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Abstract—It has become a recent trend that large volumes of data are generated, stored, and processed across geographically

distributed datacenters. When popular data parallel frameworks, such as MapReduce and Spark, are employed to process such geo-

distributed data, optimizing the network transfer in communication stages becomes increasingly crucial to application performance, as

the inter-datacenter links have much lower bandwidth than intra-datacenter links. In this article, we focus on exploiting the flexibility of

multi-path routing for inter-datacenter flows of data analytic jobs, with the hope of better utilizing inter-datacenter links and thus improve

job performance. We design an optimal multi-path routing and scheduling strategy to achieve the best possible network performance

for all concurrent jobs, based on our formulation of an optimization problem that can be transformed into an equivalent linear

programming (LP) problem to be efficiently solved. As a highlight of this article, we have implemented our proposed algorithm in the

controller of an application-layer software-defined inter-datacenter overlay testbed, designed to provide transfer optimization service

for Spark jobs. With extensive evaluations of our real-world implementation on Google Cloud, we have shown convincing evidence that

our optimal multi-path routing and scheduling strategies have achieved significant improvements in terms of job performance.

Index Terms—Geo-distributed datacenters, network transfer, data analytics, optimization

Ç

1 INTRODUCTION

IT becomes increasingly typical for global services that
large volumes of data are generated all over the world

and are stored in their nearest datacenters, which are geo-
graphically distributed. For example, services deployed by
Microsoft and Google [1], [2] routinely span multiple geo-
distributed datacenters and generate large volumes of data
for analysis, such as user activity and system monitoring
logs. To efficiently process data at such a large scale, popu-
lar data parallel frameworks, such as MapReduce [3] and
Spark [4], are employed extensively. They proceed in multi-
ple stages, each consisting of a number of tasks in parallel.
Between consecutive stages, intermediate data are fetched
from the preceding stage, which generates a number of net-
work flows.

Traditionally, a data parallel job runs within a single
datacenter, where all its input data are stored. Network
flows generated during data processing are bounded within
the intra-datacenter network. However, when input data
are distributed across multiple datacenters, it is inevitable
that flows across datacenters will be generated to traverse
inter-datacenter links. As bandwidth on inter-datacenter
network links is limited [5], optimizing the inter-datacenter

network transfer becomes critical towards accelerating such
geo-distributed jobs and thus improving their performance.

Existing efforts on improving the performance of geo-
distributed data analytic jobs fall into two categories. The
first focuses on reducing the total amount of cross-datacen-
ter traffic [5], [6], [7]. However, this does not necessarily
reduce the job completion times, since the network transfer
time is not only influenced by the traffic size, but also the
bandwidth of inter-datacenter links along which the flows
traverse. The second category (e.g., [8], [9]) focuses on
designing better task placement strategies, based on the fact
that different assignment of tasks to datacenters lead to dif-
ferent flow patterns across datacenters, and ultimately, dif-
ferent job completion times.

Yet, all existing works above seek to alleviate the perfor-
mance degradation of inter-datacenter transfers by modify-
ing the generated traffic pattern across datacenters, which
do not directly solve the problem from the perspective of
optimizing the network transfers given certain traffic pat-
terns. To fill this gap, we propose to optimize the inter-data-
center transfers by exploiting the path flexibility to better
utilize the inter-datacenter link bandwidth, which provides
a complementary and orthogonal way to improve the per-
formance of geo-distributed data analytic jobs.

To have a better intuition of the routing flexibility, we
present five datacenters of Amazon EC2 in Fig. 1, which are
geographically distributed across the world. The thickness
of the line between each pair of datacenters is proportional
to the amount of available bandwidth. It is clearly shown
that the bandwidth of the cross-ocean link between N. Vir-
ginia and Singapore is much smaller than any other link.
For flows between N. Virginia and Singapore, apart from
using the direct path through the narrow link, as illustrated
by the solid arrow, we can take the detoured path by first
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forwarding the traffic to Oregon, which then relays the traf-
fic to Singapore, as illustrated by the dashed arrows in
Fig. 1. Both links along the detoured path have larger
amounts of bandwidth than the direct link. Other detoured
paths, such as the one through N. California, can also be
considered to accelerate the transfer.

In this paper, we attempt to make the best utilization of
the inter-datacenter links by leveraging such flexibility of
multi-path routing. Different from existing efforts [10], [11]
on multi-path routing, which require that a flow can only
take one selected path, we allow each flow to be split and
routed through multiple paths, so that the bandwidth can
be better utilized to improve the job performance. In partic-
ular, given a set of inter-datacenter flows generated by data
analytic jobs, we coordinate them with respect to their rout-
ing paths and sending rates, so as to accelerate the network
transfers and eventually achieve the best possible perfor-
mance for all the jobs. Specifically, we formulate our prob-
lem of multi-path routing and rate assignment as a linear
programming (LP), which can be efficiently solved by stan-
dard LP solvers (e.g., Mosek [12]) and practically imple-
mented in the real world.

As a highlight of this paper, we have designed and
implemented our multi-path routing and scheduling strat-
egy as a transfer optimization service for geo-distributed
data analytic jobs. With a special focus on Spark [4], a popu-
lar data parallel framework, we have provided a simple and
convenient API for it to delegate its traffic. Our transfer ser-
vice constructs an overlay inter-datacenter network, which
follows the principle of Software Defined Networking
(SDN) [13] at the application layer. All the inter-datacenter
traffic delegated to our service would be fully controlled,
following the optimal solution instructed from a centralized
controller where our strategy is realized.

We evaluate our prototype implementation of such an
optimal transfer service with a wide array of real-world
experiments, running various Spark jobs over Google
Cloud. Compared with the state-of-the-art, our strategy has
shown substantially faster shuffle completion time, up to
approximately 30 percent. To the best of our knowledge,
this paper presents the first design and implementation of a
cloud service for network optimization within geo-distrib-
uted data analytics.

The remainder of this paper is organized as follows. In
Section 2, we demonstrate the intuition of multi-path rout-
ing in improving network utilization and reducing network
transfer time for data analytic jobs, which motivates our

theoretical investigation of the multi-path routing problem,
for a single data analytic job (Section 3) and for multiple
jobs concurrently sharing the network (Section 4). We elabo-
rate the design and implementation details of our solution
in Section 5, and present our experimental results in Sec-
tion 6. Related work are surveyed in Section 7 and we con-
clude our paper in Section 8.

