
Scouting the Path to a Million-Client Server?

Yimeng Zhao1, Ahmed Saeed2, Mostafa Ammar1, and Ellen Zegura1

1 Georgia Institute of Technology
2 Massachusetts Institute of Technology

Abstract. To keep up with demand, servers will scale up to handle
hundreds of thousands of clients simultaneously. Much of the focus of
the community has been on scaling servers in terms of aggregate traffic
intensity (packets transmitted per second). However, bottlenecks caused
by the increasing number of concurrent clients, resulting in a large num-
ber of concurrent flows, have received little attention. In this work, we
focus on identifying such bottlenecks. In particular, we define two broad
categories of problems; namely, admitting more packets into the network
stack than can be handled efficiently, and increasing per-packet over-
head within the stack. We show that these problems contribute to high
CPU usage and network performance degradation in terms of aggregate
throughput and RTT. Our measurement and analysis are performed in
the context of the Linux networking stack, the the most widely used
publicly available networking stack. Further, we discuss the relevance of
our findings to other network stacks. The goal of our work is to high-
light considerations required in the design of future networking stacks to
enable efficient handling of large numbers of clients and flows.

1 Introduction

Modern servers at large scale operators handle tens of thousands of clients si-
multaneously [33,45,38]. This scale will only grow as NIC speeds increase [1,3,5]
and servers get more CPU cores [23,4]. For example, a server with a 400 Gbps
NIC [3] can serve around 80k HD video clients and 133k SD video clients. 3 This
scale is critical not only for video on demand but also for teleconferencing and
AR/VR applications. The focus of the community has been on scaling servers in
terms of packets transmitted per second [36,27,28,25,34,13], with little attention
paid to developing complete stacks that can handle large numbers of flows well
[26,29].

We envisage servers delivering large volumes of data to millions of clients
simultaneously. Our goal is to identify bottlenecks that arise when servers reach

? A version of this paper was published in the following conference paper: Zhao Y.,
Saeed A., Ammar M., Zegura E. (2021) Scouting the Path to a Million-Client Server.
In: Hohlfeld O., Lutu A., Levin D. (eds) Passive and Active Measurement. PAM 2021.
Lecture Notes in Computer Science, vol 12671. Springer, Cham. https://doi.org/
10.1007/978-3-030-72582-2_20

3 HD and SD videos consume up to 5 Mbps and 3 Mbps, respectively [9].

ar
X

iv
:2

10
4.

13
77

4v
2

 [c
s.N

I]
 1

0
Ju

n
20

21

https://doi.org/10.1007/978-3-030-72582-2_20
https://doi.org/10.1007/978-3-030-72582-2_20

Category Identified Issue Impact Existing systems mitigating it

A
d
m

is
si

o
n

C
o
n
tr

o
l

Overpacing 5% increase in CPU utilization -
Inefficient Throughput unfairness and hundreds

Per-flow scheduling [46,31]
backpressure of milliseconds in latency

Oblivious hardware
2× increase in interrupts -

offloads

P
e
r-

p
a
ck

e
t

O
v
e
rh

e
a
d Data structure 2× increase in CPU utilization Low-overhead data

inefficiency and 2× increase in latency structures [38,39]

Lock contention 2× increase in latency
Distributed scheduling

[38,42,24]
Cache pressure 1.8× increase in latency -

Table 1: Summary of findings with results reported at 100k flows compared to
more efficient baselines for admission control or performance with lower number
of flows for for per-packet overhead.

that scale. In particular, we take a close look at network stack components that
become the bottleneck as the number of flows increases. We find that competition
between flows can lead to overall performance degradation, requiring fine-grain
scheduling. Further, the increase in flow numbers leads to higher overhead of
per-flow bookkeeping and flow coordination. Thus, we categorize problems that
arise due to an increase in the number of concurrent flows into two categories:

1) Admission Control to the Stack: The admission policy determines the
frequency at which a flow can access the stack and how many packets it can
send per access. The frequency of a flow accessing network resources and the
duration of each access determine the throughput it can achieve. As the number
of flows increases, admission control becomes critical for the efficiency of the
stack. For example, admitting and alternating between flows at a high frequency
can reduce Head-of-Line (HoL) blocking and improve fairness but at the expense
of CPU overhead, which can become a bottleneck, leading to throughput loss.
We consider backpressure mechanism as a critical part of the admission control
as it determines how a flow is paused (e.g., denied admission) and resumed (i.e.,
granted admission).

2) Per-packet Overhead within the Stack: The overhead of most per-packet
operations is almost constant or a function of packet size (e.g., checksum, rout-
ing, and copying). However, the overhead of some operations depends entirely
on the number of flows serviced by the system. For example, the overhead of
matching an incoming packet to its flow (i.e., demultiplexing), and the overhead
of scheduling, for some scheduling policies (e.g., fair queueing), are tied to the
number of flows in the system.

We focus our attention on Linux servers. Despite its well documented ineffi-
ciencies (e.g., the overhead of system calls, interrupts, and per-packet memory
allocation [26,15]), the Linux networking stack remains the most widely used
publicly available networking stack. Further, even when new userspace stacks
are deployed, they still rely, at least partially, on the Linux stack to make use
of its comprehensive Linux functionality and wide use [31]. Hence, our focus on
Linux is critical for two reasons: 1) our results are immediately useful to a wide
range of server operators, and 2) we are able to identify all possible bottlenecks
that might not appear in other stacks because they lack the functionality.

