MCMC with an isotropic step-size of 10. We only choose one step-size for the sequential approach because we expect large step-sizes to work best for the method. Further, even if a smaller step-size would lead to increased performance of the method, we expect this improvement to be slight. We initialize all chains at [0, 0] and run each of the MH chains for 25200 iterations and the sequential chain for 250200 iterations. For each chain, we discard the first 200 samples to allow for a burn-in period. This means that we effectively have 25000 samples for each of the MH chains and 250000 samples for the sequential method. The prior is uniform, so for both methods, when a jump is proposed outside the bounds of the prior, we reject without solving the model.

We compare the efficiency of each method as in Section 4.3 by computing

$$\epsilon = \frac{n_{\text{solves}}^{\text{MH}} \tau_{\text{MH}}}{n_{\text{solves}}^{\text{seq}} \tau_{\text{seq}}}, \quad (34)$$

where $n_{\text{solves}}^{\text{MH}}$ and $n_{\text{solves}}^{\text{seq}}$ are the average number of solves per sample for MH and sequential MCMC respectively and τ_{MH} and τ_{seq} are the integrated autocorrelation times for MH and sequential MCMC respectively. In this problem, because the prior is uniform, for both methods when a jump is proposed outside the bounds of the prior it is rejected with zero model solves. This means that $n_{\text{solves}}^{\text{MH}}$ will not necessarily be equal to the number of time-steps of the model as it was in the example in Section 4 but will instead

be some number between 0 and 120. For this problem, we compute τ_{x_1} and τ_{x_2} , the integrated autocorrelation times for the mean of each of the two parameters.

In practice, it is somewhat difficult to make an accurate comparison of the effectiveness of the two methods due to the noise in the autocorrelation function $\rho(s)$ for a given lag s . Resolving the noise for a large number of lags requires generating many samples which in turn requires solving the model many times which can be prohibitive. In order to account for this, we carefully choose how many lags to include in the summation from Eq. 28 when computing the autocorrelation times τ_{x_1} and τ_{x_2} for each chain. To determine an appropriate number of lags for each integrated autocorrelation time, we compute 95% confidence bounds for the autocorrelation function $\rho(s)$ for each lag $s < 1000$. We then find the smallest number of lags s_0 for which the value of $\rho(s_0 + 1)$ is smaller than half of the confidence interval. For each integrated autocorrelation time τ we use s_0 lags in the summation so that the noise in each term is not too large relative to the value of $\rho(s)$. That is, for each chain in each parameter, we compute

$$\tau = 1 + 2 \sum_{s=1}^{s_0} \rho(s), \quad (35)$$

Figure 8 shows the autocorrelation functions for each chain in both parameters x_1 and x_2 . The confidence intervals are shown as dotted lines. Once the autocorrelation function falls below this threshold we can be reasonably sure that the noise is larger than the signal and we do not use any more lags in the computation of the integrated autocorrelation times τ in the results. The largest number of lags before which this happens, s_0 , is shown in each plot in Fig. 8 as a blue dot. Table 3 shows s_0 for each chain in each variable. This is the maximum number of lags we use when computing the integrated autocorrelation times τ for each chain. As in Section 4.3 we use the autocorrelation function in the *statsmodels* python package [17].

In Tables 4 and 5 we show the quantities $\tau_{x_1} n_{\text{solves}}$ and $\tau_{x_1} n_{\text{solves}}$ respectively for each method using the lags in Table 3. The best and worst case values are computed using the lower and upper 95% confidence bounds in the autocorrelation function while the expected values are computed using the expected values of $\rho(s)$.

Tables 6 and 7 shows the corresponding relative efficiencies of the sequential MCMC approach with a step-size of 10.0 compared to MH with step-sizes 3.0, 5.0, 7.5, and 10.0.

These show that, the MH chain with a step-size of 10.0 seems to perform best among all the MH chains when estimating x_1 while the MH chain with a step-size of 7.5 is slightly more efficient than the other MH chains for estimating x_2 . The sequential approach is more

efficient than any of the MH chains for estimating both parameters x_1 and x_2 . Even in the worst case, it is roughly 220% more efficient than the MH approach when estimating the parameter x_1 and 320% more efficient when estimating x_2 . Furthermore, the worst case efficiencies are extremely pessimistic. We expect that the actual integrated autocorrelation times are well within the confidence bounds computed.