2 BACKGROUND AND MOTIVATION

In this section, we first present an overview of the execution
of a data analytic job whose input data is stored across geo-
graphically distributed datacenters. Then, motivated by the
flexibility of available paths for network flows across these
datacenters, we will illustrate the intuitive and immediate
benefit of utilizing multiple paths in transferring these
flows.

Geo-Distributed Data Analytics. Data parallel frameworks,
such as MapReduce and Spark, have become the main-
stream platform for today’s large-scale data analytics. A
typical data analytic job using these frameworks proceeds
through several computation stages, each consisting of tens
or hundreds of parallel computation tasks. Between conse-
cutive stages, network flows will be generated in the com-
munication stage to transfer the intermediate data for
further processing. These flows are collectively defined as a
coflow of the data analytic job [14]. For example, for a Map-
Reduce job, input data is partitioned into a set of splits to be
processed in parallel with map computation tasks. These
tasks produce intermediate results, which are then shuffled
over the datacenter network to be further processed by
reduce computation tasks. In the shuffle phase, the entire
set of network flows generated from map tasks to reduce
tasks is referred to as a coflow. The completion of a coflow
is determined by the slowest of its constituent flows, and
speeding up an individual flow does not necessarily
improve the coflow performance. The awareness of coflows
should be incorporated into flow scheduling and rate alloca-
tion to better use bandwidth resources towards job-level
performance improvement [14].

When input data of data analytic jobs are globally gener-
ated and stored across datacenters in different regions,
which becomes increasingly typical for global services pro-
vided by today’s big companies [5], [6], [8], new challenges
arise in running analytic jobs to process such geo-distrib-
uted data efficiently. Particularly, there are two alternatives
for such data processing. A naive approach is to gather all
the input data to a single datacenter and run the traditional
data analytic job, which involves an extensive amount of
data to be transferred across datacenters. A more advanced
alternative is to distribute tasks across datacenters without
centralizing the input data, which incurs a smaller amount
of intermediate data to be exchanged among datacenters.

In contrast with the datacenter network, the inter-
datacenter links have much smaller bandwidth and are het-
erogeneous with respect to both the available bandwidth
and the network loads [15], which make the communication
stage easily become the performance bottleneck. Since cross-
datacenter transfers are inevitable in geo-distributed data
analytics, it becomes crucial to optimize the cross-datacenter

Fig. 1. Flexibility in routing (direct and detoured paths) for inter-datacen-
ter traffic.
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network transfers to accelerate job execution and improve
job performance.

Flexibility in Path Selection. Inter-datacenter data transfers,
in essence, are wide-area network transfers, usually through
dedicated links. Google [16] reported that dedicated optical
links have been deployed to inter-connect their globally dis-
tributed datacenters. As a result, there exist multiple avail-
able paths between any pair of datacenters. More
importantly, these paths are accessible and controllable by
users. For example, to transfer bulk data, one can use a
direct transfer between the source and the destination data-
centers or, in case of congestion on the direct link, explicitly
utilize an intermediate datacenter as a relay to achieve a
higher throughput.

In our context of running geo-distributed data analytic
jobs, this property can be helpful in terms of reducing the
coflow completion times. Fig. 1 shows such a toy example,
when a large amount of intermediate data need to be trans-
ferred from N. Virginia to Singapore between mappers and
reducers. Apparently, the narrow direct link will become
the bottleneck, resulting in stragglers and slowing down the
completion of the communication stage.

To alleviate the bottleneck, we can route some traffic
through alternative paths with larger available bandwidth,
such as the detoured path through Oregon or N. California
as aforementioned. Intuitively, if all the flows generated in
the communication stage can be better balanced across the
inter-datacenter links, the slowest flow will finish faster,
which will mitigate the adverse impact of stragglers and
result in faster completion of the communication stage.

Therefore, our design objective in this paper is to exploit
such flexibilities in path selection to optimally coordinate
the inter-datacenter network flows of data analytic jobs, so
that their communication stages would complete faster and
thus the jobs would be accelerated. We would also account
for the fairness issue when network flows from multiple
jobs are concurrently sharing the inter-datacenter network.

Optimal Multi-Path Routing. We next use a more detailed
example to illustrate the basic idea of our multi-path routing
in accelerating a data analytic job. As shown in Fig. 2, we
consider a MapReduce job with its mapper tasks (M1, M2,

M3 and others omitted) distributed across 3 datacenters
(DC1, DC2, DC3). The reduce tasks R1 and R2 are launched
in DC2, which need to fetch intermediate data frommappers
during the shuffle stage. In particular, four flows will be
generated from DC3 to DC2, represented by the gray lines,
and two flows from DC1 to DC2 which are represented by
the black lines. (We only illustrate the cross-datacenter
flows in the figure.) For simplicity, each of these flows is 100

MB in size, and the link bandwidth between each pair of
datacenters is the same (10 MB/s).

If all these flows are routed through their direct paths as
on the left side of Fig. 1, the link between DC3 and DC2

would become the bottleneck, resulting in 40 seconds of
shuffle completion time (each of the four flows gets a fair
share of 2.5 MB/s). However, if we split some traffic from
the direct path (DC3-DC2) to the alternative path (DC3-
DC1, DC1-DC2), the network load will be better balanced
across inter-datacenter links, which naturally speeds up the
shuffle phase. Specifically, when 100 MB of traffic is shifted
from DC3-DC2 to the alternative two-hop path, as illus-
trated by the right side of Fig. 1, both DC3-DC2 and DC1-

DC2 have the same network load. With this routing, the
shuffle completion time is reduced to only 30 seconds (on
both DC3-DC2 and DC1-DC2 links, each of the three sharing
flows gets a fair share of 10=3MB/s).

Apart from the flexibility in multi-path routing, when we
further consider the inter-datacenter flows from multiple
jobs and the flexibility of rate assignment, a larger space can
be explored to optimize the network transfers and eventu-
ally the job performance for all the sharing jobs, with fair-
ness constraints. Such an extension beyond the simple
example would be elaborated with formal formulations and
detailed analysis in our later sections.

3 OPTIMAL TRANSFER FOR A SINGLE JOB

In this section, as a starting point, we will formally construct
a mathematical model to study the general problem of
multi-path routing for cross-datacenter traffic generated by
a single data analytic job, with the objective of minimizing
the completion time of the communication stage. Notations
are summarized in Table 1.

