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Abstract—Machine learning-based malware detection systems
are often vulnerable to evasion attacks, in which a malware
developer manipulates their malicious software such that it is
misclassified as benign. Such software hides some properties of
the real class or adopts some properties of a different class by
applying small perturbations. A special case of evasive malware
hides by repackaging a bonafide benign mobile app to contain
malware in addition to the original functionality of the app, thus
retaining most of the benign properties of the original app. We
present a novel malware detection system based on metamorphic
testing principles that can detect such benign-seeming malware
apps. We apply metamorphic testing to the feature representation
of the mobile app, rather than to the app itself. That is, the
source input is the original feature vector for the app and the
derived input is that vector with selected features removed. If
the app was originally classified benign, and is indeed benign,
the output for the source and derived inputs should be the same
class, i.e., benign, but if they differ, then the app is exposed as
(likely) malware. Malware apps originally classified as malware
should retain that classification, since only features prevalent in
benign apps are removed. This approach enables the machine
learning model to classify repackaged malware with reasonably
few false negatives and false positives. Our training pipeline
is simpler than many existing ML-based malware detection
methods, as the network is trained end-to-end to jointly learn
appropriate features and to perform classification. We pre-
trained our classifier model on 3 million apps collected from
the widely-used AndroZoo dataset.1 We perform an extensive
study on other publicly available datasets to show our approach’s
effectiveness in detecting repackaged malware with more than
94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score.

Index Terms—machine learning, malware detection, repack-
aged malware, mobile apps

I. INTRODUCTION

Mobile devices are prevalent in our daily lives. Android

mobile devices continue to dominate the global mobile market,

with 86.1% market share in 2019, according to the information

published by IDC [1]. Android malware is a persistent threat

to billions of users around the world: A 2015 survey [2]

reports that millions of malicious applications have been found

on mobile phones, and 96% of them aim at the Android

system. Thus, malware detection for mobile apps has been

an active research topic in recent years. Researchers often

employ static or dynamic analysis techniques to discover

malware, many of which apply machine learning to the data

The Programming Systems Laboratory is supported in part by NSF CNS-
1563555 and CCF-1815494.

1https://androzoo.uni.lu/

extracted from the analysis techniques to make classify apps

as malware or benign. However, limited work has been done

on machine learning approaches to predicting malware that

employs repackaging [3].

In this paper, we present a novel technique, DECEIT

(DEteCting repackaged malware with mEtamorphIc Testing),

to address the challenge of detecting repackaged malware.

Our approach, based on metamorphic testing (MT) princi-

ples, automatically detects malware that leverages repackaging

without needing to know the true output label for every

app (benign or malware). Our technique does not require re-

training a machine learning model, only metamorphic relations

that selectively reduce feature vectors.

We stress that this work stretches MT principles in a

novel direction: The conventional MT concept of a source

input/output with a followup derived input and its predicted

vs. actual outputs is not employed directly. That is, given

an Android APK as input, a machine learning classifier, and

a binary class C as output (either benign or malware), we

do not use a metamorphic relation (MR) to derive a new

APK’ as followup input to the classifier. (Android apps are

distributed as APKs. ”APK” stands for Android Package and

is the Android equivalent of a Java JAR file.) Instead, we

consider the same input Android APK and employ an MR to

derive a followup feature vector V’ from that APK’s original

feature vector V. The MRs do not change the values of

any of the original features, they simply remove the selected

features from consideration by the classifier. Different MRs

would thus remove different subsets of the features – but

carefully selected, not at random, just like conventional MRs

do not (usually) arbitrarily change the source inputs, instead

the derived inputs are carefully crafted to enable a meaningful

output prediction. In our DECEIT approach, the output class

is always predicted to be the same as the original output

C. Divergence between the prediction of the followup output

C’ and the actual followup output C” is interpreted as a

limitation of the classifier in its ability to distinguish benign

from malware APKs. In particular, its original classification

of the APK is suspect and probably wrong.

