


245 N. Cuozzo et al. / Geochimica et Cosmochimica Acta 278 (2020) 244 260 
Gibson et al., 1983; Dickinson and Rosen, 2003; 
Wentworth et al., 2005; Heldmann et al., 2013). 

Previous studies on chemical weathering in the MDV 
have found extensive salt accumulations, as is common in 
desert landscapes. Claridge and Campbell (1977) and 
Keys and Williams (1981) found major cations (Na+ , 
Ca2+, Mg2+, and K+) accumulated over time from trans 
port and deposition of marine aerosols and chemical weath 
ering, with Mg concentrations particularly enriched in soils 
formed on dolerite parent material. Major anions (Cl-, 
SO4 

3-, and NO3 
-) were found to be sourced from transport 

of marine aerosols and oxidation of reduced gaseous sulfur 
and nitrogen compounds (Bao et al., 2000; Michalski et al., 
2005). Further studies have looked at solutes (Green et al., 
1988; Lyons and Mayewski, 1993; Nezat et al., 2001) and 
isotopic composition, including Sr, Li, B, and Ca, (Jones 
and Faure, 1978; Witherow et al., 2010; Dowling et al., 
2013; Leslie et al., 2014; Lyons et al., 2017) of lake waters, 
streams, and hyporheic zone sediments. These studies have 
suggested that silicate weathering must occur to explain the 
water composition in these regions. Physical evidence of 
rock and sediment alteration (<1 m) in the hyporheic zone 
are also documented in the MDV (Gibson et al., 1983; 
Dickinson and Grapes, 1997; Maurice et al., 2002; 
Wentworth et al., 2005; Tamppari et al., 2012; Marra 
et al., 2017; Heindel et al., 2018). While most of these stud 
ies focused on weathering in wetter regions at shallow 
depths in the MDV (streams, lakes, and hyporheic zones), 
only one study (Dickinson and Rosen, 2003) has looked 
at weathering processes in a deep permafrost profile using 
oxygen isotopes and ionic composition; however, they did 
not quantify the degree of weathering that occurs. 

Magnesium isotopes have been used to study chemical 
weathering in soils (Pogge von Strandmann et al., 2008, 
2012; Teng et al., 2010; Tipper et al., 2010, 2012a, 2012b; 
Huang et al., 2012; Opfergelt et al., 2012, 2014; Liu et al., 
2014; Ma et al., 2015) and they can provide an estimate 
on the degree of weathering because of their fractionation 
properties (Galy et al., 2002; De Villiers et al., 2005; Liu 
et al., 2014). Large mass dependent fractionation of Mg 
isotopes can occur during low temperature chemical weath 
ering reactions, including dissolution, precipitation, and 
cation exchange (see review of Teng, 2017 and references 
therein). During chemical weathering, light Mg isotopes 
are preferentially released from silicate rocks to river 
waters, which end up in the ocean. This process results in 
a homogeneous and significantly lighter Mg isotopic com 

(d26position of seawater Mg = 0.83‰ ± 0.09‰, Ling 
et al., 2011), leaving variably heavier weathered residues 
in the upper continental crust (d26Mg = 0.22‰, Li 
et al., 2010). The distinct isotopic values of these two reser 
voirs provide a tool to look at the mixing between Mg in 
the MDV derived from a seawater source (snowfall and gla 
cial ice), and a crustal silicate source (Ferrar Dolerite), and 
insight towards the degree of weathering. 

The study presented here analyzes for Mg isotopes, pH, 
and ionic composition of water and sediment extracted 
from a thawed 30.0 m permafrost core collected in Beacon 
Valley. The chemical data are used to model the unfrozen 
water content and to quantify the contribution of Mg due 
to dolerite weathering in the MDV permafrost. Our results 
reveal that significant silicate weathering occurs in subzero 
salt rich ice cemented permafrost environments and this 
finding provides new insights into weathering processes in 
ice cemented permafrost on Earth, as well as serving as 
an analog for weathering in martian permafrost. 