For a typical MapReduce job, the communication stage is
called a shuffle, and the set of all the network flows in a shuf-
fle is defined as a coflow [14]. In the multi-datacenter sce-
nario, the group of flows in a coflow that have the same pair

Fig. 2. Routing with direct paths versus Optimal multi-path routing.

TABLE 1
Notations for Transfer Optimization for a Single Job

Notation Definition

I Total number of aggregated flows generated by a
job

i Index of the aggregated flow, i � I
di Traffic volume of the ith aggregated flow

Ji Total number of available paths for ith
aggregated
flow

pði; jÞ jth path for ith aggregated flow, j � Ji

L Set of inter-datacenter links along paths of all
aggregated flows in our consideration, L ¼
[i;jpði; jÞ

l Inter-datacenter link, l 2 L
ai;j Traffic percentage of ith aggregated flow routed

through its jth path
bl Available bandwidth at link l
tl Time to complete all the traffic routed through

link l
t Shuffle completion time, t ¼ maxl2Ltl
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of source and destination datacenters is called an aggregated
flow, which is treated as the basic unit in our multi-path
routing problem for convenience.

In our consideration, a job generates I aggregated flows
in its shuffle. The volume of traffic for the ith aggregated
flow is denoted by di, which is the total amount of data to
be sent by all the consisting flows. Each aggregated flow has
the flexibility to take either the direct path, through the link
between the source and destination datacenters; or take the
detoured path, using other datacenters as relays. The num-
ber of total available paths for the ith aggregated flow is
denoted as Ji, among which the jth (j � Ji) path is denoted
as pði; jÞ, the set of inter-datacenter links along the path.

Since different links may have different amounts of traf-
fic, with the flexibility of multi-path routing, the network
load can be better balanced across all the links, so that the
whole shuffle stage can complete faster. Therefore, we
would like to design the optimal multi-path routing algo-
rithm that minimizes the shuffle completion time, i.e., the
completion time of the slowest aggregated flow. The deci-
sion variables in our routing problem are denoted by
ai;j; 8i 2 f1; 2; . . . ; Ig; 8j 2 f1; 2; . . . ; Jig, representing the
percentage of traffic of the ith aggregated flow that is routed
through its jth path.

We present an illustrative example of aggregated flows
and multi-path routing in Fig. 3. Two mappers (M1;M2) at
the source datacenter will send intermediate data to two
reducers (R1; R2) located at two different destination data-
centers. The two flows M1�R2 and M2�R1 have the
same pair of source and destination datacenters, and thus
form an aggregated flow. This aggregated flow takes two
paths, with 40 percent traffic routed along the direct inter-
datacenter link and 60 percent detoured through a relay
datacenter, as illustrated in the figure. Another aggregated
flow consists of the two flowsM1�R2 andM2�R2, which
only takes the direct path. The percentages along all the
available paths for an aggregated flow are the variables to
be determined in our optimization problem.

Let L ¼ [i;jpði; jÞ; 8i; j 2 f1; 2; . . . ; Jig denote the set of all
the inter-datacenter links along paths of all the aggregated
flows in our consideration. For each link l 2 L, the available
link bandwidth is represented by bl. If l is along the jth path
of the ith aggregated flow, i.e., l 2 pði; jÞ, aij percentage of
the ith aggregated flow will pass through this link, which
increases the link load by the amount of diaij. Since l may
belong to multiple paths of a particular aggregated flow,
and may also belong to paths of different aggregated flows,
the total amount of traversing traffic is calculated as the

summation of the traffic load over all the possible paths j
(j 2 f1; 2; . . . ; Jig) of a particular aggregated flow i it
belongs to (l 2 pði; jÞ), and further over all the considered
aggregated flows i 2 f1; 2; . . . ; Ig, which is eventually repre-

sented as
P

i

P
j;l2pði;jÞ diaij. Therefore, the time it takes to

complete all the traffic routed through link l is calculated as
tl ¼

P
i

P
j;l2pði;jÞ diaij=bl.

Since the shuffle completion time is the slowest comple-
tion time among all the aggregated flows, and the comple-
tion time of an aggregated flow is determined by the
bottleneck link along all the paths, we can easily represent
the shuffle completion time as t ¼ maxl2Ltl.

Substituting the expression of tl in t, we obtain our opti-
mal multi-path routing problem, which is aimed at mini-
mizing the shuffle completion time, as follows:

min
aij

t (1)

s.t. t ¼ maxl2L

P
i

P
j;l2pði;jÞ diaij
bl

(2)

XJi

j¼1

aij ¼ 1; 8i 2 f1; 2; . . . ; Ig (3)

aij � 0; 8i; j 2 f1; 2; . . . ; Jig: (4)

Constraint (3) indicates that for each aggregated flow, the
sum of traffic percentages allocated to each of its paths is 1,
representing the nature of ratios. Constraint (4) also stands
for the positive nature of ratios.

This problem is equivalent to the following problem:

min
aij;�

� (5)

s.t. � �
P

i

P
j;l2pði;jÞ diaij

bl
; 8l 2 L

Constraints ð3Þ and ð4Þ:
(6)

The intuition is that for any feasible �, we have � � t ¼
maxl2L

P
i

P
j;l2pði;jÞ diaij
bl

. It is obvious that the objective

achieves the minimum only when � ¼ t. Therefore, Problem
(1) and Problem (5) are equivalent.

Further, we transform constraint (6) to an equivalent
form, which gives the equivalent optimization problem as
follows:

min
aij;�

� (7)

s.t.
X

i

X

j;l2pði;jÞ
diaij � �bl; 8l 2 L

Constraints ð3Þ and ð4Þ:
(8)

As observed, the objective is linear, and all the con-
straints are linear as well. Hence, Problem (7) is a linear pro-
gramming (LP) problem, which can be solved using
efficient LP solvers, such as MOSEK [12].

Fig. 3. Illustration of aggregated flow and its multi-path routing.
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Selecting the Best One. It is worth noting that there may
exist multiple optimal solutions to Problem (1), which result
in the same shuffle completion time.

