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Assessments of groundwater and surface water budgets at a large scale, such as the contiguous United States, often
separately analyze the complex dynamics linking the surface and subsurface categories of water resources. These
dynamics include recharge and groundwater contributions to streamflow. The time-varying simulation of these
complex hydrologic dynamics, across large spatial and temporal scales, remains a scientific challenge due to the
complexity of the processes and data availability. In this study, groundwater fluxes and surface hydrologic pro-
cesses are simulated across the contiguous US for 1950-2010. The simulation estimates the monthly water budget
components, such as groundwater recharge, surface runoff, and evapotranspiration; streamflow in major rivers is
routed while accounting for groundwater exchange. Human impacts are included through groundwater pumping,
and climate variability is included, including variability in precipitation, temperature and potential evapotran-
spiration. The simulated groundwater level and river discharge have strong correlation with USGS observation
wells and streamflow gages, with R? values of 0.992 and 0.946, respectively. The simulated evapotranspiration
is compared with three other published estimation methods, showing that it is able to capture the magnitude
and seasonality of evapotranspiration over the Mississippi River basin. As such, the model is able to reasonably
simulate the surface and groundwater budgets over the US, allowing for questions of the relative importance of
climate and human impacts to be explored in the future.

1. Introduction Climate, subsurface conditions, and human activities all impact

groundwater levels. For example, during periods of low rainfall, ground-

Surface water and groundwater interact with one another, with sur-
face hydrologic processes impacting groundwater recharge and ground-
water levels determining baseflow in streams. The water budgets are
dynamically affected by climate conditions, such as precipitation and
temperature; human activities, such as water withdrawals from rivers,
groundwater pumping, and land use change; and terrestrial processes
such as plant water use. Estimating the surface and groundwater bud-
gets is critical for quantifying water resources across large spatial and
temporal scales, yet it remains a challenging task due to a lack of in situ
observations of critical hydrologic processes and poor characterization
of subsurface hydrogeologic properties. This study presents a contiguous
US (CONUS) set-up of the MODFLOW-One-Water Hydrologic Model Ver-
sion 2 (MF-OWHMZ2) (Hanson et al., 2014a; Boyce et al., 2020), which is
a surface and groundwater model capable of simulating the hydrologic
fluxes and storages for water budget assessment.
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water levels decline due to a reduction in groundwater storage from
low recharge rates (Wada et al., 2014) if the lateral groundwater flow is
limited (de Graaf et al 2017, Condon and Maxwell, 2017). Furthermore,
excessive groundwater pumping can threaten groundwater sources with
high groundwater depletion (Doll et al., 2014b; Scanlon et al., 2012).
In some regions, such as the Great Plains, groundwater levels increase
slowly due to low recharge rate and relatively low hydraulic conduc-
tivity (Peterson et al., 2016). The sensitivity analysis of groundwa-
ter level is analyzed on global scale with respect to hydraulic con-
ductivity, groundwater recharge, and surface water body elevation by
Reinecke et al., (2019). To maintain the groundwater availability and
baseflow to rivers, some global studies (Doll et al., 2014a; Pokhrel et al.,
2012; Wada et al., 2010) analyzed the groundwater recharge rate and
groundwater storage from water budget components; and other studies
(Peterson et al., 2016; Faunt et al., 2009) analyzed the streamflow in
regional aquifer systems.
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Although it is widely accepted that understanding surface and
groundwater fluxes and storages is critical for water resources planning,
collecting extensive in situ observations, such as groundwater levels and
subsurface geological properties, is prohibitively expensive over large
regions. Remote sensing data can provide estimates of hydrologic fluxes
over large spatial scales, but remote sensing has relatively short time
series and can typically only observe surface processes. The exception
is GRACE (Tapley et al., 2004), which can estimate groundwater stor-
age change through gravity field changes, but only at coarse spatial and
temporal resolutions. To overcome the remote sensing limitations nu-
merical models can be utilized to estimate and reconstruct the hydro-
logic fluxes and stores, thereby overcoming the observational data lim-
itations. These models can be useful tools to address critical questions:
for instance, what is the impact of climate variability and groundwater
pumping on groundwater availability.

Regional, hydrological and groundwater, models have been used
to simulate numerically the surface water and groundwater hydro-
logic processes. For example, three regional models have been set
up in detail over three major aquifers in the United States in Cen-
tral Valley, High Plains, and Rio Grande aquifer systems. The first
groundwater flow model simulates the Northern High Plains aquifer
(Peterson et al., 2016) and uses MODFLOW with the Newton-Rhapson
solver (Niswonger et al., 2011). The second is the Central Valley Hydro-
logic Model CVHM (Faunt et al., 2009) for California’s Central Valley
aquifer using MODFLOW-FMP2 (Schmid and Hanson, 2009). The forth-
coming new version of CVHM (CVHM?2) is being updated to use MF-
OWHM2. A third model is the Rio Grande transboundary integrated hy-
drologic model (RGTIHM) that simulates portions of New Mexico, Texas,
and Mexico (Hanson et al., 2020) using MF-OWHMZ2. These regional
models provide a better understanding of the surface and subsurface re-
gional water budgets and their dynamics. However, regional models typ-
ically cover a single aquifer, neglecting processes at the model bound-
aries. This means the streamflow, surface runoff, and lateral ground-
water flow may be neglected at the boundaries of these regional mod-
els. These assumptions can misrepresent the modeled water budgets
(Schaller and Fan, 2009; Krakauer et al., 2014), depending on the re-
gional conditions such as topography, geology, and climate.

Continental and global scale groundwater models were developed
(de Graaf et al., 2015; Fan et al., 2007; Maxwell et al., 2015) to not only
solve the problem of lateral flow at model boundaries, but because they
can provide a better understanding of the hydrology of an entire large-
scale system. For example, large scale models can analyze the spatial
variation of climate, geology, and topography and its effect on surface
water and groundwater availability, and they can analyze the surface-
groundwater interaction in different aquifers.