A. Motivation

The impact of a malware campaign on Android can be

enormous, which was clearly observed in the case of the Judy

malware attack that was pushed through the Google Play stores
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(a) Benign Apps (b) Drebin Malware (c) Repackaged Malware

Fig. 1: Red and green bars represent apps identified as malware and benign, respectively, and their length refers to the prediction

probability. The blue dotted line shows the average prediction probability of that set. We retrieved the maliciousness of each

app based on the classifier’s probability. Figure (a) shows the maliciousness of most benign apps is below the set threshold.

Figure (b) shows that the maliciousness of many malware apps from the Drebin dataset are above the threshold. Figure (c)

represents the maliciousness of repackaged malware samples.

and infected 36 million users worldwide [4]. Attacker strate-

gies are changing and current defenses find it hard to cope

with new malware variants, which makes Android malware

detection a challenging problem. Machine learning approaches

are widely used to detect malware. However, machine learning

algorithms can be easily spoofed by carefully perturbing the

inputs presented to the detector. Many studies have been done

on such “adversarial” Android malware [5]–[7]. Repackaged

malware is perhaps one of the simplest approaches in this

regard, since the malware inherits most of the features of

the benign app in which it is embedded. Grosse et al. [8]

demonstrated that a highly accurate deep learning Android

malware classifier can be evaded by simply adding less than

20 features to the Android app’s manifest file.

To demonstrate the evolution of mobile malware, we trained

a simple single-layer neural network classifier on malware and

benign apps from the Drebin dataset [9] containing malware

and benign app samples from before 2014. We tested the

model on three categories of apps: benign apps (randomly

sampled), malicious apps (subset) from the Drebin dataset, and

repackaged apps [3]. We observed that repackaged malware

exhibit many characteristic features of benign apps, such

as common API and library usage, which consequently led

the model to misclassify these malware as benign. Figure 1

demonstrates the classification probabilities of the model. The

maliciousness score is the model’s prediction probability, and

it lies in the range of -1 to 1, with -1 representing benign and

1 representing malware. Figure 1 (a) shows the classification

probability of 500 randomly sampled benign apps. Figure 1

(b) and (c) show the stark contrast between the classification

of Drebin malware and repackaged malware samples, respec-

tively. Figure 1 (c) shows mixed prediction on repackaged

malware. Such differences in the prediction probabilities are

attributed to evasion attacks wherein the malware exhibits a

considerable amount of benign features such that the malicious

characteristics are hidden from a naive classifier.

The difference in the prediction probabilities is evident in

the case of repackaged malware, which poses a serious threat

to the Android ecosystem as it deprives app developers of their

benefits, contributes to spreading malware on users’ devices,

and increases the workload of market maintainers [3]. In the

repackage malware dataset [3], we observed that repackaged

malware apps and benign apps share more than 80% of their

features, which makes detection a challenging problem. In this

work, our primary objective is to detect repackaged malware.

Our novel framework tackles the problem of repackaged mal-

ware efficiently. Many state-of-the-art approaches, e.g., [10],

[11], have reported high malware detection rates on closed

datasets, which are difficult to verify. We used AndroZoo

(open dataset) [12], Drebin dataset (Publicly available) [9]

and Repackaged apps (open dataset) [3] to demonstrate the

effectiveness of our framework.

B. Contributions

In this paper we address the aforementioned challenges

while building a robust framework for detecting repackaged

malware that circumvent state-of-the-art machine learning-

based detection techniques. The contributions of this paper

are:

1) We present an adaptation of metamorphic testing princi-

ples to machine learning models, to apply metamorphic

relations to feature vectors rather than the underlying

information sources represented by the features.

2) We apply this idea to mobile malware detection, to

identify repackaged malware.

3) We conduct experiments on real-world repackaged mal-

ware samples, and the results show that our novel

technique successfully detects malware with more than

94.56% accuracy, 0.98 precision, 0.95 recall, and 0.96

F1 score.