2. STUDY SITE 

2.1. Beacon Valley, Antarctica 

The MDV are a hyperarid, polar desert that remain free 
of ice cover as a result of the high threshold of the 
Transantarctic Mountains, which divert ice from the East 
Antarctic Ice Sheet away from McMurdo Sound, and the 
Wilson Piedmont Glacier, which isolates the valleys from 
the Ross Sea and acts as a blockade to snow entering them 
(Chinn, 1990; Hall and Denton, 2002). Beacon Valley is one 
of the southern most Dry Valleys, trending northeast 
southwest and covering an area approximately 3 km wide 
and 12 km long (Fig. 1). Average annual temperatures are 
around 22.9 °C (Liu et al., 2015) with less than 100 mm/yr 
of precipitation in the form of snowfall (Fountain et al., 
2010). The lower valley on its northeast end is bounded 
by Taylor Glacier, an East Antarctic Ice Sheet outlet 
glacier. Bedrock in Beacon Valley consists of Devonian to 
Jurassic Beacon Group sandstones, siltstones, and shales, 
with sills and dikes of tholeiitic Jurassic Ferrar Dolerite 
(McElroy and Rose, 1987). 

The ice cemented permafrost core analyzed in this study 
was collected in the lower Beacon Valley (77°48011.400S, 
160°42049.800E) as described below. The surface of Beacon 
Valley is covered by patterned ground with polygonal 
diameters of 10 20 m and the core was collected in the cen 
ter of a polygon, which is thought to be the most stable 
region (Linkletter et al., 1973; Sletten et al., 2003). Sediment 
in the Beacon Valley core is composed mostly of sand sized 
grains of quartz and dolerite that are cemented by an ice 
rich matrix. Sediment is massive and shows no evidence 
of stratification or facies changes. The sediment is believed 
to be sourced from glacial deposits and aeolian processes 
(Bockheim et al., 2009; Diaz et al., 2018), and based on 
modeled sublimation rates, the sediment age is estimated 
to be at least 1 Ma (Liu et al., 2015). 

3. METHODS 

3.1. Sample Collection 

A 30.0 m ice cemented permafrost core was collected in 
lower Beacon Valley in 2008 and stored in a 30.0 °C free 
zer at the University of Washington, Seattle. Drilling began 
0.4 m below the surface at the top of the ice cemented per 
mafrost. The upper 0.4 m consists of dry permafrost and 
was sampled separately. The permafrost core was cut into 
subsamples at 0.1 0.3 m intervals along its depth using a 
carbide tipped band saw. The frozen sediment samples were 
then thawed overnight in a refrigerator in sealed polyethy 
lene bags. The meltwater was extracted from the thawed 
sediments by centrifuging in a double bottom centrifuge 
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3.4. Geochemical modeling 

The equilibrium thermodynamic models, PHREEQC 
(Version 3 using ColdChem database) and FREZCHEM 
(Version 13.2), were used to model the unfrozen water con 
tent and secondary salt precipitation at each sample depth 
of the core based on the chemical composition of the 
thawed permafrost ice and using the interpolated maximum 
temperature. As the water freezes, ions are excluded from 
the ice phase and concentrate in the water, thereby depress 
ing the freezing point of the brine (Low et al., 1968; Tice 
et al., 1985). PHREEQC and FREZCHEM use Pitzer 
equations to model these high ionic strength solutions 
and are capable of modeling freezing of concentrated solu 
tions down to 70 °C (Marion and Grant, 1994). 

3.5. Particle Size Analysis 

Particle size analysis was performed on �1 g permafrost 
sediment samples. Samples were split using a sample split 
ter to avoid sampling bias and analyzed using a laser 
diffraction particle size analyzer (Beckman Coulter LS 13 
320). Samples were dispersed using an ultrasonic probe 
with the addition of 5 mL of 0.05% sodium bicarbonate 
sodium hexametaphosphate to keep the samples in suspen 
sion. Each sample was analyzed three times for 
reproducibility. 

