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Abstract: Uncertainty is a common feature in first-principles models that are widely used in vari-
ous engineering problems. Uncertainty quantification (UQ) has become an essential procedure to
improve the accuracy and reliability of model predictions. Polynomial chaos expansion (PCE) has
been used as an efficient approach for UQ by approximating uncertainty with orthogonal polynomial
basis functions of standard distributions (e.g., normal) chosen from the Askey scheme. However,
uncertainty in practice may not be represented well by standard distributions. In this case, the conver-
gence rate and accuracy of the PCE-based UQ cannot be guaranteed. Further, when models involve
non-polynomial forms, the PCE-based UQ can be computationally impractical in the presence of
many parametric uncertainties. To address these issues, the Gram-Schmidt (GS) orthogonalization
and generalized dimension reduction method (gDRM) are integrated with the PCE in this work to
deal with many parametric uncertainties that follow arbitrary distributions. The performance of the
proposed method is demonstrated with three benchmark cases including two chemical engineer-
ing problems in terms of UQ accuracy and computational efficiency by comparison with available
algorithms (e.g., non-intrusive PCE).

Keywords: uncertainty quantification; generalized dimension reduction; orthogonal polynomial
basis; arbitrary uncertainty; Gram-Schmidt polynomial chaos

1. Introduction

Uncertainty is pervasive in science and engineering problems, for which models are
widely used to study dynamic behaviors of complex systems [1]. Parameters are inputs
to models, and their values cannot be exactly known due to model calibration with noisy
data. Uncertainty in model parameters results in stochasticity in model outputs. Since
uncertainty affects the accuracy of model predictions, it should be appropriately quantified
and accounted for [2]. Such a procedure is often referred to as uncertainty quantification
(UQ) [1]. The UQ has gained increasing attention for different applications, which include
sensitivity analysis, parameter estimation, optimization, control, and fault detection and
diagnosis [2-10]. For example, sensitivity assessment of arch dams was performed using a
surrogate model for UQ in [9]. Besides, a numerical model for thermochemical heat storage
was validated by inverse parameter estimation using Bayesian inference in [10].

Monte Carlo (MC) simulation is one of the most representative methods for UQ [11].
The implementation of MC only requires generating samples of parametric uncertainty
and executing deterministic models with individual samples. Following this, the simulated
results are used to calculate statistical moments of the posterior distributions of model
predictions. However, MC often requires many simulations to ensure UQ accuracy, which
can be computationally prohibitive.

As compared to MC, the polynomial chaos expansion (PCE) provides reliable UQ
results in a computationally efficient fashion [12-16] and has been extensively used in
various applications [4,6,16-22]. For instance, uncertainty in material and geometric prop-
erties of periodic structures was studied with PCE in [19,20]. In addition, uncertainty
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quantification in turbulent spray combustion and a rich-dome aviation gas turbine using
PCE was performed in [16,21], respectively.

The PCE was first proposed in [12] based on Hermite polynomials and Gaussian
random variables [13]. Later, it was extended to cover uncertainty that follows several
types of probability distributions (e.g., normal and uniform), which is referred to as
generalized polynomial chaos (gPC) [14]. For PCE and gPC, uncertainty is approximated by
several PCE coefficients and orthogonal polynomial basis functions. While the orthogonal
polynomial basis is determined depending on the type of a random variable, the PCE
coefficients should be identified. For example, the coefficients of parametric uncertainty
can be determined by its probability density function (PDF). However, the coefficients of
model outputs are unknown and have to be calculated. Methods for calculating such PCE
coefficients of model outputs are classified into intrusive and nonintrusive [23,24].

For intrusive methods, a typical approach is the stochastic Galerkin (SG) projection
where the governing model is projected on each polynomial basis function through an inner
product. This generates a set of coupled new models as functions of the PCE coefficients to
represent the original governing model [23,24]. The main challenge of intrusive methods
comes from the inner product, which generates high-dimensional integrals that are difficult
to solve in real-time under many parametric uncertainties. In contrast, nonintrusive
PCE [24], which is also referred to as the non-intrusive discrete projection (NIDP), can be
used to calculate PCE coefficients. The implementation of NIDP is similar to MC, which
generates samples to approximate uncertainty and execute the governing model with
each sample. Of note, samples for non-intrusive PCE are defined as collocation points.
Typically, the non-intrusive methods are computationally efficient when the number of
uncertainties is small. However, the curse of dimensionality issue arises in the presence
of many parametric uncertainties since the coefficients of model responses cannot be
calculated in real time. To reduce the computational cost, many approaches have been
developed to reduce the number of collocation points [25-27], while maintaining accuracy.
For example, a sparse grid constructed by the Smolyak algorithm [26] was shown to be
efficient, but the computational cost and the UQ accuracy are related to how the collocation
points are selected [15,28].

To address these issues, we have developed an algorithm [29] to combine the gener-
alized dimension reduction method (gDRM), namely S-variate DRM [30], with the PCE.
This algorithm converts the high-dimensional integral in the inner product into several
low-dimensional ones that can be easily calculated with Gaussian quadrature rules [31].
As compared to the non-intrusive methods, attempts to generate sparse collocation points
in our algorithm are not required, since the total number of variables in low-dimensional
integrals is small. This can save modelling efforts for UQ under many parametric uncer-
tainties. Similar to the classic PCE (or gPC), however, our previous method only focused
on uncertainty that follows standard distributions in the Askey scheme.

When uncertainty has a non-standard distribution outside the Askey scheme, the ac-
curacy of UQ and the convergence rate can be affected. To address this, attempts were
made to deal with arbitrary distributions. For instance, using the Gram-Schmidt orthog-
onalization [32], a Gram-Schmidt based PCE (GSPCE) was developed [33], which finds
the optimal orthogonal polynomial chaos basis functions to ensure the convergence rate.
In addition, other techniques, e.g., the multi-element generalized polynomial chaos [34]
and the data-driven polynomial chaos expansion [35], were developed for arbitrary uncer-
tainty. However, due to the computational cost, these algorithms were validated with either
limited uncertainties or simple applications. To improve the UQ efficiency and accuracy,
it is essential to develop an algorithm in the presence of many non-standard distributions
of uncertainties.

The contribution of this work is to address these aforementioned issues by developing
an algorithm that integrates the Gram-Schmidt (GS) orthogonalization and gDRM with the
PCE to deal with a larger number of uncertainties that follow non-standard distributions.
Further, to validate the performance of the algorithm, engineering examples were chosen,
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and the simulation results of the proposed method were compared to other popular UQ
techniques (e.g., NIDP) in terms of UQ accuracy and computational cost.

This paper is structured as follows. In Section 2, a brief background of the PCE, the
GS algorithm, and their integration with the gDRM is discussed, which is followed by
a summary of the proposed algorithm. In Section 3, three examples are presented for
algorithm verification and the conclusion is given in Section 4.

