
deal.II Implementation of a Weak

Galerkin Finite Element Solver for Darcy

Flow

Zhuoran Wang1, Graham Harper1, Patrick O’Leary2, Jiangguo Liu1(B),
and Simon Tavener1

1 Colorado State University, Fort Collins, CO 80523, USA
{wangz,harper,liu,tavener}@math.colostate.edu

2 Kitware, Inc., Santa Fe, NM 87507, USA
patrick.oleary@kitware.com

Abstract. This paper presents a weak Galerkin (WG) finite element
solver for Darcy flow and its implementation on the deal.II platform.
The solver works for quadrilateral and hexahedral meshes in a unified
way. It approximates pressure by Q-type degree k(≥0) polynomials sepa-
rately defined in element interiors and on edges/faces. Numerical velocity
is obtained in the unmapped Raviart-Thomas space RT[k] via postpro-
cessing based on the novel concepts of discrete weak gradients. The solver
is locally mass-conservative and produces continuous normal fluxes. The
implementation in deal.II allows polynomial degrees up to 5. Numeri-
cal experiments show that our new WG solver performs better than the
classical mixed finite element methods.

Keywords: Darcy flow · deal.II · Finite element methods ·
Hexahedral meshes · Quadrilateral meshes · Weak Galerkin

1 Introduction

The Darcy equation, although simple, plays an important role for modeling flow
in porous media. The equation usually takes the following form

{

∇ · (−K∇p) + c p = f, x ∈ Ω,

p|Γ D = pD, ((−K∇p) · n)|Γ N = uN ,
(1)

where Ω is a 2-dim or 3-dim bounded domain, p is the unknown pressure, K is a
conductivity matrix that is uniformly symmetric positive definite (SPD), c is a
known function, f is a known source term, pD is a Dirichlet boundary condition,
uN is a Neumann boundary condition, and n is the outward unit normal vector
on ∂Ω, which has a nonoverlapping decomposition ΓD ∪ ΓN .

Harper, Liu, and Wang were partially supported by US National Science Foundation
grant DMS-1819252. We thank Dr. Wolfgang Bangerth for the computing resources.

c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11539, pp. 495–509, 2019.
https://doi.org/10.1007/978-3-030-22747-0_37

496 Z. Wang et al.

The elliptic boundary value problem (1) can be solved by many types of finite
element methods. But in the context of Darcy flow, local mass conservation and
normal flux continuity are two most important properties to be respected by
finite element solvers.

– The continuous Galerkin (CG) methods [5] use the least degrees of freedom
but do not possess these two properties and hence cannot be used directly.
Several post-processing procedures have been developed [7,8].

– Discontinuous Galerkin (DG) methods are locally conservative by design and
gain normal flux continuity after post-processing [4].

– The enhanced Galerkin (EG) methods [19] possess both properties but need
to handle some minor issues in implementation.

– The mixed finite element methods (MFEMs) [2,6] have both properties by
design but result in indefinite discrete linear systems, for which hybridization
needs to be employed to convert them into definite linear systems.

– The weak Galerkin (WG) methods [11,13,15–17,20] have both properties and
result in SPD linear systems that are easier to solve.

In this paper, we investigate efficient implementation of WG Darcy solvers in
deal.II, a popular finite element package [3], with the intention to make WG
finite element methods practically useful for large-scale scientific computation.

2 A WG Finite Element Solver for Darcy Flow

WG solvers can be developed for Darcy flow on simplicial, quadrilateral or hex-
ahedral, and more general polygonal or polyhedral meshes. These finite element
schemes may or may not contain a stabilization term, depending on choices of the
approximating polynomials for pressure in element interiors and on edges/faces.
Through integration by parts, these polynomial basis functions are used for
computing discrete weak gradients, which are used to approximate the classical
gradient in the variational form for the Darcy equation. Discrete weak gradients
can be established in a general vector polynomial space [18] or a specific one like
the Raviart-Thomas space [11,17] that has desired approximation properties.

