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a b s t r a c t 

Assessments of groundwater and surface water budgets at a large scale, such as the contiguous United States, often 

separately analyze the complex dynamics linking the surface and subsurface categories of water resources. These 

dynamics include recharge and groundwater contributions to streamflow. The time-varying simulation of these 

complex hydrologic dynamics, across large spatial and temporal scales, remains a scientific challenge due to the 

complexity of the processes and data availability. In this study, groundwater fluxes and surface hydrologic pro- 

cesses are simulated across the contiguous US for 1950-2010. The simulation estimates the monthly water budget 

components, such as groundwater recharge, surface runoff, and evapotranspiration; streamflow in major rivers is 

routed while accounting for groundwater exchange. Human impacts are included through groundwater pumping, 

and climate variability is included, including variability in precipitation, temperature and potential evapotran- 

spiration. The simulated groundwater level and river discharge have strong correlation with USGS observation 

wells and streamflow gages, with R 2 values of 0.992 and 0.946, respectively. The simulated evapotranspiration 

is compared with three other published estimation methods, showing that it is able to capture the magnitude 

and seasonality of evapotranspiration over the Mississippi River basin. As such, the model is able to reasonably 

simulate the surface and groundwater budgets over the US, allowing for questions of the relative importance of 

climate and human impacts to be explored in the future. 
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. Introduction 

Surface water and groundwater interact with one another, with sur-

ace hydrologic processes impacting groundwater recharge and ground-

ater levels determining baseflow in streams. The water budgets are

ynamically affected by climate conditions, such as precipitation and

emperature; human activities, such as water withdrawals from rivers,

roundwater pumping, and land use change; and terrestrial processes

uch as plant water use. Estimating the surface and groundwater bud-

ets is critical for quantifying water resources across large spatial and

emporal scales, yet it remains a challenging task due to a lack of in situ

bservations of critical hydrologic processes and poor characterization

f subsurface hydrogeologic properties. This study presents a contiguous

S (CONUS) set-up of the MODFLOW-One-Water Hydrologic Model Ver-

ion 2 (MF-OWHM2) ( Hanson et al., 2014a ; Boyce et al., 2020 ), which is

 surface and groundwater model capable of simulating the hydrologic

uxes and storages for water budget assessment. 
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Climate, subsurface conditions, and human activities all impact

roundwater levels. For example, during periods of low rainfall, ground-

ater levels decline due to a reduction in groundwater storage from

ow recharge rates ( Wada et al., 2014 ) if the lateral groundwater flow is

imited ( de Graaf et al 2017 , Condon and Maxwell, 2017 ). Furthermore,

xcessive groundwater pumping can threaten groundwater sources with

igh groundwater depletion ( Döll et al., 2014b ; Scanlon et al., 2012 ).

n some regions, such as the Great Plains, groundwater levels increase

lowly due to low recharge rate and relatively low hydraulic conduc-

ivity ( Peterson et al., 2016 ). The sensitivity analysis of groundwa-

er level is analyzed on global scale with respect to hydraulic con-

uctivity, groundwater recharge, and surface water body elevation by

einecke et al., (2019) . To maintain the groundwater availability and

aseflow to rivers, some global studies ( Döll et al., 2014a ; Pokhrel et al.,

012 ; Wada et al., 2010 ) analyzed the groundwater recharge rate and

roundwater storage from water budget components; and other studies

 Peterson et al., 2016 ; Faunt et al., 2009 ) analyzed the streamflow in

egional aquifer systems. 
020 
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Although it is widely accepted that understanding surface and

roundwater fluxes and storages is critical for water resources planning,

ollecting extensive in situ observations, such as groundwater levels and

ubsurface geological properties, is prohibitively expensive over large

egions. Remote sensing data can provide estimates of hydrologic fluxes

ver large spatial scales, but remote sensing has relatively short time

eries and can typically only observe surface processes. The exception

s GRACE ( Tapley et al., 2004 ), which can estimate groundwater stor-

ge change through gravity field changes, but only at coarse spatial and

emporal resolutions. To overcome the remote sensing limitations nu-

erical models can be utilized to estimate and reconstruct the hydro-

ogic fluxes and stores, thereby overcoming the observational data lim-

tations. These models can be useful tools to address critical questions:

or instance, what is the impact of climate variability and groundwater

umping on groundwater availability. 