Among these equivalent solutions, wewould like to select
the one that incurs the minimum overhead with respect to
traffic shifting. The principle is that direct paths should be
used with priority. Following this principle, we add a pen-
alty function gðai;jÞ for traffic shifting in the objective

gðai;jÞ ¼ �d
X

i;jpði;jÞj¼1

aij; (9)

where jpði; jÞj ¼ 1 indicates that the jth path of the ith
aggregated flow is a direct path, which consists of only one
direct link. The expression

P
i;jpði;jÞj¼1 aij represents the sum

of direct path traffic percentages over all the transfers. d is a
positive parameter which is tuned so that jgðai;jÞj is at least
two orders of magnitude smaller than �.

With the penalty function added, we obtain the following
optimization problem:

min
aij;�

�� d
X

i;jpði;jÞj¼1

aij (10)

s.t. Constraints ð8Þ; ð3Þ and ð4Þ: (11)

The more direct paths used, the smaller the penalty func-
tion will be, and thus the smaller the objective. Since the
problem is a minimization problem, the solution that incurs
the least amount of traffic to be shifted away from their
direct paths will be selected, as we desire.

It is obvious that the objective is still linear. Hence, Prob-
lem (10) is an LP that can be efficiently solved.

4 MULTI-PATH ROUTING AND SCHEDULING FOR

SHARING JOBS

We now consider a general scenario where I aggregated
flows from multiple concurrent data analytic jobs are shar-
ing the inter-datacenter network.

If our objective is to minimize the slowest shuffle comple-
tion time among all the jobs, then the problem formulation
in the previous section is readily applicable to this multi-job
scenario. The only difference is that the I aggregated flows
are generated from multiple concurrent jobs rather than a
single job in the previous section.

However, when we try to further improve the comple-
tion time for the next slowest shuffle, the previous formula-
tion is no longer applicable, because of the limit of the
default TCP fair sharing it relies upon. In this multi-job
sharing scenario, rate assignment plays a significant role in
improving the effective utilization. Hence, we modify our
previous problem formulation, to involve the flexibility of
rate assignment (or scheduling), so that an even more flexible
solution can be devised to improve shuffle completion
times. The additional key notations are presented in Table 2.

4.1 Optimizing the Worst

We first consider the formulation with the objective of accel-
erating the slowest shuffle, i.e., minimizing the maximal
shuffle completion time among all the sharing jobs.

For the aggregated flow i 2 I ¼ f1; 2; . . . ; Ig, the set of all
its available paths is denoted as Pi. We allow such a flow to
be flexibly split to take any of its paths, at specific sending
rates. To be more specific, we use xiðpÞ; 8i 2 I ; 8p 2 Pi to
represent the sending rate or throughput of the ith aggre-
gated flow along its path p, which is the decision variable in
our multi-path routing and scheduling problem. Intuitively,
the total throughput achieved along all the paths of flow i is
represented as

P
p2Pi

xiðpÞ. Hence, its completion time is
derived as di=

P
p2Pi

xiðpÞ, representing the flow size
divided by the total throughput.

On each link l 2 L, the total rate of all the traversing flows
should not exceed its available bandwidth capacity bl. Let
�iðp; lÞ 2 f0; 1g represent whether link l is along the path p of
the ith aggregated flow. The total throughput of all the traffic
along the link l is calculated as

P
i2I

P
p2Pi

xiðpÞ�iðp; lÞ,
which is the summation of the throughput over all the possi-
ble paths of an aggregated flow that link l belongs to, and the
summation over all the aggregated flows. Hence, we obtain
the link capacity constraints as follows:

X

i2I

X

p2Pi

xiðpÞ�iðp; lÞ � bl; 8l 2 L:

If we use T to represent the completion time of the slow-
est shuffle, we have the following optimization problem:

min
xiðpÞ

T (12)

s.t. T ¼ max
i2I

di=
X

p2Pi

xiðpÞ (13)

X

i2I

X

p2Pi

xiðpÞ�iðp; lÞ � bl; 8l 2 L (14)

xiðpÞ � 0; 8p 2 Pi; i 2 I : (15)

Constraint (13) indicates that T is the maximum completion
time among all the shuffles. Constraint (14) is the band-
width capacity constraint as aforementioned.

With the same justification as in the previous section, we
transform Problem (12) to the following equivalent problem:

TABLE 2
Additional Notations for Multi-Path Routing and

Scheduling for Sharing Jobs

Notation Definition

Pi Set of all the available paths for ith aggregated
flow

xiðpÞ Sending rate of the ith aggregated flow along its
path p 2 Pi

�iðp; lÞ Binary indicator on whether link l is along path p
of ith aggregated flow, �iðp; lÞ 2 f0; 1g

Ci Coflow that aggregated flow i belongs to, which
is the
set of all its constituting flows.

T Completion time of the slowest shuffle
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min
xiðpÞ;g

g (16)

s.t. g � di=
X

p2Pi

xiðpÞ; 8i 2 I

Constraints ð14Þ and ð15Þ:
(17)

If we denote X ¼ 1=g, then by substituting g ¼ 1=X ,
Problem (16) is rewritten as the following form:

min
xiðpÞ;X

1=X

s.t. 1=X � di=
X

p2Pi

xiðpÞ; 8i 2 I

Constraints ð14Þ and ð15Þ:

(18)

It is obvious that X ¼ 1=g > 0, thus we can further trans-
form our original problem to the equivalent problem as fol-
lows:

max
xiðpÞ;X

X (19)

s.t. 0 < X �
X

p2Pi

xiðpÞ=di; 8i 2 I

Constraints ð14Þ and ð15Þ:
(20)

It is easy to check that the objective and constraints are both
linear. Therefore, our multi-path routing and scheduling
problem is equivalent to a linear programming problem.
This problem only has

P
i jPij þ 1 variables and

P
i jPij þ

I þ jLj þ 1 constraints, where jPij represents the number of
paths for aggregated flow i and jLj denotes the number of
inter-datacenter links. Given the limited number of datacen-
ters in practice, both jPij and jLj are very small. Hence, this
LP problem is of small scale and can be efficiently solved.

4.2 Continuously Optimizing the Next Worst

With our primal objective of minimizing the worst comple-
tion time efficiently solved as an LP problem (19), we con-
tinue to improve the bandwidth utilization to minimize the
next worst completion time repeatedly.

The improvement of bandwidth utilization relies on the
awareness of the coflow semantics. If two aggregated flows
belong to the same job, which means that they come from
the same coflow, then the coflow completion time is
depending on the slowest one.

