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Abstract— Bacteria identification can be a time-consuming
process. Machine learning algorithms that use deep convolutional
neural networks (CNNs) provide a promising alternative. Here, we
present a deep learning based approach paired with Raman
spectroscopy to rapidly and accurately detect the identity of a
bacteria class. We propose a simple 4-layer CNN architecture and
use a 30-class bacteria isolate dataset for training and testing. We
achieve an identification accuracy of around 86% with
identification speeds close to real-time. This optical/biological
detection method is promising for applications in the detection of
microbes in liquid biopsies and concentrated environmental liquid
samples, where fast and accurate detection is crucial. This study
uses a recently published dataset of Raman spectra from bacteria
samples and an improved CNN model built with TensorFlow.
Results show improved identification accuracy and reduced
network complexity.
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[. INTRODUCTION

As bacteria identification plays a role in a variety of fields
(including medical, forensic, and environmental), there is a
great need for faster bacteria identification methods [1, 2].
Traditional methods of identifying bacterial strains are time-
consuming processes that often require an incubation period of
24-48 hours [3]. Raman spectroscopy is a valuable and versatile
tool that can identify bacteria genotypes [4-6]. The Raman
spectra act as nondestructive and unique fingerprints for their
samples [6, 7]. The principle behind the technology is the
Raman effect, where a sample exposed to a laser will scatter
light at a frequency different from that of the incident light
(these are known as vibrational signatures) [6]. The process of
generating spectra is considerably simpler and faster than
standard culturing and allows for higher throughput, fewer
preparation materials (which risk error), and non-specialists to
gather high-quality data [6, §].

Chi-sing Ho et al. published a dataset with 60,000 Raman
spectra from 30 bacterial isolates, representative of most
infections seen in intensive care units worldwide [4]. This
reduces the barrier of entry for building faster and more
accurate neural networks that can outperform traditional
methods. The Raman spectroscopy dataset stores each
spectrum as a one-dimensional array of 1000 points
representing its vibrational signature.

Several neural network techniques have been applied to
bacteria identification, the most successful being convolutional
and residual networks [4]. Complex architectures promise to
improve on traditional spectral data analysis. These networks
can be extremely deep, some with upwards of 150 layers. While
this depth can produce a highly-fit network, those networks run
the risk of overfitting data which adds unnecessary complexity
and slows processing [9, 10]. Developing a simplified network
to achieve accurate and generalizable results, with minimal
layers, is one of the ambitions of our approach.

In our experiment, we used Ho’s dataset to train a CNN that
is fast and accurate with the objective of being able to learn to
identify new bacterial strains. Our CNN could cut down the
number of generations, allowing for an overall faster network
while maintaining an improved accuracy. Many industries,
including forensic analysis, medical, and environmental can
benefit from this technique.

II. METHODS

For this experiment, we prepared two neural networks. The
first one was a recreation of the neural architecture published
previously [4]. This network was composed of 26 layers and
included an initial convolution layer and four residual blocks,
each with six convolutional layers per residual block and a final
dense classification layer. Residual skip connections allow the
model to skip residual blocks that proved too deep for the
network. This network was built for modularity and allowed us
to adjust a wide variety of hyperparameters, including the
structure of the network.

Through experimentation with the modular network, we
developed a second network which examined the role of
network depth on accuracy. This simpler convolutional neural
network model was constructed of three convolutional layers, a
pooling layer, and a final dense classifier layer for a total
network depth of four layers. This model structure is visualized
in Figure 1. An Adam optimizer, learning rate of 0.001, batch
size of 100, and a dropout of 0.65 is used. Convolutional filters
for each convolutional layer are respectively 10, 25, and 25.

Both networks used pretraining and finetuning stages to
optimize the performance of the model. The networks were
pretrained on the large 60,000 sample database, and finetuned
on a much smaller 3,000 sample dataset, which included
samples more similar to the testing dataset. They each ran over
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10 epochs for pretraining and 10 epochs for finetuning. Average
accuracies for both models were calculated over 10 trials. The
datasets were preprocessed using a rolling mean.
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Figure 1. Model diagram of a 4-layer network, featuring three
convolution layers and a final dense layer.

III. RESULTS

Sample Raman signals obtained from the bacteria dataset are
plotted in Figure 2. These signals are obtained from the Chi
Sing Ho et al. dataset [4]. Signals are processed using a rolling
mean, which is plotted over unprocessed signals to show how a
rolling mean accentuates identifying characteristics of spectra.
Plotting of signals shows that different strains have similar
characteristics in their Raman spectra.
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Figure 2. Sample data signals plotted. Signals represent one
commonly misidentified spectra, E. coli 2 (bottom) and what it
is commonly misidentified as K. pheumoniae 1 (top).

The average accuracy achieved by the 26-layer residual
network model with pretraining was 85.29 + 0.47% with an
average runtime of 264.47 seconds per trial (on a benchmark
Google Colaboratory environment). The average accuracy
achieved by the 4-layer convolutional network with pretraining
was 85.82 + 0.78% with an average runtime of 59.22 seconds
per trial in the same environment. Without pretraining, the
average accuracy was 81.06 + 0.83% for the 26-layer network

and 80.23 £+ 1.22% for the 4-layer network. Accuracies of the
models with and without pretraining are visualized in Figure 3,
along with the average runtimes. With pretraining, the 4-layer
network is about 22.4 times faster in detection than the 26-layer
network (Table 1).