Regional, hydrological and groundwater, models have been used

o simulate numerically the surface water and groundwater hydro-

ogic processes. For example, three regional models have been set

p in detail over three major aquifers in the United States in Cen-

ral Valley, High Plains, and Rio Grande aquifer systems. The first

roundwater flow model simulates the Northern High Plains aquifer

 Peterson et al., 2016 ) and uses MODFLOW with the Newton-Rhapson

olver ( Niswonger et al., 2011 ). The second is the Central Valley Hydro-

ogic Model CVHM ( Faunt et al., 2009 ) for California’s Central Valley

quifer using MODFLOW-FMP2 ( Schmid and Hanson, 2009 ). The forth-

oming new version of CVHM (CVHM2) is being updated to use MF-

WHM2. A third model is the Rio Grande transboundary integrated hy-

rologic model (RGTIHM) that simulates portions of New Mexico, Texas,

nd Mexico ( Hanson et al., 2020 ) using MF-OWHM2. These regional

odels provide a better understanding of the surface and subsurface re-

ional water budgets and their dynamics. However, regional models typ-

cally cover a single aquifer, neglecting processes at the model bound-

ries. This means the streamflow, surface runoff, and lateral ground-

ater flow may be neglected at the boundaries of these regional mod-

ls. These assumptions can misrepresent the modeled water budgets

 Schaller and Fan, 2009 ; Krakauer et al., 2014 ), depending on the re-

ional conditions such as topography, geology, and climate. 

Continental and global scale groundwater models were developed

 de Graaf et al., 2015 ; Fan et al., 2007 ; Maxwell et al., 2015 ) to not only

olve the problem of lateral flow at model boundaries, but because they

an provide a better understanding of the hydrology of an entire large-

cale system. For example, large scale models can analyze the spatial

ariation of climate, geology, and topography and its effect on surface

ater and groundwater availability, and they can analyze the surface-

roundwater interaction in different aquifers. 

One of the first studies to simulate the groundwater depth across

he contiguous United States was conducted by Fan et al. (2007) , where

he water table was estimated as the equilibrium of long-term climatic

orcing on groundwater level under a steady state model, followed by

 study of global observations of water table depth ( Fan et al., 2013 ).

hese studies led to the ability to connect groundwater with other hy-

rologic fluxes, which has been investigated in several later studies over

he United States. For example, Maxwell et al. (2015) used an integrated

roundwater model (ParFlow, Maxwell and Miller, 2005 ) to analyze the

urface and subsurface flow system over the majority of CONUS. To do

 high spatial resolution run, the model was run under steady state con-

itions but can be run transiently as in Kollett (2009) and Maxwell et

l. (2016) . Other studies simulate the groundwater on the global scale

sing a model run at steady state ( de Graaf et al., 2015 ) and tran-

ient ( de Graaf et al., 2017 ), then analyzing the groundwater depletion

 de Graaf et al., 2019 ). These models simulate recharge and river dis-

harge from the global hydrological model PCR-GLOBWB ( Wada et al.,

011 ), then simulates the groundwater lateral flow from MODFLOW.

he MODFLOW One-Water Hydrologic Model (MF-OWHM2) used in

his paper simulates both surface hydrologic processes and groundwa-
b  
er flow simultaneously in one model, overcoming the limitation of cou-

ling two models. 

Some of these large scale models assume the magnitude and direc-

ion of the fluxes are constant over time ( Fan et al., 2007 ; Maxwell et al.,

015 ; de Graaf et al., 2015 ), thereby neglecting the temporal dynam-

cs of seasonal and interannual climate variability. In addition, human

ctivity, such as groundwater pumping, is often neglected. However, in

ecent studies ( de Graaf et al., 2017 ; Condon et al., 2019 ; de Graaf et al.,

019 ) the groundwater pumping is simulated. In addition, incorporat-

ng streamflow routing is still a challenging component to model with

 coupled groundwater model because of modeling limitations or the

carcity of needed data such as river hydraulic conductance over such a

ast area such as the United States. These challenges have led some past

tudies to simplify the modeling of such a complex system by neglect-

ng human activity and simplifying or neglecting the streamflow routing

nd its interaction with groundwater. 