Let Ci represent the coflow that flow i belongs to. Ci is the
set of all its constituting flows. If flow 1 and 2 belong to the
same coflow, then we have C1 ¼ C2 � f1; 2g.

After we optimize the worst completion time (1=X�), we
fix the rate assignment for the flow i� that achieves this com-
pletion time. Then, for all the other flows that belong to the
same coflow Ci� , they do not need to finish faster than flow
i�, as it does not help improve the coflow completion time.
Therefore, we can let them finish at the same time with the
slowest flow i�, by adding the following equality constraint:

X

p2Pi

xiðpÞ=di ¼ X�; 8i 2 Ci�

Then in the next round, we try to optimize the comple-
tion time of the next worst flow, which belongs to a different
coflow and determines the completion time of the coflow

max
xiðpÞ;X

X

s.t. 0 < X �
X

p2Pi

xiðpÞ=di; 8i 2 I0

X

i2I�~I

X

p2Pi

xiðpÞ�iðp; lÞ � b0l; 8l 2 L

xiðpÞ � 0; 8p 2 Pi; i 2 I � ~I
X

p2Pi

xiðpÞ=di ¼ X�; 8i 2 Ci�

(21)

where I0 represents the set of flows whose coflow does not
have any flow assigned with rate, and ~I denotes the set of
all the flows whose rates have been assigned in previous
rounds. b0l ¼ bl �

P
i2~I

P
p2Pi

xiðpÞ�iðp; lÞ, which is the
updated available bandwidth.

Algorithm 1. Performance-Optimal Multi-Path Rate
Assignment for Inter-Datacenter Flows From Sharing
Jobs With Max-Min Fairness

Input:
The aggregated flow set I ; the coflow set Ci; 8i 2 I ;
The total amount of data to be sent by each aggregated
flow i: di;
The set of available paths for each aggregated flow i: Pi;

Output:
Rate assignment for each aggregated flow along each
path: xiðpÞ; 8i 2 I ; 8p 2 Pi;

1: Initialize I0 ¼ I ; ~I ¼ ? ;
2: while I0 6¼ ? do
3: Solve the LP Problem (19) to obtain the solution x�;X�;
4: Obtain xi� ðpÞ; 8p 2 Pi� , which satisfies

P
p2Pi�

xi� ðpÞ=
di� ¼ X�;

5: Fix xi� ðpÞ; 8p 2 Pi� ; remove them from the variable set
(by adding i� to ~I );

6: Update the corresponding link bandwidth capacities in
Constraints (14);

7: Find other aggregated flows that belong to the same
coflow with i�, add equality constraints:P

p2Pi
xiðpÞ=di ¼ X�; 8i 2 Ci� ;

8: Remove Ci� from I0;
9: end while

In this way, we avoid improving the completion time of
the flow that belongs to the same coflow with previously
allocated flows. This guarantees that the bandwidth is effi-
ciently used to improve the completion time of a new
coflow round by round, rather than improving the flow
whose coflow completion time is already determined in pre-
vious rounds.

As a result, the optimization problem in the next round is
solved over a decreased set of variables with updated con-
straints and objectives, so that the next worst coflow com-
pletion time would be optimized, without impacting the
coflow completion time optimized in this round. Such a pro-
cedure is repeatedly executed until the completion time of
the last coflow has been optimized, as summarized in Algo-
rithm 1. Eventually, all the coflows achieve their best
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possible completion times. In this way, max-min fairness
among coflows with respect to their completion time perfor-
mance can be achieved, because no coflow can improve its
completion time performance without degrading others.
Our algorithm behaves like progressive filling [17]: it allo-
cates bandwidth to coflows in specific proportionality so
that their completion times are shortened simultaneously,
until one (or more) coflow can no longer increase perfor-
mance because of traversing the bottleneck link; this coflow
gets all its flow rates fixed in this round, and the remaining
bandwidth will be allocated to the rest of coflows to get
another (or more) coflow fixed similarly in the next round.

Overhead Analysis. The complexity of our algorithm is
analyzed as follows. In each iteration, line 3 solves the LP
problem, which only has

P
i jPij þ 1 variables and

P
i jPij þ

I þ jLj constraints. As mentioned in the previous subsec-
tion, both jPij and jLj are small given the limited number of
datacenters in practice. Hence, the problem is of small scale
and can be efficiently solved. Line 4 loops through all the
aggregated flows to check whether they have been bottle-
necked using the equation. Hence, the complexity of this
step is OðIP Þ, where I is the number of aggregated flows
and P is the maximum number of paths for each of these
flows. Line 6 updates link bandwidth capacities with a
complexity of OðjLjÞ, intuitively. Line 7 introduces the
complexity of OðIÞ in identifying the aggregated flows. The
maximum possible number of iterations is the total number
of coflows, indicating that coflows do not compete with
each other at bottleneck links and get their flow rates
assigned one by one, which is the rare worst case.

5 IMPLEMENTATION

We have implemented our multi-path routing and schedul-
ing strategy in our software-defined inter-datacenter over-
lay testbed, which provides a convenient service for Spark
jobs for inter-datacenter transfer optimization. In this sec-
tion, we present the architecture overview of our prototype
and elaborate the implementation details of major
components.

5.1 Architecture Overview

Fig. 4 gives an architecture overview of the software-
defined inter-datacenter overlay network, based on which
our transfer optimization service is implemented. The
testbed consists of a centralized controller and several proxy
nodes distributed in each datacenter, as highlighted with
the shaded boxes in the figure.

Adhering to the principle of Software Defined Net-
working (SDN), the control plane and data plane in our
testbed are fully separated. The centralized controller
has the global view of the network states, reported from
the proxy nodes in each datacenter. Our optimal multi-
path routing and scheduling strategy is implemented as
a controller module, which informs the decisions to
proxy nodes for enforcement.

The data plane consists of the proxy nodes in each data-
center, which are responsible for interacting with Spark jobs
and enforcing the decisions instructed by the controller. To
be more specific, each proxy is designed and implemented
as a high-performance switch at the application layer, which

aggregates outgoing flows destined to the same datacenter
and forwards them along multiple paths at specific rates
according to the controller decisions. The data transport
module in the Spark framework is modified to send and
receive all inter-datacenter traffic through the proxy nodes
via a simple API, to be elaborated later.