2. Mathematical Background and Methodology
2.1. Polynomial Chaos Expansion (PCE)

Suppose a stochastic model of a complex system that involves N uncertain parameters
0= (61, ..., On) (N > 1) and an output v can be described as:

v=g(0) 1

where the function g defines the relationship between v and 0. To quantify the effect of 6
on v, each element in 6 will be approximated with the orthogonal polynomial basis and
the PCE coefficients as in [24]:

P
0; = 0:(G:) =) 0:,9;(G) 2)
=0

where &; is the i random variable to estimate the PDF of the i uncertainty 6;, and {6;} are
the PCE coefficients of 6; [14]. In (2), {1/)]- (gl)} are one-dimensional orthogonal polynomials
determined by the PDF of ¢;, and index P is the polynomial order to accurately approximate
8;. Since uncertainty in parameters affects model output, v can be approximated with
orthogonal polynomial basis and PCE coefficients as in [24]:

M
o) = X ¥ ©

where {7, } are PCE coefficients of v, and {¥,, } are multi-dimensional orthogonal polyno-
mial basis functions determined by the tensor products of the one-dimensional polynomials
{;} for each uncertainty [12]. In (3), the index M is the total number of PCE terms to
approximate v(§), which is determined by the number of parametric uncertainties N and
the polynomial order P as in [24]:

(N 4 P)!

M+1="—FxNi

4)

The PCE coefficients of uncertain parameters {51-,]-} in (2) are often determined with
prior knowledge of the PDF or parameter estimation [3,24]. The unknown PCE coefficients
{vn} of vin (3), however, have to be calculated by substituting (2) and (3) into (1) and then
by applying a spectral projection to (1) onto each polynomial basis function ¥, as defined
in [24]:

5 (@), ¥u(f)) .
s o e M ?

where (-) denotes the inner product, which is defined for two functions [24] as in:

9(2).9'() = [ 9@9' @W(@)dz ©

where the integration in (6) is calculated over the random domain Sy determined by &, and
W(¢) represents a weighting function determined by the joint PDFs of ¢ [24]. Once the
PCE coefficients of v, i.e., {U, } are available, the mean and variance of v can be quickly
calculated as discussed in [24].
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2.2. Techniques to Deal with Arbitrary Uncertainty

The PCE approximations as in (2) and (3) are constructed with orthogonal polynomial
basis functions in the Askey scheme, which may lead to a lower convergence rate for
UQ in the presence of arbitrary uncertainty. To address this, the Gram-Schmidt (GS)
orthogonalization [32] was previously coupled with PCE to find the orthogonal basis via
recursive procedures [33,36], which will be used in this work and hereafter referred to
as GSPCE.

Once a set of one-dimensional monic orthogonal polynomials (i.e., {lp]-} in (2)) are
defined with the GS orthogonalization, the multidimensional orthogonal polynomials
(i.e., {¥n} in (3)) are given by the tensor products of the one-dimensional polynomial
basis [12]. These one-dimensional orthogonal polynomials are generated as in [33]:

j—1
¥i(G) = Pj(‘:)_kzcjklpk@)/ j=12,---,P )
=0

where g9 = 1,and {p;(Z) } are the polynomials with the exact degree j defined as p; () = .
Note that the subscript i of a random variable ¢ in (2) is not used to define the one-

dimensional polynomial basis with the GS algorithm for simplicity. The coefficient {Cjk}
in (7) can be given as [36]:

o (Pi(8), ¥e(2)) ®)
B (@), i)
To calculate the inner product in (8), statistical moments of parametric uncertainty can
be used. To this end, the one-dimensional orthogonal polynomial §; can be rewritten as
in [36]:

j
pi =Y d;;¢ ©)
J=0

where {d;;} are the coefficients of monomial terms. The inner product between two
different polynomial basis functions is defined as [36]:

j Kk
D) 00) = [ OWEOW@HE= 12 3 dysdereyix (10)

where W(¢) is the weighing function of the random variable ¢ and y ; represents the jth
raw moment of ¢, which is defined as in [36]:

Hej= o SWE an

These raw moments can be calculated offline using either the functional form of the
weighting function (W(¢)) or data to form an empirical PDE. When the raw moments
are available, the orthogonal polynomial basis function can be readily generated using
the recursive procedure in (7). While practical and easy to implement, GS is sensitive to
rounding errors and may lead to the loss of orthogonality for the resulting polynomial
basis [37]. To address this issue, in this work we use the modified GS algorithm, which
is numerically more stable to these errors. This algorithm will be implemented with one
reorthogonalization to ensure the orthogonality of the polynomial basis [33].

To illustrate the orthogonalization step, let us define l9j (j=1,2,---,P) as the orthog-
onal polynomials (i.e., ;(¢) in (7)) determined by the modified GS with the reorthogo-
nalization and set 4; to & (ie., p;(¢) in (7)). Using these expressions, steps to calculate
the orthogonal polynomial basis with the polynomial order P are summarized in Table 1.
Note that (-) in Table 1 represents the inner product and the operator ||| is the norm of
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a function. More details on the modified GS method with the reorthogonalization can be
found in [37].

Table 1. Illustration of the modified Gram-Schmidt algorithm with the reorthogonalization [37].
Reprinted from [37], Copyright (2005), with permission from Elsevier.

1. Forj=1toP
2. For i=1to2
i i1
> 7 = 4]
4. For k=1toj—1
5. a; = aj — (aj, Op) By
6. End
7. End
8. ﬂj:a}/Ha}H
9.

End

As compared to the PCE approximation, the exponential convergence can be obtained
once the orthogonal polynomial basis functions are formulated following steps in Table 1.
However, these steps can increase modelling effort since each arbitrary uncertainty should
be approximated individually. It can also increase the computational cost in the presence
of many parametric uncertainties. To reduce the number of uncertainties and to improve
computational efficiency, two techniques in the following sections will be used in this work.

2.3. Techniques to Reduce the Number of Uncertainties

To attenuate the computational cost for UQ, the number of uncertainties can be re-
duced by combining a few parametric uncertainties into a similarity parameter [33]. In this
work, a sampling-based approach will be used to approximate the posterior distribution
of a similarity parameter characterized by an arithmetic formulation of a few parametric
uncertainties. Note that the similarity parameter may have a non-standard distribution
due to non-linear transformation (e.g., division and inversion). Therefore, the classic PCE
cannot ensure exponential convergence and the GSPCE will be used instead. However, the
GSPCE requires additional modelling effort (e.g., Mellin transform) to determine the exact
PDF of uncertainty [38]. To reduce modelling effort, sampling-based approximation will
be used in this work to build the empirical PDF of the similarity parameter, from which the
appropriate orthogonal polynomials can be constructed with the modified GS algorithm
for UQ.