We focus on the overhead of long-lived flows. Long-lived flows help expose
problems related to scaling a stack in terms of the number of flows. Scheduling
long-lived flows requires the scheduler to keep track of all active flows, exposing
inefficient data structures whose overhead increases with the number of tracked
flows and highlighting issues that arise because of the interactions between the
transport layer and the scheduler. It also exposes cache inefficiencies as infor-
mation about a flow has to be retained and edited over a long period of time.
Applications with long-lived flows include video on demand and remote stor-
age. The inefficiency of short-lived flows is rooted in creation and destruction of
states, and has been studied in earlier work [33]

The contribution of this work is in evaluating the scalability of the network
stack as a whole, at hundreds of thousands of clients, leading to the definition of
broader categories of scalability concerns. Table 1 summarizes our findings and
existing systems that mitigating the problems. It should be noted that inefficient
backpressure and data structure problems are only partially addressed by the
existing solutions and we’ll discuss the remaining challenges in section 4 and
5. In earlier work there have been several proposals to improve the scalability
of different components of the network stack (e.g., transport layer [26,29,33]
and scheduling [18,38,39]). These proposals consider specific issues with little
attempt to generalize or categorize such scalability concerns. Further, the notion
of scalability considered in earlier work is still limited to tens of thousands of
flows, with a general focus on short flows.

2 Measurement Setup

Testbed: We conduct experiments on two dual-socket servers. Each server is
equipped with two Intel E5-2680 v4 @ 2.40GHz processors. Each server has an
Intel XL710 Dual Port 40G NIC Card with multi-queue enabled. The machines
belong to the same rack. Both machines use Ubuntu Server 18.04 with Linux
kernel 5.3.0.

Testbed Tuning: The affinity of the interrupts and application to CPU
cores significantly affects the network performance on a multi-core and multi-
socket machine. To reduce cache synchronization between different cores and
improve interrupt affinity, we pin each transmit/receive queue pair to the same
core. We enable Receiver Packet Steering (RPS), which sends the packet to a
CPU core based on the hash of source and destination IPs and ports. We limit
all network processing to exclusively use the local socket because we observe
that the interconnection between different sockets leads to performance degra-
dation at 200k or more flows. We enabled different hardware offload functions
including GSO, GRO, and LRO to lower CPU utilization. We also enabled in-
terrupt moderation to generate interrupts per batch, rather than per packet. We
use TCP CUBIC as the default transport protocol, providing it with maximum
buffer size, to avoid memory bottlenecks. The entire set of parameters is shown
in Appendix B.

Application

TCP Stack …...

Data Blocks for different clients

…...

Packetization
+

Congestion Contorl

Autosizing

TCP Small Queue
Lets only two packets per flow

QdiscMQ: A queue per hardware queue

…... Each queue is
scheduled using FQ qdisc

Lock
Contention

NIC

Ring Buffer

Batching
ACK

DMA

…...

Backpressure:

Scheduling:

Fig. 1: Schematic of the packet transmission path with identified pain points
marked in red.

Traffic Generation: We generate up to 300k concurrent flows with neper [8].
We bind multiple IP addresses to each server so the number of flows that can
be generated is not limited by the number of ports available for a single IP
address. With 40 Gbps aggregate throughput, the per-flow rate can range from
133 Kbps, which is a typical flow rate for web service [17], to 400 Mbps, which
might be large data transfer [19]. We ran experiments with different numbers of
threads ranging from 200 to 2000. In particular, we spawn N threads, create M
flows that last for 100s, and multiplex the M flows evenly over the N threads.
We observed that using more threads causes higher overhead in book-keeping
and context switch, leading to degraded throughput when the server needs to
support hundreds of thousands of flows. The results shown in this paper are
with 200 threads if not specified otherwise. We use long-lived flows for exper-
iments because our focus is on the scaling problem in terms of the number of
concurrent flows. The scaling problem of short-lived flows is more related to the
number of connecting requests per second rather than the number of concurrent
flows. With fixed number of flows, the short-lived flows should not have higher
overhead than long-lived flows. For the rest of the paper, we use flows and clients
interchangeably.

Figure 1 visualizes our assumed stack architecture. Our focus is on the over-
head of the transport and scheduling components of the stack. We experiment
with different scheduling algorithms by installing different Queuing Disciplines
(qdiscs). We use multiqueue qdisc (mq) to avoid having a single lock for all hard-
ware queues. All scheduling algorithms are implemented by per-queue within mq.
By default, mq handles packets FIFO in its queues. However, we use Fair Queue
(fq) [21] as the default qdisc combined with mq. Compared to pfifo_fast, fq

achieves better performance in terms of latency and CPU usage when handling
a large number of flows [46]. In some experiments, we limit the total flow rate to
90% of the link speed to avoid queueing in Qdiscs and show that the performance
degradation cannot be avoided by simply lowering the total rate. We also use
fq_codel [7] to reduce latency within the qdisc in some cases.

Measurement Collection: In all experiments, machines are running only
the applications mentioned here making any CPU performance measurements
correspond with packet processing. We track overall CPU utilization using dstat [6]
and track average flow RTT using ss [12]. We track the TCP statistics using
netstat [10]. Performance statistics of specific functions in the kernel is obtained
using perf [11].

3 Overall Stack Performance

102 103 104 105

Number of flows

15
20
25
30
35
40
45

Th
ro

ug
hp

ut
 (G

bp
s)

fq
per flow rate limit
codel

(a) Aggregate Throughput

102 103 104 105

Number of flows

0
10
20
30
40
50

CP
U

ut
ili

za
tio

n
(%

)

(b) CPU Usage

102 103 104 105

Number of flows

10-1
100
101
102
103
104

RT
T

(m
s)

(c) RTT

102 103 104 105

Number of flows

0
2
4
6
8

10
12

Re
tr

an
sm

is
si

on
 (%

)

(d) Retransmission

Fig. 2: Overall performance of the network stack as a
function of the number of flows

We start by measuring the
overall performance of the
stack with the objective
of observing how bottle-
necks arise as we increase
the number of flows. In
particular, we look at ag-
gregate throughput, CPU
utilization, average RTT,
and retransmissions. Fig-
ure 2 shows a summary
of our results. Our setup
can maintain line rate up
to around 200k flows (Fig-
ure 2a). Thus, we limit our
reporting to 300k flows.