5.2 Implementation of Multi-Path Routing and
Scheduling

Our algorithm of multi-path routing and scheduling is
implemented in Python, as a pluggable module in the cen-
tralized controller. As the input of our algorithm, the inter-
datacenter link bandwidth is readily available in the con-
troller, since it can be measured and reported by the proxy
nodes periodically. The set of paths for each pair of datacen-
ters is also available, which can be easily obtained by an
exhaustive search given a small number of datacenters. To
obtain the coflow set and the size of each flow, we modify
the TaskScheduler module in Spark to report details of
network flows in a shuffle. TaskScheduler is a compo-
nent in Spark which decides the placement of all the tasks
in a stage. Once the placement decision has been made, we
can have the full knowledge (source, destination and the
data size) of all the flows in the corresponding shuffle. Our
modified TaskScheduler can aggregate such coflow
information and reports it to the controller. Upon receiving
the report, the controller will trigger the execution of our
algorithm.

With all the input available, our algorithm will be
launched to construct linear programming problems using
sparse matrices provided in the cvxopt package. The LP
problems are then solved with the commercial LP solver in
Mosek [12]), which is more efficient than the built-in LP
solver in cvxopt. The calculated routing and scheduling
decision for each flow will be conveyed to all the proxy
nodes along its assigned path, where the forwarding rules,
in the form of (flowId, nextHops, rates), will be
installed and enforced in the data plane. Specifically, nex-
tHops is an array which specifies the next-hop proxy nodes
to relay the traffic, if the flow is to be split along multiple
paths. The other array rates specifies the assigned band-
width on the link to the corresponding next hop.

Fig. 4. Overview of our inter-datacenter overlay testbed.
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Upon receiving the forwarding rules, the proxy node will
enforce the routing and scheduling decisions, by sending
flow fragments to the desired next hops in a round-robin
manner. Given a next-hop proxy node, it will first re-frag-
mentize the flow to a fragment, with the size proportional
to the assigned bandwidth on the next-hop link. Then, it
will relay the flow fragment to the particular next hop,
before proceeding to the next nextHop in the array. Since
fragments from different flows are also served by round-
robin on each link, rate assignment is automatically
enforced. Note that the flow re-fragmentization is a feature
provided by the proxy nodes at the application-layer, which
is implemented with little overhead because of the use of
zero-copy buffers and smart pointers.

5.3 Integration With Spark

To integrate our transport service with Apache Spark, we
need to redirect all its inter-datacenter traffic through our
proxy nodes, rather than directly initiating connections
between executors. Hence, we have modified the Data-

TransferService module in Spark, which is responsible
for data block transfers between executors.

With our modification, if a data block is destined to an
executor in another datacenter, it will be forwarded to the
local proxy by calling a simple function publishData().
For a data block destined to a local executor, the default
way will be used to initiate a TCP connection between the
executors. In a similar vein, to receive data destined to itself
through our transport service, a Spark executor needs to
call the function subscribe(). Both of these calls are
implemented as streaming RPC calls, which are supported
by the gRPC

1 framework using HTTP/2-based transport at
the application layer. Our modification is transparent to
Spark users, since no changes need to be made to the data
analytic jobs.

6 PERFORMANCE EVALUATION WITH REAL-
WORLD EXPERIMENTS

In this section, we present our evaluation results with a
comprehensive set of real-world experiments and extensive
simulations, to demonstrate the effectiveness of our multi-
path routing and scheduling strategy in optimizing inter-
datacenter network transfers and improving job completion
times.

Experiment Setup. We deploy our optimal transfer service
for a Spark cluster, which spans across 5 datacenters on
Google’s Cloud Compute Engine, with a total of 17 Virtual
Machine (VM) instances. Specifically, 8 VM instances are
evenly distributed in Taiwan and Belgium datacenters, 5
VMs are used in N. Carolina, 3 VMs in Oregon and 1 VM in
Tokyo. Each VM instance has 2 vCPUs, 13 GB of memory,
and a 20 GB SSD of disk storage. One of the VMs in N. Caro-
lina serves as the Spark master, and the rest of the VMs are
the Spark workers, running Apache Spark 2.1.0, the latest
release as of January, 2017. The controller is deployed on
the same VM as the Spark master, in order to minimize their
communication overhead. Two proxy nodes are co-located
with Spark workers (or executors) in each datacenter.

Methodology. In order to have a fair comparison, we mod-
ify the TaskScheduler module in Spark, to eliminate the
randomness in task placement decisions. In other words,
each task in a given workload will be placed on a specific
executor across different runs, so that the inter-datacenter
traffic generated will be the same. This way, we can fairly
compare the performance achieved with different transfer
strategies, given the same traffic. We have evaluated the
effectiveness of our strategy (Algorithm 1) in optimizing
performance for a variety of data analytic workloads, com-
pared with the direct transfer strategy which only uses
direct paths. We also compare with two state-of-the-art
baselines: Siphon [18] and Rapier [11], the routing and sched-
uling strategies designed for inter-datacenter coflows and
intra-datacenter coflows, respectively. For a fair compari-
son, we adapt their algorithms to the inter-datacenter net-
work setting and implement their algorithms in the same
software-defined inter-datacenter overlay framework at the
application level. Multi-dimensional metrics are measured,
including the job completion time, stage completion time
and shuffle completion time, to offer a comprehensive
comparison.

Machine Learning Workloads. We use three representative
machine learning workloads from Spark-Perf Benchmark,2

which is the official Spark performance test suite created by
Databricks.3 These workloads are:

� PCA: Principle Component Analysis.
� BMM: Block Matrix Multiplication.
� Pearson: Pearson’s correlation.
The job completion times (or the application run times,

equivalently) achieved by each of the workload with com-
paring strategies are shown in Fig. 6. As expected, our opti-
mal transfer strategy always outperforms the baseline,
achieving a 5.69, 3.18 and 25.24 percent reduction of com-
pletion time for PCA, Pearson and BMM workloads, respec-
tively. It is worth noting that BMM enjoys the most
significant performance improvement from our strategy,
with a 25.24 percent reduction in its job completion time.
The reason is that it is the most network-intensive work-
load, with a huge shuffle sending more than 40 GB of data,
and the inter-datacenter flows it generates are skew in their
sizes.

To allow an in-depth analysis of the reason for such a
job-level improvement, we present the completion times
for each stage of each workload, achieved with the two
strategies, respectively, for comparison. The completion
time of each stage is decomposed into the network transfer
time (shuffle time) and the computation time, as illustrated
in Fig. 5.