This paper focuses on quadrilateral and hexahedral meshes, in which faces
are or very close to being flat. We use Qk(k ≥ 0)-type polynomials in element
interiors and on edges/faces for approximating the primal variable pressure.
Their discrete weak gradients are established in local unmapped Raviart-Thomas
RT[k](k ≥ 0) spaces, for which we do not use the Piola transformation. We use
the same form of polynomials as that for rectangles and bricks in the classical
MFEMs [6].

To illustrate these new ideas, we consider a quadrilateral E centered at
(xc, yc). We define the local unmapped Raviart-Thomas space RT[0](E) as

RT[0](E) = Span(w1,w2,w3,w4), (2)

where

w1 =

[

1
0

]

, w2 =

[

0
1

]

, w3 =

[

X

0

]

, w4 =

[

0
Y

]

, (3)

and X = x − xc, Y = y − yc are the normalized coordinates.

WG Solver for Darcy Flow and deal.II Implementation 497

Now we introduce a new concept of 5 discrete weak functions φi(0 ≤ i ≤ 4).

– φ0 is for element interior: It takes value 1 in the interior E◦ but 0 on the
boundary E∂ (all 4 edges);

– φ1,φ3,φ3,φ4 are for the four sides respectively: φi(1 ≤ i ≤ 4) takes value 1
on the i-th edge but 0 on all other three edges and in the interior.

Any such function φ has two independent parts: φ◦ is defined in E◦, whereas φ∂

is defined on E∂ , together written as φ = {φ◦,φ∂}. Its discrete weak gradient
∇wφ can be specified in RT[0](E) via integration by parts [20]:

∫

E

(∇wφ) · w =

∫

E∂

φ∂(w · n) −

∫

E◦

φ◦(∇ · w), ∀w ∈ RT[0](E). (4)

This attributes to solving a size-4 SPD linear system. Note that

(i) For a quadrilateral, φ◦ or φ∂ each can also be a degree k ≥ 1 polynomial and
the discrete weak gradient ∇wφ is then established in the local unmapped
Raviart-Thomas space RT[k](k ≥ 1).

(ii) For a hexahedron with nonflat faces, we can use the averaged normal vectors
in (4). The Jacobian determinant is still used in computation of the integrals.

For a rectangle E = [x1, x2] × [y1, y2] (∆x = x2 − x1,∆y = y2 − y1), we have



























∇wφ0 = 0w1 + 0w2 + −12
(∆x)2 w3 + −12

(∆y)2 w4,

∇wφ1 = −1
∆x

w1 + 0w2 + 6
(∆x)2 w3 + 0w4,

∇wφ2 = 1
∆x

w1 + 0w2 + 6
(∆x)2 w3 + 0w4,

∇wφ3 = 0w1 + −1
∆y

w2 + 0w3 + 6
(∆y)2 w4,

∇wφ4 = 0w1 + 1
∆y

w2 + 0w3 + 6
(∆y)2 w4.

(5)

Let Eh be a shape-regular quadrilateral mesh. Let ΓD
h be the set of all edges

on the Dirichlet boundary ΓD and ΓN
h be the set of all edges on the Neumann

boundary ΓN . Let Sh be the space of discrete shape functions on Eh that are
degree k polynomials in element interiors and also degree k polynomials on edges.
Let S0

h be the subspace of functions in Sh that vanish on ΓD
h . For (1), we seek

ph = {p◦
h, p∂

h} ∈ Sh such that p∂
h|Γ D

h

= Q∂
h(pD) (the L2-projection of Dirichlet

boundary data into the space of degree k polynomials on ΓD
h) and

Ah(ph, q) = F(q), ∀q = {q◦, q∂} ∈ S0
h, (6)

where

Ah(ph, q) =
∑

E∈Eh

∫

E

K∇wph · ∇wq +
∑

E∈Eh

∫

E

c p q, (7)

F(q) =
∑

E∈Eh

∫

E

fq◦ −
∑

γ∈Γ N

h

∫

γ

uNq∂ . (8)

This results in a symmetric positive-definite discrete linear system [17].