Table 8 gives the acceptance rates for each method. It also shows the acceptance rate per full model solve. We emphasize that, up to this point, we have considered a model solve to be computing one time-step of the model. In this case, we report the number of accepted samples per full model solve (i.e. evaluating 120 time-steps of the reservoir model). This is a natural metric considering any time we accept a proposed jump with the sequential approach we must evaluate the full model. We note that, while the acceptance rates for each method are extremely low, the acceptance rate per full model solve for the sequential approach is roughly 28.3%. The sequential approach has an acceptance rate per full model solve fairly close to this value while the MH approaches even with relatively small step-sizes are much worse. Finally, we consider the mean squared jump distance per accepted sample. It is common to compute the mean squared jump distance for a chain as it can be an indicator of how well the chain is mixing. In this case, only considering the mean squared jump distance of accepted samples is more natural because iterations of each method require different numbers of model solves on average. Since we are interested in how well the chain is mixing per model solve, considering acceptance rates per full model solve together with the mean squared jump distance per accepted sample provides some insight into how efficiently the method is performing (Fig. 9).

We use an evenly spaced grid of 6400 points to estimate the mean and variance of the posterior denoted μ_{true} and σ_{true}^2 respectively. We show in Fig. 10 how the estimates of the mean of both parameters obtained from the samples of the sequential chain converge to the correct values as the number of samples increases.

The mean of the samples from the full sequential chain in each parameter is $\mu_{\text{seq}} \approx [3.1656, 4.9176]$ while the grid mean for each parameter is $\mu_{\text{true}} \approx [3.1147, 4.9552]$ so that the difference between them is

$$|\mu_{\text{seq}} - \mu_{\text{true}}| \approx [0.0509, 0.0376]. \quad (36)$$

The integrated autocorrelation times for each parameter in the sequential chain are $\tau_{x_1} \approx 244.26$ and $\tau_{x_2} \approx 238.40$ so that the effective sample size (n_{eff}) for the sequential chain in each parameter is

$$n_{\text{eff}} \approx [1023, 1049]. \quad (37)$$

Fig. 8 Autocorrelation functions for each chain in the experiment for both parameters x_1 and x_2 . The dotted lines are 95% confidence bounds and the blue dots are s_0 . (a) Autocorrelation function for x_1 from sequential chain. (b) Autocorrelation function for x_2 from sequential chain. (c) Autocorrelation function for x_1 from MH chain with step-size 3:0. (d) Autocorrelation function for x_2 from MH chain with step-size 3:0. (e) Autocorrelation function for x_1 from MH chain with step-size 5:0. (f) Autocorrelation function for x_2 from MH chain with step-size 5:0. (g) Autocorrelation function for x_1 from MH chain with step-size 7:5. (h) Autocorrelation function for x_2 from MH chain with step-size 7:5. (i) Autocorrelation function for x_1 from MH chain with step-size 10:0. (j) Autocorrelation function for x_2 from MH chain with step-size 10:0