This study’s objectives are 1) to evaluate the feasibility of using MF-

WHM2 at continental scales for water budget estimation and 2) to de-

elop and validate a CONUS-wide MF-OWHM2 model set-up that explic-

tly simulates hydrologic processes that link the surface and groundwa-

er hydrologic processes and human impacts. The focus is on capturing

arge-scale hydrologic patterns and human impacts to provide a base-

ine model for the hydrologic community, which can then expand the

odel to include more detailed processes relevant for specific research

uestions. This model is complementary to other US-focused modeling

fforts, such as that of ParFlow, as it is more focused on including human

mpacts in a parsimonious framework that would not require high per-

ormance computing resources. In this paper, we first present the model

et-up, including simplifications, the observation-based input data, and

he assumptions made in some input variables. Then, the model valida-

ion and water budget results are presented, including both groundwater

nd surface water. The conclusions are presented in the final section. 

. Model and data 

To simulate the surface and subsurface hydrology of the contiguous

S (CONUS), this study uses MODFLOW-One-Water Hydrologic Model

ersion 2 (MF-OWHM2) ( Boyce et al., 2020 ; Boyce, 2020 ), which is

 modular modeling software developed by the U.S. Geological Survey

nd U.S. Bureau of Reclamation. MF-OWHM2 builds on the widely-used

ODFLOW model ( Harbaugh et al., 2000 , Harbaugh, 2005 ), which sim-

lates groundwater fluxes at a range of spatial and temporal scales.

n addition to simulating groundwater fluxes, the standard version of

ODFLOW includes pumping and surface water routing ( Prudic et al.,

004 ). MF-OWHM2 incorporates a surface water model, allowing for

imulation of the partitioning of precipitation into infiltration and sur-

ace runoff, evapotranspiration, and irrigation. MF-OWHM2 is able to

olistically simulate the hydrologic system, including some of the ways

uman’s impact hydrologic processes. It also allows for better quantify-

ng surface water and groundwater availability by directly coupling the

urface and subsurface hydrologic fluxes. Table 1 compares four large-

cale models simulating the lateral groundwater flow. 

The model domain covers CONUS, extending from 132.437°W to

2.502°W and 22.177°N to 49.822°N ( Fig. 1 ) and to a depth of ~60

 below the water table as a single vertical layer. The MF-OWHM2

tudy area is divided into a finite difference equal-area grid of approxi-

ately 13km, using the North America Albers Equal Area Conic projec-

ion. The domain covers a land area of approximately 11,790,960 km 
2 ,

hich extends into Canada and Mexico. The ocean boundary conditions

re represented as a Cauchy boundary condition using the MODFLOW

eneral Head Boundary (GHB) module that specifies a single average

ea level elevation. The simulation time frame is from 1950 to 2010 at a

onthly time step, called a stress period in MODFLOW, with boundary

onditions specified for each month. For model convergence reasons,

ach stress period contains two transient sub-steps, where the model

reaks up the monthly data into sub-periods. The model is simulated us-
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Table 1 

Comparison summary of models with lateral groundwater flow simulation. 

This study Faunt et al. (2009) ; 

Peterson et al. (2016) ; 

Hanson et al. (2020) 

Maxwell et al. (2016) de Graaf et al. (2017) 

Model type Integrated groundwater 

and surface water model 

Integrated groundwater 

and surface water model 

Groundwater and surface 

water model 

Groundwater and surface 

water model 

Software MODFLOW-OWHM MODFLOW-OWHM ParFlow with optional 

coupling with CLM 

MODFLOW 

Model domain CONUS Regional aquifers Majority of CONUS Global 

Spatial resolution 13 km 1.6 km, 1km, 0.27km 1 km 10 km 

Time step monthly with two 

transient sub-steps 

monthly with two 

transient sub-steps 

hourly (can be run transiently) monthly 

Surface runoff simulated for each grid 

cell 

simulated for each water 

balance subregion 

calculated Groundwater recharge and 

streamflow discharge forced 

with outputs from 

PCR-GLOBWB 

Streamflow routing routed for major rivers routed routed 

Groundwater recharge simulated with respect to 

groundwater level 

simulated with respect to 

groundwater level 

Coupled with CLM (P-E) 