498 Z. Wang et al.

Note ∇wph is in the local Raviart-Thomas space, but −K∇wph may not be.
A local L2-projection Qh is needed [11,13,17] to get it back into the RT space:

uh = Qh(−K∇wph). (9)

This is the numerical Darcy velocity for subsequent applications, e.g., transport
simulations. Clearly, this process is readily parallelizable for large-scale computa-
tion. This numerical velocity is locally mass-conservative and the corresponding
normal flux is continuous across edges or faces, as proved in [11,17].

As shown in [17], this Darcy solver is easy to be implemented and results in
a symmetric positive-definite system that can be easily solved by a conjugate-
gradient type linear solver. The WG methodology has connections to but is
indeed different than the classical mixed finite element methods, especially the
hybridized MFEMs [13,14].

3 deal.II Implementation of WG Solver for Darcy Flow

deal.II is a popular C++ finite element package [3]. It uses quadrilateral and
hexahedral meshes instead of simplicial meshes. The former may involve less
degrees of freedom than the latter. The resulting linear systems may have smaller
sizes, although the setup time for these linear systems may be longer. The setup
time is spent on bilinear/trilinear mappings from the reference square/cube to
general quadrilaterals/hexahedra and computation of various integrals.

3.1 Quadrilateral and Hexahedral Meshes

deal.II handles meshes by the GridGenerator class. All mesh information,
such as the number of active cells, degrees of freedom, are stored in this class.
For any integer k ≥ 0, our WG(Qk, Qk;RT[k]) solver is locally mass-conservative
and produces continuous normal fluxes regardless of the quality of quadrilateral
and hexahedral meshes. In order to obtain the desired order k convergence rate
in pressure, velocity, and normal fluxes, we require meshes to be asymptotically
parallelogram or parallelopiped [11,17].

3.2 Finite Element Spaces

The WG(Qk, Qk;RT[k]) solver involves three finite element spaces. The first two
spaces are for the pressure unknowns, the third one (RT space) is used for discrete
weak gradients and numerical velocity. In deal.II implementation, the first two
are combined as

FESystem<dim> fe;

The third one (with dim being 2 or 3) is

FE_RaviartThomas<dim> fe_rt;

WG Solver for Darcy Flow and deal.II Implementation 499

Raviart-Thomas Spaces for Discrete Weak Gradients and Velocity.
WG allows use of unmapped RT spaces on quadrilaterals and hexahedra [11,
17]. These spaces use the same polynomials for shape functions as those in the
classical RT spaces for 2-dim or 3-dim rectangles [6]. They are respectively,

RT[k](E) = Qk+1,k × Qk,k+1, (10)

RT[k](E) = Qk+1,k,k × Qk,k+1,k × Qk,k,k+1. (11)

In deal.II, we use degree for k in Eqs. (10) or (11) and have

fe_rt(degree);

Two Separate Polynomial Spaces for Pressure. Note that for the
WG(Qk, Qk;RT[k]) finite element solver for Darcy flow, the pressure is approxi-
mated separately in element interiors by Qk-type polynomials and on edges/faces
by Qk-type polynomials also. Note that the 2nd group of Qk-type polynomials
are defined locally on each edge/face. For the deal.II implementation, we have

fe(FE_DGQ<dim>(degree), 1, FE_FaceQ<dim>(degree), 1);

where degree is k, that is, the degree of the polynomials, “1” means these two
groups of pressure unknowns are just scalars. Note that

– FE DGQ is a finite element class in deal.II that has no continuity across
faces or vertices, i.e., every shape function lives exactly in one cell. So we use
it to approximate the pressure in element interiors.

– FE FaceQ is a finite element class that is defined only on edges/faces.

However, these two different finite element spaces are combined into one finite
element system, we split these shape functions as

const FEValuesExtractors::Scalar interior(0);

const FEValuesExtractors::Scalar face(1);

Here “0” corresponds to the 1st finite element class FE DGQ for the inte-
rior pressure; “1” corresponds to the 2nd finite element class FE FaceQ for
the face pressure. Later on, we will just use fe values[interior].value and
fe values[face].value for assembling the element-level matrices.