As the number of flows
increases, the CPU utiliza-
tion steadily increases until
it becomes the bottleneck. Recall that we are only using a single socket, which
means that 50% utilization means full utilization in our case (Figure 2b). The
aggregate throughput shows that the number of bytes per second remains con-
stant. Thus, the increase in CPU utilization is primarily due to the increase in
the number of flows handled by the systems.

The most surprising observation is that the average delay introduced by the
stack can reach one second when the stack handles 300k flows, a five orders of
magnitude increase from the minimum RTT. There are several problems that
can lead to such large delays. The Linux stack is notorious for its inefficiencies
due to relying on interrupts, especially on the ingress path [32,2,26,15]. Further,
head-of-line blocking in hardware can add significant delays [42]. Our focus in
this paper is to identify problems that are caused by inefficiencies that arise due
to the growth in the number of flows. Such problems are likely to occur in the

transport and scheduling layers, the layers aware of the number of flows in the
system. Our first step is to try to understand which part of the stack is causing
these delays, to better understand the impact of the number of flows on the
performance of the stack.

Our baseline performance, denoted in the Figure 2 by fq, is for the case
when flows are not rate limited and scheduled following a fair queuing policy,
requiring packets to be queued for some flows so that other flows can achieve
their fair share. To quantify that delay, we compare the performance of the
baseline to a scenario in which each flow is rate limited such that the aggregate
rate that is 90% of NIC capacity, denoted in Figure 2 by per flow rate limit.
Under this scenario, no queuing should happen in the Qdisc as demand is always
smaller than the network capacity. Latency drops by an order of magnitude in
that scenario at 300k flows and by more at smaller numbers of flows, leading
to the conclusion that hundreds of milliseconds of delay are added because of
queuing delays at the Qdisc. We further validate this conclusion by employing
a Qdisc that implements the CoDel AQM algorithm, configured with a target
latency of 100µs. CoDel drops packets if their queueing delay exceeds the target
delay. At 300k flows, the delay of codel is lower than the baseline by an order
of magnitude, validating our conclusion. Note that CoDel comes at a price of
higher CPU utilization due to packet drop and retransmission (Figure 2d). For
the rest of the paper, we attempt to better understand the causes of the observed
large delays and high CPU utilization at large numbers of flows.

pdf

4 Admission Control to the Stack

Network stacks are typically optimized to maximize the number of packets per
second they can handle, allowing applications unrestricted access to the stack in
many cases, especially in Linux. However, as the number of flows increases, appli-
cations can overwhelm the stack by generating packets at a larger rate than the
network stack can process and transmit them. This congestion, left unchecked,
can lead to hundreds of milliseconds of added delay. Admission control of pack-
ets to the stack can avoid this problem by regulating the access of applications
to stack resources. Linux already has several such mechanisms, which work well
with a relatively small number of flows (e.g., tens of thousands of flows), but fail
at large numbers of flows (e.g., hundreds of thousands). We examine admission
control mechanisms based on the knob they control. In particular, admission con-
trol mechanisms decide three values: 1) the size of each individual packet (the
larger the packets the smaller the packet rate for the same byte rate), 2) the
total number of admitted packets (i.e., limiting the number of packets through
backpressure), and 3) the size of a new batch of admitted packets.

4.1 Packet Sizing

The Linux stack implements packet autosizing, an operation that helps improve
the pacing function for low throughput flows. Pacing is an integral function for

several modern congestion control algorithms including BBR [16,21]. In partic-
ular, pacing spreads out packets over time to avoid sending them in bursts. The
autosizing algorithm is triggered if a flow is sending at a rate lower than 512
Mbps (i.e., a thousand Maximum Segment Sized (MSS) segments every second,
assuming an MSS of 64KB). When triggered, it reduces the size of the segments
transmitted every 1ms, where inter-packet gap is enforced through a pacer (e.g.,
fq [21]) and packet segmentation to MTU size is done in hardware. Automatic
packet sizing can also be beneficial for ensuring fairness between flows [42].

Autosizing infers the rate of a flow by dividing the number of bytes sent dur-
ing an RTT (i.e., the cwnd) over the measured RTT. This allows for maintaining
the same average sending rate while spreading packet transmission over time.
The technique provides a tradeoff between CPU utilization and network perfor-
mance by increasing the number of packets per second handled by the server
while lowering the size of bursts the network deals with. The CPU cost of au-
tosizing is affected by the number of flows handled by the server. In particular,
the same aggregate rate of 512 Mbps can result in a packet rate of 1k packets
per second for one flow or 1M packets per second for 1k flows in the worst case.4

This overpacing can overwhelm the stack, leading to an increase in delay
(Figure 2c). This leads the autosizing algorithm to misbehave. In particular, the
RTT increases when the stack is overloaded, leading to underestimation of the
rates of all flows handled by the stack. This causes the autosizing mechanism
to reduce the size of bursts unnecessarily, creating more packets, increasing the
congestion at the server [46]. Another side effect of autosizing is causing dif-
ferent congestion control algorithms to have different CPU costs. In particular,
algorithms that react more severely to congestion (e.g., CUBIC which halves its
window on a packet drop) send at lower rates, forcing autosizing to create more
packets. However, algorithms that react mildly to congestion (e.g., BBR), main-
tain high rates and send lower number of packets. Figure 3 shows the difference
between CUBIC and BBR at 5% drop rate induced by a netem Qdisc at the
receiver. We set MTU size to 7000 to eliminate the CPU bottleneck.