The accuracy and loss of the 4-layer convolution network’s
pretraining and finetuning models can be seen in Figure 3. The
accuracy of the model converges after 10 epochs of pretraining
and 5 epochs of finetuning.
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Figure 3. Plot representing the accuracy and loss function of
the pretraining and finetuning models of the 4-layer
convolutional network. The models are run over 20 epochs for
pretraining and finetuning for one trial.

The critical learning rate hyperparameter was evaluated and
a parametric study of the hyperparameter value is displayed in
Figure 4. The learning rate was optimized to be 0.0001 for
pretraining and finetuning on the 26-layer model and 0.001 for
the 4-layer model.
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Figure 4. Analysis of the effect of learning rate on the accuracy
of the 26-layer model after finetuning, assessed over 10 trials
with standard deviation represented by error bars.

Major elements of the model were considered and tuned,
including the number of training epochs and how many
pretraining samples the network required for maximum
accuracy. Hyperparameters, runtime, and accuracy achieved



were analyzed to optimize the model. The number of epochs
begins to converge after 10 epochs in pretraining and 5 epochs
in finetuning for the 4-layer model; thus, only 10 epochs are
needed to optimize the identification accuracy and limit the
total runtime. As expected, the total runtime for the 4-layer
network is significantly lower than that of the 26-layer network
and achieves similar identification accuracies (Table 1). The
number of epochs is consistent between the two models, so
network depth plays a key role in runtime and should be
minimized to gain efficiency.

The normalized confusion matrix, seen in Figure 5, displays
the identification accuracy of the 30 bacterial classes across the
wall. Identifications of less than 0.5% are not displayed. The
true bacteria class is on the y-axis while the class predicted by
the model is on the x-axis. This matrix was obtained from one
trial of the 4-layer convolutional network.

IV. DISCUSSION

The 4-layer network provides accurate identifications of
bacterial isolates with significantly reduced runtime. Most

Table 1. Comparison of model runtime to complete 10 trials and accuracy achieved by 26-layer network that replicates the residual network
developed by Chi-Sing Ho et al. and the 4-layer convolutional network, both with and without pretraining. Accuracy was tested over 10
trials with the standard deviation of accuracy provided for each model.

26 Layer Network 4 Layer Network
With Pretraining  Without Pretraining =~ With Pretraining  Without Pretraining
Runtime [sec] 2644.71 150.04 592.26 32.71
Average Accuracy 85.29% 81.06% 85.82% 80.23%
Standard Deviation 0.0047 0.0083 0.0078 0.012
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Figure 5. Normalized confusion matrix with entries along the diagonal respresenting maximum identification accuracies
of the 30 bacterial isolates used in this study. Obtained from one trial on the 4 layer network, which achieved an overall

accuracy of 85.27% for the trial.



notably is the E. coli 1 and E. coli 2 (Figure 5) identifications,
which will be the focus of future study due to the common use
of E. coli as an indicator of water quality, specifically fecal
contamination. Although the 26-layer model has comparable
accuracy and standard deviation for identification of E. coli 1
and E. coli 2, training the network is time-consuming and the
model contains more layers than are required for the simple task
of identifying basic Raman signals. Both models have a
difficult time differentiating between similar bacteria isolates,
such as P. mirabilis and E. faecalis 1. This is likely due to their
Raman signals having similar basic components, such as a peak
or trough in a similar position, as seen in Figure 5. Figure 2
shows E. coli 2 and K. pneumoniae 1. E. coli 2 is commonly
misidentified as K. pneumoniae 1, and more processing of the
Raman signals or further hyperparameter tuning may be needed
in order to consistently identify E. coli strains accurately for use
in industries such as environmental monitoring, where E. coli
is a common indicator.

Further data preprocessing may aid in reducing noise and
extracting unique signal features, which will aid the model in
differentiating between similar bacteria isolates in the future.
The loss function of both pretraining and finetuning on the 4-
layer network is promising as it quickly drops to around 0.10
and converges. Our model can quickly identify key components
of the bacteria isolate signals and continue to maintain high
rates of identification after each round of optimization.

Pretraining the neural network is helpful as it extracts basic
features of the signal and saves data that will be accessed in
finetuning, leading to overall higher identification accuracy.
Pretraining the 26- and 4-layer networks lead to about a 4%
increase in overall identification accuracy, as seen in Table 1.
Further, pretraining the network decreases the standard
deviation of the identifications and will thus lead to a more
precise model. Pretraining does account for much of the
runtime of both models, but a single pretrained network could
be finetuned for multiple datasets. The convolutional layers
extract general features during pretraining, and only specific
details are updated during finetuning.

The learning rate was also evaluated, as outlined in Figure 4.
This hyperparameter is vital to the success of the neural
network as it controls the convergence rate of the network. For
values greater than the optimal value, the network likely was
subject to an unstable or divergent learning process; for values
less than the optimal value, the network was unable to process
the data quickly, resulting in a slightly longer runtime. In the
future, CNN’s will be applied to a variety of other Raman
signals sourced from aquatic-based bacteria. Further
preprocessing and normalizing of the dataset will likely reduce
misidentification errors.
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