3.6. Magnesium Isotope Analysis 

Magnesium isotopes were analyzed in water samples 
from the thawed permafrost ice of the core, Beacon Valley 
snowfall, and Taylor Glacier ice. In addition, dolerite sam 
ples collected from the core and the surface of Beacon Val 
ley were analyzed. Rock digestion, chemical separation, 
and isotopic analysis were performed at the Isotope Labo 
ratory at the University of Washington, following the meth 
ods detailed in Teng et al. (2007) and Yang et al. (2009). 
The rocks were sampled to avoid any weathering rinds, 
crushed into a powder, and dissolved sequentially using 
Optima grade concentrated HF HNO3, HNO3 HCl, and 
HNO3. The water samples were evaporated to contain 5 
40 mg Mg. Separation of Mg was achieved by loading 
100 mL of sample dissolved in 1 N HNO3 on a cation 
exchange chromatography column containing pre cleaned 
Bio Rad AG50W X8 resin (200 400 mesh) and was eluted 
using sequential additions of 1 N HNO3. This procedure is 
repeated twice for each sample to ensure purification. 

Magnesium isotopic ratios were measured on a Nu 
Plasma II Multi Collector ICP MS using standard sample 
bracketing (alternating measurements of samples and stan 
dards) for correction of instrumental fractionation (Teng 
and Yang, 2014). Magnesium isotopic data are reported 
in delta (d) notation, which represents parts per thousand 
(‰) deviations of the ratio between the sample and stan 
dard, where X refers to mass 25 or 26: 8( ) 9 < xMg= 24Mg = > > 

sampledxMgðRÞ ¼ 1000 X ( ) 1 > 24 > : xMg= Mg ;
DSM3 
The accuracy of the analysis was assessed using two in 
house standards (Hawaiian Seawater and San Carlos Oli 
vine) and two USGS rock standards (BHVO Basalt and 
MAG 1 Marine Mud). The results of these standards 
(Table 1) agree with recommended values (Teng et al., 
2015; Hu et al., 2016). 

4. RESULTS 

Physical and chemical parameters that were measured 
along the core’s depth are reported below, including soluble 
salts, temperature, ice content, modeled unfrozen water 
content, pH, particle size, elemental composition of bulk 
sediment, and Mg isotopic composition: 

4.1. Ionic composition and pH of thawed permafrost ice 

The thawed permafrost ice contains high concentrations 
of total soluble salts with an average value of 29 mmol/kg 
and a standard deviation (1SD) of 11.9 in the upper 7.0 m 
of the core and lower concentrations below 7.0 m with an 
average value of 19 mmol/kg (1SD = 8.1) (Fig. 2a and b). 
Two sample t tests comparing the mean total concentra 
tions revealed the concentrations in the two sections of 
the core were significantly different (p < 0.05). Na is the 
most concentrated cation, followed by Ca, Mg, and K. 
pH values were measured starting at the ice table at 0.4 m 
(Fig. 2c). The top four samples have pH values of 6.60 
and rapidly increase toward the highest measured pH of 
7.70. Excluding those four samples, pH values in the upper 
7.0 m are consistently higher than the lower section of the 
core, with a mean value of 7.29 (1SD = 0.15). At 7.0 m, 
pH values drop down to a pH of 7.00 and remain around 
7.00 until 18.0 m. From 18.0 to 30.0 m, the pH values 
increase from pH of 7.00 to 7.57. Two sample t tests also 
show a significant difference between the pH values of the 
upper and lower sections of the core (p < 0.05). 

4.2. Temperature 

Interpolated maximum and minimum monthly averaged 
borehole temperatures in Beacon Valley remain below 0 °C 
throughout the year with seasonal variation most promi 
nent in the upper layers of the permafrost (Fig. 2d). The 
sediment closest to the surface has the most extreme tem 
perature highs and lows, ranging from 10 °C in the sum 
mer to 35 °C in the winter. Moving further down the core, 
these seasonal variations become less pronounced, and at 
20.0 m, there is virtually no seasonal variation with temper 
ature steady at approximately 23 °C. 

4.3. Ice content 

The core can be grouped into three sections based on its 
ice content (Fig. 2e): 0.4 7.0 m, 7.0 18.0 m, and 18.0 
30.0 m. From 0.4 to 7.0 m, the average ice content is 
26.0 wt.% (1SD = 0.19). There are three outliers in the 
upper 7.0 m with ice content near 80 wt.% which reflect sev 
eral small ice lenses in the sediment. Excluding these three 
values, the average ice content reduces from 26.0 to 
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Table 2
 
Elemental abundance of Beacon Core Sediment samples determined by X ray fluorescence.
 