One of the first studies to simulate the groundwater depth across
the contiguous United States was conducted by Fan et al. (2007), where
the water table was estimated as the equilibrium of long-term climatic
forcing on groundwater level under a steady state model, followed by
a study of global observations of water table depth (Fan et al., 2013).
These studies led to the ability to connect groundwater with other hy-
drologic fluxes, which has been investigated in several later studies over
the United States. For example, Maxwell et al. (2015) used an integrated
groundwater model (ParFlow, Maxwell and Miller, 2005) to analyze the
surface and subsurface flow system over the majority of CONUS. To do
a high spatial resolution run, the model was run under steady state con-
ditions but can be run transiently as in Kollett (2009) and Maxwell et
al. (2016). Other studies simulate the groundwater on the global scale
using a model run at steady state (de Graaf et al., 2015) and tran-
sient (de Graaf et al., 2017), then analyzing the groundwater depletion
(de Graaf et al., 2019). These models simulate recharge and river dis-
charge from the global hydrological model PCR-GLOBWB (Wada et al.,
2011), then simulates the groundwater lateral flow from MODFLOW.
The MODFLOW One-Water Hydrologic Model (MF-OWHM2) used in
this paper simulates both surface hydrologic processes and groundwa-
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ter flow simultaneously in one model, overcoming the limitation of cou-
pling two models.

Some of these large scale models assume the magnitude and direc-
tion of the fluxes are constant over time (Fan et al., 2007; Maxwell et al.,
2015; de Graaf et al., 2015), thereby neglecting the temporal dynam-
ics of seasonal and interannual climate variability. In addition, human
activity, such as groundwater pumping, is often neglected. However, in
recent studies (de Graaf et al., 2017; Condon et al., 2019; de Graaf et al.,
2019) the groundwater pumping is simulated. In addition, incorporat-
ing streamflow routing is still a challenging component to model with
a coupled groundwater model because of modeling limitations or the
scarcity of needed data such as river hydraulic conductance over such a
vast area such as the United States. These challenges have led some past
studies to simplify the modeling of such a complex system by neglect-
ing human activity and simplifying or neglecting the streamflow routing
and its interaction with groundwater.

This study’s objectives are 1) to evaluate the feasibility of using MF-
OWHM2 at continental scales for water budget estimation and 2) to de-
velop and validate a CONUS-wide MF-OWHM2 model set-up that explic-
itly simulates hydrologic processes that link the surface and groundwa-
ter hydrologic processes and human impacts. The focus is on capturing
large-scale hydrologic patterns and human impacts to provide a base-
line model for the hydrologic community, which can then expand the
model to include more detailed processes relevant for specific research
questions. This model is complementary to other US-focused modeling
efforts, such as that of ParFlow, as it is more focused on including human
impacts in a parsimonious framework that would not require high per-
formance computing resources. In this paper, we first present the model
set-up, including simplifications, the observation-based input data, and
the assumptions made in some input variables. Then, the model valida-
tion and water budget results are presented, including both groundwater
and surface water. The conclusions are presented in the final section.

2. Model and data

To simulate the surface and subsurface hydrology of the contiguous
US (CONUS), this study uses MODFLOW-One-Water Hydrologic Model
Version 2 (MF-OWHM?2) (Boyce et al., 2020; Boyce, 2020), which is
a modular modeling software developed by the U.S. Geological Survey
and U.S. Bureau of Reclamation. MF-OWHMZ2 builds on the widely-used
MODFLOW model (Harbaugh et al., 2000, Harbaugh, 2005), which sim-
ulates groundwater fluxes at a range of spatial and temporal scales.
In addition to simulating groundwater fluxes, the standard version of
MODFLOW includes pumping and surface water routing (Prudic et al.,
2004). MF-OWHM2 incorporates a surface water model, allowing for
simulation of the partitioning of precipitation into infiltration and sur-
face runoff, evapotranspiration, and irrigation. MF-OWHM?2 is able to
holistically simulate the hydrologic system, including some of the ways
human’s impact hydrologic processes. It also allows for better quantify-
ing surface water and groundwater availability by directly coupling the
surface and subsurface hydrologic fluxes. Table 1 compares four large-
scale models simulating the lateral groundwater flow.

The model domain covers CONUS, extending from 132.437°W to
72.502°W and 22.177°N to 49.822°N (Fig. 1) and to a depth of ~60
m below the water table as a single vertical layer. The MF-OWHM2
study area is divided into a finite difference equal-area grid of approxi-
mately 13km, using the North America Albers Equal Area Conic projec-
tion. The domain covers a land area of approximately 11,790,960 km?,
which extends into Canada and Mexico. The ocean boundary conditions
are represented as a Cauchy boundary condition using the MODFLOW
General Head Boundary (GHB) module that specifies a single average
sea level elevation. The simulation time frame is from 1950 to 2010 at a
monthly time step, called a stress period in MODFLOW, with boundary
conditions specified for each month. For model convergence reasons,
each stress period contains two transient sub-steps, where the model
breaks up the monthly data into sub-periods. The model is simulated us-



M.H. Alattar, T.J. Troy and T.A. Russo et al.

Table 1

Comparison summary of models with lateral groundwater flow simulation.
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This study

Faunt et al. (2009);
Peterson et al. (2016);
Hanson et al. (2020)

Maxwell et al. (2016)

de Graaf et al. (2017)

Model type
Software

Model domain
Spatial resolution
Time step

Surface runoff

Streamflow routing
Groundwater recharge

Evapotranspiration from
groundwater

Confined aquifer
Groundwater pumping

Integrated groundwater
and surface water model
MODFLOW-OWHM

CONUS

13 km

monthly with two
transient sub-steps
simulated for each grid
cell

routed for major rivers
simulated with respect to
groundwater level
simulated based on the
groundwater level

not included

included

Integrated groundwater
and surface water model
MODFLOW-OWHM

Regional aquifers

1.6 km, 1km, 0.27km
monthly with two
transient sub-steps
simulated for each water
balance subregion
routed

simulated with respect to
groundwater level
simulated based on the
groundwater level
included

included

Groundwater and surface
water model

ParFlow with optional
coupling with CLM

Majority of CONUS

1 km

hourly (can be run transiently)

calculated

routed
Coupled with CLM (P-E)

simulated with CLM
not included

included in Condon and
Maxwell (2019)

Groundwater and surface
water model
MODFLOW

Global
10 km
monthly

Groundwater recharge and
streamflow discharge forced
with outputs from
PCR-GLOBWB

included
included
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Fig. 1. (a) Predominant soil type at 1.5 m depth using the POLARIS soil map (Chaney et al., 2016), classified into 12 soil types using the USDA classification.
(b) Average slope of the ground surface within each MODFLOW grid [m/m]. (c) e-folding depth for the regolith [m]. (d) Depth-averaged horizontal hydraulic

conductivity for the 60 m thick unconfined model layer [m/day].

ing MODFLOW'’s “convertible” option, which uses the unconfined equa-
tion when the water table is above the layer bottom and converts to the
confined equation when the water table is below the layer bottom of
a grid cell. Confined layers are omitted due to insufficient well obser-
vations in some confined aquifers to accurately set-up and validate the

model across the CONUS domain.