Evapotranspiration from 

groundwater 

simulated based on the 

groundwater level 

simulated based on the 

groundwater level 

simulated with CLM 

Confined aquifer not included included not included included 

Groundwater pumping included included included in Condon and 

Maxwell (2019) 

included 

Fig. 1. (a) Predominant soil type at 1.5 m depth using the POLARIS soil map ( Chaney et al., 2016 ), classified into 12 soil types using the USDA classification. 

(b) Average slope of the ground surface within each MODFLOW grid [m/m]. (c) e-folding depth for the regolith [m]. (d) Depth-averaged horizontal hydraulic 

conductivity for the 60 m thick unconfined model layer [m/day]. 
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ng MODFLOW’s “convertible ” option, which uses the unconfined equa-

ion when the water table is above the layer bottom and converts to the

onfined equation when the water table is below the layer bottom of

 grid cell. Confined layers are omitted due to insufficient well obser-

ations in some confined aquifers to accurately set-up and validate the

odel across the CONUS domain. 
The model empirically estimates the evapotranspiration, based on

he monthly precipitation, reference evaporation, crop coefficient, and

he groundwater evapotranspiration extinction depth. The crop coeffi-

ient is the ratio of the actual evapotranspiration to the reference evap-

transpiration for each crop type, and the extinction depth is the depth

t which there is no evaporation from groundwater sources. The sur-
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ace runoff to rivers is estimated based on the surface runoff coefficient,

hich is the ratio of the surface runoff from the rainfall over the infiltra-

ion. Groundwater recharge is estimated as the residual of the water bud-

et. MF-OWHM2 calculates the vertical and the horizontal groundwater

ows using a finite difference scheme of the three-dimensional ground-

ater equations and estimates the interaction between the groundwater

nd surface water. These fluxes are calculated based on the subsurface

roperties ( Harbaugh, 2005 ; Prudic et al., 2004 ), such as the hydraulic

onductivity and layer thickness, and the climatic conditions. The un-

aturated zone is not simulated in this study, which increases the sim-

lation error when water that infiltrates takes longer than the model

imestep to reach the water table. This is common in very dry areas

uch as the southwestern deserts ( Scanlon et al., 2006 ; Flint et al., 2007 )

nd may result in an over- or underestimate of the groundwater fluxes.

oth surface runoff and baseflow from the groundwater to rivers are

imulated, and streamflow is routed in the major rivers ( Section 2.4 ).

n addition to the effect of climate variability, the model includes the

uman impact on groundwater levels by simulating withdrawals using

he MODFLOW well module and explained ( Section 2.3 ). Details of the

odel set-up are described below. 

.1. Subsurface hydrogeologic parameters 

The ground surface elevation was specified using the HydroSHEDS

0-second resolution digital elevation model ( Lehner et al., 2006 ). Using

ydroSHEDS, the average ground surface elevation of each 13km model

rid cell was calculated. MODFLOW calculates the layer thickness as the

ifference between the ground surface elevation and the layer bottom

explained in Section 2.2 ); this layer thickness is used in the groundwa-

er equations. 

