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This study successfully integrates acoustic patterning with the
Two-Photon Polymerization (TPP) process for printing nanoparti-
cle–polymer composite microstructures with spatially varied nano-
particle compositions. Currently, the TPP process is gaining
increasing attention within the engineering community for the
direct manufacturing of complex three-dimensional (3D) micro-
structures. Yet the full potential of TPP manufactured microstruc-
tures is limited by the materials used. This study aims to create
and demonstrate a novel acoustic field-assisted TPP (A-TPP)
process, which can instantaneously pattern and assemble nanopar-
ticles in a liquid droplet, and fabricate anisotropic nanoparticle–
polymer composites with spatially controlled particle–polymer
material compositions. It was found that the biggest challenge in
integrating acoustic particle patterning with the TPP process is
that nanoparticles move upon laser irradiation due to the photo-
thermal effect, and hence, the acoustic assembly is distorted
during the photopolymerization process. To cure acoustic assembly
of nanoparticles in the resin through TPP with the desired nanopar-
ticle patterns, the laser power needs to be carefully tuned so that it
is adequate for curing while low enough to prevent the photother-
mal effect. To address this challenge, this study investigated the
threshold laser power for polymerization of TPP resin (Pthr) and
photothermal instability of the nanoparticle (Pthp). Patterned nano-
particle–polymer composite microstructures were fabricated using
the novel A-TPP process. Experimental results validated the feasi-
bility of the developed acoustic field-assisted TPP process on print-
ing anisotropic composites with spatially controlled material
compositions. [DOI: 10.1115/1.4050759]
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1 Introduction
Micro-manufacturing techniques have been drastically investi-

gated over the past decades for applications such as micro-
fluidic devices [1], biochips [2], photonic crystals [3], and
micro-electromechanical systems (MEMS) [4]. Advances in many
micro-manufacturing techniques have been reported, including
soft lithography [5], electrochemical fabrication [6], chemical
deposition [7], immersing [8], laser microfabrication [9], imprinting
[10], and two-photon polymerization (TPP) [11]. Among these tech-
niques, TPP has been considered as a promising technique for
direct manufacturing of complex three-dimensional (3D) micro/
nanostructures [12], wherein a photosensitive liquid resin gets

polymerized at the center of the tightly focused beam and the three-
dimensional (3D) digital model is built in a voxel by voxel manner
[13]. Considering these advantages, many research studies have
investigated TPP to create 3D complicated nano/microstructures
[14] for varied applications, including photonic quasicrystals [15],
metamaterials [16], functional micro/nano-mechanical devices
[17], cell culturing 3D scaffolds for tissue engineering [18,19], and
optical data storage devices [20].
The typical materials used in the TPP process are negative resists,

such as IP-S or IP-L [21], and positive resists, such as AZ [22]. Like
most photopolymerization-based 3D printing techniques, a signifi-
cant challenge of polymer materials used in TPP technique is the
relatively poor mechanical properties of the printed microstructures
compared to their counterparts fabricated by other techniques such
as molding or filament extrusion 3D printing process and hence are
not suitable for many practical applications. To solve the problem of
limited structural/mechanical performance of polymers used in the
TPP process, efforts have been put forth to add different types of
functional fillers [23,24], creating homogeneous composites. Func-
tional fillers investigated in the TPP process include carbon-based
materials [25], photoisomerizable dyes [26], semiconductor nano-
particles [27], metallic nanoparticles [28], and magnetic nanoparti-
cles [29]. For instance, Liu et al. found that the loading of multi
walled carbon nanotubes (MWNTs) can significantly enhance
Young’s modulus and hardness of the microstructures fabricated
by the TPP process [30]. Moreover, Ovsianikov et al. demonstrated
the advantage of zirconium fillers for minimizing shrinkage [31].
Recent studies have proved that, along with the loading fraction,