The model empirically estimates the evapotranspiration, based on
the monthly precipitation, reference evaporation, crop coefficient, and
the groundwater evapotranspiration extinction depth. The crop coeffi-
cient is the ratio of the actual evapotranspiration to the reference evap-
otranspiration for each crop type, and the extinction depth is the depth

at which there is no evaporation from groundwater sources. The sur-



M.H. Alattar, T.J. Troy and T.A. Russo et al.

face runoff to rivers is estimated based on the surface runoff coefficient,
which is the ratio of the surface runoff from the rainfall over the infiltra-
tion. Groundwater recharge is estimated as the residual of the water bud-
get. MF-OWHM2 calculates the vertical and the horizontal groundwater
flows using a finite difference scheme of the three-dimensional ground-
water equations and estimates the interaction between the groundwater
and surface water. These fluxes are calculated based on the subsurface
properties (Harbaugh, 2005; Prudic et al., 2004), such as the hydraulic
conductivity and layer thickness, and the climatic conditions. The un-
saturated zone is not simulated in this study, which increases the sim-
ulation error when water that infiltrates takes longer than the model
timestep to reach the water table. This is common in very dry areas
such as the southwestern deserts (Scanlon et al., 2006; Flint et al., 2007)
and may result in an over- or underestimate of the groundwater fluxes.
Both surface runoff and baseflow from the groundwater to rivers are
simulated, and streamflow is routed in the major rivers (Section 2.4).
In addition to the effect of climate variability, the model includes the
human impact on groundwater levels by simulating withdrawals using
the MODFLOW well module and explained (Section 2.3). Details of the
model set-up are described below.

2.1. Subsurface hydrogeologic parameters

The ground surface elevation was specified using the HydroSHEDS
30-second resolution digital elevation model (Lehner et al., 2006). Using
HydroSHEDS, the average ground surface elevation of each 13km model
grid cell was calculated. MODFLOW calculates the layer thickness as the
difference between the ground surface elevation and the layer bottom
(explained in Section 2.2); this layer thickness is used in the groundwa-
ter equations.

The model hydraulic conductivity was estimated using the method
derived by Fan et al. (2007) that is based on soil type. The soil type was
first characterized into fractions of sand, silt, and clay using the POLARIS
soil database (Chaney et al., 2016), and the average for the top 1.5m
depth is calculated. Then, the fractions were used to specify in which
of the twelve soil types in the United States Department of Agriculture
(USDA) soil type classification the grid cell belongs (Fig. 1a). This was
then used to estimate the hydraulic conductivity at 1.5 m depth. The
vertical hydraulic conductivity is calculated for each soil type from the
Land Data Assimilation System (LDAS, http://ldas.gsfc.nasa.gov/); and
the horizontal hydraulic conductivity is calculated using the anisotropy
ratio estimated by Fan et al. (2007). Using the estimated hydraulic con-
ductivity at 1.5m depth below the ground surface, each grid cell’s hor-
izontal hydraulic conductivity was estimated for the full depth of the
model layer thickness, extending to 60 m below the groundwater level.
This was done using the depth-dependent exponential relationship de-
rived by Fan et al. (2007):

) _a_ <0.16
K=K, exp (—Z—>, where : =1 g TP < o)
f S5m, for B >0.16

where a and b are constants, 2’ is the depth where the hydraulic conduc-
tivity is calculated, g is the terrain slope, K,, is the hydraulic conductivity
at 1.5m depth,and f is the e-folding depth which is the depth interval in
which the exponential decline of hydraulic conductivity decreases by a
factor of the natural logarithm constant e (e=2.71828). The constants a
and b were taken from the best-fit in Fan et al. (2007), where a equals
120 m and b equals 150 m.

To calculate the terrain slope, f, and e-folding depth, f, ad-
ditional data is required. The terrain slope g is calculated as the
average slope of the 1.25 km pixels within the MODFLOW grid
cell for both regolith (Fig. 1b) and bedrock. The regolith is a layer
of sediment, such as dust, soil, sand, gravel, and loose rock, that
covers a hard rock formation. The 1.25 km pixel slopes are calcu-
lated from the HydroSHEDS elevation data, first reprojected to the
North American Albers Equal Area Conic projection, used in this
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MODFLOW set-up. The depth to bedrock data was downloaded from
(http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&
dtb&methods) which is available for a depth of 152 cm across the
United States (Fan et al., 2007). Since this study focuses on the United
States, the depth to the bedrock in Mexico and Canada was assumed
to be zero to simplify the model. Because of the equations’ form, this
has only a minor impact on the estimated hydraulic conductivity. The
assumption of 13 km grid size increases the error in the simulation due
to the uncertainty related to averaging the depth to bedrock and the
ground surface elevation over a relatively large grid cell especially in
the heterogeneous terrain such as the southwest region.

The e-folding depth (f) was calculated for both bedrock and regolith
at 1.5 m depth and depends on the topography (Fig. 1c). In Eq. (1),
the hydraulic conductivity (K) decreases exponentially with depth 2.
To calculate a depth-averaged hydraulic conductivity, the horizontal hy-
draulic conductivity was calculated for every 0.5 m depth interval from
the ground surface elevation to the layer bottom of 60 m below water
table, and the integrated equivalent horizontal hydraulic conductivity
was calculated using the following equation (Todd and Mays, 2005):

" K dz

KX — Z,:l H i i ( 3)
where H is the model layer thickness, and K, is the final horizontal hy-
draulic conductivity (Figure 1d) for the model layer thickness, dz; is the
0.5m depth interval increment, K; is the horizontal hydraulic conduc-
tivity at each 0.5 m interval increment within the model single layer.