3.3 Gaussian Quadratures

Finite element computation involves various types of integrals, which are dis-
cretized via quadratures, e.g., Gaussian quadratures. For example, we consider

∫

E

f ≈

K
∑

k=1

wkf(xk, yk)Jk, (12)

where K is the number of quadrature points, (xk, yk) is the k-th quadrature
point, Jk is the corresponding Jacobian determinant, and wk is the weight. In
deal.II, this is handled by the Quadrature class. In particular, the Jacobian
determinant value and weight for each quadrature point are bundled together as

500 Z. Wang et al.

fe_values.JxW(q_k);

where qk is the k-th quadrature point.

3.4 Linear Solvers

deal.II provides a variety of linear solvers that are inherited from PETSc. The
global discrete linear systems obtained from the weak Galerkin finite element
discretization of the Darcy equation are symmetric positive-definite. Thus we
can choose a conjugate-gradient type linear solver for them.

3.5 Graphics Output

In our WG(Qk, Qk;RT[k]) solver for Darcy flow, the scalar pressures are defined
separately in element interiors and on edges/faces of a mesh. These values are
output separately in deal.II. The interior pressures are handled by DataOut,
whereas the face pressures are handled by DataOutFace. Specifically,

data_out.build_patches(fe.degree);

data_out_face.build_patches(fe.degree);

are used to subdivide each cell into smaller patches, which provide better visu-
alization if we use higher degree polynomials. The post-processed data are saved
as vtk files for later visualization in VisIt.

4 Code Excerpts with Comments

This section provides some code excerpts with comments. More details can be
found in deal.II tutorial Step-61 (subject to minor changes) [1].

4.1 Construction of Finite Element Spaces

Note that FE RaviartThomas is a Raviart-Thomas space for vector-valued func-
tions, FESystem defines finite element spaces in the interiors and on edges/faces.
Shown below is the code for the lowest order WG finite elements.

88 FE_RaviartThomas<dim> fe_rt;

89 DoFHandler<dim> dof_handler_rt;

90 FESystem<dim> fe;

91 DoFHandler<dim> dof_handler;

227 fe_rt (0);

228 dof_handler_rt (triangulation);

229 fe (FE_DGQ<dim>(0), 1, FE_FaceQ<dim>(0), 1);

230 dof_handler (triangulation);

WG Solver for Darcy Flow and deal.II Implementation 501

4.2 System Setup

The following piece distributes degrees of freedom for finite element spaces.

260 dof_handler_rt.distribute_dofs (fe_rt);

261 dof_handler.distribute_dofs (fe);

The following piece sets up matrices and vectors in the system.

286 DynamicSparsityPattern dsp(dof_handler.n_dofs());

287 DoFTools::make_sparsity_pattern(dof_handler, dsp, constraints);

288 sparsity_pattern.copy_from(dsp);

289 system_matrix.reinit(sparsity_pattern);

290 solution.reinit(dof_handler.n_dofs());

291 system_rhs.reinit(dof_handler.n_dofs());

4.3 System Assembly

The following piece uses extractors to extract components of finite element shape
functions.

358 const FEValuesExtractors::Vector velocities (0);

359 const FEValuesExtractors::Scalar interior (0);

360 const FEValuesExtractors::Scalar face (1);

The following pieces calculates the Gram matrix for the RT space.

384 for (unsigned int q = 0; q < n_q_points_rt; ++q) {

385 for (unsigned int i = 0; i < dofs_per_cell_rt; ++i) {

386 const Tensor<1,dim> phi_i_u =

387 fe_values_rt[velocities].value(i,q);

388 for (unsigned int j = 0; j < dofs_per_cell_rt; ++j) {

389 const Tensor<1,dim> phi_j_u =

390 fe_values_rt[velocities].value (j, q);

391 cell_matrix_rt(i,j) += phi_i_u * phi_j_u

392 * fe_values_rt.JxW(q);

393 } } }

The following piece handles construction of WG local matrices.