particle alignment plays a vital role in designing structures with
tunable properties [32,33]. A number of techniques have been
developed to align functional fillers in the polymer matrix [34]
using external force, including magnetic [35–38], electric [39–
42], and acoustic fields [43–47]. Martin et al. [36] and Lu et al.
[37] integrated the magnetic field in a stereolithography system to
achieve varied orientations and loading fractions of particles.
Many other researchers, such as Yang et al. [40], fabricated bioin-
spired composite structures by implementing a rotating electric field
to align carbon nanotubes radially in a projection stereolithography
system. It was observed that the particle alignment significantly
influences Young’s modulus and many other physical properties
such as electrical conductivity. However, a major limitation of the
magnetic field and the electric field-assisted methods is that the par-
ticles have to be naturally responsive to the applied external field.
Compared to the magnetic or electric field, the acoustic

field-assisted additive manufacturing process has the advantage of
no imposed material shape/size constraints and no field-responsive
requirements. In addition, patterning using an acoustic field is
gentle enough for the manipulation of fragile particles or living
cells, and any combination of fillers and host materials is suitable
as long as there is an acoustic contrast [48,49]. Implementation of
the acoustic field for particle aligning during fabrication has been
reported in a few studies. For example, acoustic assembly of elec-
trically conductive particles was demonstrated by Yunus et al.
[43]. Collino et al. demonstrated the use of acoustic focusing to suc-
cessfully deposit composite filaments consisting of fibers and
microspheres using a single nozzle [44]. Moreover, Lu et al. suc-
cessfully printed composites that contained acoustically assembled
tungsten, aluminum, titanium, and copper particles with desired pat-
terns [46].
Despite the extensive research on the integration of acoustic pat-

terning with additive manufacturing (AM) processes, most studies
focused on stereolithography (SL), direct ink writing (DIW), and
fused deposition modeling (FDM)-based AM processes [50]. To
the author’s best knowledge, no study has been reported about inte-
grating an acoustic field into the TPP process to print microstruc-
tures with aligned nano-fillers. A major challenge in integrating
external field-assisted (e.g., acoustic field-assisted) particle pattern-
ing into the TPP process is that nanoparticles move upon laser irra-
diation due to the photothermal effect, and hence, the acoustic
assembly is distorted during the photopolymerization process
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[51]. This makes it very difficult or even impossible to cure nano-
particle–polymer composite microstructures with desired nanoparti-
cle patterns. Several strategies have been employed in the TPP
industry to overcome the photothermal effect. A common method
is to introduce solvent molecules, including water [52], ruthenium-
based dye [53], and initiators [54] into the original resin mixture.
For instance, Liu et al. created 3D gold–polymer microstructures
by adding ruthenium-based dye [53]. Hu et al. used
7-diethylamino-3-thenoylcoumarin (DETC) as a photoinitiator to
successfully fabricate complex 3D Au-containing nanocomposite
structures [54]. This method allows for some flexibility in tailoring
the photothermal effect; however, the loading fraction and the
choice of nanoparticles were both very limited.
An alternative strategy was proposed by Masui et al., which

involves polymerizing the material using a laser power much
lower than the threshold for initiating the particle photothermal
instability [51]. However, the typical polymerization threshold of
the laser power for ordinary TPP resin is an order of magnitude
larger than the threshold of the photothermal instability of particles.
Pentaerythritol tetrakis (thiol) has been reported effective in lowering
the threshold laser power for the polymerization of acrylate resin
used in the TPP process [55]. Reported work in these and other
references, e.g., Refs. [56–58], demonstrated that thiol molecules
were able to improve the conversation rate of acrylate resin, suggest-
ing the addition of multifunctional thiol molecules is a promising
method to reduce the threshold power for the polymerization of
resin (Pthr). A common challenge with this method is that too
much thiol reduces the minimum feature size, leading to various
manufacturing defects in the fabricated structures. So, there is an
urgent need for developing a general strategy to balance the threshold
powers for polymerization of acrylate resin using thiolmolecules and
(Pthr) and photothermal instability of the nanoparticle (Pthp).
Here, we present an acoustic-field-assisted two-photon polymer-

