
978-0-7381-4394-1/21/$31.00 ©2021 IEEE 

Abstract— Bacteria identification can be a time-consuming 

process. Machine learning algorithms that use deep convolutional 

neural networks (CNNs) provide a promising alternative. Here, we 

present a deep learning based approach paired with Raman 

spectroscopy to rapidly and accurately detect the identity of a 

bacteria class. We propose a simple 4-layer CNN architecture and 

use a 30-class bacteria isolate dataset for training and testing. We 

achieve an identification accuracy of around 86% with 

identification speeds close to real-time. This optical/biological 

detection method is promising for applications in the detection of 

microbes in liquid biopsies and concentrated environmental liquid 

samples, where fast and accurate detection is crucial. This study 

uses a recently published dataset of Raman spectra from bacteria 

samples and an improved CNN model built with TensorFlow. 

Results show improved identification accuracy and reduced 

network complexity. 

Keywords—bacteria, Raman spectroscopy, deep learning, rapid 

detection.  

I. INTRODUCTION 

As bacteria identification plays a role in a variety of fields 

(including medical, forensic, and environmental), there is a 

great need for faster bacteria identification methods [1, 2]. 

Traditional methods of identifying bacterial strains are time-

consuming processes that often require an incubation period of 

24-48 hours [3]. Raman spectroscopy is a valuable and versatile 

tool that can identify bacteria genotypes [4-6]. The Raman 

spectra act as nondestructive and unique fingerprints for their 

samples [6, 7]. The principle behind the technology is the 

Raman effect, where a sample exposed to a laser will scatter 

light at a frequency different from that of the incident light 

(these are known as vibrational signatures) [6]. The process of 

generating spectra is considerably simpler and faster than 

standard culturing and allows for higher throughput, fewer 

preparation materials (which risk error), and non-specialists to 

gather high-quality data [6, 8]. 

Chi-sing Ho et al. published a dataset with 60,000 Raman 

spectra from 30 bacterial isolates, representative of most 

infections seen in intensive care units worldwide [4]. This 

reduces the barrier of entry for building faster and more 

accurate neural networks that can outperform traditional 

methods. The Raman spectroscopy dataset stores each 

spectrum as a one-dimensional array of 1000 points 

representing its vibrational signature.  

Several neural network techniques have been applied to 

bacteria identification, the most successful being convolutional 

and residual networks [4]. Complex architectures promise to 

improve on traditional spectral data analysis. These networks 

can be extremely deep, some with upwards of 150 layers. While  

this depth can produce a highly-fit network, those networks run 

the risk of overfitting data which adds unnecessary complexity 

and slows processing [9, 10]. Developing a simplified network 

to achieve accurate and generalizable results, with minimal 

layers, is one of the ambitions of our approach. 

In our experiment, we used Ho’s dataset to train a CNN that 

is fast and accurate with the objective of being able to learn to 

identify new bacterial strains. Our CNN could cut down the 

number of generations, allowing for an overall faster network 

while maintaining an improved accuracy. Many industries, 

including forensic analysis, medical, and environmental can 

benefit from this technique. 

II. METHODS 

For this experiment, we prepared two neural networks. The 

first one was a recreation of the neural architecture published 

previously [4]. This network was composed of 26 layers and 

included an initial convolution layer and four residual blocks, 

each with six convolutional layers per residual block and a final 

dense classification layer. Residual skip connections allow the 

model to skip residual blocks that proved too deep for the 

network. This network was built for modularity and allowed us 

to adjust a wide variety of hyperparameters, including the 

structure of the network. 

Through experimentation with the modular network, we 

developed a second network which examined the role of 

network depth on accuracy. This simpler convolutional neural 

network model was constructed of three convolutional layers, a 

pooling layer, and a final dense classifier layer for a total 

network depth of four layers. This model structure is visualized 

in Figure 1. An Adam optimizer, learning rate of 0.001, batch 

size of 100, and a dropout of 0.65 is used. Convolutional filters 

for each convolutional layer are respectively 10, 25, and 25. 

Both networks used pretraining and finetuning stages to 

optimize the performance of the model. The networks were 

pretrained on the large 60,000 sample database, and finetuned 

on a much smaller 3,000 sample dataset, which included 

samples more similar to the testing dataset. They each ran over 
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10 epochs for pretraining and 10 epochs for finetuning. Average 

accuracies for both models were calculated over 10 trials. The 

datasets were preprocessed using a rolling mean. 

 

 

Figure 1. Model diagram of a 4-layer network, featuring three 

convolution layers and a final dense layer. 

III. RESULTS 

Sample Raman signals obtained from the bacteria dataset are 

plotted in Figure 2. These signals are obtained from the Chi 

Sing Ho et al. dataset [4]. Signals are processed using a rolling 

mean, which is plotted over unprocessed signals to show how a 

rolling mean accentuates identifying characteristics of spectra. 

Plotting of signals shows that different strains have similar 

characteristics in their Raman spectra. 

 

 

Figure 2. Sample data signals plotted. Signals represent one 

commonly misidentified spectra, E. coli 2 (bottom) and what it 

is commonly misidentified as K. pheumoniae 1 (top).  

The average accuracy achieved by the 26-layer residual 

network model with pretraining was 85.29 ± 0.47% with an 

average runtime of 264.47 seconds per trial (on a benchmark 

Google Colaboratory environment). The average accuracy 

achieved by the 4-layer convolutional network with pretraining 

was 85.82 ± 0.78% with an average runtime of 59.22 seconds 

per trial in the same environment. Without pretraining, the 

average accuracy was 81.06 ± 0.83% for the 26-layer network 

and 80.23 ± 1.22% for the 4-layer network. Accuracies of the 

models with and without pretraining are visualized in Figure 3, 

along with the average runtimes. With pretraining, the 4-layer 

network is about 22.4 times faster in detection than the 26-layer 

network (Table 1). 