The model hydraulic conductivity was estimated using the method

erived by Fan et al. (2007) that is based on soil type. The soil type was

rst characterized into fractions of sand, silt, and clay using the POLARIS

oil database ( Chaney et al., 2016 ), and the average for the top 1.5m

epth is calculated. Then, the fractions were used to specify in which

f the twelve soil types in the United States Department of Agriculture

USDA) soil type classification the grid cell belongs ( Fig. 1 a). This was

hen used to estimate the hydraulic conductivity at 1.5 m depth. The

ertical hydraulic conductivity is calculated for each soil type from the

and Data Assimilation System (LDAS, http://ldas.gsfc.nasa.gov/ ); and

he horizontal hydraulic conductivity is calculated using the anisotropy

atio estimated by Fan et al. (2007) . Using the estimated hydraulic con-

uctivity at 1.5m depth below the ground surface, each grid cell’s hor-

zontal hydraulic conductivity was estimated for the full depth of the

odel layer thickness, extending to 60 m below the groundwater level.

his was done using the depth-dependent exponential relationship de-

ived by Fan et al. (2007) : 

 = 𝐾 𝑜 exp 
( 

− 

𝑧 ′

𝑓 

) 

, 𝑤ℎ𝑒𝑟𝑒 ∶ 𝑓 = 

{ 
𝑎 

1+ 𝑏 𝛽 , 𝑓𝑜𝑟 𝛽 ≤ 0 . 16 
5 𝑚, 𝑓𝑜𝑟 𝛽 > 0 . 16 

} 

(2)

here a and b are constants, z’ is the depth where the hydraulic conduc-

ivity is calculated, 𝛽 is the terrain slope, K o is the hydraulic conductivity

t 1.5m depth , and f is the e-folding depth which is the depth interval in

hich the exponential decline of hydraulic conductivity decreases by a

actor of the natural logarithm constant e (e = 2.71828). The constants a

nd b were taken from the best-fit in Fan et al. (2007) , where a equals

20 m and b equals 150 m. 

To calculate the terrain slope, 𝛽, and e-folding depth, f , ad-

itional data is required. The terrain slope 𝛽 is calculated as the

verage slope of the 1.25 km pixels within the MODFLOW grid

ell for both regolith ( Fig. 1 b) and bedrock. The regolith is a layer

f sediment, such as dust, soil, sand, gravel, and loose rock, that

overs a hard rock formation. The 1.25 km pixel slopes are calcu-

ated from the HydroSHEDS elevation data, first reprojected to the

orth American Albers Equal Area Conic projection, used in this
ODFLOW set-up. The depth to bedrock data was downloaded from

 http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov& 

tb&methods ) which is available for a depth of 152 cm across the

nited States ( Fan et al., 2007 ). Since this study focuses on the United

tates, the depth to the bedrock in Mexico and Canada was assumed

o be zero to simplify the model. Because of the equations’ form, this

as only a minor impact on the estimated hydraulic conductivity. The

ssumption of 13 km grid size increases the error in the simulation due

o the uncertainty related to averaging the depth to bedrock and the

round surface elevation over a relatively large grid cell especially in

he heterogeneous terrain such as the southwest region. 

The e-folding depth ( f ) was calculated for both bedrock and regolith

t 1.5 m depth and depends on the topography ( Fig. 1 c). In Eq. (1) ,

he hydraulic conductivity (K) decreases exponentially with depth z’ .

o calculate a depth-averaged hydraulic conductivity, the horizontal hy-

raulic conductivity was calculated for every 0.5 m depth interval from

he ground surface elevation to the layer bottom of 60 m below water

able, and the integrated equivalent horizontal hydraulic conductivity

as calculated using the following equation ( Todd and Mays, 2005 ): 

 𝑥 = 

∑𝑛 

𝑖 =1 𝐾 𝑖 𝑑 𝑧 𝑖 

𝐻 

(3)

here H is the model layer thickness, and K x is the final horizontal hy-

raulic conductivity ( Figure 1 d) for the model layer thickness, dz i is the

.5m depth interval increment, K i is the horizontal hydraulic conduc-

ivity at each 0.5 m interval increment within the model single layer. 

As mentioned above, the model consists of one layer with a thick-

ess of ~60m below the estimated observed groundwater level used to

nitialize the model; details of estimating the initial groundwater level

re below. The exception is below rivers, where a minimum thickness of

0m below the riverbed is specified to allow for model convergence. In

 few river grid cells, the river segment is below the average 13km layer

ottom due to large topographic gradients, and this is not allowed in the

odel. Impermeable conditions were assumed below the model layer

ecause the hydraulic conductivity values below 60 m are prohibitively

mall when using the exponentially decreasing hydraulic conductivity

ethod in Eq. (1 ). The specific yield (Figure S1) was estimated from

he aquifer sediment and rock type using Heath (1983) and Morris and

ohnson (1967) . The aquifer sediment and rock type map is taken from

he USGS ( Miller, 1990 ). 