ization (A-TPP) process for fabricating heterogeneous composite
microstructures with desired nanoparticle patterns. To develop a
strategy for achieving a balance between the two threshold
powers Pthr and Pthp, the threshold laser powers for the polymeriza-
tion of IP-L 780 photoresist (Pthr) with thiol concentration ranging
from 0% to 30% by weight were investigated. In addition, threshold
laser powers for photothermal instability of various nanoparticles
(Pthp) were experimentally identified by observing the movement
of nanoparticle during TPP printing. The analytical model was
developed as a guide to select minimum thiol concentration and
safe operating laser power during the A-TPP process to fabricate
defect-free high-quality microstructures. With the determined
thiol concentration and laser power, the acoustic field generation
system was then integrated into the TPP process to pattern nanopar-
ticles in the resin droplet. To demonstrate the feasibility of this

method, patterned nanoparticle–polymer composite microstructures
were fabricated by repeating the acoustic assembling and two-
photon polymerizing procedure. Test results illustrated the feasibil-
ity of the novel A-TPP process for the successful production of het-
erogeneous composite microstructures with desired particle
patterns, locally controlled particle concentrations, and orientations.
The rest of the article is organized as follows: Sec. 2 describes the
proposed A-TPP process. Section 3 develops an experimental
model to predict the appropriate laser power and presents a test
case to validate the feasibility of the proposed method. Lastly,
Sec. 4 summarizes this study and its findings.

2 Method and Experimental Setup
2.1 Overview of the A-TPP Process and Setup. In this study,

synthetic black iron oxide spherical nanoparticles (Alpha Chemical,
Stoughton, MA) were used as functional fillers. The average dia-
meter of spherical iron oxide particles was about 20 nm. IP-L 780
photoresist (Nanoscribe GmbH, Eggenstein-Leopoldshafen,
Germany) was used as the base material. Its bright yellow color
makes it easy to observe the iron oxide particles in a microscope
during and after TPP printing. In addition to base and filler materi-
als, 1% of Irgacure photoinitiator (Sigma-Aldrich, St. Louis, MO)
and varied wt.% of thiol molecules (Sigma-Aldrich, St. Louis,
MO) were added to prepare the composite mixture samples. The
procedure for the material preparation is illustrated in Fig. 1(a).
First, iron oxide spherical nanoparticles were added into photoresist
containing 1% by weight of the photoinitiator. The solution was
vigorously stirred for 2 min and then left for 48 h at room tempera-
ture. After forming a homogeneous solution, thiol was added
with weight fractions ranging from 0 to 30 wt.% and stirred for
2 min.
A circular-shaped piezoelectric plate (R, 7.5 mm; h, 0.7 mm) was

incorporated onto the substrate in the TPP printer to align nanopar-
ticles and create microstructures. According to Wadsworth et al.,
smaller pattern thickness can be obtained at higher frequencies
[59]. Therefore, the piezoelectric plate with resonant frequency as
high as 3 MHz was selected (Steiner & Martins, Inc., Davenport,
FL). This plate was placed on the top of the Kapton tape, as
shown in Fig. 1(b). The signal was generated by a function gener-
ator (RIGOL Technologies Inc., Beijing, China) and amplified
(TEGAM Inc., Geneva, OH) to actuate the piezoelectric plate.
The actuated piezoelectric plate created acoustic waves in the com-
posite resist mixture, which drove nanoparticles to the wave nodes/
antinodes and hence assembled particles to the desired pattern.
A commercial two-photon polymerization (TPP) (Nanoscribe