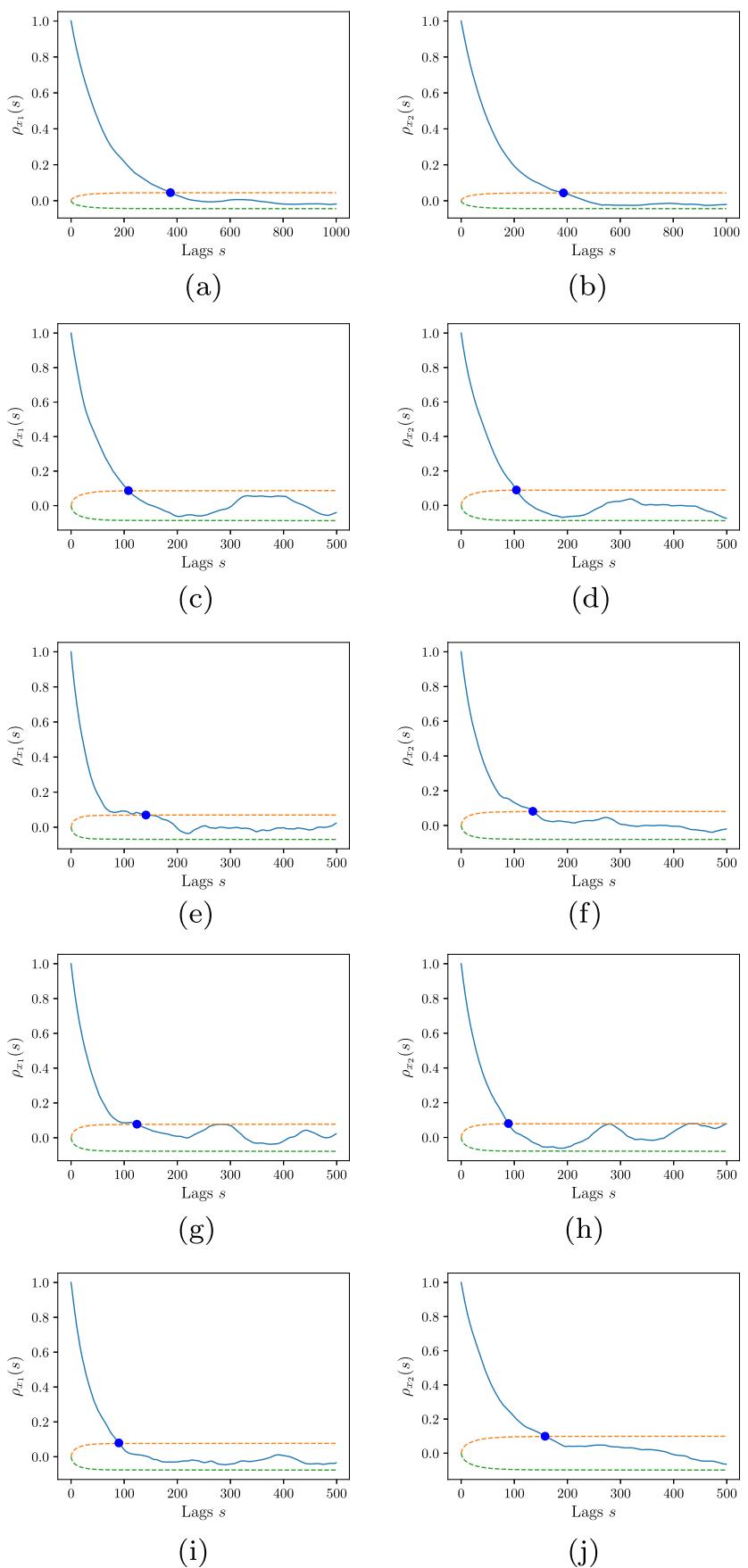


Table 3 Maximum number of lags s_0 used in computing the integrated autocorrelation times for each chain in parameters x_1 and x_2

	Sequential	MH 3.0	MH 5.0	MH 7.5	MH 10.0
x_1	375	108	141	124	90
x_2	386	104	135	89	158

Table 4 $\tau_{x_1} n_{solves}$ for each of the methods used. Worst and best cases are computed using the 95% confidence bounds in the autocorrelation function

	Sequential	MH 3.0	MH 5.0	MH 7.5	MH 10.0
Worst case	1,334.62	11,056.85	8,122.5	6,484.94	4,118.11
Expected	1,190.3	9,378.6	6,435.28	5,303.43	3,529.18
Best case	1,045.98	7,700.35	4,748.06	4,121.91	2,940.25

Table 5 $\tau_{x_2} n_{solves}$ for each of the methods used. Worst and best cases are computed using the 95% confidence bounds in the autocorrelation function

	Sequential	MH 3.0	MH 5.0	MH 7.5	MH 10.0
Worst Case	1,309.49	11,151.82	9,905.64	5,915.18	7,289.35
Expected	1,161.72	9,511.99	8,096.76	5,090.9	5,942.7
Best Case	1,013.95	7,872.16	6,287.87	4,266.62	4,596.05