For algorithm illustration, let us focus on two parametric uncertainties « and  and
define the similarity parameter x as a function of « and 8 as below:

X= (12)

RS R

To approximate the posterior distribution of x, the first step is to randomly generate
samples of « and B, which are defined as« = (a1, a2, -+ ,an,) and B = (B1,B2, -, Bns),
where 75 is the total number of samples. When the PDF of each uncertainty is available,
samples of &« and  can be easily generated offline. Following this, the next step is to
calculate the division with samples of « and 8 to determine the possible values of x. In this
way, x can be defined by data points generated with samples of « and B, which can be
defined as x = (Xx1,X2, - - , Xns)- Once the data points of x are available, the raw moments
can be evaluated as in [39]:

1 s .
i = — 2 X (13)
s 1 31

where j1) ; is the i raw moment of . Based on the raw moments of x in (13), the appropriate
orthogonal polynomials can be obtained following the procedures in Section 2.2.



Appl. Mech. 2021, 2 465

Similarly, the procedures above can be used for other arithmetic formulations. For ex-
ample, the similarity parameter x that defines the inverse of the uncertainty J
(e.g., x = 1/B) can be calculated by assuming « in (12) is fixed as 1. In summary, procedures
to obtain a similarity parameter x with arithmetic formulation are shown in Figure 1, which
will be further discussed with numerical examples in Section 3.

Parametric uncertainties . Arithmetic formulation ; T
(e.g., aorpf) (e.g., division and inversion) SImlla"ty parameter){

Sampling points = =
le1 & @ 1 g
sample 2 = — 0r — —]
sample 2 w & B B a
. Q Q
: e .

sample k I

X

Figure 1. Illustration of arithmetic formulation to derive the probability density function (PDF) of a similarity parameter.

2.4. Generalized Dimension Reduction Method

Once the orthogonal polynomials are built for parametric uncertainties, the PCE
expression of the model output v can be constructed with the unknown PCE coefficients
as described in (3). The key to determining the PCE coefficients {7, } is to calculate a
multi-dimensional integral involved in the inner product of spectral projection. Following
the definition in (5) and (6), the PCE coefficients {7, } of the model output can be described
as in [24]: (0@ @)

4 g 7 ‘Pm g 1

o= = o [ @ P @W(E)aE (1)
where 7,, is the normalization factor defined as 7, = E[¥2,], E[-] is the expectation op-
erator, and W(¢) is the weighting function determined by the joint PDFs of ¢. In the
presence of many parametric uncertainties (e.g., >5), the calculation of (14) can be computa-
tionally prohibitive due to the high-dimensional random space defined by ¢. To quickly
calculate high-dimensional integrals in (14), the generalized dimension reduction method
(gDRM) [30] will be used, which approximates a high-dimensional integral with a few
lower-dimensional ones.

Let assume a continuous and differentiable function f(¢) can be defined as
f(&) = v(&)¥m (L), which is a part of the integrand in (14). Following this, the multi-
variate integral in (14) can be rewritten as in:

EIF@) = [ F@W (@) (15)

In this way, each PCE coefficient (7,,) of v in (14) can be approximated with the
definition of gDRM and the representation in (15) as in [28]:

_ 1 o 1 &, s N=-S+r-1
= oA = e e (N e (16)

where each term fs_, in E[-] is a function of (S — r) random variables, which is defined as:

fS—r: 2 f(ﬂl/]’lzr"'rél]r'”rélzl"'léls_rr"'rVN> (17)

h<lp<--<lg_,

where Iy, Ip,---, ls_p = 1, 2,--- ,N,and y; (i=1,2,---,N) is the mean value of the
it" random variable ¢; (i.e., ;). Further, the last term in (17), i.e., fy is calculated by
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setting all random variables to their corresponding mean values as fy = f(u), where
u= (M1, ..., un)- By applying the expectation operator to (17), E[fs_,] in (16) is given as [30]:

Elfsrl= ¥ E[f(mmc @y 8 g mn)]a8)

h<lh<-<lg_,
where E[fs_,] is the summation of a few lower-dimensional integrals to approximate

E[f(&)] in (16) and the total number of integrals is ( Zj . > . For the last term in (16),

S
E[fo] is given as E[fy] = f(u). For example, when a bivariate DMR (BiDRM) is considered,
ie, S = 2, the N-dimensional integral in (16) is approximated with ( Z;] ) two- and

N . . . .
( 1 ) one-dimensional integrals and a constant term, i.e., E[fy].

To further reduce the computational time, Gauss quadrature (GQ) rules [31,40] will
be used to estimate the resulting lower-dimensional integrals in (16). For the expecta-
tion of one-variate function E[f;] with a random variable (e.g., &, ), the one-dimensional
quadrature rule can be defined as in [29]:

/ng(#l,llz/ e, e UN) W )dE, = Z f(#lrliz/ AP IFN)'Z] (19)

h
1=1

Q1
where Q) is the total number of quadrature points, and { g?lll lqll } ) is a set of quadrature
=

points (i.e., C?ll) and weights (i.e., 1) that is used to calculate each one-dimensional integral.
Importantly, quadrature rules should be selected concerning the PDFs of random variables
for exponential convergence. For example, Gauss-Hermite quadrature rules are the best
choice for Gaussian random variables [31]. For arbitrary variables, quadrature points and
their weights can be readily identified using the orthogonal polynomial basis from the GS
algorithm. Details to determine the quadrature points and their corresponding weights are
summarized in Appendix A. Once the one-dimensional quadrature rules are built for individual
random variables, a full tensor product grid for a multidimensional integral (i.e,, S — ¥ > 2) can
be constructed by using tensor products of the one-dimensional quadrature rules.

For clarity, suppose that each PCE coefficient in (16) is calculated with the BiIDRM
(i.e.,, S = 2). This means that an N-dimensional integral (i.e., E[f(&)] in (16)) will be

1 2
dimensional integrals can be further calculated with the quadrature rules as below [29]:

approximated with ( N ) one- and ( N > two-dimensional ones in total. These lower-

E[fi] = Z{Zf(#l,yz,~~,é ,yw) } (20)

=1

Q1 D
Elf)] = ), { D DA (P YREE R s ,uw)(?f@?;)} (21)
Lh<h \q1=142=1

where Q; (i =1 and 2) is the total number of quadrature points 61: and weights lii for
each integration variable [;, and the operator ® denotes tensor product. Following tensor
product rules, the total number of quadrature points to calculate the multivariate integrals
(i.e., S—r >2)canbegivenas Q = H 1 Qi [40].

To quantify the required computatlonal effort for BIDRM, the number of evaluations
(Nt) to approximate a high-dimensional integral in (16) is defined as:

v (5 ) () )at @)



Appl. Mech. 2021, 2

467

where Q7 and Q; are the number of quadrature points to calculate two- and one-dimensional
integrals, respectively. In this work, five quadrature points and their corresponding weights
will be used for each random variable. Thus, Q% and Q; are 25 and 5, respectively. In addi-
tion, the last term, i.e., 1 in (22), represents the calculation of the constant term E[fy].