The accuracy and loss of the 4-layer convolution network’s 

pretraining and finetuning models can be seen in Figure 3. The 

accuracy of the model converges after 10 epochs of pretraining 

and 5 epochs of finetuning. 

 

Figure 3. Plot representing the accuracy and loss function of 

the pretraining and finetuning models of the 4-layer 

convolutional network. The models are run over 20 epochs for 

pretraining and finetuning for one trial. 

The critical learning rate hyperparameter was evaluated and 

a parametric study of the hyperparameter value is displayed in 

Figure 4. The learning rate was optimized to be 0.0001 for 

pretraining and finetuning on the 26-layer model and 0.001 for 

the 4-layer model. 

 

Figure 4. Analysis of the effect of learning rate on the accuracy 

of the 26-layer model after finetuning, assessed over 10 trials 

with standard deviation represented by error bars. 

Major elements of the model were considered and tuned, 

including the number of training epochs and how many 

pretraining samples the network required for maximum 

accuracy. Hyperparameters, runtime, and accuracy achieved 



were analyzed to optimize the model. The number of epochs 

begins to converge after 10 epochs in pretraining and 5 epochs 

in finetuning for the 4-layer model; thus, only 10 epochs are 

needed to optimize the identification accuracy and limit the 

total runtime. As expected, the total runtime for the 4-layer 

network is significantly lower than that of the 26-layer network 

and achieves similar identification accuracies (Table 1). The 

number of epochs is consistent between the two models, so 

network depth plays a key role in runtime and should be 

minimized to gain efficiency. 

The normalized confusion matrix, seen in Figure 5, displays 

the identification accuracy of the 30 bacterial classes across the 

wall. Identifications of less than 0.5% are not displayed. The 

true bacteria class is on the y-axis while the class predicted by 

the model is on the x-axis. This matrix was obtained from one 

trial of the 4-layer convolutional network. 

IV. DISCUSSION 

The 4-layer network provides accurate identifications of 

bacterial isolates with significantly reduced runtime. Most 

Table 1. Comparison of model runtime to complete 10 trials and accuracy achieved by 26-layer network that replicates the residual network 

developed by Chi-Sing Ho et al. and the 4-layer convolutional network, both with and without pretraining. Accuracy was tested over 10 

trials with the standard deviation of accuracy provided for each model.  
 

  26 Layer Network 4 Layer Network 

  With Pretraining Without Pretraining With Pretraining Without Pretraining 

Runtime [sec] 2644.71 150.04 592.26 32.71 

Average Accuracy 85.29% 81.06% 85.82% 80.23% 

Standard Deviation 0.0047 0.0083 0.0078 0.012 

 

 

Figure 5. Normalized confusion matrix with entries along the diagonal respresenting maximum identification accuracies 

of the 30 bacterial isolates used in this study. Obtained from one trial on the 4 layer network, which achieved an overall 

accuracy of 85.27% for the trial. 



notably is the E. coli 1 and E. coli 2 (Figure 5) identifications, 

which will be the focus of future study due to the common use 

of E. coli as an indicator of water quality, specifically fecal 

contamination. Although the 26-layer model has comparable 

accuracy and standard deviation for identification of E. coli 1 

and E. coli 2, training the network is time-consuming and the 

model contains more layers than are required for the simple task 

of identifying basic Raman signals. Both models have a 

difficult time differentiating between similar bacteria isolates, 

such as P. mirabilis and E. faecalis 1. This is likely due to their 

Raman signals having similar basic components, such as a peak 

or trough in a similar position, as seen in Figure 5. Figure 2 

shows E. coli 2 and K. pneumoniae 1. E. coli 2 is commonly 

misidentified as K. pneumoniae 1, and more processing of the 

Raman signals or further hyperparameter tuning may be needed 

in order to consistently identify E. coli strains accurately for use 

in industries such as environmental monitoring, where E. coli 

is a common indicator.  

Further data preprocessing may aid in reducing noise and 

extracting unique signal features, which will aid the model in 

differentiating between similar bacteria isolates in the future. 

The loss function of both pretraining and finetuning on the 4-

layer network is promising as it quickly drops to around 0.10 

and converges. Our model can quickly identify key components 

of the bacteria isolate signals and continue to maintain high 

rates of identification after each round of optimization. 

Pretraining the neural network is helpful as it extracts basic 

features of the signal and saves data that will be accessed in 

finetuning, leading to overall higher identification accuracy. 

Pretraining the 26- and 4-layer networks lead to about a 4% 

increase in overall identification accuracy, as seen in Table 1. 

Further, pretraining the network decreases the standard 

deviation of the identifications and will thus lead to a more 

precise model. Pretraining does account for much of the 

runtime of both models, but a single pretrained network could 

be finetuned for multiple datasets. The convolutional layers 

extract general features during pretraining, and only specific 

details are updated during finetuning. 

The learning rate was also evaluated, as outlined in Figure 4. 

This hyperparameter is vital to the success of the neural 

network as it controls the convergence rate of the  network. For 

values greater than the optimal value, the network likely was 

subject to an unstable or divergent learning process; for values 

less than the optimal value, the network was unable to process 

the data quickly, resulting in a slightly longer runtime. In the 

future, CNN’s will be applied to a variety of other Raman 

signals sourced from aquatic-based bacteria. Further 

preprocessing and normalizing of the dataset will likely reduce 

misidentification errors.  
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