Reducing delay introduced in the stack can help autosizing infer the rates of
flows more accurately. However, as we will show later, scheduling flows, including
delaying packets, is essential to scaling the end host. This means that autosizing-
like algorithms need to differentiate between network congestion and end-host
congestion. This will be useful in avoiding generating extra packets which might
congest the end host but not the network.

4.2 Backpressure

When a flow has a packet to send, its thread attempts to enqueue the packet to
the packet scheduler (i.e., the Qdisc in the kernel stack). In order to avoid Head-

4 The number of packets is typically much smaller than the worst case scenario due
to imperfect pacing. Delays in dispatching packets, resulting from imperfect pacing,
require sending larger packets to maintain the correct average rate, leading to a
lower packet rate. However, the CPU cost of autosizing increases with the number
of flows even with imperfect pacing.

103 104 105

Number of flows

0
1
2
3
4
5
6
7
8
9

Pa
ck

et
/s

1e5

cubic
bbr

(a) Packet Rate

103 104 105

Number of flows

10
15
20
25
30
35
40

CP
U

(%
)

cubic
bbr

(b) CPU Usage

Fig. 3: CUBIC v.s. BBR with 5% drop rate. The relationship between number of flows
and packet rate is similar at 0% drop but there is no difference between BBR and
CUBIC at 0% drop rate (Appendix E).

of-Line (HoL) blocking, flows are prevented from sending packets continuously
by TCP Small Queue (TSQ). In particular, TSQ limits the number of packets
enqueued to the Qdisc to only two packets per flow [20]. TSQ offers a rudimentary
form of admission control that is based on a per-flow threshold to control the
total number of packets in the stack.

103 104 105

Number of flows

0.00
0.05
0.10
0.15
0.20
0.25
0.30

CP
U

(%
)

1k
2k

3k
10k

Fig. 4: CPU usage as a function of
Qdisc queue length

As the number of flows increases, TSQ be-
comes ineffective because the number of pack-
ets admitted to the stack grows with the num-
ber of flows. Consequently, the length of the
queue in the Qdisc will grow as the number
of flows grows, leading to long delays due to
bufferbloat. If we limit the queue length of the
Qdisc, packets will be dropped at the Qdisc
after they are admitted by TSQ. The current
approach in Linux is to immediately retry to
enqueue the dropped packets, leading to poor CPU utilization as threads keep
retrying to enqueue packets. Figure 4 shows the CPU usage for transmitting
packets from the TCP layer to the qdisc with different values of maximum queue
length at the qdisc. The CPU usage includes only the operation before enqueu-
ing the packet onto the qdisc. The shorter the queue length, the higher the drop
rate, leading to higher CPU utilization.

107 108

Flow Rate (Byte)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

no pacing
pacing

(a) 300 flows

103 104 105 106 107

Flow Rate (Byte)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

no pacing
pacing

(b) 30k flows

Fig. 5: CDF of flow rate

Another down side of the lack of backpres-
sure is that packet scheduling becomes reliant
on thread scheduling. In particular, when a
packet is dropped, it is the responsibility of
its thread to try to enqueue it again imme-
diately. The frequency at which a thread can
“requeue” packets depends on the frequency
at which it is scheduled. This is problematic
because the thread scheduler has no notion
of per-flow fairness, leading to severe unfair-
ness between flows. As explained in the pre-
vious section, starvation at the Qdisc leads

to hundreds of milliseconds of delay on aver-
age. We further investigate the effects of this
unfairness on per-flow throughput. Figure 5
compares the CDF of rates achieved when fq

is used with a small number of 300 and 30k
flows. The two scenarios are contrasted with
the per-flow pacing scenario which achieves
best possible fairness by rate limiting all flows to the same rate, with aggregate
rate below NIC capacity, thus avoiding creating a bottleneck at the scheduler.
In the 30k flows scenario, the largest rate is two orders of magnitude greater
than the smallest rate. This is caused by the batching on the NIC queue. The
net_tx_action function calls into the Qdisc layer and starts to dequeue skb
through the dequeue_skb function. Multiple packets can be returned by some
queues, and a list of skb may be sent to NIC, blocking packets from other queues.
We observe that there are many more requeue operations in Qdisc when pacing
is not used than when pacing is used, indicating that pacing prevents the NIC
from being overwhelmed by a subset of queues.

Some previous works address the problem partially by enforcing per-flow
scheduling instead of per-packet scheduling and only allowing a flow to enqueue
a packet when there is room for it in the scheduler, avoiding unnecessary drops
and retries[46,31], however, these works do not consider the interaction between
layers that may lead to unfairness when fairness is enforced separately on each
layer as we show in this section.

4.3 Batching Ingress Packets

0.1 1.0 2.0 3.0
Number of flows 1e5

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

rx
_ir
q
pe
r s
ec
on
d

1e6
irq

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

AC
K
pe
r s
ec
on
d

1e6
ack

Fig. 6: Rates of RX Interrupts and
ACKs per second

The two previous sections discuss controlling
the packet rate on the egress path. In this sec-
tion, we consider controlling the packet rate
on the ingress path. It should be noted that
although we focus on egress path on server
side, ingress path efficiency may also affect the
egress path efficiency because delayed ACK
caused by CPU saturation can lead to perfor-
mance degradation in traffic transmission.