Our simple approach is beneficial for several reasons. First,

it increases the difficulty for attackers to exploit the vulnera-

bilities of a model. Second, our adversary-resistant technique

maintains desirable classification performance while requiring
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only minimal modification to the classification process. Ulti-

mately, while this work is primarily motivated by the need

to detect repackaged malware, it should be noted that our

adaptation of metamorphic principles is general and could

potentially be adapted to other ML applications. Our open-

source implementation, models, and complete training & test-

ing datasets are available at https://github.com/Programming-

Systems-Lab/DECEIT.

Section II explains background on malware, neural networks

and model interpretability. Section III discusses related work

followed by Section IV discussing the metamorphic relations

used in our study. Section V provides a detailed description of

our framework. Section VI describes our experimental setting,

data acquisition methodology, feature extraction, and dataset

compilation. Section VII presents our evaluation scheme and

experimental results. Threats to validity and limitations are

presented in Section VIII followed by our conclusions.

II. BACKGROUND

A. Repackaged Apps

Repackaging refers to the core process of unpacking a

software package, then repackaging it after a probable mod-

ification to the decompiled code and/or to other resource

files (e.g., libraries, Permissions). Two apps are considered

repackaged app pair if they share at least 80% of the code

(i.e., code similarity exceeds 80%), and are signed by differ-

ent developer(s) [3]. The repackaged apps include malicious

payload and execute malicious code. Sharing 80% of the ap-

plication structure and code with benign apps makes detecting

repackaged malware incredibly difficult.

B. Neural Networks

Neural networks are a kind of machine learning models that

rely on computational units – neurons – organized in layers

to learn patterns in the underlying data. A “feed-forward”

neural network consists of a sequence of neuron layers. Each

layer of the network produces an output, which is used as

an input to the next layer. The neurons in sequential layers

are connected to each other through weighted edges. Neurons

apply an activation function to the input values and pass the

results to the neurons in the subsequent layer.

In a classification task, a feed-forward neural network takes

a feature vector as an input to train the model. The feature

vector can be represented as a vector of numbers representing

attributes of the input sample. For example, an Android app

can be represented using a feature vector containing binary

values that capture the presence/absence of components in

Android apps. A neural network classifier learns the decision

boundary between the classes. A good classifier categorizes

the identical samples correctly, regardless of the underlying

feature representation. Networks with multiple intermediate

hidden layers are called Deep Neural Networks (DNNs).

C. Model Interpretability

Model interpretability gives machine learning models the

ability to explain or to present their behaviors in understand-

able terms to humans [13]. Such explanations can help better

understand the data and why a model might fail, and eventually

increase the system safety [14].

Local Interpretable Model-agnostic Explanations (LIME) is

a popular method for explaining predictions of machine learn-

ing classifiers proposed by Ribeiro et al. [15]. The intuition

behind LIME is to learn the response of the underlying inter-

pretable model to the perturbation of the input and see how

the prediction changes [16]. The model’s decision function

is a nonlinear function. LIME samples instances and gets

predictions using the decision function, and weighs them by

the proximity to the instance being explained. At last, a linear

model is learned to locally approximate the decision boundary

in the vicinity of the explained instance. The purpose of using

LIME in our work is to identify features that are important

for classification so that we can have a better understanding

of feature distributions across malware and benign apps.

III. RELATED WORK

Malware detection systems have been extensively studied

[9], [17]–[20], especially after proliferation of smartphones.

Traditional malware detection techniques relied on maintain-

ing a list of malicious apps derived by computing signature of

apps [21]. Such techniques perform poorly on detecting new

(unknown) malware. However, advances in machine learning

have enabled researchers to build intelligent malware detection

systems capable of detecting newer malware. Machine learning

based techniques primarily rely on features generated from

static analysis and dynamic analysis of apps. Though effective,

ML based techniques have been shown to be susceptible to

adversarial attacks [22].