GmbH, Eggenstein-Leopoldshafen, Germany) setup was retrofitted

Fig. 1 Procedure for the fabrication of nanoparticle–polymer composite microstructures using
the proposed A-TPP process: (a) procedure for sample preparation; (b) acoustic patterning of
nanoparticles in a liquid composite drop; and (c) schematics of the experimental setup
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to demonstrate the feasibility and effectiveness of incorporating
acoustic patterning into the TPP process. The system allows users
to tune the laser power in percent from 0 to 100. A laser power
of about 30% is usually used for curing the pure IP-L 780 photore-
sist in standard piezo scan mode. A 100% ratio is a laser power of
50 mW. Among various substrates, Kapton tape has been proven to
be highly responsive to the acoustic field for the manipulation of
particles [60] and nanostructures [61]. Therefore, in the retrofitted
TPP system, a piece of acoustic-responsive thin Kapton tape was
placed on the borosilicate glass substrate to accommodate the
short focal length of the objective lens and meanwhile facilitate
the acoustic patterning process. The retrofitted setup consists of a
laser system, a scanning system, and an acoustic system, as
shown in Fig. 1(c). A femtosecond pulsed laser emitting at
780 nm, with a pulse width of 100 fs and a repetition rate of
80 MHz, was used as the light source to polymerize the acoustically
patterned composite mixture. The piezoelectric stage was utilized
for scanning in the x, y, and z directions. The Kapton tape with pat-
terned nanoparticle–composite mixture and the piezoelectric plate
was then transferred on the top of the borosilicate glass substrate.
In addition, a small amount of immersion oil was dropped on the

bottom side of the substrate. The modified substrate was then
mounted on a linear stage via a substrate holder.

2.2 Fabrication of Anisotropic Composite Structures Using
the A-TPP Process. Figure 2 shows the flowchart for identifying
the minimum thiol concentration and safe operating laser power
to fabricate defect-free nanoparticle–polymer composite micro-
structures using the proposed A-TPP process. The process starts
with an initialization step defining the particle pattern thickness,
wt.% of nanoparticles, and actuation frequency. For a given
wt.% of iron oxide, Pthp was then identified by capturing the
movement of nanoparticles using a high-speed camera. In addi-
tion, the threshold laser power for the polymerization of TPP
resin (Pthr) was characterized. If Pthr is greater than Pthp, an
appropriate amount of thiol molecules, based on the developed
statistical model, must be added into the composite mixture to
lower polymerization threshold down to Pthp. Once the power
thresholds were balanced, the nanoparticles were acoustically pat-
terned on the Kapton tape and nanoparticle–polymer composite
microstructures were cured on the modified substrate by laser

Fig. 2 Flowchart for identifying the minimum thiol concentration and safe operating laser power
during A-TPP process

Fig. 3 Study of threshold laser power: (a) printing results with changing laser power and wt.% of
thiol; (b) relation between the wt.% of thiol and threshold laser power for polymerization (Pthr) of
IP-L 780 photoresist; and (c) threshold laser power for inducing the photothermal instability (Pthp)
for resin mixtures with iron oxide and copper nanoparticles at different loading fractions
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irradiation using the A-TPP process. Finally, the samples were
developed using SU-8 (MicroChem Corp., Newton, MA) for
9 min, followed by cleaning in an isopropyl alcohol (IPA)
(Sigma-Aldrich, St. Louis, MO) for 2 min and air drying.

3 Results and Discussion
3.1 Analytical Modeling of Threshold Intensities. This

section aims to develop a strategy for identifying the safe laser
power and appropriate concentration of multifunctional thiol mole-
cules to induce the polymerization at a power lower than or equal to
the photothermal instability threshold of nanoparticles. For this
purpose, we performed two experiments. The first experiment
investigates the effect of thiol concentration on the Pthr, and the
second focuses on identifying the Pthp values by observing the
nanoparticle movement upon laser irradiation. In addition to the
iron oxide nanoparticles studied in the test cases, copper nanoparti-
cle was also tested in the second experiment.