2.5. Summary of the Uncertainty Quantification (UQ) Algorithm

The UQ algorithm in this work can be summarized as follows, which integrates the
modified Gram-Schmidt (GS) orthogonalization, generalized dimension reduction method
(gDRM), and quadrature rules to quickly calculate the PCE coefficients of model predictions.

1. Build orthogonal polynomial basis functions for parametric uncertainty that follows
an arbitrary distribution using the modified GS orthogonalization.

2. Determine the PCE coefficients and the polynomial basis for the PCE expression of
each parametric uncertainty (e.g., {6;,} and {;} in (2)).

3.  Construct the multi-dimensional orthogonal polynomials (e.g., {¥ } in (3)) for the
model prediction (e.g., v) using tensor products of the one-dimensional polynomial
basis functions.

4.  Construct surrogate models of model outputs with the spectral projection (e.g., {7y }
in (5)), which are functions of unknown PCE coefficients of model predictions.

5. Convert each high-dimensional integral in the inner product into a family of lower-
dimensional ones that involve at most S integration variables, using the gDRM.

6.  Solve these lower-dimensional integrals with Gauss quadrature (GQ) rules.

7. Quantify the effect of parametric uncertainty on model outputs of a complex system
using the PCE coefficients of model predictions.

3. Simulation Studies

For algorithm validation, three cases including two examples in chemical engineering
were used, which involve uncertainties that follow different types of non-standard distri-
bution. While specific examples are used in this work, our approach is transformative to
other engineering problems. Note that uncertain parameters in each example are assumed
to be independent and not correlated because our objective is to validate the algorithm to
deal with many parametric uncertainties.

In addition, the algorithm in this work was compared with the gDRM-based UQ
algorithm in the Askey scheme and other non-intrusive PCE-based algorithms. To program
and execute each example with these approaches, in-house codes with MATLAB® were
used and performed on an office desktop (Core i5-8400 central processing unit (CPU) at
2.80 GHz). To compare the UQ accuracy, the mean and the variance of model outputs
were calculated for individual methods. Further, the relative error (er) of the variance was
determined using the results of MC simulations, which is defined as in:

EpMC — €

ER =
EMC

(23)

where €c is the reference of the variance in model outputs estimated with MC, and € is
the variance of model outputs obtained with different UQ algorithms.

3.1. Example 1: Algebraic Function

A model response as in (24) was first used for algorithm verification and comparison:

P3 Ps
/7 = z21+ =20+ —z3+ + po + z 24
p1p2z1 02 P /P8 + P9 + P1oz4 (24)

where Z is the model response, and z1, z3, z3 and z4 are model input variables, which are
set to 1. In addition, {p;} (i =1,2,---,10) are model parameters, and each parameter
is defined as a parametric uncertainty. A 10% variation around the mean value of each
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parameter was introduced, and our objective is to quantify the joint effect of {p;} on Z.
Details about {p;} are summarized in Table 2.

Table 2. Description of parametric uncertainties in Example 1.

Parameter Description Mean Std. 1
P1 Gumbel 1 0.1
P2 Gumbel 1 0.1
p3 Lognormal 1 0.1
P4 Lognormal 1 0.1
Ps Weibull 1 0.1
Pe Weibull 1 0.1
p7 Weibull 1 0.1
P8 Normal 1 0.1
P9 Normal 1 0.1
P10 Normal 1 0.1

1 Note: Std. in Table 2 is the abbreviation of standard deviation.

For comparison, three different case scenarios were considered. For the first two case
studies, the modified GS algorithm with the reorthogonalization step was used to build the
polynomial basis functions for uncertainties that are not considered in the Askey scheme,
e.g., the Gumbel, lognormal and Weibull distributions in Table 2. In the first case study,
each uncertainty was approximated with a PCE expression, which will be referred to as the
GSPCE. Since there are 10 parametric uncertainties, the random space is ten-dimensional
for the GSPCE. In the second case study, reconstruction of the multidimensional polynomial
basis was performed to reduce the total number of uncertainties, which is referred to as the
reconstructed GSPCE (tGSPCE). For rGSPCE, several parametric uncertainties in (24) were
combined into a single uncertainty, following the description in Section 2.3. For example,
the product between p;1 and p, was treated as one uncertainty and the ratio of p3 to p4 was
defined as the second source of uncertainty. Similar operations were applied to the other
two terms in (24). In this way, the random space of rGSPCE is four-dimensional. In the
third case study, polynomial basis functions of standard distributions (i.e., normal) in the
Askey framework were used to approximate each uncertainty, which is hereafter referred
to as the ASPCE. The random space for the ASPCE is 10-dimensional.

Once the PCE expressions of parametric uncertainties are constructed with either the
GS orthogonalization or the orthogonal polynomial basis functions in the Askey scheme,
the PCE coefficients of Z can be calculated and used to quantify the impact of uncertainties
on model output. To solve the PCE coefficients of Z in (24), the gDRM was used in all three
case studies to convert high-dimensional integrals in the spectral projection as in (14) into
low-dimensional ones that can be quickly solved with quadrature rules.

For algorithm illustration, the BIDRM in Section 2.4 was used in this work. As such, S
was set to 2 in (16), which means each high-dimensional integral in the spectral projection
(e.g., the ten-dimensional integrals for the ASPCE- and the GSPCE-based UQ methods
and the four-dimensional integrals for the tGSPCE algorithm) was approximated with a
few one- and two-dimensional ones to calculate the PCE coefficients of Z. These lower-
dimensional integrals were calculated with Gauss quadrature rules and details about the
calculation can be found in Section 2.4 and Appendix A.

To compare the UQ accuracy in these case studies, simulations were conducted when
the polynomial order (P) of each parametric uncertainty was set to 0, 1, and 2, respectively.
The simulation results are shown in Figure 2. For comparison, the results of MC are also
given in Figure 2, for which the number of samples was set to 10° for each parametric
uncertainty to ensure the UQ accuracy.
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Figure 2. Simulation results of the probability density function (PDF) of Z with different polynomial orders (P) in each case
study: (a) P =1and (b) P = 2.
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Note that when the polynomial order (P) of each uncertainty was set to 0, the un-
certainty in Z cannot be quantified, since only one PCE coefficient was used to generate
surrogate models of Z, which only consider its mean value. Thus, the PDFs of Z in different
case studies, when P was set to 0, were not included in Figure 2. As seen in Figure 2,
it was found that as the polynomial order P increases, the PCE-based methods converge
to the results of MC. This implies that the UQ accuracy is related to the total number of
polynomial terms to approximate uncertainty. To quantitatively compare UQ accuracy
with respect to different polynomial orders, the relative error e of the variance of Z was
calculated in each case study using (23). The results are shown in Figure 3a. Note that once
the PCE coefficients of Z in (24) are available, the variance can be analytically determined
following steps discussed in [24].
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Figure 3. Comparison of the relative error of the variance for Z with different (a) bivariate dimension reduction method

(BiDRM)- and (b) non-intrusive discrete projection (NIDP)-based polynomial chaos expansion (PCE) approaches.