As shown in Fig. 5a, a PCA job has 4 stages, represented
as 0 to 3 along the x-axis. Stage 0 and 2 are computation
stages, while stage 1 and 3 consist of shuffles. As the job
completion time of PCA is dominated by the computation
time in stage 0 and 2, the job-level performance does not
achieve a significant improvement, as reflected in Fig. 6.
However, with respect to the performance of shuffles, our
strategy is effective in reducing the shuffle completion

1. https://grpc.io
2. https://github.com/databricks/spark-perf
3. https://databricks.com/
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times, by 4.31 percent for stage 1 and 16.04 percent for stage
3, respectively. The similar analysis applies to the Pearson
job illustrated in Fig. 5b, which is also computation-inten-
sive. The shuffles in both stage 3 and 5 have been acceler-
ated by our strategy, with an improvement of 16.07 and
20.57 percent, respectively.

In contrast, the BMM job is network-intensive, so that its
job-level performance is significantly influenced by the per-
formance of its shuffles. As demonstrated in Fig. 5c, stage 6,
which involves a shuffle, dominates the job completion
time. Our optimal strategy achieves a 29.98 percent reduction
in the shuffle completion time, which directly contributes
to the significant improvement of job-level performance
shown in Fig. 6.

To offer a more in-depth examination on the shuffle per-
formance of the BMM job, we present the empirical CDF of
the shuffle read time for each reduce task, which is the time
it takes for a reduce task to finish receiving all its required
data, in Fig. 7. Indeed, the set of flows initiated by each
reduce task is naturally treated as a coflow, as the shuffle
read time is determined by its slowest flow. With multiple
reducers in a shuffle, the inter-datacenter links are shared
by multiple such coflows. Recalling Algorithm 1, our strat-
egy tries to minimize the worst coflow completion time
repeatedly, until all the coflows have achieve their best

possible performance. As clearly shown, our optimal strat-
egy successfully reduces the slowest shuffle read time, from
225 s to 160 s. This results in a significant improvement of
the shuffle completion time, which is determined by the
slowest shuffle read time intuitively. Moreover, the shuffle
read times are more evenly distributed, since our strategy
always seeks to optimize for the slowest one. In summary,
with our optimal routing and scheduling, the inter-datacen-
ter link bandwidth is more efficiently utilized, so that the
shuffle phase is accelerated.

Sort. Furthermore, we run the Sort application from the
HiBench benchmark suite [19], which has only a map stage
to sort input data locally and a reduce stage to sort after a
heavy shuffle. We generate 2.73 GB of raw input data, which
has a skew distribution across the five datacenters. Fig. 8
illustrates the reduce completion times of the sort job
achieved by the comparing strategies, respectively. Each of
the reduce completion times is further decomposed into the
shuffle read time and the task execution time, to offer a more
comprehensive comparison. It is easy to observe that our
strategy effectively improves the shuffle read time, which
contributes to the acceleration of the reduce stage. We further
present the empirical CDFs of the shuffle read times achieved
by the comparing strategies, respectively, in Fig. 9. Com-
pared with the empirical CDF of the baseline that exhibits a
long tail, the shuffle read times in our strategy are more bal-
anced, so that the slowest one is accelerated by 2 s.

Comparison With State-of-the-Art Baselines. As aforemen-
tioned, we further present our comparison with Siphon [18]
and Rapier [11] to evaluate the performance of scheduling
and routing inter-datacenter coflows. In each run of the
experiment, we replay 4 coflows in a testbed deployed
across 5 Amazon AWS datacenters distributed across
Europe, South-east Asia, and North America. Each coflow
has 4 inter-datacenter aggregated flows, the sizes of which
range from 200 to 500 MB. The completion times of the

Fig. 5. Stage completion times of three machine learning jobs. In each subfigure, the numbers (�x%) are presented above the bars of stages which
have network transfers. The negative percentage �x% indicates that the stage completion time achieved by our Optimal Shuffle is reduced by x%
compared with the Direct Shuffle.

Fig. 6. Job completion times of three machine learning jobs.

Fig. 7. Empirical CDF of the shuffle read time of the BMM job. y-axis is
interpreted as the fraction of data.

Fig. 8. The execution time of the reduce stage of the Sort job, including
the shuffle read time and the task execution time.
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slowest coflows achieved in each of the strategies, respec-
tively, are measured. We obtain the speedup over Rapier or
Siphon based on the ratio of the worst coflow completion
time. We ran the experiment for 21 rounds. The distribution
of the speedup statistics is presented in Fig. 11.

Clearly, our strategy outperforms both baselines in
accelerating slowest coflows. As compared to Siphon,
our scheme shows moderate performance improvement.
Because Siphon employs similar scheduling and routing
mechanisms for inter-datacenter coflows, the performance
is comparable (speedup < 1.1�) in most cases. However, in
extreme cases where the inter-datacenter traffic size distri-
bution is highly skewed, the simple heuristic algorithm
used in Siphon falls short, and our optimization can achieve
a speedup up to 1.351�.

When compared with Rapier, our strategy achieves a
speedupup to 1.544�. In themedian case, a 25 percent reduc-
tion in the worst coflow completion time can be expected.
The reason behind is that Rapier is originally designed for
intra-datacenter coflow scheduling, in which the assumption
on network topology and bandwidth constraints differs
significantly. We further demonstrate the performance
improvement over Rapier over 100 runs of simulation. In
each run, we simulate 4 coflows in a 4-datacenter scenario.
Each coflow has 4 inter-datacenter flows, the sizes of which
range from 200 to 500 MB. The completion times of the slow-
est coflows achieved in each of the strategies, respectively,
are measured, based on which we obtain our performance
improvement ratio over Rapier as the reduction percentage
of the worst coflow completion time. The empirical CDF of
the performance improvement ratio is presented in Fig. 10.
Clearly, our strategy outperforms Rapier in accelerating the
slowest coflow, with an improvement ratio from 5 to 55 per-
cent, depending on the skewness of the inter-datacenter traf-
fic size. Over 50 percent of the 100 runs achieve more than 35
percent of performance improvement.