In the first experiment, five mixtures were prepared by mixing
IP-L 780 photoresist with thiol molecules with concentrations of
0%, 10%, 15%, 22.5%, and 30% by weight. A set of square
samples with dimensions of 100 µm wide by 100 µm long by
1 µm thick were fabricated at a fixed writing speed of 20 mm/s, a
0.4 µm slicing layer thickness, and a 0.3 µm hatching distance,
but with the laser power level progressively decreasing by 2% start-
ing from the 25% level. If the printed part has defects such as
incomplete geometry or behaving like a gel, the printing result
was marked as an unsuccessful printing. The experimental results
are plotted in Fig. 3(a). The lowest laser power that enabled suc-
cessful printing was identified as the threshold Pthr for the related
thiol concentration. As shown in Fig. 3(a), a remarkable reduction
in Pthr was observed as the concentration of thiol molecules in the
resin mixture increased. For example, by adding thiol concertation
of 22.5%, the lowest printable laser power was reduced from 25%
(without thiol) to 14%. Moreover, the presence of 30% by weight of
the thiol molecule in the IP-L 780 photoresist reduces Pthr from

Fig. 4 Fabrication of nanoparticle–polymer composite microstructures using the novel
A-TPP process: (a) illustration of mechanisms for the formation of microstructures
without and with the balancing of the laser power thresholds; composite printing using
the laser power of (b) 25%=Pthr (>Pthp), (c) 19%=Pthp (<Pthr), (d ) 19%=Pthr=Pthp (10%
thiol); (e) microscopic image of prepared sample before applying the acoustic field;
( f ) curve patterned 0.5 wt.% iron oxide sample at frequency 44 kHz (scale bar: 50 µm);
(g) curve patterned 0.5 wt.% iron oxide sample at frequency 2.2 MHz; (h) CAD model of
letters “UIC”; and (i) an optical image of letters “UIC” printed using the proposed
method with locally distributed iron oxide nanoparticles along the center (scale bar: 20 µm)
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25% to 12%. Figure 3(b) shows the relationship between the thresh-
old laser power for polymerization Pthr and the thiol wt.% for 1%
initiator concentration in the mixture. Let x be the wt.% of thiol mol-
ecules, based on the experimental results, the relationship can be
modeled as follows:

Pthr = −0.413 x + 25.005 (1)

In the second experiment, three mixtures were prepared by
mixing IP-L 780 photoresist with nanoparticles with concentrations
of 0.5%, 1.5%, and 2% by weight. To investigate the threshold
power for photothermal instability of nanoparticles (Pthp), the
laser power was gradually increased and the movement of the
resulting nanoparticles was monitored using a high-speed camera
(AxioCam MRM). The value of Pthp at which the movement of
nanoparticles due to the photothermal effect starts to be observed
was recorded and plotted in Fig. 3(c). The test was repeated for
iron oxide and copper nanoparticles with concentrations ranging
from 0.5% to 2% in weight. The observed results and the experi-
mentally fitted model Eq. (1) were used to identify the minimum
thiol concentration and the safe laser power for printing nanoparti-
cle–polymer composite microstructures using the A-TPP process,
as discussed in Sec. 3.2.

3.2 Test Case. Our hypothetical mechanisms for the formation
of nanoparticle–polymer composite microstructures without and
with balancing threshold intensities are illustrated in Fig. 4(a).
Under the unbalanced condition, when the laser power equal to
Pthr (>Pthp) is applied, a sudden temperature increase is found
around the irradiated nanoparticles, resulting in a quick movement
of nanoparticles and then bubbling of resin, which is known as the
photothermal effect. As a result, the nanoparticle pattern in the
resin gets distorted, and the desired nanocomposite structure
cannot be achieved. On the other hand, if the laser power equaling
to the threshold for photothermal instability Pthp (<Pthr) is applied,
the photothermal effect would be eliminated, but the polymerization
of liquid resin cannot occur as a result of the insufficient laser power.
On the contrary, under the balanced laser irradiation where the
applied laser power is Pthp (= Pthr), nanoparticle assembly maintains
the pattern and photoresin can get fully cured into the desired shape.
To test the above-mentioned hypotheses and validate the effec-