Each line in Figure 3a represents a specific case study, and three circle markers on each
line show the relative errors with respect to different polynomial orders (i.e., P was set to 0,
1, and 2, respectively). As seen in Figure 3a, the total number of PCE terms for Z in each
case study is different since it is a function of the polynomial order P and the total number
of uncertainties N. In addition, as the polynomial order P increases, the relative error
er of the variance of Z decreases. Further, the GS-based PCE (i.e., GSPCE and rGSPCE)
provide smaller relative errors, as compared to the ASPCE. This is because polynomial basis
functions in the ASPCE are designed for standard distributions (e.g., normal) in the Askey
framework, but arbitrary uncertainties (e.g., Gumbel in Table 2) are considered in this
example. This clearly shows the UQ efficiency of the GS-based PCE. Moreover, as compared
to the GSPCE-based method, it was found that the relative error g of the rGSPCE-based
method is one magnitude smaller, when P was 1 (see Figure 3a). In contrast, the difference
in eg between the GSPCE-based and the rGSPCE-based methods is insignificant, when
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P was 2. However, it is important to note that the number of PCE terms required to
approximate uncertainty in Z is much smaller for the rGSPCE-based method (<20). Since
fewer PCE coefficients are required, it can greatly reduce the computational cost, which
will be discussed below.

To further validate the efficiency of the algorithm in this work that integrates the GS
and gDRM with the PCE, simulations were conducted to compare the algorithm with the
full tensor product grid-based non-intrusive discrete projection (NIDP). Similar to the three
case studies mentioned above, three additional case studies were investigated using the
NIDP method. In the first case study, the modified GS method was used to construct the
polynomial basis functions for each uncertainty, but the PCE coefficients of Z were solved
with the NIDP. This is referred to as the GSPCE-NIDP in Figure 3b. In the second case study,
reconstruction of the multidimensional polynomial basis was performed to reduce the total
number of uncertainties and NIDP was used to solve the PCE coefficients of Z, which is
referred to as the rGSPCE-NIDP. In the third case study, polynomial basis functions of
standard distributions were used to estimate each parametric uncertainty, which is referred
to as the ASPCE-NIDP.

The results of NIDP-based UQ are shown in Figure 3b. Details about the implemen-
tation of the NIDP approach in each case study to solve the PCE coefficients for Z can be
found in [24]. As compared to the results in Figure 3a, it was found the relative error eg
of the BiDRM-based approach is identical to the NIDP-based method in Figure 3b. For
example, when P was set to 2, the relative error of the rtGSPCE-BiDRM is ~0.000607, which
is identical to the rGSPCE-NIDP. As compared to the non-intrusive methods, this validates
the UQ accuracy of the algorithm in this work, which uses the gDRM to approximate
high-dimensional integrals in the spectral projection.

To show the performance of the algorithm in this work, we also compared the compu-
tational efficiency for each case study. Specifically, the total number of PCE coefficients of
Z and the number of evaluations N; to approximate each PCE coefficient are summarized
in Table 3. For the algorithm in this work, it is worth mentioning that N; is measured by
counting the number of quadrature points to approximate each integral as defined in (22),
for which the number of quadrature points in each dimension was set to 5. For example, the
number of evaluations to calculate a PCE coefficient for the GSPCE- and ASPCE-BiDRM is
1,176, since there are 10 one- and 45 two-dimensional integrals resulting from the BIDRM
step, i.e., 1176 = 10 x 5 445 x 52 + 1. In contrast, the number of evaluations to calcu-
late a PCE coefficient is 171 for the rGSPCE-BiDRM, since the BiDRM only generates 4
one- and 6 two-dimensional integrals, i.e., 171 = 4 X 5+ 6 X 52 4+ 1. Further, when the
non-intrusive full tensor product grid-based NIDP is used, the number of evaluations to
approximate a PCE coefficient of Z is 5! and 5* for the ten- and four-dimensional random
space, respectively.

Table 3. Summary of the number of PCE coefficients of Z and the number of evaluations to solve a
PCE coefficient in Example 1. For each case study, GSPCE-BiDRM, ASPCE-BiDRM, and rGSPCE-
BiDRM refer to a Gram-Schmidt based PCE, an Askey-scheme based PCE, and a reconstructed GS
based PCE, coupled with bivariate dimension reduction method (BiDRM), respectively. GSPCE-NIDP,
ASPCE-NIDP, and rGSPCE-NIDP are GSPCE, ASPCE, and rGSPCE, combined with the nonintrusive
discrete projection (NIDP), respectively.

Number of PCE Coefficients of the Model Output Z

Case Study N;
P=0 P=1 P=2
GSPCE-BiDRM 1,176 1 11 66
ASPCE-BiDRM 1,176 1 11 66
rGSPCE-BiDRM 171 1 5 15
GSPCE-NIDP 510 1 11 66
ASPCE-NIDP 510 1 11 66
rGSPCE-NIDP 54 1 5 15
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As seen in Table 3, the number of evaluations for the non-intrusive methods is sig-
nificantly higher than the BIDRM-based methods. As discussed above, our algorithm
that integrates the GSPCE (or rGSPCE) with BiDRM provides as accurate results as the
nonintrusive approaches. However, it can greatly reduce the computational cost to cal-
culate the PCE coefficients. For example, ~1.2969 s were required to solve the total PCE
coefficients with the rGSPCE-NIDP, when P was set to 2. In contrast, ~0.9688 s were
required to estimate the PCE coefficients when the rGSPCE-BiDRM was used. Compared
to the non-intrusive method, this is ~25% lower. Because the computational time for the
NIDP-based methods is larger than the BiDRM-based methods, we will hereafter focus on
discussing the computational efficiency of the BiDRM-based methods. The computational
time in each case study is summarized in Table 4 for the BiIDRM-based methods and the
ASPCE-NIDP method that is considered the original PCE method.

Table 4. Summary of the computational time to quantify uncertainty in model output in Example 1.

Case Study P=0 P=1 P=2
GSPCE-BiDRM 0.4063 s 1.4375s 8.1719 s
ASPCE-BiDRM 0.4063 s 1.4375s 7.6094 s
rGSPCE-BiDRM 0.3750 s 0.5781s 0.9688 s

ASPCE-NIDP 2.0313 s 16.0313 s 94.7031 s

As can be seen in Table 4, the computational time increases as P increases. It was also
found that the rGSPCE-BiDRM-based method that has four-dimensional random space
requires less computational time, as compared to the other two case studies. For example,
when P was set to 2, the time for the rGSPCE to calculate all PCE coefficients was ~0.9688 s,
which is significantly lower than the ASPCE- and GSPCE-BiDRM methods. Besides, it was
found that the computational time of the ASPCE-NIDP is large for each polynomial order
P, compared to the BIDRM-based methods, and is increased significantly as P increases.
This shows the advantage of our algorithm at combining the GS and BiDRM with PCE.
To further validate our algorithm, two examples in chemical engineering will be followed.