Scalability. To address the practical concern of our optimi-
zation-based strategy, we conduct the following scalability

experiment by running the solver 10 times and collecting the
runtime data, given a set of configurations at different scales.
More specifically, we consider the setting of x nodes ran-
domly located in y datacenters, where x ranges from 30 to
150 and y is set as 5,6,7, respectively. The number of jobs (or
coflows) increases proportionally to the number of cluster
nodes. The average runtime (in seconds) and the standard
deviation are listed in Table 3. As observed, the runtime of
our constructed LP scales reasonably well as the entire Spark
cluster grows over 100 nodes.With the number of geographi-
cally distributed datacenters increasing, the required solver
runtime grows almost quadratically. However, in practice,
we envision that seven datacenters are sufficient for most
practical and economical deployments.

7 RELATED WORK

Geo-Distributed Data Analytic Jobs. As large volumes of data
are increasingly generated globally and stored in geographi-
cally distributed datacenters, improving performance of
data analytic jobs with geo-distributed input data has
received an increasing amount of research attention ([5], [6],
[7], [8], [20], [21], [22], [23], [24], [25], etc.). G-MR [24] is a
Hadoop-based framework that determines schedules for
MapReduce job sequences on geo-distributed datasets
across multiple datacenters, optimizing for execution time
or monetary cost. Hierarchical MapReduce (HMR) [20] and
H2F [23] follow a hierarchical scheme, with top layer con-
troller splitting a MapReduce job and partitioning datasets,
and bottom-layer managers executing independent MapRe-
duce sub-jobs at different locations. Heintz et al. [22] pro-
posed to select mappers and apply shuffle-aware data
pushing to meet time constraint, based on prior knowledge
of mappers by monitoring the most recent jobs. The
assumption of such prior knowledge may not hold, as it is
hard to obtain or inaccurate to infer from historical informa-
tion. Vulimiri et al. [5], [6] took the initiative to reduce the
total amount of inter-datacenter network traffic when run-
ning geo-distributed data analytic jobs. Their solution
includes optimizing the query execution plan and the data
replication strategy, and also aggressively caching query
results. Pixida [7] proposed a graph partition algorithm to
divide the directed acyclic graph (DAG) of a job into several
parts, each corresponding to a datacenter, so as to minimize
the total amount of traffic among these parts.

Fig. 9. Empirical CDF of the shuffle read time of the Sort job.

Fig. 11. Speedup achieved by our approach when compared with two
baselines, Rapier and Siphon, respectively.

Fig. 10. Empirical CDF of our performance improvement ratio over
Rapier.
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Although the inter-datacenter traffic size is reduced by
these efforts, it is not guaranteed that the jobs are acceler-
ated, as job completion times also depend on the available
bandwidth of inter-datacenter links. With such an aware-
ness, Iridium [8] proposed an online heuristic to place both
input data and tasks across datacenters, under the unrealis-
tic assumption of a congestion-free wide-area network. Flut-
ter [9] removed this assumption and proposed an optimal
task placement strategy to optimize the job completion
time. Dolev et al. [21] presented a more comprehensive sur-
vey on the existing works for geo-distributed big-data proc-
essing using MapReduce.

However, the efforts above focused on assigning tasks of
a single job, which do not account for the general scenario
where concurrent jobs have inherent resource competition.
Hung et al. [26] proposed a greedy scheduling heuristic to
determine the execution order of tasks from concurrent jobs
in each datacenter, assuming that the placement of tasks are
predetermined. Orthogonal to this work, Chen et al. [15],
[27] designed the optimal placement for tasks of all the shar-
ing jobs with the consideration of fairness.

Different from all these works, we do not reduce the total
size of traffic or modify the traffic pattern by specifying the
task placement. Instead, given the inter-datacenter traffic,
we allow flows to be split along multiple paths and calculate
the optimal rate assignment, so that the network transfers
from all the sharing jobs achieve their best possible comple-
tion times. Our proposed strategy can be integrated as an
optimization component in the existing software-defined
inter-datecenter transfer framework such as Stemflow [28]
and Siphon [18], [29].

Multi-Path Routing and Scheduling for Coflows. Multi-path
routing and rate control have attracted much research atten-
tion in datacenter networks ([30], [31], etc.), among which
one category is focused on coflows. RAPIER [11] and Li,
et al. [10] proposed to jointly consider coflow routing and
scheduling, with the objective of minimizing the average
coflow completion time. In their solutions, each flow is
routed along a single path which is selected from multiple
available ones. In contrast, we allow each flow to be split
along multiple paths to better utilize the bandwidth. More-
over, our objective is to achieve the best possible perfor-
mance for all the coflows, with fairness considered. The
most important merit of our work is that we have imple-
mented our strategy and evaluated with real coflows, rather
than simulated [10] or emulated ones [11].

Performance Optimization for Data Analytic Jobs in a Single
Datacenter. There are plenty of existing efforts ([32], [33],
[34], etc.) related to performance optimization in big data

analytic frameworks. They proposed task assignment strate-
gies to improve data locality and fairness [32], [33], or spec-
ulation strategies to mitigate the negative impact of
stragglers ([34]). With a special focus on the network perfor-
mance, coflow scheduling strategies ([14], [35], [36], [37],
[38], [39], etc.) are proposed to minimize the average coflow
completion time or to achieve fairness. However, they are
all designed for jobs running in a single datacenter, and do
not work effectively in the multi-datacenter scenario.

8 CONCLUDING REMARKS

In this paper, we have conducted a thorough study on opti-
mizing the inter-datacenter transfers from multiple sharing
data analytic jobs whose tasks are geographically distributed
across multiple datacenters. Taking the fact into consider-
ation that multiple paths are available for each inter-datacen-
ter flow, we theoretically investigate the multi-path routing
problems for inter-datacenter flows from a single job, and
those from multiple concurrent jobs, respectively. For the
single job scenario, we formulate the multi-path routing
problem as a linear programming to be efficiently solved,
which minimizes the completion time of the slowest flow.
When multiple jobs are considered, our objective is to opti-
mize their shuffle completion times with max-min fairness,
whichmeans that the slowest shuffle achieves its fastest com-
pletion time and the same for the next slowest one. To
achieve this objective, we have designed an algorithm to iter-
atively optimize the shuffle completion times by solving an
updated version of an LP problem. Last but not the least, we
have implemented our performance-optimal routing and
scheduling strategy, and provided convenient APIs for
Spark users to use our service for network performance opti-
mization. Our real-world experiments over Google Cloud
with various workloads demonstrated convincing evidence
on the effectiveness and advantages of our new strategy.
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