tiveness of the proposed acoustic field-assisted TPP method,
experiments were conducted to test the aforementioned three
cases. We prepared the composite mixture using IP-L 780 photo-
resist with a 1% photoinitiator and 0.5 wt.% iron oxide nanopar-
ticles. For case 1, the printing power selected was 25%, which is
equal to Pthr but greater than Pthp. As shown in Fig. 4(b), the pre-
pared composite was curable, but at such high power, obvious
photothermal effects of nanoparticles were observed along with
part defects caused by bubbles. Moreover, aggregation of nano-
particles was observed during printing. For case 2, the same com-
posite mixture was printed with 19% laser power, which is equal
to Pthp but smaller than Pthr. As shown in Fig. 4(c), no photother-
mal instability issues such as bubbling or aggregation were
observed, but such a low power failed to induce the polymeriza-
tion reaction. To lower Pthr down to 19%, according to Eq. (1),
we added approximately 10% (weight ratio) of thiol molecules
into the particle–polymer composite. In case 3, this particle–
polymer–thiol composite was tested with a laser power of 19%,
which is equal to Pthp and Pthr. We observed that the aggregation
and bubbling of nanoparticles (NP) did not occur, and the final
printed geometry had the desired shape, as shown in Fig. 4(d ).
The experimental observations validated our hypotheses, suggest-
ing that balancing threshold laser powers is critical for printing a
composite mixture, which can be done by adding the required
amount of thiol molecules to lower down the polymerization
laser power threshold Pthr to the photothermal instability laser
power threshold Pthp.
To further demonstrate the capability of assembling particles into

desired patterns and fabricating defect-free heterogeneous

composite structures using the novel A-TPP process, a small
amount of composite mixture with 0.5 wt.% iron oxide and 10
wt.% thiol was dropped onto the Kapton tape and the piezoelectric
plate was actuated. Figures 4(e)–4(g) show the microscopic images
of the prepared sample before and after applying an acoustic field at
various frequencies. Concentric curve patterns with an approximate
thickness of 35 µmwere successfully formed using the novel acous-
tic field setup with 2.2 MHz frequency and 5 V peak-to-peak
voltage, as shown in Fig. 4(g). A multi-material composite model
was then printed using the patterned nanoparticle–polymer compos-
ite by the TPP process.
Figures 4(h) and 4(i) show the computer-aided design (CAD)

model and an optical image of the letters “UIC” structures as an
example. The letters were fabricated at a scanning speed and a
laser power of 20 mm/s and 19%, respectively. The width of the
structure was 25 µm, and the total size of each letter was about
150 µm. From the image of the fabricated part shown in Fig. 4(i),
the locally distributed iron oxide nanoparticles along the center
can be observed. It shows the capability of the proposed A-TPP
process for fabricating nanoparticle–polymer composites with con-
trolled particle distribution patterns. This result also validated our
hypothesis that the two-photon curing of nanoparticle–polymer
composite with acoustically assembled nanoparticle patterns is pos-
sible by balancing threshold laser powers.

4 Conclusion
This work addressed the crucial photothermal effect challenge

in patterning and curing nanoparticles in the liquid resin during
acoustic assembling and two-photon polymerization. A novel
acoustic field-assisted Two-Photon Polymerization (A-TPP)
method is developed to fabricate patterned nanoparticle–polymer
composite microstructures, by integrating acoustic field into the
two-photon polymerization process and identifying appropriate
process parameter settings. Desired particle patterns and their
local distributions were planned and controlled using an external
acoustic field. An empirical model was developed for identifying
the minimum thiol concentration and safe laser power to cure
the resin composite with desired particle patterns. Test cases
were fabricated to validate the feasibility of the proposed A-TPP
process on the production of nanoparticle–polymer composite
microstructures with locally controlled particle distributions by
balancing threshold laser powers for polymerization and photother-
mal instability.
Future work will focus on integrating the effect of process set-

tings including writing speed and hatching distance, on the NP
assembly printing results, to achieve printing anisotropic compos-
ites or multi-material microstructures with a high material accuracy
and geometry accuracy.
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