3.2. Example 2: Membrane Reactor

An inert membrane reactor with catalyst on the feed side (IMRCF) is shown in Figure 4,
where the following reaction occurs [41,42]:

A< B+C (25)

/Membrane

C

Catalyst particles

Figure 4. Illustration of IMRCEF reactor system [41,42].

In this example, the reactor is operated at the given temperature (T) and pressure (P),
and the membrane is only permeable to product B, which diffuses through the membrane
with the molar flux Rp. Following this, the mole balances of A, B, and C can be described
asin [41,42]:

dFu
v - A (26)
s _ rg—Rp=—r4—Rp (27)

av
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where F4, Fp, and F. are the molar flow rate of A, B, and C, respectively, and V is the
reactor volume. The reaction rate law of A and the molar flux of B through the membrane,
i.e., Rp, are given as [41,42]:

—raA (28)

_ CpCc\ _ _ Fa Cro (B (Ec
= k(cA Kc > = ~¥Cro {FT Kc \Fr/) \ Fr @9)
Fp
Rp = k.Cp = k:Cro <FT> (30)
P
Cro= RT (31)
Fr=Fs+F+F (32)

In this example, model parameters in (29)—(31) are summarized in Table 5 and details
can be found in [41,42].

Table 5. Description of model parameters in Example 2 [42].

Parameter Description Distribution Mean Std. ! Unit
k Reaction rate constant Lognormal 0.7 0.07 min~!
Kc Equilibrium constant Lognormal 0.05 0.005 mol/dm?
ke Transport coefficient Lognormal 0.2 0.02 min~!
P Pressure Lognormal 830.6 83.06 kPa
T Temperature Lognormal 500 50 K
R Ideal gas constant - 8.314 - kPa-dm? /(mol-K)

1 Note: Std. in Table 5 is the abbreviation of standard deviation.

For algorithm validation, all parameters except the gas constant R were assumed to
follow a lognormal distribution with a 10% variation around the mean of each parameter
in Table 5. Since there are five uncertainties, the resulting random space is five-dimensional
(N = 5). As in Example 1, three case scenarios were investigated by combining the GSPCE,
ASPCE, and rGSPCE with the BiDRM, respectively. For the GSPCE- and rGSPCE-based
case studies, the PCE expression of each parametric uncertainty was formulated with
the modified GS. For the ASPCE-based case study, the PCE expressions for uncertain
parameters were approximated with the orthogonal polynomial basis functions in the
Askey scheme. Further, for the rtGSPCE-based case study, the ratio between pressure and
temperature in (31) were combined into one uncertainty, and the reciprocal of K¢ in (29)
was treated as another source of uncertainty. These will reduce the number of uncertainties
by 1, resulting in a four-dimensional random space. To calculate the PCE coefficients
of model outputs in (26)—(28), the BiDRM was used in three case studies to transform
high-dimensional integrals in the spectral projection into a few low-dimensional ones,
which can be numerically solved with quadrature rules.

The quantification of uncertainty in the molar flow rate Fg was chosen to compare
the UQ accuracy in different case studies. In each case study, the polynomial order (P)
of uncertainty was set to 0, 1, 2, and 3, respectively. In addition, 10° samples were used
for MC to obtain the reference to calculate the relative errors eg as in (23). The simulation
results are given in Figure 5.

As seen in Figure 5, when the polynomial order P was set to 0, all case studies cannot
estimate the uncertainty in model output (Fg), since there is only one term in the PCE
expression of Fp that only considers its mean value. Thus, the effect of parametric uncer-
tainties on model outputs cannot be quantified. Similar to Example 1, it was found that
the accuracy of UQ increases as the polynomial order (P) increases. As seen in Figure 5c,d,
all case studies have almost identical results for the mean and variance of Fg, when P was
set to 2 and 3, respectively.
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Figure 5. Simulation results of molar flow rate Fg with different polynomial orders (P) in each case study: (a) P = 0,
b)P=1,(c)P=2,and (d) P = 3.
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To compare the UQ accuracy with respect to different polynomial orders, the relative
errors e of the variance of Fp were calculated at each simulation point in Figure 5. Note that
the variance of Fp can be analytically calculated with its PCE coefficients. Among these
simulation points, 15 points were selected by dividing the total simulation range, i.e., from
0 to 120 dm? in Figure 5, into 16 equal intervals. Following this, the average relative error of
these 15 points was calculated for each case study and shown in Figure 6a. In addition, as in
Example 1, the full tensor product grid-based NIDP was also conducted to demonstrate the
performance of the proposed algorithm in terms of the UQ accuracy and computational
efficiency. The simulation results with the NIDP-based approaches are given in Figure 6b.
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Figure 6. Comparison of the average relative error of the variance for Fg with different (a) BIDRM- and (b) NIDP-based

PCE approaches.

As can be seen in Figure 6a,b, the average relative errors decrease as the polynomial
order P increases in all case studies. It was also found that the convergence rate of the
GSPCE-based algorithm is slightly faster than the ASPCE-based method. Notably, the
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rGSPCE-based method outperforms other case studies when P was set to 3. In addition,
it was found that the relative errors of the GSPCE- and ASPCE-BiDRM case studies in
Figure 6a are slightly larger, compared to the GSPCE- and AGSPCE-NIDP in Figure 6b.
This is because the BiDRM-based approach requires a smaller number of evaluations
(Nt), as compared to the NIDP-based approach (see Table 6). However, when P was 3,
we found that the relative error of the rGSPCE-BiDRM is lower than the rGSPCE-NIDP.
This shows the advantage of combining the GS and gDRM with PCE, which reduces both
the dimensionality of random space and the number of evaluations.

Table 6. Summary of the number of PCE coefficients and the number of evaluations in Example 2.