As mentioned above, the model consists of one layer with a thick-
ness of ~60m below the estimated observed groundwater level used to
initialize the model; details of estimating the initial groundwater level
are below. The exception is below rivers, where a minimum thickness of
20m below the riverbed is specified to allow for model convergence. In
a few river grid cells, the river segment is below the average 13km layer
bottom due to large topographic gradients, and this is not allowed in the
model. Impermeable conditions were assumed below the model layer
because the hydraulic conductivity values below 60 m are prohibitively
small when using the exponentially decreasing hydraulic conductivity
method in Eq. (1). The specific yield (Figure S1) was estimated from
the aquifer sediment and rock type using Heath (1983) and Morris and
Johnson (1967). The aquifer sediment and rock type map is taken from
the USGS (Miller, 1990).

2.2. Groundwater observations and model initial conditions

U.S. Geological Survey (USGS) observation well data was used to
specify the model initial conditions and to validate the modeled ground-
water levels. There are 780,851 wells with at least one observation be-
tween January 1950 and December 2010 across the United States. Of
these, wells were excluded if they met any of the following conditions:
(1) the well was identified by the USGS as confined, mixed aquifer type,
or undefined aquifer type, (2) the well elevation is unavailable, (3) the
well elevation is below -10 meters to eliminate wells with missing data
flags or unrealistic elevation values, (4) the well elevation is greater
than 4000 meters above sea level, (4) the well is designated as pumping
wells, injection wells, obstructed, damaged, plugged, dried, or flowing,
(5) the well has an average observed water depth deeper than 300 m,
implying it is in a deep aquifer outside this model’s bounds. The lat-
ter condition was necessary to provide preliminary initial conditions of
the water level. After the model was spun-up, the simulated water level
was used to determine the model layer thickness, which is a minimum
of 60m below the water table of each grid cell. After the layer thick-
ness was determined, we verified that no wells are below the model’s
vertical extent and that 300m below the water table was a reasonable
assumption for the model layer thickness. Applying these five criteria
resulted in 642,839 wells that could be used for initializing the model.
This approach was similar to that used in Fan et al. (2007).
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Fig. 2. (a) Interpolated groundwater level [m] above sea level used for the model initial conditions using a triangulation-based natural neighbor interpolation for
the 642,839 selected USGS site observations over the United States. (b) Groundwater depth [m] below the ground surface over the United States.

Water depths from the selected wells were utilized to calculate the
water level of the model initial conditions for January 1950. Water level
observations were spatially interpolated using a triangulation-based nat-
ural neighbor interpolation, which is a mix between linear and cubic
nonlinear interpolation using the MATLAB function griddata() with the
natural interpolation option. The interpolated groundwater level is con-
strained to not exceed the average ground surface elevation for each
grid cell. Because there are a limited number of wells with observations
dating back to 1950, a strategy was developed to utilize well observa-
tions whenever they exist. For wells with observations beginning after
January 1950, the water level for the earliest January observation is
used; selecting one month, in this case January, eliminates the impact
of seasonal variability on water levels. For wells with only one observa-
tion, the water level is assumed to be the same as January 1950. This
assumption allowed for the inclusion of more wells, particularly in large
areas of the country that were data scarce in the mid-20™ century. The
impact of this assumption on the model’s performance is discussed in
the next section. The water level in the ocean and lakes is assumed to
be constant over time and is simulated using the General Head Boundary
(GHB) module in MF-OWHM2. In the major lakes, the water level was
estimated from the HydroSHEDS digital elevation map (Lehner et al.,
2006). The ocean boundary condition water level is set equal to mean
sea level. The initial conditions for the model consist of the interpolated
January 1950 water level combined with the boundary condition for
lakes and oceans (Fig. 2) and data for Canada and Mexico were linearly
extrapolated and run under a spin up model as explained in detail in
Section 3.

2.3. Groundwater pumping

Well pumping was estimated using the USGS Water Use dataset
(https://water.usgs.gov/watuse/data/, last accessed on July 18, 2019),
which is available on a county scale every five years since 1985. County
groundwater withdrawals are uniformly distributed across the model
grid cells located within the county. The available USGS groundwater
withdrawal data do not specify aquifer type for withdrawals; all pump-
ing, regardless of aquifer source, is assumed to be from the unconfined
aquifer. Furthermore, because the USGS groundwater withdrawals data
is only available for every five years, the pumping rate is assumed to be
temporally constant between the available years. Pre-1985 years are as-
sumed to be the same as 1985 withdrawals. This imposes errors, but in
the absence of data for before 1985, it allows for incorporating human
influence on the hydrologic cycle. To simplify the pumping simulation,
each grid cell in the model contains one effective well in the center,
which represents all the pumping wells within the grid cell.

2.4. Surface water routing

Streamflow is simulated using two different modules: the major
rivers are routed using the streamflow routing (SFR) module, and the
tributaries using the rivers (RIV) module (Fig. 3a). The river network
shapefile was downloaded from https://www.naturalearthdata.com,
which primarily derived the data from the U S. World Data Bank 2
(2006). They classified the main rivers from the “double-lined rivers”
classification level, this data is used for the main rivers in this study.
The small rivers and tributaries obtained from the same source for lower
river classification levels. The SFR module calculates the water exchange
in the river channel between surface water and groundwater and routes
the river discharge downstream, accounting for surface runoff and base-
flow inputs to the river for each river grid cell. The RIV module only
calculates the water flux between the streamflow and baseflow from
groundwater without routing, making it computationally more efficient
than the SFR module. In the river validation, the baseflow to rivers cal-
culated by the RIV module is added to the rivers simulated by the SFR
module for each month. Because the RIV module does not incorporate
surface runoff into the streamflow, all the surface runoff is included in
the SFR routing.

There are 358 USGS streamflow gages selected for the SFR module
that are located on the SFR river network and that have at least 50 years
of continuous monthly observations from 1950 to 2010. The SFR river
network consists of 5241 grid cells that are divided into 595 segments,
where 358 of these segments have a USGS gage station at the start of the
segment. Thus, the discharge at the upstream grid cell for each segment
is equal to the observed discharge of that USGS gage station. During
the simulation, the model SFR module routes the streamflow for each
river segment downstream, accounting for interactions between surface
water and groundwater via baseflow and for the surface runoff that runs
off to the river segments. In this study, infrastructure such as dams and
water transfers are neglected.

The model study area was divided into 183 water balance subregions
(WBS, Fig. 3b), using the 1:250,000-scale Hydrologic Units (huc250k)
(Steeves and Nebert, 1994), and watersheds without a SFR river seg-
ment were combined so that each water balance region has a river ex-
cept Canada and Mexico. This allows the Farm Process (FMP) in MF-
OWHM2 to distribute the surface runoff water from each water balance
subregion over the number of SFR rivers grid cells located within each
one uniformly.