A receiver has little control on the number
of incoming packets, aside from flow control. By coalescing packets belonging to
the same flow on the ingress path using techniques like LRO, the receiver can
improve the CPU efficiency of the receive path by generating less interrupts.
Batching algorithms deliver packets to the software stack once the number of
outstanding packets in the NIC reach a certain maximum batch size or some
timer expires. As the number of flows increases, the chances of such coalescing
decrease as the likelihood of two incoming packets belong to the same flow de-
creases (Figure 6). In the Linux setting, this is especially bad as increasing the
number of incoming packets results in an increase in the number of interrupts,
leading to severe degradation in CPU efficiency.

Better batching techniques that prioritize short flows, and give LRO more
time with long flows, can significantly help improve the performance of the
ingress path. Some coarse grain adaptive batching techniques have been pro-
posed [43,30]. However, we believe that better performance can be achieved
with fine-grain per-flow adaptive batching, requiring coordination between
the hardware and software components of the stack.

pdf

5 Per-packet Overhead

To identify the operations whose overhead increases as the number of flows in-
creases, we use perf [11] and observe the CPU utilization and latency of different
kernel functions as we change the number of flows. The CPU utilization results
show the aggregated CPU usage by all flows. We keep the aggregate data rate
the same and only change the number of flows. Our goal is to find the operations
whose computational complexity is a function of the number of flows. Operations
that are bottlenecked on a different type of resource will have higher latency as
we increase the number of flows. Figures 7a and 7b show the top four functions
in each category. There is an overlap between functions with high latency and
functions with high CPU utilization; this is typical because high CPU utiliza-
tion can lead to high latency (e.g., fq_dequeue and inet_lookup). However,
there are functions with high latency but low CPU utilization (e.g., tcp_ack

and dev_queue_xmit). Through further profiling of the code of these functions,
we find that there are two types of bottlenecks that arise: cache pressure and
lock contention. Note that the overhead of the tg3_poll_work function is part
of inefficiency of the Linux reception path [14] and is not the focus of our work.
Data structures: There are two operations whose complexity is a function of
the number of flows: packet scheduling and packet demultiplexing. The over-
head of packet scheduling is captured by the CPU utilization of fq_enqueue

and fq_dequeue. The two functions handle adding and removing packets to the
fq Qdisc, which sorts flows in a red-black tree based on the soonest transmis-
sion time of their packets. The overhead of enqueue and dequeue operations in
O(log(n)), where n is the number of flows. The overhead of packet demultiplex-
ing is captured by the CPU utilization of inet_lookup which matches incoming
packets to their flows using a hashmap. In the case of collision, finding a match
requires processing information of flows whose hash collide. This increases the
cache miss ratio of the function (Figure 7c), further increasing the latency of the
function.

103 104 105

Number of flows

0
20
40
60
80

100

M
is

s
Ra

tio
 (%

) L2
LLC

Fig. 8: Aggregate cache misses

Some approximation scheduling algorithms
have been proposed to reduce the data structure
overhead [18,38,39], but their main focus is to
improve FQ. Data structure overhead requires
reexamining all complex data structures used in
the stack, taking into account that the stack can
process millions of packets per second coming
from millions of flows.

0.1 1.0 2.0 3.0
Flow Num 1e5

0
2
4
6
8

10

CP
U

us
ag

e
(%

)

fq_enqueue
fq_dequeue

inet_lookup
tg3_poll_work

(a) CPU Usage

0.1 1.0 2.0 3.0
Flow Num 1e5

0
5

10
15
20

La
te
nc

y
(u
s)

dev_queue_xmit
fq_dequeue

inet_lookup
tcp_ack

(b) Function Latency

0.1 1.0 2.0 3.0
Flow Num 1e5

0
2
4
6
8

10
12

Ca
ch

e
m

is
s

inet_lookup
tcp_ack

tg3_poll_work

(c) Cache Misses

Fig. 7: Function profiling

Cache pressure: One of the functions with
the highest cache miss ratio is tcp_ack, which
clears the TCP window based on received acknowledgements. The function does
not use any complex data structures or wait on locks so the high cache miss stems
from the overhead of fetching flow information and modifying it. As shown in
Figure 8, the cache miss ratio in both L2 cache and Last Level Cache (LLC)
increases as the number of flows increases. While cache misses are not a huge
bottleneck in our setting, we believe that as the number of flows increases, with
tighter requirements on latency, cache miss ratio will have to be minimized.

103 104 105

Number of flows

0
1
2
3
4
5
Ti

m
e

to
 a

cq
ui

re
 lo

ck
(u

s)

Fig. 9: Time to acquire qdisc lock

Lock contention: Another source of in-
creased latency is lock contention when ac-
cessing shared resources. Our experiment con-
firms that the biggest critical section in the
networking stack is the one used to protect
access to the qdisc, done in dev_queue_xmit.
The overhead of acquiring the qdisc lock is
well documented [35,38], and increasing the
number of flows exacerbates the problem, even
with constant packet rate. Figure 9 shows that
as the time to acquire lock increases by 4 times
as the number of flow increases from 1k to 300k. Another factor contributing to
the increase in lock acquisition time is the increase in packet rate which we have
shown to increase as the number of flows increases (Figure 3a). Distributed and
lazy coordination between independent queues can help alleviate the problem
by reducing the need for locking [38,24].

6 Related Work

As we present throughout the paper, there has been significant work improving
different components of the stack including scheduling [18,38,39,24] and back-
pressure [46]. However, they fail to consider the interactions between different
components, and none of the existing optimized components was tested with a
load larger than 50k flows. Our work defines a broader category of limitations
and looks at the complicated interaction between different components.