462 for (unsigned int q = 0; q < n_q_points_rt; ++q) {

463 for (unsigned int i = 0; i<dofs_per_cell; ++i) {

464 for (unsigned int j = 0; j<dofs_per_cell; ++j) {

465 for (unsigned int k = 0; k<dofs_per_cell_rt; ++k) {

502 Z. Wang et al.

466 const Tensor<1,dim> phi_k_u =

467 fe_values_rt[velocities].value(k,q);

468 for (unsigned int l = 0; l < dofs_per_cell_rt; ++l) {

469 const Tensor<1,dim> phi_l_u =

470 fe_values_rt[velocities].value(l,q);

471 local_matrix(i,j) += coefficient_values[q] *

472 cell_matrix_C[i][k] * cell_matrix_C[j][l] *

473 phi_k_u * phi_l_u * fe_values_rt.JxW(q);

474 } } } } }

The following piece calculates the local right-hand side.

488 for (unsigned int q = 0; q < n_q_points; ++q) {

489 for (unsigned int i = 0; i < dofs_per_cell; ++i) {

490 cell_rhs(i) += (fe_values[interior].value(i, q) *

491 right_hand_side.value(fe_values.quadrature_point(q)) *

492 fe_values.JxW(q));

493 } }

The following piece distributes entries of local matrices into the system matrix
and also incorporates the local right-hand side into the system right-hand side.

502 cell->get_dof_indices(local_dof_indices);

503 constraints.distribute_local_to_global(

504 local_matrix, cell_rhs, local_dof_indices,

505 system_matrix, system_rhs);

5 Numerical Experiments

This section presents three numerical examples (Eq. (1) with c = 0) to demon-
strate accuracy and robustness of our novel WG solver for Darcy flow.

Example 1 (A smooth example for convergence rates). Here we have
domain Ω = (0, 1)2, conductivity K = I2, and a known solution for the pressure:

p(x, y) = sin(πx) sin(πy).

A homogeneous Dirichlet boundary condition is posed on the entire boundary.

The WG(Qk, Qk;RT[k]) solver is tested on Example 1 for k = 0, 1, 2 on a
sequence of uniform rectangular meshes. As shown in Table 1, the solver exhibits
order k convergence rates for the L2-norms of the errors in the interior pressure,
velocity, and normal flux. Shown in Fig. 1 are the profiles of the numerical pres-
sure obtained from applying the WG(Q1, Q1;RT[1]) solver. In the right panel,
the edge pressures are plotted as grey line segments. The graphical results in
both panels demonstrate nice monotonicity in the numerical pressure produced
by our WG solver.

WG Solver for Darcy Flow and deal.II Implementation 503

Table 1. Ex.1: Convergence rates of WG(Qk, Qk; RT[k]) solver on rectangular meshes

1/h ‖p − p◦

h‖ Rate ‖u − uh‖ Rate ‖u · n − uh · n‖ Rate

WG(Q0, Q0; RT[0])

4 1.5870E−01 — 5.1289E−01 — 7.0500E−01 —

8 7.9980E−02 0.988 2.5309E−01 1.018 3.5523E−01 0.988

16 4.0058E−02 0.997 1.2608E−01 1.005 1.7796E−01 0.997

32 2.0037E−02 0.999 6.2977E−02 1.001 8.9020E−02 0.999

64 1.0020E−02 0.999 3.1481E−02 1.000 4.4516E−02 0.999

128 5.0099E−03 1.000 1.5740E−02 1.000 2.2258E−02 1.000

WG(Q1, Q1; RT[1])

4 1.6130E−02 — 5.0989E−02 — 7.1588E−02 —

8 4.0560E−03 1.991 1.2762E−02 1.998 1.8016E−02 1.990

16 1.0155E−03 1.997 3.1915E−03 1.999 4.5113E−03 1.997

32 2.5396E−04 1.999 7.9792E−04 1.999 1.1283E−03 1.999

64 6.3496E−05 1.999 1.9948E−04 1.999 2.8210E−04 1.999

128 1.5874E−05 2.000 4.9871E−05 1.999 7.0528E−05 1.999

WG(Q2, Q2; RT[2])