To simplify the SFR model, some assumptions were made. First, due
to a paucity of large-scale data on river bed hydraulic conductivity, the
river bed hydraulic conductivity was assumed to be equal to the grid
cell’s horizontal hydraulic conductivity, this used by the model to cal-
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Fig. 3. (a) The simulated river network. Blue grid cells represent rivers simulated using the stream flow routing (SFR) module. Orange grid cells are rivers tributaries
simulated using the river (RIV) module. Grey grid cells are lakes and oceans included in the general head boundary (GHB) module. (b) The simulated water balance

subregions from Steeves and Nebert (1994), aggregated into 183 regions.

culate the river bed conductance. The river bed thickness is set to 1m,
and the Manning’s roughness coefficient is 0.04, which is typical for nat-
ural streams (Chow, 1959). If a stream gage was missing stream width
or elevation data, it was taken from Google Earth or the USGS DEM, re-
spectively. In this model, the stream width and elevation data linearly
interpolated for grid cells between the gage stations by the model, this
option can be changed to specify the stream width and elevation data
for each grid cell. The model allows for precipitation and evaporation
from the river water surface; this was assumed to be zero given the
large-scale nature of the simulation and the lack of data with which to
validate these processes.

The river module (RIV) was used for the smaller river tributaries.
This tributary river network covers the United States with 4625 grid
cells included in this model. The river elevation for RIV grid cells was
estimated from the USGS digital elevation map. The water depth was
assumed to be 3m for all RIV tributaries.

2.5. Land cover

Land cover data was taken from USDA’s CropScape (USDA Na-
tional Agricultural Statistics Service Cropland Data Layer, 2010) for
2010 and held constant over the modeling period. For Canada and Mex-
ico, land cover is from MODIS (Channan et al., 2014). The land cover
dataset was first aggregated into 23 types using the California Depart-
ment of Water Resources (2000) classification system, then the domi-
nant land cover within each model grid cell was selected (Fig. 4b). The
land cover data is used to specify crop coefficients and calculate poten-
tial evapotranspiration. The crop coefficient values were estimated from
previous studies (Allen et al., 1998; Faunt et al., 2009; Hanson et al.,
2014a; Hanson et al., 2014b; Boyce et al., 2020) (Fig. 4a), and the crop
coefficient of non-cropped land cover types is set equal to one by con-
struct. For cropped land cover types, the crop coefficients are constant
across the study domain.

2.6. Climate data

Climate conditions, such as precipitation, potential evaporation, and
temperature, have a significant impact on water supply and demand for
both surface and groundwater. Climate data such as precipitation and
temperature are available on daily intervals but in this study climate

data are simulated on a monthly time interval called a stress period.
In this model, the monthly climate-related input data are precipitation,
snowmelt, and reference evapotranspiration, then MF-OWHM2 simu-
lates the impact of climate variability on both surface water and ground-
water processes. MF-OWHMZ2 assumes all precipitation is rainfall, and
therefore capable of being partitioned into runoff and infiltration, a por-
tion of which can be consumed as evapotranspiration. However, much
of the US has a significant snow season, and this assumption would
be inappropriate in the northern and western US. To account for the
snowmelt lag, the Variable Infiltration Capacity (VIC) hydrologic model
(Liang et al., 1994; Liang et al., 1996) snowmelt outputs were used.
VIC is a land surface model that solves for energy and water budget
closure at the land surface and includes a snow model. VIC was imple-
mented using the meteorological forcings of Maurer et al. (2002), up-
dated to extend from 1950 to 2010, and the calibrated parameters from
Troy et al. (2008). The VIC-simulated liquid input to the soil, essentially
rainfall and snowmelt, is then passed to MF-OWHM2 to account for the
time lag in precipitation that would occur due to the snowpack. Because
MF-OWHM2 is on the North America Albers Equal Area Conic projec-
tion and the Maurer and VIC data are on the World Geodetic System of
1984 (WGS84) projection, the VIC and Maurer datasets are interpolated
using a bilinear interpolation method.

The monthly reference evaporation was calculated by VIC for natural
vegetation and tall and short reference crops, and the minimum poten-
tial evaporation for the MF-OWHM2 is constrained to be at least the
actual evaporation from VIC model. Finally, MF-OWHM2 calculates the
potential evapotranspiration by multiplying the reference evapotran-
spiration by the crop coefficient for each land cover type. For Canada
and Mexico, precipitation and evapotranspiration data were taken from
global VIC simulations (Sheffield and Wood, 2008) forced with the
dataset of Sheffield et al. (2006). Further details on evapotranspiration
calculations are in the following section. In this model, the irrigation
withdrawals from streams were neglected and all irrigation water from
pumping is assumed to be consumed. Thus, the simulated evapotranspi-
ration is only calculated from the precipitation and groundwater. This
may increase the potential simulation errors and neglecting the season-
ality variation of the irrigated. In future studies, the irrigation water
supply and demand from pumping and streams and its consumptive use
could be included.



M.H. Alattar, T.J. Troy and T.A. Russo et al.

(a) Crop coefficient [-]
14
1.2
1
0.8
0.6
0.4
0.2
0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Wheat Hay Alfalfa
Rice Corn —— Cotton
——Field crops ——Vineyards ——Truk crops
(b) Predominant land cover type

_Liew

100°W ___90°W___ 80°W __

45°N}--.
40°N[-§8
35°Nf--.

30°Nf

25°Nf
Water [l Vineyards [ 1 Grassland
Fallow/Idle W Truck Crops [ Decidouos Forest
Riparian Wheat M Mixed Forest

Corn [ Other Grain Crops Evergreen Forest
[@ Cotton [Rice [ Developed/ Open Space
['1Soybeans [/Hay [ Developed/Low Intensity

Sorghum [JAlfalfa W Developed/High Intensi
M Other Field Crops [7]Shrubland B v

Fig. 4. (a) Crop coefficients for different crop land cover types (Allen et al.,
1998; Faunt et al., 2009; Hanson et al., 2014a; Hanson et al., 2014b; Boyce et al.,
2020). (b) Predominant land cover type. Over the United States land cover is
from the USDA’s CropScape (USDA National Agricultural Statistics Service Crop-
land Data Layer, 2010) (https://nassgeodata.gmu.edu/CropScape/). For Canada
and Mexico, land cover is from MODIS (Channan et al., 2014).