Sample Type Sample ID Depth (m) XRF LOI Normalized Major Elements (wt%) 

SiO2 TiO2 Al2O3 FeO* MnO MgO CaO Na2O K2O P2O5 

Permafrost Sediment BV4 24 27 
BV4 105 113 
BV4 189 192 
BV4 269 271 
BV4 340 343 
BV4 395 397 
BV4 455 460 
BV4 529 532 
BV4 613 618 
BV4 653 656 
BV4 675 677 
BV4 744 748 
BV4 763 768 
BV4 1005 1016 (A & B) 
BV4 1108 1110 
BV4 1202 1204 (A & B) 
BV4 1438 1440 (A & B) 
BV4 2096 2098 
BV4 2830 2833 
BV4 3007 3010 

0.66 
1.49 
2.31 
3.10 
3.82 
4.36 
4.98 
5.71 
6.56 
6.95 
7.16 
7.86 
8.06 
10.51 
11.49 
12.43 
14.79 
21.37 
28.72 
30.49 

78.69 
75.34 
77.26 
81.82 
81.15 
78.61 
79.58 
79.34 
79.30 
79.46 
81.52 
81.96 
80.51 
80.68 
81.04 
81.35 
81.57 
80.81 
81.93 
76.55 

0.60 
0.86 
0.78 
0.46 
0.46 
0.53 
0.49 
0.52 
0.51 
0.51 
0.47 
0.43 
0.49 
0.48 
0.46 
0.47 
0.45 
0.43 
0.41 
0.60 

6.90 
7.75 
7.21 
6.04 
6.68 
7.54 
7.30 
7.28 
7.45 
7.36 
6.60 
6.59 
7.06 
6.93 
6.99 
6.80 
6.63 
7.01 
6.44 
8.43 

5.38 
6.47 
5.88 
4.28 
4.39 
5.03 
4.73 
4.86 
4.77 
4.75 
4.26 
4.08 
4.49 
4.47 
4.26 
4.26 
4.23 
4.26 
4.11 
5.44 

0.10 
0.12 
0.11 
0.08 
0.08 
0.09 
0.09 
0.09 
0.09 
0.09 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.10 

2.24 
2.50 
2.23 
1.94 
1.76 
2.01 
1.84 
1.89 
1.83 
1.79 
1.71 
1.64 
1.72 
1.77 
1.71 
1.66 
1.71 
1.81 
1.74 
2.11 

4.16 
4.69 
4.32 
3.63 
3.44 
3.96 
3.72 
3.77 
3.70 
3.72 
3.34 
3.24 
3.49 
3.49 
3.38 
3.36 
3.32 
3.58 
3.44 
4.31 

0.89 
1.03 
1.02 
0.79 
0.88 
1.00 
1.00 
1.00 
1.04 
1.04 
0.86 
0.83 
0.93 
0.90 
0.85 
0.84 
0.85 
0.93 
0.82 
1.10 

0.95 
1.15 
1.11 
0.89 
1.08 
1.15 
1.17 
1.17 
1.24 
1.20 
1.07 
1.08 
1.14 
1.13 
1.16 
1.11 
1.10 
1.02 
0.97 
1.28 

0.08 
0.08 
0.08 
0.06 
0.07 
0.08 
0.08 
0.08 
0.08 
0.08 
0.07 
0.07 
0.07 
0.07 
0.07 
0.07 
0.07 
0.06 
0.06 
0.08 

Bulk Rock Dolerite 2 
Dolerite 3 
Beacon Sandstone 1 
Beacon Sandstone 2 
Vida Granite 

0.60 
2.20 
surface 
surface 
surface 

57.65 
56.80 
99.81 
99.53 
69.41 

0.97 
0.90 
0.02 
0.11 
0.34 

13.89 
14.35 
0.15 
0.35 
15.44 

10.66 
10.01 
0.02 
0.03 
2.93 

0.18 
0.18 
0.00 
0.00 
0.06 

4.20 
5.11 
0.02 
0.01 
0.39 

8.73 
9.29 
0.03 
0.00 
1.89 

2.14 
2.03 
0.00 
0.00 
3.68 

1.43 
1.22 
0.03 
0.06 
5.78 

0.15 
0.13 
0.01 
0.01 
0.07 

Values are normalized to loss on ignition (LOI) weight. FeO* is total Fe represented as FeO. 
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Table 3
 
Mineralogy (% abundance) of Beacon Valley core sediment determined by X ray diffraction.
 