4 1.0719E−03 — 3.3764E−03 — 4.7589E−03 —

8 1.3465E−04 2.992 4.2331E−04 2.995 5.9814E−04 2.992

16 1.6852E−05 2.998 5.2952E−05 2.998 7.4870E−05 2.998

32 2.1072E−06 2.999 6.6203E−06 2.999 9.3620E−06 2.999

64 2.6342E−07 2.999 8.2757E−07 2.999 1.1703E−06 2.999

128 3.2928E−08 2.999 1.0344E−07 2.999 1.46298E−07 2.999

Element interior pressure for h = 1

16
Interior/edge pressure 3d view (h = 1

8
)

Fig. 1. Ex.1: Numerical pressure by WG(Q1, Q1; RT[1]) solver on rectangular meshes

Example 2 (Heterogeneous permeability). The permeability profile is
adopted from [9]. We consider a simple Darcy flow problem on the unit square.
Dirichlet boundary conditions are posed on the left and right sides: p = 1 for

504 Z. Wang et al.

Fig. 2. Example 2 (Heterogeneous permeability): Numerical pressure and velocity

Table 2. Example 2: Comparison between WG and MFEM solvers

tol = 10−9 WG MFEM

Mesh pmin pmax Runtime pmin pmax Runtime

20 × 20 1.21321E–4 0.995113 0.857 s 1.21320E–4 0.995113 1.410 s

40 × 40 1.45401E–4 0.997289 6.759 s 1.45401E–4 0.997289 13.833 s

80 × 80 8.73042E–5 0.998587 59.070 s 8.73043E–5 0.998587 103.141 s

160 × 160 4.59350E–5 0.999281 607.556 s 4.59345E–5 0.999281 877.648 s

x = 0; and p = 0 for x = 1. The other two sides have a homogeneous Neumann
(no-flow) boundary condition. The problem was also tested using Matlab in [17].

Shown in Fig. 2 right panel are the numerical pressure and velocity profiles
obtained from apply our WG(Q0, Q0;RT0) solver on a uniform 40×40 rectangu-
lar mesh. Clearly, the elementwise numerical pressure stays between 0 and 1, the
pressure profile demonstrates monotonicity from left to right, and the velocity
profile reveals the low-permeability regions and channels for fast flow.

Example 2 was also solved by a mixed finite element solver built in deal.II

that is based on Schur complement (See deal.II tutorial Step-20). We compare
the lowest order WG solver (k = 0) with the lowest order MFEM solver on a
sequence of rectangular meshes on a Toshiba laptop. The tolerance for linear
solvers is 10−9. Table 2 shows that the WG solver produces very close results
with significantly less runtime.

Example 3 (Permeability profile in SPE10 Model 2). SPE10 was devel-
oped as a benchmark for upscaling methods, but the 2nd dataset is becoming
a popular testcase for comparing different numerical methods. The dataset is a
3-dim geo-statistical realization from the Jurassic Upper Brent formations [12].
The model has geometric dimensions 1200 (ft) × 2200 (ft)× 170 (ft). The dataset
is provided on a 60× 220 × 85 Cartesian grid, in which each block has a size

WG Solver for Darcy Flow and deal.II Implementation 505

20 (ft) × 10 (ft) × 2 (ft). The top 70 ft (35 layers) are for the shallow-marine Tar-
bert formation, the bottom 100 ft (50 layers) are for the fluvial Ness formation.
The SPE10 model is structurally simple but highly heterogeneous in porosity
and permeability Fig. 3. It poses significant challenges to numerical simulators.

The SPE 10 dataset is publicly available at http://www.spe.org/web/csp/.
The original data assume the z-axis pointing downwards but use a right-hand
coordinate system. A conversion of ordering in blocks is needed for the origi-
nal data items. We use the code in Matlab Reservoir Simulation Toolbox

(MRST) [12] to acquire the needed data.
In this paper, we focus on the Darcy flow part. We use the original permeabil-

ity data and consider a flow problem. Dirichlet boundary conditions are posed
on two boundary faces: p = 1 for y = 0; and p = 0 for y = 1200. All other four
boundary faces have a homogeneous Neumann (no-flow) boundary condition.