Much of the focus of the previous work has been on scaling servers in terms
of aggregate traffic intensity in terms of packets transmitted per second, while
maintaining low latency [2,36,28,13,34]. Some recent proposals address scaling

the whole stack to handle a large number of flows [26,37,29,33]. mTcp [26] is a
scalable user-space TCP/IP stack built over kernel-bypass packet I/O engines,
but the evaluation was only performed at a maximum of 16k flows. Further, it
focuses on improving connection locality and reducing system overhead without
paying much attention to scheduling and backpressure. Other systems are evalu-
ated at a few thousands flows [29] and up to twenty thousand flows [37,33,44,36].
These systems improve specific functionality (e.g., RPC performance or trans-
port layer performance) by dedicating network interfaces to individual applica-
tion or by optimizing the kernel TCP/IP stack, with typical emphasis on short
lived flows. In this paper, we are more concerned with scaling to hundreds of
thousands of long-lived flows where transport and scheduling are implemented.
To the best of our knowledge, this is the first such study.

Another observation is that hardware offload solutions [40,41,22] alone can-
not completely solve the problem. Careful hardware design can help reduce the
latency of complex operations [40]. However, data structure issues do not dis-
appear when implemented in hardware. In addition, admission control requires
careful coordination between the the software part of the stack, including the
application, and the hardware part of the stack.

7 Relevance of Findings to Other Stacks

In this paper, we focus on the Linux stack because of its ubiquitous usage in
both industry and academia. However, most of our findings focus on abstract
functions that are needed in a stack in order to efficiently handle a large num-
ber of flows. For example, admission control can avoid overwhelming the stack
resources by relying on per-flow scheduling and accurate batching sizing. The
lack of similar functions in any stack can lead to performance degradation as the
number of flows grows. Further, the need for better data structures for schedul-
ing and demultiplexing can lead to significant CPU savings. Contrarily, some of
the problems we define are Linux specific, arising from components developed by
companies to handle their specific workloads. For example, autosizing was de-
veloped by Google, making problems like overpacing a Linux-specific problem.

Some stacks inherently solve some of the problems we have identified. For
instance, Snap [31] provides per-flow scheduling providing efficient backpressure.
Further, stacks that rely on lightweight threading and asynchronous messages
like Snap and Shenango might not suffer significant performance degradation
due to lock contention. However, none of them handles all problems The goal of
our work is to identify abstract functions that stacks will have to implement in
order to scale.

Some of the problems we have identified are only exposed at a very large
number of flows. To the best of our knowledge, these problems are yet to be
handled by any stack. For instance, delays introduced due to cache misses will
require innovation in speculative pre-fetching based on network behavior. Fur-
ther, network accelerators and programmable hardware components will require
new techniques to coordinate their behavior with changes in the load generated
by the software component of the stack.

8 Conclusion

In this paper, we identify the different bottlenecks that arise when we scale the
number of flows to hundreds of thousands in a fully implemented stack. As we
present throughout the paper, there have been efforts to address some of the
individual problems in isolation. However, integrating and testing such solutions
at the scale of hundreds of thousands to millions of long-lived simultaneously-
active flows remains an open problem. We hope that this paper sheds some light
on the pain points that stack designers should pay attention to when building
next generation stacks that scale to terabits per second and millions of flows.

References

1. High-performance, feature-rich netxtreme® e-series dual-port 100g pcie
ethernet nic, https://www.broadcom.com/products/ethernet-connectivity/

network-adapters/100gb-nic-ocp/p2100g

2. Intel DPDK: Data plane development kit. https://www.dpdk.org/ (2014)
3. Ieee standard for ethernet - amendment 10: Media access control parameters, phys-

ical layers, and management parameters for 200 gb/s and 400 gb/s operation.
IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015 as amended by IEEE’s
802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-
2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017)
pp. 1–372 (2017)

4. Microprocessor trend data (2018), https://github.com/karlrupp/

microprocessor-trend-data

5. IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment Part II (2020)
6. dstat-Linux man page. https://linux.die.net/man/1/dstat (2020)
7. FlowQueue-Codel. https://tools.ietf.org/id/draft-ietf-aqm-fq-codel-02.

html (2020)
8. neper: a Linux networking performance tool. https://github.com/google/neper

(2020)
9. Netflix Help Center: Internet Connection Speed Recommendations (2020),

=https://help.netflix.com/en/node/306
10. netstat-Linux man page. https://linux.die.net/man/8/netstat (2020)
11. Perf Manual. https://www.man7.org/linux/man-pages/man1/perf.1.html

(2020)
12. ss-Linux man page. https://linux.die.net/man/8/ss (2020)
13. Belay, A., Prekas, G., Klimovic, A., Grossman, S., Kozyrakis, C., Bugnion, E.:

{IX}: A protected dataplane operating system for high throughput and low latency.
In: 11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14). pp. 49–65 (2014)

14. Benvenuti, C.: Understanding Linux network internals. ” O’Reilly Media, Inc.”
(2006)

15. Brouer, J.D.: Network stack challenges at increasing speeds. In: Proc. Linux Conf.
pp. 12–16 (2015)

16. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: Bbr:
Congestion-based congestion control. Queue 14(5), 20–53 (2016)

17. Cavalcanti, F.R.P., Andersson, S.: Optimizing wireless communication systems,
vol. 386. Springer (2009)

https://www.broadcom.com/products/ethernet-connectivity/network-adapters/100gb-nic-ocp/p2100g
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/100gb-nic-ocp/p2100g
https://www.dpdk.org/
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
https://linux.die.net/man/1/dstat
https://tools.ietf.org/id/draft-ietf-aqm-fq-codel-02.html
https://tools.ietf.org/id/draft-ietf-aqm-fq-codel-02.html
https://github.com/google/neper
=
https://linux.die.net/man/8/netstat
https://www.man7.org/linux/man-pages/man1/perf.1.html
https://linux.die.net/man/8/ss