Sample ID XRD Analysis 

Quartz Andesine Augite OPX Anorthite Orthoclase Gypsum Muscovite Kaolinite Saponite 

BV4 105 113 51.2 13.5 9.6 8.7 4.0 3.6 0.9 0.8 0.7 5.3 
BV4 269 271 62.4 13.8 7.7 6.3 4.2 4.2 0.0 1.4 0.6 3.4 
BV4 529 532 61.2 12.7 8.6 4.5 0.0 6.4 0.0 1.9 1.1 2.9 
BV4 763 768 61.5 15.2 5.8 8.8 0.0 0.0 0.5 1.0 1.7 4.6 
BV4 2096 2098 59.8 14.2 6.5 4.9 0.0 6.7 0.0 1.1 0.9 4.1 
BV4 2830 2833 62.1 13.4 5.2 6.9 0.0 4.6 0.0 2.0 0.7 4.9 
out the 30.0 m core and show no statistical difference in the 
upper and lower sections. 

4.7. Magnesium isotopes 

Magnesium isotopic ratios of the thawed permafrost ice, 
bulk rock samples, thawed Taylor Glacier ice, and Beacon 
Valley snowfall are reported in Table 4. There are two Mg 
reservoirs in Beacon Valley with distinct Mg isotopic com 
positions. Dolerite samples collected from the core and the 
surface of Beacon Valley have an average Mg isotopic com 
position of 0.22 ± 0.07‰ (n = 3), which is typical for 
basaltic rocks (Teng, 2017). Taylor Glacier/Beacon Snow 
fall samples have a significantly lower average Mg isotopic 
composition of 0.93 ± 0.06‰ (n = 4), which is close to 
the seawater Mg isotopic composition of 0.83 ± 0.09‰ 
(Ling et al., 2011). In the upper 7.0 m, the Mg isotopic com 
position of the thawed permafrost ice samples falls between 
these two end members, and in the lower 7.0 30.0 m, Mg 
isotopic composition falls within the Taylor Glacier/Beacon 
Snowfall range (Fig. 4). 

The Mg isotopic composition in the upper 7.0 m can be 
further distinguished at 0.4 1.5 m and 1.5 7.0 m. At 0.4 m, 
the Mg isotopic composition is the highest recorded in the 
thawed permafrost ice with a d26Mg value of 0.52 
± 0.05‰ and lies directly at the boundary between the dry 
permafrost and ice cemented permafrost. Moving down 
towards 1.5 m, the Mg isotopic composition decreases to a 
d26Mg value of 0.81 ± 0.05‰. These upper samples, which 
are almost all heavier than the Taylor Glacier/Beacon Snow 
fall end member, are sampled from the section containing 
multiple ice lenses. From 1.5 to 7.0 m, Mg isotopic ratios 
start with a value of 0.82 ± 0.05‰, close to that of Taylor 
Glacier/Beacon Snowfall ( 0.93 ± 0.06‰), and gradually 
increase to 0.64 ± 0.05‰ near 7.0 m. From 7.0 to 30.0 m, 
d26Mg values are consistently lighter than above 7.0 m, aver 
aging 0.93‰. These values in the lower section of the core 
are mostly within the range of the Taylor Glacier/Beacon 
Snowfall end member isotopic composition but show a slight 
increasing trend in Mg isotope composition with depth. In 
addition, two samples are significantly lighter than the Tay 
lor Glacier/Beacon Snowfall end member. 