3. Model spin-up and calibration

For calibration purposes, a simplified 12-month model—using the
seasonal averaged climate variables from 1950 to 2010—was created for
the model spin-up and calibrated to estimate the groundwater level in an
equilibrium state and to calibrate the extinction depth of groundwater-
sourced evapotranspiration using the Farm Process version 4 (FMP) of
MODFLOW-OWHM2. The simplified, 12-month model was run with the
seasonal climatology, allowing for errors in initial conditions to dissi-
pate. Evaluation of the water levels in the model shows that changes
in water levels exponentially decline across several months, such that
water levels are stable by the end of the 12-month run. These errors can
also be due to uncertainty in the estimated hydraulic conductivity used
in this model. Errors in the hydraulic conductivity can lead to incorrect
hydraulic gradients and lateral water movement. In addition, hydraulic
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gradients between rivers and the surrounding topography can lead to
inaccurate baseflow estimates until equilibrium is reached. At the end
of the 12-month model spin-up, the water levels are used as the initial
conditions for both the calibration and the full study period simulations.

For modeling evapotranspiration, it is important to note that MF-
OWHM?2 does not separately simulate the near-surface soil moisture that
is directly accessible to the plants in their rooting zone (Hanson et al.,
2014Db). Instead, the near-surface soil moisture is included in the ground-
water budget as part of the water stored in the unconfined aquifer layer.
Thus, the change in both soil moisture and groundwater level is included
in the simulated change in groundwater level. In the FMP, evapora-
tion and transpiration are modeled separately. One of evapotranspira-
tion concepts employed in FMP is to linearly increase groundwater con-
sumption as transpiration when the water table plus a capillary fringe
length intersects the average root depth until the water table reaches
the average root depth. When the water table intersects the average
root depth, the transpiration consumption linearly decreases to repre-
sent anoxic conditions. Due to the size of this simulation domain, a pos-
itive feedback loop occurred when the water table resulted in too much
anoxia causing a reduction in transpiration, which further increased the
water table elevation and the amount of anoxia. To avoid this feedback
loop, all evapotranspiration is modeled as evaporation, which does not
include anoxia as part of its simulation. Because crop coefficients are
used in conjunction with reference evaporation, this results in reason-
able simulations of evapotranspiration within the model structure.

In this model, a linear relationship is used for the subsurface-
sourced evapotranspiration calculations, where the calculated evapo-
transpiration will be equal to the potential evapotranspiration when the
groundwater level reaches the ground surface elevation, and subsurface
evapotranspiration (from groundwater and near-surface soil moisture)
equal to zero when the groundwater level is lower than the ground-
water evapotranspiration extinction depth. The model extinction depth
was calibrated using the 12-month calibration model with the objec-
tive of matching the evapotranspiration calculated by the VIC model.
Specifically, the spatial average of the absolute difference between MF-
OWHM2 and VIC-simulated ET is minimized. Compared to the VIC-
estimated ET, the MF-OWHM2 simulated evapotranspiration, for the
12-month model of the CONUS simulation domain, had an average ab-
solute bias of 1.033 mm/month and a root mean square error of 3.701
mm/month. Because there are no accurate observations of evapotran-
spiration over the US, we are using VIC-estimated ET to calibrate the
constant extinction depth for this model. For the 732-month model, the
average absolute bias is 2.66 mm/month and the average root mean
square error is 5.46 mm/month. These error statistics demonstrate that
the calibration with the simplified model can be used with the full ver-
sion, with a small increase in errors. This allows for a much faster cali-
bration over such a large domain.

The surface runoff coefficient was calibrated using the full model
simulation from 1950 to 2010. This calibration was conducted because
sensitivity studies show that the cumulative change in groundwater level
is very sensitive to the surface runoff coefficient parameter, as this con-
trols infiltration to the subsurface. The calibration allows for the assump-
tion of negligible change in groundwater storage from 1950 to 2010. The
calibration error of groundwater level for the calibrated surface runoff
coefficient is calculated as the spatial average of root mean square er-
ror, and it is equal to 0.135 m for the CONUS simulation domain. This
calibrated surface runoff coefficient was used for the full monthly model
simulation from 1950 to 2010, which also included groundwater pump-
ing.

4. Model validation, results, and discussion
4.1. Groundwater validation

The full monthly model simulation from 1950 to 2010 with ground-
water pumping is validated against the observed groundwater levels
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Fig. 5. (a) Validation between the average annual values of the reference observed water level from USGS wells (x-axis) and the model simulated water level (y-axis)
from 1950 to 2010, with root mean square value of 3.82m. (b) Histogram of average monthly model bias of simulated water levels [m], the mean bias is 2.28m.

from the selected USGS wells for unconfined aquifers. The validation
was implemented between USGS well measurements and the simulated
groundwater level in the grid cell that contains that well for the months
when a measurement was made. The criteria to select the USGS observa-
tion wells for the groundwater level validation is similar to the criteria
used for the model initial condition, but wells with only one month of
observations were removed. This results in 151,415 USGS wells with
time series for the groundwater validation. Of the selected wells, 900
have at least 30 years of data and 16,054 have at least five years of
data. Because the well observations have different record lengths, the
statistics are calculated for each well for those months with observed
groundwater levels. The statistics for grid cells with observations begin-
ning in January 1950 and those grid cells with later data are similar,
indicating that the assumption made to include wells in the initial con-
ditions, regardless of data availability at the start of the model period,
did not significantly impact the model performance.

Simulated and measured mean annual groundwater levels for 1950
to 2010 across the 151,415 USGS groundwater observation sites have
an R? value of 0.9926 (Fig. 5a). This is similar to the R? of the esti-
mated groundwater level by previous studies. For example, an R? value
of 0.999 was calculated by Fan et al. (2007), where the water table was
estimated as the equilibrium of long-term climatic forcing on ground-
water level under a steady state model. Maxwell et al. (2015) simulated
the water table using the ParFlow groundwater model (Maxwell et al.,
2015) over most of CONUS using a high spatial resolution, steady state
run with an R? value of 0.998. Another example of simulating the water
table is a study by de Graaf and others (2017) using MODFLOW model
globally, with R2 value of 0.94.