We test the WG solver on three meshes (coarse, medium, fine). For better
visualization, we tripled the z dimension.

(i) A coarse mesh with 12 × 44 × 17 partitions. For the WG(Q0, Q0;RT[0])
solver, there are 8, 976 pressure degrees of freedom (DOFs) for element
interiors; 28, 408 pressure DOFs for all faces, and 37, 384 total DOFs. The
local RT[0] spaces are used to compute the discrete weak gradients of the
pressure basis functions, but they do not constitute any DOFs.

(ii) A medium mesh with 30×110×85 partitions. We use WG(Q0, Q0;RT[0])
again. There are 280, 500 DOFs for the pressure in element interiors,
856, 700 DOFs for all faces, and totally 1, 137, 200 (about 1M) DOFs.

(iii) A fine mesh with 60×220×85 partitions, which is the same as the original
gridblock. Again WG(Q0, Q0;RT[0]) is used. There are 1, 122, 000 interior
DOFs; 3, 403, 000 face DOFs; and a total 4, 525, 000 (about 4M) DOFs.

As shown in Fig. 4, the coarse mesh is too coarse to reveal the reservoir geo-
logical features. The medium-mesh result is good enough to reflect the channel

(a) Permeability K11 = K22 (a) Permeability K33

Fig. 3. Example 3 (SPE10 Model 2): Permeability profiles on log10 scales

506 Z. Wang et al.

Fig. 4. Example 3 (SPE10): Numerical pressure for coarse, medium, and fine meshes

WG Solver for Darcy Flow and deal.II Implementation 507

Table 3. Example 3: SPE10 Darcy by WG(Q0, Q0; RT[0]) on 3 meshes

tol= 10−6 MaxItrs #Itrs pmin pmax Runtime

coarse 2*DOFs 40,383 1.684E−4 0.999,151 2 m 45 s

medium DOFs 207,704 −8.779E−5 1.000,003 1 h 34 m

fine DOFs 241,492 −1.750E−5 1.002,136 6 h 42 m

tol= 10−9 MaxItrs #Itrs pmin pmax Runtime

coarse 6*DOFs 213,316 1.682E−4 0.999,151 5 m 24 s

medium DOFs 901,327 −8.782E−5 1.000,002 3 h 20 m

fine DOFs 1,371,887 −1.750E−5 1.000,083 17 h 38 m

Table 4. Example 3: SPE10 Darcy by MFEM(RT[0], Q0) on 3 meshes

tol pmin pmax Runtime

coarse mesh

10−3 1.693E−4 0.998,574 8 m 39 s

10−6 1.682E−4 0.999,150 34 m 02 s

10−9 1.682E−4 0.999,151 1 h 16 m

medium mesh

10−3 −8.712E−5 1.001,850 6 h 04 m

10−6 −8.782E−5 1.000,002 31 h 25 m

10−9 −8.782E−5 1.000,002 82 h 58 m

fine mesh

10−3 −1.745E−5 1.028,902 71 h 16 m

10−6 DidNotTry

10−9 DidNotTry

features of the fluvial Ness formation. The fine-mesh result is smoother and
exposes further details about the heterogeneity, but requires expensive compu-
tation. Tables 3 and 4 (results on a server with 40 Intel CPUs) together demon-
strate that our new WG solver is more efficient than the classical MFEM.

6 Concluding Remarks

The novel weak Galerkin finite element methods represent a different type of
methodology for solving many real-world problems modeled by partial differen-
tial equations. There have been efforts on implementing WG FEMs in Matlab

and C++. But the work reported in this paper represents the first ever attempt for
implementing WG FEMs in a popular finite element package like deal.II. This
shall provide open access to the scientific community for examining usefulness
of the WG methodology for large-scale scientific computing tasks.