Prior work have explored defenses against adversarial at-

tacks: Adversarial training [23] increases robustness by aug-

menting training data with adversarial examples, however,

generating valid samples is computationally intensive and may

break the inherent application constraints. Other works, such

as, Incer et al. [24] demonstrated the effectiveness of using

monotonic classifiers, where adding features can only increase

the decision score. Such classifiers require significant time

towards manual feature selection. Adversarial robustness can

be further improved by using an ensemble of classifiers for

prediction [25], adding noise to the training data [26], dimen-

sionality reduction [27], and removing adversarial examples

after detection [28], In contrast, DECEIT does not require re-

training the model or access to the training dataset to apply its

metamorphic relations to identify (likely) repackaged malware.

Murphy et al. [29] was probably the first work to apply

metamorphic testing to machine learning software; they identi-

fied several general types of metamorphic relations (MRs) that

apply to most machine learning applications. Xie et al. [30],

[31] studied the application of metamorphic testing specifically

to ML classifiers. Tian et al. [32] applied metamorphic testing

to DNNs. Mekala et al. [33] proposed using metamorphic

testing principles to automatically detect adversarial attacks

on image classifiers, by applying metamorphic relations based

on distance ratio preserving affine image transformations.
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Fig. 2: DECEIT Overview

IV. DECEIT ’S METAMORPHIC RELATIONS

Machine learning models rely on feature representation

of the data to make a classification. Here we used binary

features to represent the presence/absence of components in

Android apps. Hence, the model learns how the existence or

absence of a feature impacts each class. Based on this property,

we investigated a generic template for metamorphic relations

concerned with classifying examples as repackaged or clean

benign apps: “Removal of Top-Benign features”. Given an

app’s feature representation, fapp, and predicted classification

from the model, C, removing several of the top benign features

from fapp should not affect the prediction of the model.

DECEIT relies on this property to detect malicious apps.

The classification probability of an app should change if the

app’s feature representation is manipulated. We hypothesize

that removing selected (top) benign features should result in

a greater change in probability towards malware classification

in the case of repackaged malware. However, for truly benign

apps, removing such features should result in more limited

changes to the classification probability. This relatively small

change in the classification probability of the benign apps can

be attributed to the existence of other benign features that

influence the prediction. However, in malware, after removing

the benign features, the malicious features become more

prominent, allowing the model to detect the malware. Figures

3 and 4 show the probability change when removing top-6

benign features from benign and malware apps. Greater the

probability change, the more likely the app is malware. We

observe that when removing the top benign features from the

repackaged malware dataset, the change in the detection proba-

bility can be seen in many apps as compared to the benign apps

dataset. The following two equations are used to transform the

feature vector and make classification, respectively.

f ′

app = fapp − ftop benign features (1)

Classification =

{

Malware, P (f ′

app) > δ

Benign, otherwise
(2)

where fapp is the feature vector representing an app.

ftop benign features represents top benign features, then, f ′

app

is the feature vector of the app after removal of top being

features. P (x) represents the classifier’s prediction probability,

and δ is the decision threshold. The higher the prediction

probability, the more likely the app is malware. Oftentimes,

in a binary classification problem, the default value for the

threshold is set to 0.5, where all values equal or greater than

the threshold are mapped to one class, and all other values are

mapped to another class. Since we are also performing binary

classification, we use 0.5 as the decision threshold (δ).

Fig. 3: Change in prediction probability of vanilla neural

network after removing top 6 benign features from repackaged

malware. We observe that several apps see a change in the

detection probability. Higher the probability change, more

likely the app is a malware.

V. DECEIT OVERVIEW

DECEIT relies on two prime components: a model and its

interpretability to identify the relevant features and perform

the classification. The fundamental concept is to observe the

model’s prediction probability change after exposing the ma-

licious features of apps by removing top-benign features. The

remaining features are then used to determine the probability

of the application being malware. Figure 2 shows a high-

level overview of DECEIT . We introduce selective feature

nullification that allows us to unravel the adversarial features,

hidden among the benign features of the application, used

to circumvent detection on conventional detection systems.