Number of PCE Coefficients of the Model Output Fp

Case Study Nt
P=0 P=1 P=2 P=3
GSPCE-BiDRM 276 1 6 21 56
ASPCE-BiDRM 276 1 6 21 56
rGSPCE-BiDRM 171 1 5 15 35
GSPCE-NIDP 55 1 6 21 56
ASPCE-NIDP 55 1 6 21 56
rGSPCE-NIDP 54 1 5 15 35

We also studied the computational cost for each case study. Table 6 summarizes the
number of PCE coefficients of model response and the number of evaluations N; required
to calculate a coefficient with different algorithms. As seen in Table 6, for the GSPCE and
ASPCE-based case studies, the number of PCE coefficients of Fg is 6, 21, and 56, when P
was set to 1, 2, and 3, respectively. In contrast, the rGSPCE-based algorithm requires fewer
PCE terms. Of note: the BIDRM approximates a five-dimensional integral in the spectral
projection with 5 one- and 10 two-dimensional ones for the GSPCE- and ASPCE-based
case studies. In contrast, a four-dimensional integral is converted into 4 one- and 6 two-
dimensional ones in the rGSPCE-based case study. The lower-dimensional integrals were
calculated with Gauss quadrature rules, and the number of quadrature points for each
dimension was 5. Thus, the number of evaluations N; for the GSPCE- and ASPCE-BiDRM
case studies is 276 = 5 x 5+ 10 x 52 + 1, according to the definition in (22). For the rGSPCE-
BiDRM method, the number of evaluations N; is calculated as 171 = 4 x 5+ 6 x 52 + 1.
For the NIDP-based case studies, the number of evaluations N; to solve a PCE coefficient
is 5° for both the GSPCE- and ASPCE-NIDP and 5* in the rGSPCE-NIDP, when the full
tensor product grid was used. As in the previous example, the computational time for four
different case scenarios (i.e., three BIDRM-based methods and the ASPCE-NIDP method)
is summarized in Table 7.

Table 7. Summary of the computational time to quantify uncertainty in model output in Example 2.

Case Study P=0 P=1 pP=2 P=3
GSPCE-BiDRM 13.2031 s 125.5938 s 1167.51625 s 11,061.3438 s
ASPCE-BiDRM 12.8438 s 117.1406 s 757.2813 s 4538.5625 s
rGSPCE-BiDRM 11.7031 s 95.2969 s 603.2188 s 3747.9375 s

ASPCE-NIDP 15.0156 s 145.5156 s 864.6719 s 5750.5469 s

As seen in Table 7, the computational time for the simulation in Figure 5 in each
case study increases as P increases. In addition, as compared to the ASPCE-based case
studies, it was found the GSPCE-based case study requires more time to save and reload
the numerical expressions of polynomial basis functions, since each parametric uncertainty
has its own basis functions. However, it is important to note that the computational time
for the rGSPCE-based case study is significantly smaller than the other three case studies,
including the ASPCE-NIDP. This shows the superior performance of the rGSPCE-BiDRM
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based method, compared to the other methods (e.g., ASPCE-BiDRM and ASPCE-NIDP) in
terms of computational efficiency.

3.3. Example 3: Continuously Stirred Tank Reactor (CSTR) with a Series Reaction

A continuously stirred tank reactor (CSTR) as in Figure 7 was chosen to show the
efficiency of the UQ algorithm in this work, where irreversible reactions A — B — C
occur [43]. The pure material A enters the reactor through the inlet stream and the concen-
trations of species B and C are initially set to zero. Since it is desired to reach the maximum
conversion of B, we focus on quantifying the effect of uncertainty on the concentration
of B.

F,Cyr

Product

Figure 7. Illustration of a continuously stirred tank reactor (CSTR) with a series reaction [43].

The models to describe the dynamics of the CSTR are given as [43]:

dCy _F —E;/RT
7&11‘ = V(CAf_CA) —kche 1 (33)
dCp —E{/RT —gy/rr_ F
7dt —kche szBe VCB (34)
dCc _ “Eyrr _ F
7di‘ —szBe VCC (35)

where C4, Cp, and Cc are the concentrations of A, B, and C, respectively, and the tempera-
ture T is the manipulated variable that is set to 400 K. Model parameters in (33)—(35) are
listed in Table 8.

Table 8. Description of model parameters in Example 3 [43].

Parameter Description Distribution = Mean Std. ! Unit

F Volumetric flowrate Weibull 100 10 L/min

Car Feed concentration Weibull 1 0.1 mol/L
1% Reactor volume Weibull 100 10 L

E1/R Activation energy/gas constant Uniform 8750 87.5 K

E;/R Activation energy/gas constant Uniform 9750 97.5 K
kq Pre-exponential factor Normal 72x 1010 72 x10° min~!
ko Pre-exponential factor Normal 52x 10 52x10° min!

1 Note: Std. in Table 8 is the abbreviation of standard deviation.

As in Table 8, three parameters, F, C4 s and V, are assumed to follow a Weibull distri-
bution. The rest of the parameters are described by standard distributions (e.g., uniform or
normal). Since there are 7 parametric uncertainties, a seven-dimensional random space
(N = 7) is considered. In this example, a 1% variation around each mean value of the
uncertain parameters E; /R and E,/R was introduced, and the rest of the parameters are
assumed to have a 10% variation around each mean value. As in Examples 1 and 2, three
case studies were conducted by combining the GSPCE, ASPCE, and rGSPCE with the
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BiDRM, respectively. For the GSPCE-based case study, PCE expressions of F, C4f, and V
were constructed using the modified GS, whereas the PCE expressions of F, C4 fr and V
were approximated with the orthogonal polynomial basis functions in the Askey scheme
for the ASPCE-based case study. For the rGSPCE-based case study, two uncertainties F
and V (i.e.,, F/V) were treated as one uncertainty (i.e., the similarity parameter described
in Section 2.3), which results in a six-dimensional random space (N = 6). As done in
Examples 1 and 2, MC was implemented for comparison purposes, where 10° samples for
each parametric uncertainty were used. Uncertainty in concentration Cp was studied for
each case study with respect to different polynomial orders of each uncertainty (i.e., P was
set to 0, 1, and 2), and the simulation results are shown in Figure 8.
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Figure 8. Simulation results of concentration Cp with different polynomial orders (P) in each case study: (a) P =0, (b) P =1,
and (c) P = 2.

As seen in Figure 8, as the polynomial order of each uncertainty P increases, the UQ
accuracy of different methods can be improved. To quantify the UQ accuracy, the relative
error e of the variance of Cp was calculated at each time instant in Figure 8. However, for
clarity, the average of relative errors at 15 selected time instants are shown in Figure 9a for
different case scenarios (i.e., GSPCE-, ASPCE-, and rGSPCE-BiDRM). As done in Examples
1 and 2, we also investigated the non-intrusive methods (NIDP) for comparison purposes.
The results of NIDP-based approaches are shown in Figure 9b. The number of PCE terms
and the number of evaluations N; for each polynomial order with respect to different
approaches are summarized in Table 9.

The number of evaluations N; in Table 9 was determined by counting the total number
of quadrature points to approximate each integral. For example, the number of evaluations
to calculate each PCE coefficient is 561 for the GSPCE- and ASPCE-BiDRM, since there
are 7 one- and 21 two-dimensional integrals resulting from the BiDRM, i.e., 561 = 7 x
5+ 21 x 52 + 1. In contrast, the number of evaluations N; to calculate a PCE coefficient is
406 for the rGSPCE-BiDRM since there are 6 one- and 15 two-dimensional integrals, i.e.,
406 = 6 x 5+ 15 x 52 + 1. In addition, for the NIDP-based approaches, the number of
evaluations N; to approximate each coefficient is calculated as 57 in both the GSPCE- and
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Relative errors

ASPCE-NIDP and 5° in the rGSPCE-NIDP. As compared to Example 2, a larger number of
evaluations was used here for the NIDP-based approaches, since there are more uncertainties.
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Figure 9. Comparison of the average relative error of the variance for Cp for with different (a) BIDRM- and (b) NIDP-based

PCE approaches.