Table 6 Relative efficiency ϵ of the sequential approach compared to MH with various step-sizes in estimating parameter x_1

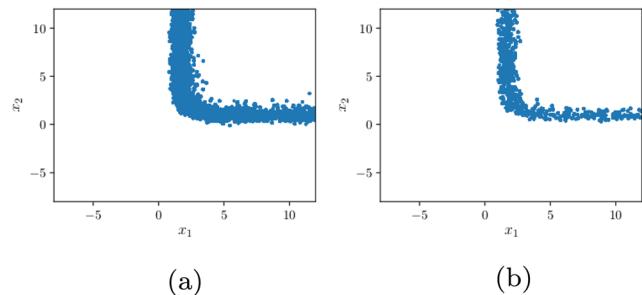
	MH 3.0	MH 5.0	MH 7.5	MH 10.0
Best case	10.57	7.77	6.2	3.94
Expected	7.88	5.41	4.46	2.96
Worst case	5.77	3.56	3.09	2.2

Table 7 Relative efficiency ϵ of the sequential approach compared to MH with various step-sizes in estimating parameter x_2

	MH 3.0	MH 5.0	MH 7.5	MH 10.0
Best case	11	9.77	5.83	7.19
Expected	8.19	6.97	4.38	5.12
Worst case	6.01	4.8	3.26	3.51

Table 8 Table shows the average acceptance rate, acceptance rate per model solve, and mean squared jump distance per accepted sample for each method

	Sequential	MH 3.0	MH 5.0	MH 7.5	MH 10.0
Acceptance	0.012	0.118	0.066	0.037	0.023
Acceptance per solve	0.283	0.134	0.084	0.064	0.056
Average jump	29.341	7.877	18.18	29.189	32.956

**Fig. 9** MCMC chains for the sequential and MH approaches with step-sizes of 10.0 each. (a) Sequential chain. (b) MH chain

The variance of each parameter computed using the grid of samples is

$$\sigma_{\text{true}}^2 \approx [7.3742, 12.9291]. \quad (38)$$

Now, using the effective sample size in Eq. 37 along with the grid variance in Eq. 38, we can estimate the standard deviation of the sample mean error of the sequential chain [9] as

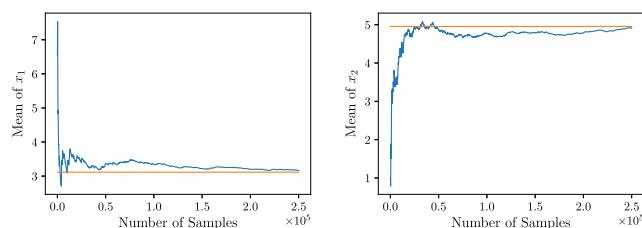
$$\sqrt{\frac{\sigma_{\text{true}}^2}{n_{\text{eff}}}} \approx [0.0849, 0.1110]. \quad (39)$$

From Eqs. 36 and 39, we see that the difference between the sample mean of the sequential chain and the grid mean is within a standard deviation of the sample mean error computed using the integrated autocorrelation times for the sequential chain and from the grid means and variances. This indicates that the sample means of the sequential chain are converging to the correct means for parameters x_1 and x_2 as expected.

Finally, we note that the variance of the samples from the sequential chain for each parameter is $\sigma_{\text{seq}}^2 \approx [7.7297, 12.8770]$. The difference between the sample variance from the sequential chain and the variance from the grid of samples is

$$|\sigma_{\text{true}}^2 - \sigma_{\text{seq}}^2| \approx [0.3555, 0.0521]. \quad (40)$$

This shows that the sample variance of the sequential chain agrees well with the grid variance.