Figure 5 shows how removing benign features from evasive
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Fig. 4: Change in prediction probability of vanilla neural

network after removing top 6 benign features from benign

apps. We observe that fewer apps see change in the prediction

probability.

malware leads to correct malware classification. Our approach

is fundamentally different from simply changing the threshold

of a classifier. Since each feature has a different impact on

the classification probability, removing the same feature from

two different apps results in different changes in the apps’

prediction probabilities.

Fig. 5: The red and green dots refer to malicious and benign

apps, respectively. The blue dots represent evasive repackaged

malware misclassified as benign. Upon selective nullification

of top benign features, the blue dots shift towards the decision

boundary and finally turn red, exposing their maliciousness.

The arrows direct toward the transformation process.

We train a simple vanilla neural network model on the

training data derived from the AndroZoo dataset (see section

VI). Once the model is trained, we use LIME to extract,

categorize, and rank the features used by the model to classify

the apps. These features define the prediction outcome of the

classifier. The probability distribution of features is learned for

benign and malware, and we split it into two: benign set and

malware set. When Benign features are removed, the detection

score of malicious apps increases. This phenomenon continues

until a threshold t is reached, with t determined empirically.

Algorithm 1 shows how LIME is used to aggregate the top

benign features and make predictions.

Algorithm 1: Algorithm

Data: Training Feature Matrix Xtrain

Dev sample Xdev

Test sample Xtest

Result: Classification of Xtest

1 Train a classifier clf with prediction function

P (Xsample);
2 Initialize explainable AI (LIME) function

E(Xsample, Xtrain, clf);
3 Initialize ftop benign as list of top-benign features;

4 for Xsample ǫ Xdev do

5 fXsample
= E(Xsample, clf) ;

6 ftop benign + = fXsample
;

7 end

8 if P (Xtest = malware) ≥ δ then

9 Prediction is Malware;

10 else

11 Remove fbenign from Xtest to get X ′

test;

12 if P (X ′

test = malware) ≥ δ then

13 Prediction is Malware;

14 else

15 Prediction is Benign;

16 end

17 end

Top-benign features: We used LIME [15] to first explain

the predictions of the classifier and then extract the features

indicative of benign characteristics for every prediction in the

development dataset (see section VI for dataset distribution).

We counted the number of occurrences of each feature in each

prediction and ranked the features based on the count obtained.

Table I shows the top 20 benign features, ranked by counts.

VI. DATASET

App Vetting VirusTotal [34] is a popular online platform

that aggregates many Anti-Virus (AV) products and online

scan engines to check for malware. Salem et al. [35] showed

that the scan results obtained from VirusTotal are continuously

changing with time and, hence, should not be taken for

granted unless they are up-to-date. Secondly, we found that

such VirusTotal results — regardless of their freshness -– can

significantly alter the composition of a dataset (i.e., which

apps are malicious and which are benign), depending on the

scheme adopted to label apps in a dataset. Such schemes

depend on how the VirusTotal composite score is converted to

a single binary label of malware or benign [35]. We labeled

an app as benign if all the AV scanners detect no suspicious

behavior, and as malware if the app was tagged by more than

10 scanners. All other samples were disregarded.
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Top-20 Benign Features

Class: java.lang.ClassLoader
Class: android.content.ContentResolver
Class: android.content.ContentProvider
Class: android.net.ConnectivityManager
Class: android.telephony.TelephonyManager
Intent: action.BATTERY CHANGED
Intent: action.PACKAGE REPLACED
Intent: extra.CONTENT ANNOTATIONS
Intent: action.ACTION SHUTDOWN
Class: android.content.pm.PackageInstaller
Class: android.net.http.SslCertificate
Permission: MANAGE OWN CALLS
Package: org.apache.http.params
Permission: CAMERA
Intent: action.SEARCH
Intent: action.ACTION POWER CONNECTED
Permission: CALL PHONE
Intent: action.EDIT
Intent: category.MONKEY
Intent: action.MANAGED PROFILE UNLOCKED

TABLE I: Top-20 ranked benign features extracted from the

development set

Training Dataset We collected the 3,226,927 APKs from

the AndroZoo dataset [12]. Each APK was vetted by Virus-

Total (VT). Post vetting, we used 2,572,426 benign apps and

418,973 malware, for a total training dataset of 2,991,399 apps.