18. Checconi, F., Rizzo, L., Valente, P.: Qfq: Efficient packet scheduling with tight
guarantees. IEEE/ACM Transactions on Networking 21(3) (2013)

19. Chen, Q.C., Yang, X.H., Wang, X.L.: A peer-to-peer based passive web crawling
system. In: 2011 International Conference on Machine Learning and Cybernetics.
vol. 4, pp. 1878–1883. IEEE (2011)

20. Dumazet, E., Corbet, J.: TCP small queues. https://lwn.net/Articles/507065/
(2012)

21. Dumazet, E., Corbet, J.: Tso sizing and the fq scheduler. https://lwn.net/

Articles/564978/ (2013)

22. Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha,
M., Angepat, H., Bhanu, V., Caulfield, A., Chung, E., et al.: Azure accelerated
networking: Smartnics in the public cloud. In: 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18). pp. 51–66 (2018)

23. Geer, D.: Chip makers turn to multicore processors. IEEE Computer 38 (2005)

24. Hedayati, M., Shen, K., Scott, M.L., Marty, M.: Multi-queue fair queuing. In: 2019
USENIX Annual Technical Conference (USENIX ATC 19) (2019)

25. Hock, M., Veit, M., Neumeister, F., Bless, R., Zitterbart, M.: Tcp at 100 gbit/s–
tuning, limitations, congestion control. In: 2019 IEEE 44th Conference on Local
Computer Networks (LCN). pp. 1–9. IEEE (2019)

26. Jeong, E., Wood, S., Jamshed, M., Jeong, H., Ihm, S., Han, D., Park, K.: mtcp: a
highly scalable user-level {TCP} stack for multicore systems. In: 11th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 14). pp.
489–502 (2014)

27. Kalia, A., Kaminsky, M., Andersen, D.: Datacenter rpcs can be general and fast. In:
16th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 19). pp. 1–16 (2019)

28. Kaufmann, A., Peter, S., Sharma, N.K., Anderson, T., Krishnamurthy, A.: High
performance packet processing with flexnic. In: Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages
and Operating Systems. pp. 67–81 (2016)

29. Kaufmann, A., Stamler, T., Peter, S., Sharma, N.K., Krishnamurthy, A., Ander-
son, T.: Tas: Tcp acceleration as an os service. In: Proceedings of the Fourteenth
EuroSys Conference 2019. pp. 1–16 (2019)

30. Li, Y., Cornett, L., Deval, M., Vasudevan, A., Sarangam, P.: Adaptive interrupt
moderation (Apr 14 2015), uS Patent 9,009,367

31. Marty, M., de Kruijf, M., Adriaens, J., Alfeld, C., Bauer, S., Contavalli, C., Dalton,
M., Dukkipati, N., Evans, W.C., Gribble, S., Kidd, N., Kononov, R., Kumar, G.,
Mauer, C., Musick, E., Olson, L., Rubow, E., Ryan, M., Springborn, K., Turner,
P., Valancius, V., Wang, X., Vahdat, A.: Snap: A microkernel approach to host
networking. In: Proceedings of the 27th ACM Symposium on Operating Systems
Principles. p. 399–413. SOSP ’19 (2019)

32. Mogul, J.C., Ramakrishnan, K.: Eliminating receive livelock in an interrupt-driven
kernel. ACM Transactions on Computer Systems 15(3), 217–252 (1997)

33. Moon, Y., Lee, S., Jamshed, M.A., Park, K.: Acceltcp: Accelerating network appli-
cations with stateful TCP offloading. In: 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). pp. 77–92 (2020)

34. Ousterhout, A., Fried, J., Behrens, J., Belay, A., Balakrishnan, H.: Shenango:
Achieving high CPU efficiency for latency-sensitive datacenter workloads. In: Proc.
of USENIX NSDI ’19 (2019)

https://lwn.net/Articles/507065/
https://lwn.net/Articles/564978/
https://lwn.net/Articles/564978/

35. Radhakrishnan, S., Geng, Y., Jeyakumar, V., Kabbani, A., Porter, G., Vahdat, A.:
{SENIC}: Scalable {NIC} for end-host rate limiting. In: 11th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 14). pp. 475–488
(2014)

36. Rizzo, L.: Netmap: a novel framework for fast packet i/o. In: 21st USENIX Security
Symposium (USENIX Security 12). pp. 101–112 (2012)

37. Rotaru, M., Olariu, F., Onica, E., Rivière, E.: Reliable messaging to millions of
users with migratorydata. In: Proceedings of the 18th ACM/IFIP/USENIX Mid-
dleware Conference: Industrial Track. pp. 1–7 (2017)

38. Saeed, A., Dukkipati, N., Valancius, V., Lam, T., Contavalli, C., Vahdat, A.:
Carousel: Scalable Traffic Shaping at End-Hosts. In: Proc. of ACM SIGCOMM
’17 (2017)

39. Saeed, A., Zhao, Y., Dukkipati, N., Zegura, E., Ammar, M., Harras, K., Vahdat,
A.: Eiffel: Efficient and flexible software packet scheduling. In: Proc. of USENIX
NSDI ’19 (2019)

40. Shrivastav, V.: Fast, scalable, and programmable packet scheduler in hardware.
In: Proceedings of the ACM Special Interest Group on Data Communication. SIG-
COMM ’19 (2019)

41. Stephens, B., Akella, A., Swift, M.: Loom: Flexible and efficient {NIC} packet
scheduling. In: 16th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 19). pp. 33–46 (2019)