Fig. 5b shows the histogram of model bias in groundwater level. The
mean bias is 2.28m, with relatively few wells having a large bias. For
example, 5.2% of the wells have a negative bias greater than -50m and
9.1% of the wells have a positive bias greater than 50m. The bias results
for many reasons. There is uncertainty in model parameters, bound-
ary conditions, and pumping observations. Errors are introduced due
to the difference between the observed water level for each individual
USGS well and the average groundwater level for wells located on a
13 x 13 km grid cell area. In other words, the elevation of the water
level measurement can be very different from the average grid cell el-

evation. The largest error in groundwater level values occurs in three
regions (Fig. 6 and Figures S2-S4): heterogeneous terrain, near rivers,
and the regions with high pumping rates. In heterogeneous terrain, the
errors occur for two reasons. First, significant errors are introduced due
to the topography, as groundwater levels can vary significantly within
a 13 x 13km grid cell; the error is calculated as an average through-
out the grid cell and is therefore sensitive to where the individual USGS
wells are located within a grid cell. The large, 13 km, grid cell may
mischaracterize the deep arid zones in the west and increase the simula-
tion error. In addition, this model includes only unconfined aquifer type
wells following previous studies (Fan et al., 2007; Maxwell et al., 2015).
Groundwater flow in the confined aquifer is neglected. This assumption
increases the model uncertainty and misrepresents the aquifers system
because groundwater in the confined aquifer has much lower storativ-
ity, therefore calibrating to groundwater head will lead to skewed pa-
rameterization. Second, there is simulation error due to the uncertainty
in model parameters. For example, overestimating hydraulic conduc-
tivity (K) allows the groundwater to move too quickly from higher to
lower groundwater levels, resulting in a milder hydraulic gradient than
the hydraulic gradient of the interpolated USGS observation wells. Near
rivers, the errors occur due to the uncertainty in river parameters and
due to topography. For example, in the SFR module, the errors result
from uncertainty in the river bed hydraulic conductivity, the difference
between the groundwater level and water level in streams, and accumu-
lated errors from river routing. Outside of heterogeneous regions and
along rivers, the model has a high correlation with the USGS historical
observed groundwater levels. In these areas, the model is able to sim-
ulate the mean water levels well, with larger errors in simulating the
variability (Figure S5).

4.2. River routing and water budget validation

Results of both SFR and RIV modules were post-processed by adding
the monthly simulated baseflow between the rivers and groundwater
in the RIV module to the SFR module, where the RIV flow within
each watershed was uniformly distributed across the SFR grid cells lo-
cated within the same watershed. The routed streamflow was validated
against the observed discharge from the available USGS gage stations
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the interpolated, grid cell averaged observed water level from USGS wells. A positive bias indicates the simulated water level is higher than the measured water

level.

located on the SFR river network with at least 50 years of monthly
streamflow observations from 1950 to 2010. The simulated routed out-
flow from each river segment downstream was validated with the USGS
gage station located on the upstream of next river segment that con-
nected with it. The USGS observed streamflow is used as the upstream
boundary condition for each routed segment. Fig. 7a shows the scatter
plot of the average observed versus simulated streamflow on a log scale,
and Fig. 7b shows Nash-Sutcliffe Efficiency values which represents how
well the model simulates both the mean and variability in streamflow.

The results show a strong correlation between the simulated and ob-
served discharge for each SFR river segment, with a R? equal to 0.95 for
the actual values and 0.87 for the log values. The model overestimates
streamflow in smaller basins; this occurs because the current version of
the Farm Process (FMP) distributes surface runoff water equally over the
SFR river grid cells that are located within the same water balance sub-
region. Time series of randomly selected gages are plotted in Figure S6.
Surface water withdrawals for irrigation are not included in this model.
Because USGS observations are used as upstream boundary conditions,
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this will not have a significant impact on the routed streamflow as it is
implicitly accounted for in the observations.

Fig. 8 shows the time series of the simulated evapotranspiration
against evapotranspiration estimated using different methods over the
Mississippi basin presented by Sheffield et al. (2009); the data were
digitized from the published paper. The simulated evapotranspira-
tion using MF-OWHM?2 is compared with three estimation methods
of daily evapotranspiration: (1) Estimation of daily evapotranspira-
tion using remote sensing based on the Penman-Monteith equation
(Monteith, 1965). These remote sensing, Penman-Monteith (RC-PM) es-
timations of evapotranspiration data are the ensemble mean with vary-
ing inputs, which are calculated using a revised Penman-Monteith equa-
tion from Mu et al. (2007). (2) Evapotranspiration inferred as a residual
from the North American Regional Reanalysis (NARR) (Mesinger et al.,
2006) atmospheric water budget. (3) Estimation of daily evapotranspi-
ration using the VIC hydrologic model set-up described in Section 2.6. In
this MF-OWHM2 set-up, the extinction depth of groundwater evapotran-
spiration was calibrated to get simulated evapotranspiration similar to
the estimated evapotranspiration using this VIC hydrologic model. The
root mean square error between the MF-OWHM2 simulated evapotran-
spiration and the RC-PM, NARR Inferred, and VIC estimations are 8.57,
8.29, and 4.69 mm/month, respectively, over the Mississippi basin from
2003 to 2006. The evapotranspiration from near-surface soil moisture
was assumed to be part of the groundwater budget, and both groundwa-

ter and near-surface soil moisture changes are accounted for in the sim-
ulated groundwater level change. This assumption was made because
MF-OWHM2 does not explicitly account for the soil moisture term in its
equations.

4.3. Water budget

Fig. 9 shows the seasonal cycle of the simulated water budget for
various water resource regions across the United States. The water bud-
get is averaged from 1950 to 2010, which includes the average monthly
precipitation as input data, the simulated total evapotranspiration (ET)
and the partitioning of ET from precipitation and groundwater sources,
the simulated surface runoff, and the deep percolation, which is calcu-
lated as the residual of the surface water budget: precipitation minus the
surface runoff minus the evapotranspiration from precipitation. Results
show how the simulated water budget components vary spatially and
seasonally over the model domain. Each region has a different seasonal
behavior depending on its climatological and geological conditions. For
example, California has a Mediterranean climate with precipitation oc-
curring in the winter whereas the the Ohio and Missouri river basins
have higher precipitation in the summer. Consequently, the evapotran-
spiration seasonality is weaker in California than other regions. New
England demonstrates the importance of snowmelt on the water bud-
get, whereas the Texas Gulf water resource region has the smallest ef-
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fect of snow. Incorporating snowmelt into MODFLOW affected the sim-
ulated seasonality of the water budget but not the long-term averages.
Figure S7 plots the last decade of model results, showing that rainfall
and runoff have the largest interannual variability. Variability in evapo-
transpiration is dominated by the seasonal cycle rather than interannual
variability. In humid climates, like the Great Lakes and Ohio water re-
source regions, deep percolation primarily occurs in the winter months
when ET demand is low. The same is true for California, but in this case
the wet season coincides with low ET in the winter months, leading to
stronger seasonality. The Great Basin, which is arid, shows a tighter re-
lationship between precipitation and deep percolation than in the other
water resource regions. Throughout the USGS water resource regions,
evapotranspiration has the lowest coefficient of variation of the hydro-
logic fluxes analyzed here. Deep percolation and evapotranspiration had

the largest, likely due to the model structure and that these integrate
the impacts of both precipitation variability and ET variability. Drier
regions have larger variation in precipitation, and this propagates into
higher coefficients of variation in all the other hydrologic fluxes in these
regions.