5. DISCUSSION 

In this section, we present evidence of chemical weather 
ing in permafrost sediment and ice, discuss the controls 
over chemical weathering, and quantify the extent of weath 
ering using Mg isotopic composition. We discovered that 
Antarctic permafrost provides a unique environment where 
leaching is very limited and products from chemical weath 
ering reactions tend to remain in the permafrost over time, 
providing a record of these reactions. As discussed below, 
this accumulation of weathering products coincides with 
changes in ionic content, pH values, and Mg isotopes of 
the thawed permafrost ice over the sampling depth. 

5.1. Magnesium in the MDV 

Magnesium in Beacon Valley permafrost is primarily 
sourced from two reservoirs: (1) marine aerosols, and (2) 
chemical weathering of Ferrar dolerite (Claridge and 
Campbell, 1977; Keys and Williams, 1981). The first source 
of Mg, marine aerosols, is deposited by dust, katabatic 
winds, and snowmelt events which may sublimate or melt 
during strong solar radiation in summer months thereby 
releasing any entrained salts (Liu et al., 2015). Due to the 
hyperarid conditions of the MDV, ions released by snowfall 
become enriched over time and sediment eventually 
becomes brine rich with a depressed freezing point 
(Anderson and Morgenstern, 1973; Murrmann, 1973; 
Hagedorn et al., 2010). These brine films, along with salts 
inherited during sediment deposition, persist thorughout 
the depth of the permafrost. 

Ferrar dolerite is the second major source of Mg in Bea 
con Valley and dolerite rock fragments are found throughout 
Beacon Valley. Ferrar dolerite is a medium to fine grained 
mafic igneous rock with a bulk composition consisting 
mainly of calcium rich plagioclase (An89Ab11) and 
magnesium rich pyroxene (Wo4En81Fs15), with accessory 
biotite, hornblende and iron oxides (Gunn, 1962; Campbell 
and Claridge, 1987; Elliot et al., 1995;). Three key reactions 
dictate the weathering products of Ferrar Dolerite: 

ðCa0:4; Mg0:8; Fe0:15ÞSiO3ðsÞðenstatiteÞ þ H 2O þ 2Hþ ( )! Ca20
þ
:4; Mg20

þ
:8; Fe

2
0
þ
:15 þ H 4SiO4ðaqÞðaqÞ 

CaAl2Si2O8ðsÞðanorthiteÞ þ H 2O þ 2Hþ 

! Ca2þðaqÞ þ Al2Si2O5ðOHÞ4 

2NaAlSi3O8ðsÞðalbiteÞ þ 9H 2O þ 2Hþ 

! 2Na2þðaqÞ þ Al2Si2O5ðOHÞ þ 4H 4SiO4ðaqÞ4 

These weathering reactants and products will be used to 
trace the extent of chemical weathering that occurs in the 
permafrost.
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Table 4 
Magnesium isotopic composition of Beacon Valley thawed permafrost ice, bulk rock, and Taylor Glacier/Beacon Snow samples. Depth from 
the surface is given as midpoint of sample collected. 