.2. Groundwater observations and model initial conditions 

U.S. Geological Survey (USGS) observation well data was used to

pecify the model initial conditions and to validate the modeled ground-

ater levels. There are 780,851 wells with at least one observation be-

ween January 1950 and December 2010 across the United States. Of

hese, wells were excluded if they met any of the following conditions:

1) the well was identified by the USGS as confined, mixed aquifer type,

r undefined aquifer type, (2) the well elevation is unavailable, (3) the

ell elevation is below -10 meters to eliminate wells with missing data

ags or unrealistic elevation values, (4) the well elevation is greater

han 4000 meters above sea level, (4) the well is designated as pumping

ells, injection wells, obstructed, damaged, plugged, dried, or flowing,

5) the well has an average observed water depth deeper than 300 m,

mplying it is in a deep aquifer outside this model’s bounds. The lat-

er condition was necessary to provide preliminary initial conditions of

he water level. After the model was spun-up, the simulated water level

as used to determine the model layer thickness, which is a minimum

f 60m below the water table of each grid cell. After the layer thick-

ess was determined, we verified that no wells are below the model’s

ertical extent and that 300m below the water table was a reasonable

ssumption for the model layer thickness. Applying these five criteria

esulted in 642,839 wells that could be used for initializing the model.

his approach was similar to that used in Fan et al. (2007) . 

http://ldas.gsfc.nasa.gov/
http://www.soilinfo.psu.edu/index.cgi?soil_dataceconuscedata_covcedtbcemethods
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Fig. 2. (a) Interpolated groundwater level [m] above sea level used for the model initial conditions using a triangulation-based natural neighbor interpolation for 

the 642,839 selected USGS site observations over the United States. (b) Groundwater depth [m] below the ground surface over the United States. 
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Water depths from the selected wells were utilized to calculate the

ater level of the model initial conditions for January 1950. Water level

bservations were spatially interpolated using a triangulation-based nat-

ral neighbor interpolation, which is a mix between linear and cubic

onlinear interpolation using the MATLAB function griddata() with the

atural interpolation option. The interpolated groundwater level is con-

trained to not exceed the average ground surface elevation for each

rid cell. Because there are a limited number of wells with observations

ating back to 1950, a strategy was developed to utilize well observa-

ions whenever they exist. For wells with observations beginning after

anuary 1950, the water level for the earliest January observation is

sed; selecting one month, in this case January, eliminates the impact

f seasonal variability on water levels. For wells with only one observa-

ion, the water level is assumed to be the same as January 1950. This

ssumption allowed for the inclusion of more wells, particularly in large

reas of the country that were data scarce in the mid-20 th century. The

mpact of this assumption on the model’s performance is discussed in

he next section. The water level in the ocean and lakes is assumed to

e constant over time and is simulated using the General Head Boundary

GHB) module in MF-OWHM2. In the major lakes, the water level was

stimated from the HydroSHEDS digital elevation map ( Lehner et al.,

006 ). The ocean boundary condition water level is set equal to mean

ea level. The initial conditions for the model consist of the interpolated

anuary 1950 water level combined with the boundary condition for

akes and oceans ( Fig. 2 ) and data for Canada and Mexico were linearly

xtrapolated and run under a spin up model as explained in detail in

ection 3 . 