5. Conclusions

In this paper, the groundwater and surface water budgets were sim-
ulated on a monthly time step across the United States, using the tran-
sient MODFLOW-One-Water Hydrologic Model Version 2 (MF-OWHM2,
Boyce et al. 2020, Boyce 2020). The model includes the impact of cli-
mate variability and human activities, specifically groundwater pump-
ing, on the groundwater levels, including their seasonality. In addition,
the lateral groundwater flow is simulated and interacts with surface wa-
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ter. This model contributes to the literature by fully coupling the simu-
lation of surface and groundwater processes over a large spatial scale in
a publicly-available, USGS-supported model. In this paper, version 4 of
the Farm Process (FMP) is used for evapotranspiration, surface runoff,
and recharge estimations. The FMP module works simultaneously with
the groundwater, streamflow routing, and wells pumping modules as
one integrated hydrologic model.

Model validation shows that both the simulated groundwater levels
and streamflow have a good correlation with the 151,415 selected ob-
servation wells and the 358 selected river gage stations, with a R? equal
to 0.992 and 0.946, respectively. The simulated evapotranspiration (ET)
also is well simulated compared with other estimation methods. The root
mean square error values between the simulated evapotranspiration us-
ing MF-OWHM?2 and RC-PM, NARR Inferred, and VIC estimations are
7.97,7.23, and 3.27 mm/month respectively, over the Mississippi basin
from 2003 to 2006. Based on validation of ET, streamflow, and water
levels, the model is well-constrained and able to simulate the water bud-
gets.

Overall the simulation results match well with observed head,
streamflow, and VIC evapotranspiration estimates with the exceptions
likely originating from model structural error, lack of sufficient input
datasets, and exhaustive automatic calibration. The largest source of
model structural error is the large grid cell size (13km). Each grid cell
has uniform aquifer properties such as hydraulic conductivity, uniform
land surface properties such as elevation and land use, and calculates
a single water table elevation. The single water table elevation repre-
sents the hydraulic head at the center of the grid cell, which is used for
determining stream-aquifer interaction and consumption of groundwa-
ter as evapotranspiration consumption. Due to this large grid cell size,
most model error occurs in highly heterogenous terrain due to the varia-
tion in surface elevation and aquifer properties within a single grid cell.
Another potential structural error is the monthly stress periods. Stress
periods specify input stresses such as precipitation and potential evap-
otranspiration rates and assumes they are constant over the time steps
in the stress period. Each stress period contained 2-time steps making
the average time step length about two weeks. Within the time step the
calculated evapotranspiration, surface runoff, infiltration, and stream
flow are constant, which averages out the effect of synoptic events. An-
other source of error are the available input datasets for groundwater
pumping and how accurate the pumping is reported or estimated. Lastly,
given sufficient computing power and time a robust automatic calibra-
tion can improve the model simulation. Methods such as global and
gradient based optimization schemes can refine the input parameters to
improve the simulated results. Another model construction error is as-
suming the 2010 land use data does not vary in the simulation. That is
the same data set is repeated for multiple years. This assumption affects
the hydrological fluxes especially the evapotranspiration estimation and
can be improved in the future work by including landcover change over
time.

For streamflow simulations, we only included the major rivers for
the stream flow routing module (SFR) for computational efficiency. Fu-
ture studies can include the river tributaries to the routing (SFR) mod-
ule instead of the river (RIV) module for improved representation of
the physics. In this model set-up, reservoirs are not explicitly included,
which may affect the streamflow results particularly where there is sig-
nificant storage capacity. However, using USGS observed streamflow as
an upstream boundary condition for river segments implicitly incorpo-
rates the impacts of surface water management.

This model does not simulate the water demand and irrigation sup-
ply from surface water. FMP can estimate unknown pumpage, but this
option was beyond the scope of this study. A future study can include
estimating irrigation pumpage for a better representation of water use in
the United States. Further, this would improve the estimated stream flow
from irrigation runoff and stream flow delivery as irrigation. As with any
model, there are improvements that can be implemented to give more
realistic simulations, but these improvements depend on data availabil-

Advances in Water Resources 143 (2020) 103682

ity and the model’s structural limitations. Hydraulic conductivity can
be estimated from the available baseflow data, or it can be calibrated to
better estimate baseflow. In addition, the specific yield can be calibrated
to better estimate seasonal fluctuations in groundwater levels.

The land surface simulation with the Farm Process can be improved
by specifying multiple crops per grid cell. This version of the model se-
lected the dominant crop to be represented as the land use for each grid
cell. In addition, we can include the historical land cover data change
over time. This will allow us to analyze the impact the human activi-
ties, such as crops use for agriculture, and urbanizing expansion, and
the impact of the natural land cover changes, such as deforestation and
the natural vegetation change, on the hydrologic processes across the
United States. With this addition, we can calculate the irrigation water
supply and demand for each crop type and include the water irrigation
from surface water and groundwater.

In conclusion, the model can simulate the groundwater levels and
surface water budgets well across the large-scale region of the con-
tiguous United States; the results show high correlation with observa-
tional data. Tradeoffs were made between model realism and computa-
tional efficiency to realistically simulate the contiguous US, while pri-
oritizing the inclusions of the dominant hydrologic cycle dynamics. The
model has the capacity of simulating the evapotranspiration, surface
runoff, infiltration, groundwater pumping, three-dimensional ground-
water fluxes, interaction between surface water and groundwater, and
stream flow routing holistically on monthly time step across the large-
scale region of the United States.
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