Sample Type Sample Name Midpoint Depth (m) d26Mg 2SD d25Mg 2SD 

Thawed Ice BV4 0 4.5 (BV001) 0.42 0.52 0.05 0.23 0.05 
BV4 22 24 0.63 0.70 0.05 0.34 0.05 
BV4 28 35 0.72 0.70 0.05 0.39 0.05 
BV4 34.5 39.5 (BV002) 0.77 0.74 0.05 0.38 0.05 
BV4 93 100 1.37 0.80 0.05 0.42 0.05 
BV4 105 113 1.49 0.81 0.05 0.44 0.05 
BV4 120 123 1.62 0.82 0.05 0.42 0.05 
BV4 130 135 1.73 0.82 0.05 0.44 0.05 
BV4 142 143 1.83 0.77 0.05 0.41 0.05 
BV4 150 154 1.92 0.79 0.05 0.42 0.05 
BV4 189 192 2.31 0.75 0.05 0.40 0.05 
BV4 200 203 2.42 0.68 0.05 0.34 0.05 
BV4 215 219 2.57 0.73 0.05 0.37 0.05 
BV4 269 271 3.10 0.71 0.05 0.39 0.05 
BV4 340 343 3.82 0.68 0.05 0.38 0.05 
BV4 347 350 3.89 0.67 0.05 0.35 0.05 
BV4 364 368 4.06 0.63 0.05 0.33 0.05 
BV4 379 382 4.21 0.65 0.05 0.34 0.05 
BV4 395 397 4.36 0.68 0.05 0.36 0.04 
BV4 455 460 4.98 0.68 0.05 0.37 0.04 
BV4 483 488 (BV005) 5.26 0.64 0.05 0.34 0.04 
BV4 529 532 5.71 0.63 0.05 0.32 0.04 
BV4 573 575 6.14 0.68 0.05 0.35 0.04 
BV4 613 618 6.56 0.65 0.05 0.35 0.04 
BV4 653 656 6.95 0.64 0.05 0.34 0.04 
BV4 675 677 7.16 0.76 0.05 0.41 0.04 
BV4 698 702 7.40 0.89 0.05 0.45 0.04 
BV4 744 748 7.86 0.95 0.05 0.49 0.04 
BV4 902 905 9.44 1.02 0.03 0.54 0.04 
BV4 1005 1016a 10.51 0.92 0.05 0.49 0.04 
BV4 1108 1110 11.49 0.97 0.05 0.52 0.06 
BV4 1202 1204 (A & B) 12.43 0.98 0.05 0.50 0.06 
BV4 1438 1440 (A & B) 14.79 0.95 0.05 0.49 0.06 
BV4 1598 1600 (A & B) 16.39 0.89 0.05 0.49 0.06 
BV4 1773 1776 (A & B) 18.15 0.91 0.05 0.48 0.06 
BV4 2096 2098 21.37 0.85 0.05 0.42 0.06 
BV4 2253 2256 22.95 0.85 0.05 0.46 0.06 
BV4 2502 2505 25.44 0.91 0.03 0.46 0.04 
BV4 2830 2833 28.72 1.05 0.03 0.56 0.04 
BV4 2990 2998 30.34 0.84 0.05 0.41 0.04 
BV4 3007 3010 30.49 0.92 0.05 0.46 0.06 

Bulk Rock Dolerite 1 surface 0.23 0.06 0.13 0.05 
Dolerite 2 0.60 0.20 0.06 0.12 0.05 
Dolerite 3 2.20 0.24 0.06 0.12 0.05 

Taylor Glacier/Snow Beacon Valley Fresh Snow (1/5/11) 0.98 0.06 0.51 0.07 
Taylor Glacier 1 0.86 0.06 0.50 0.05 
Taylor Glacier 2 0.84 0.06 0.40 0.05 
Taylor Glacier Nirvana 1.06 0.06 0.53 0.07 

2SD of Mg isotopic values represents two standard deviations of the bracketing standard measurements during a full analytical session. 
5.2. Controls on permafrost chemistry 

5.2.1. Evidence of weathering in permafrost sediment 
Previous studies have shown the mineral weathering sus 

ceptibility sequence olivine > pyroxene > amphibole > pla 
gioclase > K feldspar (Craig and Loughnan, 1964; 
Colman, 1982; Eggleton et al., 1987; Stefánsson et al., 
2001). Therefore, loss of Mg and Ca from pyroxene (and 
to a lesser extent, Ca and Na from plagioclase) should be 
evident in the major element composition of the bulk sedi 
ment. To look more closely at just dolerite in the per 
mafrost sediment, we use evidence of a two lithology 
system from a qualitative XRD analysis showing a system 
of quartz rich sandstone and dolerite (shown as Mg rich 
pyroxene and Ca rich plagioclase in an XRD analysis). 
Using a two end member mixing equation, the percent 
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(3) Secondary minerals may have a small influence on 
Mg isotopic composition in Beacon Valley. Fraction 
ation caused by clay formation and secondary salt 
precipitation may explain why Mg; and Mg;

d26MgCl 

correction values do not fall along a 1:1 line, and 
the Mg values that are lighter than Taylor Glacier 
in the lower 7.0 3.0 m. Further work is needed to 
constrain secondary minerals and the temperature 
dependence of fractionation factors in permafrost 
conditions. 
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