We used 90% of the data to train the model and 10% to tune

the hyper-parameters.

Testing Dataset To evaluate the performance of our frame-

work we use repackaged Android malware dataset RePack [3]

consisting of 15,297 repackaged Android apps, from which we

selected the 6,209 apps tagged by at least ten VT scanners as

malware. We also used benign Google Play apps. We sampled

6,209 apps, tagged as benign by VT, to represent the different

categories of Android apps. In total we tested the performance

on 12,418 apps.

A. Feature Extraction

All features were extracted using static analysis on the

apps. Similar to Drebin [9], we focused on the manifest and

the disassembled dex code of the apps to extract features. A

linear sweep over APK can obtain these features. We extracted

static features from applications’ APK file using Androwarn

[36], which uses Androguard [37] to reverse engineer the

APK file. We embed apps in a binary feature space which

captures the presence/absence of components in Android apps.

Each application in our data-set was represented by a feature

vector of 693 features, which are broadly sub-divided into six

categories: Permissions, Packages, Hardware, Intents, Classes,

and Leaks. In addition to these features extracted from the

APK file, we check for code obfuscation within application’s

code and various malicious behaviour analysis produced by

Androwarn, adding another feature to make 694.

VII. RESULTS

Vanilla Network Architecture: Our network consists of

input layer (containing 694 neurons corresponding to the 694

features), hidden layer(ReLu activation), and a softmax output

layer. We train the network on the Androzoo dataset and use

it as a baseline for the experiments. Our classifier achieves up

to 98% accuracy with minimal effort for hyper-parameter se-

lection. This performance matches existing malware detection

systems that rely on static features.

A. Performance on Repackaged Apps

We collected repackaged apps from Re-Pack repository [3].

This dataset consists of 15,297 original-repackaged apps. Not

all repackaged apps are malicious; some can be cloned or

plagiarised apps. We were interested in a sub-set of repack-

aged apps: piggybacked or camouflaged [38]. These apps

are repackaged to include malicious payload and execute

malicious code. Sharing 80% of the application structure and

code with benign apps makes detecting repackaged malware

incredibly difficult.

We collected VirusTotal reports of all apps to get the ground

truth. We classified an app as malware if more than ten

detector identified the app as malware. Ultimately, we had

6,209 malware. The performance on malicious repackaged app

detection is shown in figures 6. The detection accuracy of the

vanilla network is 87.82% with no features removed. As the

features are removed, the detection rate goes up consistently

to a point. After removing 2 features, the increment in the

performance is negligible. This behavior can be attributed to

the fact that repackaged apps share about 80% of the code-

base with the benign apps, as stated above, and only 20% of

the app is unique. After removing 6 features, we observe a

detection rate of 94.56% (An increment of 6.74%).

Fig. 6: The accuracy vs. the number of features removed plot

demonstrates how removing ranked benign features augment

the detection accuracy of repackaged malware apps while con-

sistently detecting benign apps. However, the average accuracy

degrades slightly after removing six features and then more

significantly because of increment in false-positive rates.

B. Performance on Benign Apps

Vanilla model has a detection rate of 99.59%. However,

after removing top 6 benign features, we achieve the highest

malware detection rate without compromising significantly

on benign apps’ detection rate; in particular, the accuracy
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for benign apps reduces slightly to 97.77%. As we can see,

adopting DECEIT causes a 1.82% drop in detection rate Of

benign apps. The benefit of our approach is its security against

repackaging attacks. Thus, we interpret the 1.8% difference as

the cost of security for malware classification. We also observe

that after removing top-14 features, the average accuracy

degrades significantly because of high false-positive rates.