.3. Groundwater pumping 

Well pumping was estimated using the USGS Water Use dataset

 https://water.usgs.gov/watuse/data/ , last accessed on July 18, 2019),

hich is available on a county scale every five years since 1985. County

roundwater withdrawals are uniformly distributed across the model

rid cells located within the county. The available USGS groundwater

ithdrawal data do not specify aquifer type for withdrawals; all pump-

ng, regardless of aquifer source, is assumed to be from the unconfined

quifer. Furthermore, because the USGS groundwater withdrawals data

s only available for every five years, the pumping rate is assumed to be

emporally constant between the available years. Pre-1985 years are as-

umed to be the same as 1985 withdrawals. This imposes errors, but in

he absence of data for before 1985, it allows for incorporating human

nfluence on the hydrologic cycle. To simplify the pumping simulation,

ach grid cell in the model contains one effective well in the center,

hich represents all the pumping wells within the grid cell. 
.4. Surface water routing 

Streamflow is simulated using two different modules: the major

ivers are routed using the streamflow routing (SFR) module, and the

ributaries using the rivers (RIV) module ( Fig. 3 a). The river network

hapefile was downloaded from https://www.naturalearthdata.com ,

hich primarily derived the data from the U S. World Data Bank 2

2006). They classified the main rivers from the “double-lined rivers ”

lassification level, this data is used for the main rivers in this study.

he small rivers and tributaries obtained from the same source for lower

iver classification levels. The SFR module calculates the water exchange

n the river channel between surface water and groundwater and routes

he river discharge downstream, accounting for surface runoff and base-

ow inputs to the river for each river grid cell. The RIV module only

alculates the water flux between the streamflow and baseflow from

roundwater without routing, making it computationally more efficient

han the SFR module. In the river validation, the baseflow to rivers cal-

ulated by the RIV module is added to the rivers simulated by the SFR

odule for each month. Because the RIV module does not incorporate

urface runoff into the streamflow, all the surface runoff is included in

he SFR routing. 

There are 358 USGS streamflow gages selected for the SFR module

hat are located on the SFR river network and that have at least 50 years

f continuous monthly observations from 1950 to 2010. The SFR river

etwork consists of 5241 grid cells that are divided into 595 segments,

here 358 of these segments have a USGS gage station at the start of the

egment. Thus, the discharge at the upstream grid cell for each segment

s equal to the observed discharge of that USGS gage station. During

he simulation, the model SFR module routes the streamflow for each

iver segment downstream, accounting for interactions between surface

ater and groundwater via baseflow and for the surface runoff that runs

ff to the river segments. In this study, infrastructure such as dams and

ater transfers are neglected. 

The model study area was divided into 183 water balance subregions

WBS, Fig. 3 b), using the 1:250,000-scale Hydrologic Units (huc250k)

 Steeves and Nebert, 1994 ), and watersheds without a SFR river seg-

ent were combined so that each water balance region has a river ex-

ept Canada and Mexico. This allows the Farm Process (FMP) in MF-

WHM2 to distribute the surface runoff water from each water balance

ubregion over the number of SFR rivers grid cells located within each

ne uniformly. 

To simplify the SFR model, some assumptions were made. First, due

o a paucity of large-scale data on river bed hydraulic conductivity, the

iver bed hydraulic conductivity was assumed to be equal to the grid

ell’s horizontal hydraulic conductivity, this used by the model to cal-

https://water.usgs.gov/watuse/data/
https://www.naturalearthdata.com
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Fig. 3. (a) The simulated river network. Blue grid cells represent rivers simulated using the stream flow routing (SFR) module. Orange grid cells are rivers tributaries 

simulated using the river (RIV) module. Grey grid cells are lakes and oceans included in the general head boundary (GHB) module. (b) The simulated water balance 

subregions from Steeves and Nebert (1994) , aggregated into 183 regions. 
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ulate the river bed conductance. The river bed thickness is set to 1m,

nd the Manning’s roughness coefficient is 0.04, which is typical for nat-

ral streams ( Chow, 1959 ). If a stream gage was missing stream width

r elevation data, it was taken from Google Earth or the USGS DEM, re-

pectively. In this model, the stream width and elevation data linearly

nterpolated for grid cells between the gage stations by the model, this

ption can be changed to specify the stream width and elevation data

or each grid cell. The model allows for precipitation and evaporation

rom the river water surface; this was assumed to be zero given the

arge-scale nature of the simulation and the lack of data with which to

alidate these processes. 

The river module (RIV) was used for the smaller river tributaries.

his tributary river network covers the United States with 4625 grid

ells included in this model. The river elevation for RIV grid cells was

stimated from the USGS digital elevation map. The water depth was

ssumed to be 3m for all RIV tributaries. 