**Fig. 10** Convergence of sequential sample means to grid means. The sequential chain sample means are the solid blue lines. Grid means are shown as flat solid orange lines

5.4 Discussion

We have shown that the sequential approach with a large step-size is more efficient for this problem than MH-MCMC for a variety of step-sizes. The reasons for this improved performance are the redundancy of time-series data in this reservoir model and the shape of the posterior which makes choosing a single step-size difficult. The fact that model output from initial time-steps is often correlated with future time-steps allows one to reject steps which lead to extremely low-probability regions of parameter space with relatively few model solves. The posterior having two distinct, elongated tails necessitates this larger step-size.

Crucial to this comparison is the limitation that both methods use a single step-size for the entire parameter space. In principle, one could choose multiple step-sizes for different regions of parameter space to improve performance. In this case, one would expect the sequential approach to be less efficient than MH-MCMC as the choice of such a proposal would depend on the shape of the posterior which implicitly contains information about the entire time-series of data. In practice choosing such a step-size would require significant exploration of the parameter space and would be extremely impractical for even moderately expensive models in higher dimensions. The utility of the sequential approach is that it allows one to choose a single step-size which is very large and use information from initial time-steps to reduce model-solves in low-probability regions which makes it extremely practical for problems such as the one considered here.

We acknowledge that choosing a step-size which is not isotropic could lead to increased performance in MH-MCMC. The posterior has some symmetry about the diagonal $x_1 = x_2$ but more probability mass in the region where $x_2 > 2.5$. To account for this it may be more appropriate to choose a step-size which is tuned for that region of parameter space more than the other regions. Finding such a step-size would have required running many more MH-MCMC chains to determine one with an optimal step-size in both directions. This was beyond the scope of the current work but may be interesting for future research. We expect that improved performance from this anisotropic step-size for MH-MCMC would be fairly modest as the posterior is somewhat symmetric as noted earlier. Due to the magnitude of the relative efficiency of the sequential approach to the MH algorithm for all step-sizes we believe that the sequential approach would still outperform MH-MCMC even with a well-chosen anisotropic step-size. Regardless, as for choosing multiple step-sizes for different regions of parameter space, choosing such an anisotropic step-size could be difficult and would require knowledge of the shape of the posterior which, in practice, could only

be obtained by exploring parameter space using MCMC or some other approach. So at worst, the sequential approach seems to lead to improved performance for isotropic step-sizes and could be used for initial exploration of parameter space until one obtains more knowledge about the shape of the posterior and can choose a step-size accordingly.

6 Conclusions and future work

In this work, we have presented an MCMC algorithm which can efficiently generate samples from a Bayesian posterior when the likelihood involves time-series data. The connection between the efficiency of this sequential approach relative to a standard Metropolis-Hastings MCMC algorithm and the step-size used in the proposal distribution was demonstrated through a simple problem in which the optimal step-size was known. This sequential MCMC algorithm was then applied to a Bayesian inverse problem in which the forward model was a two-phase reservoir model. We demonstrated that the sequential MCMC approach presented here was more efficient than Metropolis-Hastings for a variety of step-sizes when applied to this problem.

We acknowledge that the sequential approach has some limitations. It relies on the assumption that time-series data has some redundancy. Although this assumption need not hold exactly, for models in which data at different time-steps informs distinct directions in parameter space, we expect the sequential approach presented here to perform poorly relative to a standard MH approach. In the case of noisy data, we have shown that the sequential approach only outperforms standard MH-MCMC when step-sizes are relatively large. The inverse problem defined in Section 5 is an example of an inverse problem which yields a posterior which has no obvious optimal step-size. In this situation, the sequential MCMC algorithm can be a practical method for efficiently generating samples from the posterior.

The sequential approach described in this work is very general and could be applied to a variety of other problems beyond petroleum reservoirs. In principle, any problem in which the model is time-dependent and the time series data has some redundancy is a candidate for the method. Examining application of the method to other problems and application areas should be the focus of future work.