42. Stephens, B., Singhvi, A., Akella, A., Swift, M.: Titan: Fair packet scheduling
for commodity multiqueue nics. In: 2017 {USENIX} Annual Technical Conference
(USENIX ATC ’17). pp. 431–444 (2017)

43. Sun, L., Kostic, P.: Adaptive hardware interrupt moderation (Jan 2 2014), uS
Patent App. 13/534,607

44. Yasukata, K., Honda, M., Santry, D., Eggert, L.: Stackmap: Low-latency network-
ing with the {OS} stack and dedicated nics. In: 2016 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 16). pp. 43–56 (2016)

45. Zhang, T., Wang, J., Huang, J., Chen, J., Pan, Y., Min, G.: Tuning the ag-
gressive tcp behavior for highly concurrent http connections in intra-datacenter.
IEEE/ACM Transactions on Networking 25(6), 3808–3822 (2017)

46. Zhao, Y., Saeed, A., Zegura, E.W., Ammar, M.H.: zD: A Scalable Zero-Drop Net-
work Stack at End Hosts. In: Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies (CoNEXT). pp. 220–232.
CoNEXT ’19, ACM (2019). https://doi.org/10.1145/3359989.3365425

A Linux Stack Overview

Packet transmission in an end-host refers to the process of a packet traversing
from user space, to kernel space, and finally to NIC in packet transmission pro-
cess. The application generates a packet and copies it into the kernel space TCP
buffer. Packets from the TCP buffer are then queued into Qdisc. Then there are
two ways to a dequeue packet from the Qdisc to the driver buffer: 1)dequeue
a packet immediately, and 2) schedule a packet to be dequeued later through
softriq, which calls net tx action to retrieve packet from qdisc (Figure 10).

https://doi.org/10.1145/3359989.3365425

Fig. 10: Packet Transmission

102 103 104 105

Number of flows

15
20
25
30
35
40
45

Th
ro

ug
hp

ut
 (G

bp
s)

fq
per flow rate limit
codel

(a) Throughput

102 103 104 105

Number of flows

0
10
20
30
40
50

CP
U

ut
ili

za
tio

n
(%

)

(b) CPU Usage

102 103 104 105

Number of flows

10-1

100

101

102

103

RT
T

(m
s)

(c) RTT

102 103 104 105

Number of flows

0
1
2
3
4
5
6
7
8

Re
tr

an
sm

is
si

on
 (%

)

(d) Retransmission

Fig. 11: Overall performance of the
network stack as a function of the
number of flows with fixed TSO dis-
abled and 1500 MTU size

102 103 104 105

Number of flows

15
20
25
30
35
40
45

Th
ro

ug
hp

ut
 (G

bp
s)

fq
per flow rate limit
codel

(a) Throughput

102 103 104 105

Number of flows

0
5

10
15
20
25
30
35

CP
U

ut
ili

za
tio

n
(%

)
(b) CPU Usage

102 103 104 105

Number of flows

10-1

100

101

102

103

RT
T

(m
s)

(c) RTT

102 103 104 105

Number of flows

0
1
2
3
4
5
6
7

Re
tr

an
sm

is
si

on
 (%

)

(d) Retransmission

Fig. 12: Overall performance of the
network stack as a function of the
number of flows with TSO enabled and
9000 MTU size

B Parameter Configuration

Table 2 shows all the parameters we have used in our setup.

C Overall Stack Performance

We find that the trends shown in Figure 2 remain the same regardless of packet
rate. In particular, we disable TSO, forcing the software stack to generate MTU
packets. This ensures that the packet rate remains relatively constant across
experiments. Note that we perform experiments with a maximum number of
100k flows. We try two values for the MTU: 1500 Bytes and 9000 Bytes. As

Parameter Tuned

RX-Ring MAX [4096]
net.core.netdev max backlog 65536
net.core.tcp max syn backlog 65536
net.ipv4.tcp rmem 8192 65536 16777216
net.ipv4.tcp wmem 8192 87380 16777216
net.ipv4.tcp mem 768849 1025133 1537698
net.core.somaxconn 65535
net.netfilter.nf conntrack max 600000
TSO,GSO enabled
interrupt moderation enabled
irqbalance disabled

Table 2: Tuning parameters

expected, the performance of the server saturates at a much lower number of
flows when generating packets of 1500 Bytes (Figure 11). This is because the
packet rate increases compared to the experiments discussed in Section 3. One
the other hand, the performance of the server when using 9000 Byte packets is
similar to that discussed in Section 3 (Figure 12).

D FQ v.s. PFIFO

We compare the fq with pfifo_fast qdiscs in terms of enqueueing latency
(Figure 13). The time to enqueue a packet into pfifo_fast queue is almost
constant while the enqueue time for fq increases with the number of flows. This
is because the FQ uses a tree structure to keep track of every flow and the
complexity of insertion operation is O(log(n)). The cache miss when fetching
flow information from the tree also contributes to the latency with large number
of flows.

103 104 105

Number of flows

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

La
te

nc
y

(u
s)

fq
pfifo

Fig. 13: Enqueue time

103 104 105

Number of flows

10
15
20
25
30
35
40

CP
U

(%
)

cubic
bbr

Fig. 14: BBR v.s. CUBIC

E Packet Rate with Zero Drops

We verified that BBR and CUBIC has similar CPU usage when PPS is fixed
(Figure 14). We disable TSO and GSO to fix the packet size and set MTU size

to 7000 to eliminate CPU bottleneck. We also observe that with more than 200k
flows, CUBIC consumes slightly more CUBIC than BBR because CUBIC reacts
to packet drop by reducing packet size, thus generating more packets.

	Scouting the Path to a Million-Client Server