Table II summarizes the results of vanilla NN and DECEIT.

Model Precision Recall F1 Accuracy

Vanilla NN 0.99 0.88 0.93 93.71%
DECEIT 0.98 0.95 0.96 96.17%

TABLE II: Performance Comparison

VIII. THREATS TO VALIDITY AND LIMITATIONS

We avoided bias in training and testing by leveraging APK

datasets collected by others, treating as malware only those

APKs tagged by at least ten VT scanners and treating as benign

only those APKs not tagged by any VT scanners as malware.

We used LIME [15] to retrieve the top benign features from

the development dataset. LIME is designed for approximating

locally in the neighborhood of the prediction we want to

explain. Thus the feature distribution can change if new apps

are sampled from the dataset to extract benign features. This

change could potentially impact the choice of which features

to eliminate and the results obtained after applying feature

elimination. An alternate model-explainability tool such as

SHAP [39] could potentially give better results at the cost

of computation time. SHAP can guarantee properties like

consistency and local accuracy. Another potential threat is the

choice of neural architecture. In this work, we utilized a simple

vanilla neural network with limited sets of features. More

sophisticated network architectures could yield potentially

better results on the same dataset.

We observed that while the detection accuracy of malware

increases consistently as we remove the top benign features,

the accuracy on benign apps reduces marginally at first and

then more significantly. In our studies, we also observed that

the optimal number of features that can be removed without

compromising the accuracy of the model is in the range of 2

to 10, as seen in section VII, figure 6. We do not address the

problem of model aging [18]. However, our approach can be

augmented by applying such techniques.

Malware detection is a time series problem. Newer tech-

nologies expose new attack surfaces that can be exploited

by novel threats. We rely on features extracted from the

application packages. The performance is dependent on the

types of features used to represent the data. Given the nature

of malware detection, the model requires re-training as newer

APIs are added to the Android operating system and to adapt

to newer malware trends.

IX. CONCLUSION

We present a novel technique based on metamorphic testing

principles, DECEIT , to expose repackaged malware apps that

utilize benign features to hide their true nature from the

machine learning classifier. Our approach is quite different

from previous work that applies metamorphic testing to find

bugs in machine learning software. We are not looking for

bugs, per se. We apply metamorphic testing to the feature

representation of the mobile app – the input to the classifier

model – rather than to the app itself. That is, the source input

is the original feature vector for the app and the derived input

is that vector with selected top-k benign features removed. If

the app was originally classified benign, and is indeed benign,

the output for the source and derived inputs should be the same

class, i.e., benign. But if they differ, then the app is flagged as

(likely) malware. Apps originally classified as malware should

retain that classification, since only top-k benign features are

considered for removal.

We trained a vanilla neural network on 3 million app sam-

ples collected from The AndroZoo dataset. We used VirusTotal

and Androwarn to vet the apps and extract features that

represent the app behavior, respectively. We evaluated our

technique using a vanilla neural network, as a baseline model,

and the RePack dataset [3] for testing. We demonstrate that

DECEIT achieves an accuracy of 94.56% on the repackaged

app dataset while consistently detecting benign applications

with an accuracy of 97.77%. The downside is a 1.82% drop

in the detection rate of legitimately benign apps. The benefit is

its security against repackaging attacks. Thus, we interpret the

1.82% difference as the cost of security for improved malware

classification.

Our open-source implementation, models, and

complete training & testing datasets are available at

https://github.com/Programming-Systems-Lab/DECEIT. In

future work, we will investigate applying DECEIT to other

learning methods such as random forest and SVM. We also

plan further study of DECEIT ’s effectiveness when attackers

have full knowledge of the defense, e.g., it may be possible

to infer the specific benign features to be reduced, from

knowledge of the training set or the model itself.
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