Additionally, here, we have implemented the sequential approach using a rejection stage at every time-step of the model. It may be more natural in some problems to only perform a rejection stage after multiple time-steps of the model have been computed for a proposed jump. This idea could also be helpful if one is using the sequential approach with a large step-size to generate samples in order to explore parameter space and determine a more appropriate step-

size for a standard MH algorithm. We have shown that, for a Gaussian posterior with known optimal step-size, the sequential approach is less efficient than the standard MH approach. In this case however, one could use the sequential approach described here with a rejection stage at every time-step. As the step-size is tuned to the posterior, one could gradually increase the number of model solves evaluated before a rejection stage is performed. We expect that this scheme would allow the use of initial time-steps to inform the algorithm while yielding fewer false rejections as the step-size potentially decreases in some directions.

Finally, although we do not show the results here, the sequential approach seems to be very efficient for burn-in periods when the chain is initialized far from a mode of the posterior. This is likely because when one starts very far from regions of high posterior probability, a proposed jump away from a region of high probability is likely to yield a degradation in the likelihood function for all time-steps. Conversely, a proposed jump towards a region of high posterior probability is likely to yield an increase in the likelihood function for each time-step so that false rejections are unlikely to occur. This is another area in which future work is required.

Acknowledgments This work was supported by ExxonMobil through its membership in The University of Texas at Austin Energy Institute and the National Science Foundation under Grant DMS-1818847. Additional funding was provided by the Oden Institute for Computational Engineering and Sciences through the CSEM Fellowship.

References

1. Ahmed, E., Jaffré, J., Roberts, J.E.: A reduced fracture model for two-phase flow with different rock types. *Math. Comput. Simul.* **137**, 49–70 (2017)
2. Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. *ESAIM: Math. Model. Numer. Anal.* **43**(2), 239–275 (2009)
3. Billingsley, P.: *Probability and Measure*. Wiley, New York (2008)
4. Chavent, G., Jaffré, J.: *Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media*. Elsevier (1986)
5. Chen, Z., Huan, G., Ma, Y.: *Computational Methods for Multiphase Flows in Porous Media*, vol. 2. SIAM (2006)
6. Christen, J.A., Fox, C.: Markov chain Monte Carlo using an approximation. *J. Comput. Graph. Stat.* **14**(4), 795–810 (2005)
7. Efendiev, Y., Datta-Gupta, A., Ginting, V., Ma, X., Mallick, B.: An efficient two-stage Markov chain Monte Carlo method for dynamic data integration. *Water Resour. Res.* **41**(12) (2005)
8. Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-matching grids. *Adv. Water Resour.* **62**, 454–464 (2013)
9. Gamerman, D., Lopes, H.F.: *Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference*. Chapman and Hall/CRC, Boca Raton (2006)
10. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. *Int. J. Numer. Methods Eng.* **79**(11), 1309–1331 (2009)
11. Lie, K.A.: *An Introduction to Reservoir Simulation Using MATLAB/GNU Octave*. Cambridge University Press, Cambridge (2019)
12. Logg, A., Mardal, K.A., Wells, G.N., et al.: *Automated Solution of Differential Equations by the Finite Element Method*. Springer. <https://doi.org/10.1007/978-3-642-23099-8> (2012)
13. Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. *SIAM J. Sci. Comput.* **26**(5), 1667–1691 (2005)
14. Nilsen, H.M., Natvig, J.R., Lie, K.A., et al.: Accurate modeling of faults by multipoint, mimetic, and mixed methods. *SPE J.* **17**(02), 568–579 (2012)
15. Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. *Comput. Geosci.* **15**(1), 185–221 (2011)
16. Schwenk, N., Flemisch, B., Helmig, R., Wohlmuth, B.: Dimensionally reduced flow models in fractured porous media. *Comput. Geosci.* **16**, 277–296 (2012)
17. Seabold, S., Perktold, J.: Statsmodels: econometric and statistical modeling with Python. In: *Proceedings of the 9th Python in Science Conference*, vol. 57, p. 61. Scipy (2010)
18. Solonen, A., Ollinaho, P., Laine, M., Haario, H., Tamminen, J., Järvinen, H., et al.: Efficient MCMC for climate model parameter estimation: parallel adaptive chains and early rejection. *Bayesian Anal.* **7**(3), 715–736 (2012)
19. Stuart, A.M.: Inverse problems: a Bayesian perspective. *Acta Numer.* **19**, 451–559 (2010)

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.