508 Z. Wang et al.

Listed below are some projects for further research.

(i) Preconditioning and parallelization of the WG solver for Darcy flow;
(ii) deal.II implementation for coupled WG Darcy solvers and transport

solvers for the full problem of SPE10 and alike;
(iii) deal.II implementation for both 2-dim and 3-dim for the 2-field poroelas-

ticity solver developed in [10];
(iv) Implementation of WGFEMs for triangular/tetrahedral meshes on FEniCS;
(v) Comparison with the hybridizable discontinuous Galerkin (HDG) methods.

References

1. https://github.com/dealii/dealii/tree/master/examples/step-61
2. Arbogast, T., Correa, M.: Two families of mixed finite elements on quadrilaterals

of minimal dimension. SIAM J. Numer. Anal. 54, 3332–3356 (2016)
3. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II- a general purpose object ori-

ented finite element library. ACM Trans. Math. Softw. 33, 24–27 (2007)
4. Bastian, P., Riviere, B.: Superconvergence and H(div) projection for discontinuous

Galerkin methods. Int. J. Numer. Meth. Fluids 42, 1043–1057 (2003)
5. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, Texts

in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008). https://doi.
org/10.1007/978-0-387-75934-0

6. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New
York (1991). https://doi.org/10.1007/978-1-4612-3172-1

7. Bush, L., Ginting, V.: On the application of the continuous Galerkin finite element
method for conservation problems. SIAM J. Sci. Comput. 35, A2953–A2975 (2013)

8. Cockburn, B., Gopalakrishnan, J., Wang, H.: Locally conservative fluxes for the
continuous Galerkin method. SIAM J. Numer. Anal. 45, 1742–1770 (2007)

9. Durlofsky, L.: Accuracy of mixed and control volume finite element approximations
to Darcy velocity and related quantities. Water Resour. Res. 30, 965–973 (1994)

10. Harper, G., Liu, J., Tavener, S., Wang, Z.: A two-field finite element solver for
poroelasticity on quadrilateral meshes. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS,
vol. 10862, pp. 76–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93713-7 6

11. Harper, G., Liu, J., Zheng, B.: The THex algorithm and a simple Darcy solver on
hexahedral meshes. Procedia Comput. Sci. 108C, 1903–1912 (2017)

12. Lie, K.A.: An introduction to reservoir simulation using MATLAB/GNU Octave.
Cambridge University Press (2019). ISBN 9781108492430

13. Lin, G., Liu, J., Mu, L., Ye, X.: Weak Galerkin finite element methdos for Darcy
flow: anistropy and heterogeneity. J. Comput. Phys. 276, 422–437 (2014)

14. Lin, G., Liu, J., Sadre-Marandi, F.: A comparative study on the weak Galerkin,
discontinuous Galerkin, and mixed finite element methods. J. Comput. Appl. Math.
273, 346–362 (2015)

15. Liu, J., Sadre-Marandi, F., Wang, Z.: DarcyLite: a Matlab toolbox for Darcy flow
computation. Procedia Comput. Sci. 80, 1301–1312 (2016)

16. Liu, J., Tavener, S., Wang, Z.: Lowest-order weak Galerkin finite element method
for Darcy flow on convex polygonal meshes. SIAM J. Sci. Comput. 40, B1229–
B1252 (2018)

WG Solver for Darcy Flow and deal.II Implementation 509

17. Liu, J., Tavener, S., Wang, Z.: The lowest-order weak Galerkin finite element
method for the Darcy equation on quadrilateral and hybrid meshes. J. Comput.
Phys. 359, 312–330 (2018)

18. Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method with polynomial
reduction. J. Comput. Appl. Math. 285, 45–58 (2015)

19. Sun, S., Liu, J.: A locally conservative finite element method based on piecewise
constant enrichment of the continuous Galerkin method. SIAM J. Sci. Comput.
31, 2528–2548 (2009)

20. Wang, J., Ye, X.: A weak Galerkin finite element method for second order elliptic
problems. J. Comput. Appl. Math. 241, 103–115 (2013)