Table 9. Summary of the number of PCE coefficients and the number of evaluations in Example 3.

Number of PCE Coefficients of the Model Output Cp

Case Study N
P=0 P=1 P=2
GSPCE-BiDRM 561 1 8 36
ASPCE-BiDRM 561 1 8 36
rGSPCE-BiDRM 406 1 7 28
GSPCE-NIDP 57 1 8 36
ASPCE-NIDP 57 1 8 36
rGSPCE-NIDP 56 1 7 28

As seen in Figure 9, the average relative error decreases, as the polynomial order P
increases. In addition, the GSPCE- and rGSPCE-based algorithms exhibit smaller errors,
as compared to the ASPCE-based algorithm. Note that the requisite number of PCE
coefficients are the same in GSPCE- and ASPCE-based algorithms, while the rGSPCE-
based algorithm needs a smaller number of PCE terms as in Table 9. In addition, the
simulation results in Figure 9 shows that the BIDRM-based approaches provide as accurate
results as the NIDP-based approaches, even with a smaller number of evaluations N;.
Specifically, the rGSPCE-BiDRM has an average relative error of ~0.00154, and the error
with the rGSPCE-NIDP is ~0.00153. As seen, the difference in the average relative error
between the two approaches is insignificant. However, the algorithm in the work that
combines GSPCE- (or rGSPCE-) and BiDRM can outperform the NIDP-based methods in
terms of computational cost, since a smaller number of evaluations is required as in Table 9.
We also studied the computational time to calculate PCE coefficients with respect to three
BiDRM-based methods (i.e., GSPCE-, ASPCE-, and rGSPCE-BiDRM) and the ASPCE-NIDP
in terms of CPU time, which is given in Table 10.

Table 10. Summary of the computational time to quantify uncertainty in model output in Example 3.

Case Study P=0 P=1 P=2
GSPCE-BiDRM 34.5156 s 391.4375s 3689.4063 s
ASPCE-BiDRM 31.4375s 377.7656 s 3121.6406 s
rGSPCE-BiDRM 28.6406 s 299.5313 s 2229.1719 s

ASPCE-NIDP 48.7344 s 560.5625 s 4311.4375s

As can be seen in Table 10, the rGSPCE-BiDRM requires the least computational time.
For example, when P was 2, the computational time of the rGSPCE-BiDRM was ~40%
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and ~30% lower than the GSPCE-BiDRM and ASPCE-BiDRM-based methods, respectively.
In addition, it was found that the ASPCE-NIDP exhibits inferior computational time for
each polynomial order P to the rest of the case studies. This shows the performance of the
proposed algorithm in this work in terms of computational efficiency, which combines the
PCE with the modified GS algorithm and the BIDRM.

4. Conclusions

This paper presents an algorithm for efficient uncertainty quantification (UQ) under
many parametric uncertainties that follow arbitrary distributions, which are not considered
in the classic polynomial chaos expansion. The algorithm couples the modified Gram—
Schmidt polynomial chaos expansion (GSPCE) with the generalized dimension reduction
method (gDRM) to improve UQ accuracy and computational efficiency. The Gram-Schmidt
orthogonalization can build appropriate orthogonal polynomial chaos basis functions
for any type of arbitrary uncertainty. In addition, the algorithm can reduce the total
number of required PCE terms to approximate the model output by combining several
parametric uncertainties into a similarity parameter. To solve the PCE coefficients of model
predictions quickly, the gDRM is used to approximate each high-dimensional integral from
the inner product of the spectral projection with several lower-dimensional ones. To show
the efficiency of the algorithm, engineering examples were used. The results show the
approach in this work can significantly reduce the computational cost, while maintaining
the UQ accuracy.

Author Contributions: Conceptualization, Y.D.; methodology, Y.D. and ].S.; validation, ].S.; investi-
gation, J.S.; writing—original draft preparation, J.S.; writing—review and editing, Y.D.; supervision,
Y.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Science Foundation, Division of Civil,
Mechanical and Manufacturing Innovation (CMMI), under the award No. 1727487.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Gauss quadrature rule is a popular tool to calculate an integral with a weighted sum
of its integrand evaluated at a set of node points [31,40]. In this work, the low-dimensional
integrals from the gDRM as in (16) are numerically solved by the Gauss quadrature with
five quadrature points and their corresponding weights. To construct a one-dimensional
quadrature rule for an arbitrary random variable, let us consider a function y(x) over the
support x, Sy, where x is a single random variable (e.g., ¢ as described in Section 2.1). Then,
the five-point Gauss quadrature can be formulated as:

/;gy(x)W(x)dx ~wiy(x) + way(x2) + wsy(xs) + way(xa) + wsy(xs) (Al

where W (x) is a weighting function determined by the PDF of random variable x. The key
to accurately evaluate the integral on the left side in (Al) is to determine the optimal
quadrature points and weights (i.e., x, and w, where n = 1,2,---5). In the Gaussian
quadrature, the quadrature points x, are readily defined as the roots of the orthogonal poly-
nomials {;} which has the same support range as the random variable x. As illustrated
in Section 2.2, orthogonal polynomials for any arbitrary random variable can be readily
constructed via the GS algorithm. As compared to the quadrature points, i.e., the abscissas
X1, ..., X5, the corresponding weights have to be evaluated. One way to determine the
weights is to use a set of linear equations as in [44]:
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Xw=">b (A2)

where X is 5 x 5 matrix, which is defined as below.

z0(x1) zo(x2) zo(x3) zo(x4) zo(xs)
z1(x1) z1(x2) z1(x3) z1(xq) 2z1(x5)
X = za(x1) z2(x2) z2(x3) z2(x4) z2(x5) (A3)
z3(x1) z3(x2) z3(x3) z3(xq) z3(xs)
z4(x1) z4(x2) za(x3) za(xq) z4(xs)

where z(x), - - - ,z4(x) are polynomials that include exactly one polynomial of order from
0 to 4, respectively, such that z;(x) = x/. The vectors w and b are given as in:

w:[wl Wy W3 w4 Ws ]T (A4)

b=[by by by bs b4]Tbj:/S zj(x)W(x)dx:/S YW (x)dx (A5)

Note that each element b]- in b is exactly the jth raw moment of x, i.e., b, = Haj (see
(11) in Section 2.2). In summary, using both the optimal orthogonal polynomials obtained
from the GS algorithm and the raw moments of any given arbitrary random variable, the
quadrature points and the corresponding weights of the Gauss quadrature rule can be
readily constructed for the PCE-based UQ method in this work.
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