.5. Land cover 

Land cover data was taken from USDA’s CropScape ( USDA Na-

ional Agricultural Statistics Service Cropland Data Layer, 2010 ) for

010 and held constant over the modeling period. For Canada and Mex-

co, land cover is from MODIS ( Channan et al., 2014 ). The land cover

ataset was first aggregated into 23 types using the California Depart-

ent of Water Resources (2000) classification system, then the domi-

ant land cover within each model grid cell was selected ( Fig. 4 b). The

and cover data is used to specify crop coefficients and calculate poten-

ial evapotranspiration. The crop coefficient values were estimated from

revious studies ( Allen et al., 1998 ; Faunt et al., 2009 ; Hanson et al.,

014a ; Hanson et al., 2014b ; Boyce et al., 2020 ) ( Fig. 4 a), and the crop

oefficient of non-cropped land cover types is set equal to one by con-

truct. For cropped land cover types, the crop coefficients are constant

cross the study domain. 

.6. Climate data 

Climate conditions, such as precipitation, potential evaporation, and

emperature, have a significant impact on water supply and demand for

oth surface and groundwater. Climate data such as precipitation and

emperature are available on daily intervals but in this study climate
ata are simulated on a monthly time interval called a stress period.

n this model, the monthly climate-related input data are precipitation,

nowmelt, and reference evapotranspiration, then MF-OWHM2 simu-

ates the impact of climate variability on both surface water and ground-

ater processes. MF-OWHM2 assumes all precipitation is rainfall, and

herefore capable of being partitioned into runoff and infiltration, a por-

ion of which can be consumed as evapotranspiration. However, much

f the US has a significant snow season, and this assumption would

e inappropriate in the northern and western US. To account for the

nowmelt lag, the Variable Infiltration Capacity (VIC) hydrologic model

 Liang et al., 1994 ; Liang et al., 1996 ) snowmelt outputs were used.

IC is a land surface model that solves for energy and water budget

losure at the land surface and includes a snow model. VIC was imple-

ented using the meteorological forcings of Maurer et al. (2002) , up-

ated to extend from 1950 to 2010, and the calibrated parameters from

roy et al. (2008) . The VIC-simulated liquid input to the soil, essentially

ainfall and snowmelt, is then passed to MF-OWHM2 to account for the

ime lag in precipitation that would occur due to the snowpack. Because

F-OWHM2 is on the North America Albers Equal Area Conic projec-

ion and the Maurer and VIC data are on the World Geodetic System of

984 (WGS84) projection, the VIC and Maurer datasets are interpolated

sing a bilinear interpolation method. 

The monthly reference evaporation was calculated by VIC for natural

egetation and tall and short reference crops, and the minimum poten-

ial evaporation for the MF-OWHM2 is constrained to be at least the

ctual evaporation from VIC model. Finally, MF-OWHM2 calculates the

otential evapotranspiration by multiplying the reference evapotran-

piration by the crop coefficient for each land cover type. For Canada

nd Mexico, precipitation and evapotranspiration data were taken from

lobal VIC simulations ( Sheffield and Wood, 2008 ) forced with the

ataset of Sheffield et al. (2006) . Further details on evapotranspiration

alculations are in the following section. In this model, the irrigation

ithdrawals from streams were neglected and all irrigation water from

umping is assumed to be consumed. Thus, the simulated evapotranspi-

ation is only calculated from the precipitation and groundwater. This

ay increase the potential simulation errors and neglecting the season-

lity variation of the irrigated. In future studies, the irrigation water

upply and demand from pumping and streams and its consumptive use

ould be included. 
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Fig. 4. (a) Crop coefficients for different crop land cover types ( Allen et al., 

1998 ; Faunt et al., 2009 ; Hanson et al., 2014a ; Hanson et al., 2014b ; Boyce et al., 

2020 ). (b) Predominant land cover type. Over the United States land cover is 

from the USDA’s CropScape ( USDA National Agricultural Statistics Service Crop- 

land Data Layer, 2010 ) ( https://nassgeodata.gmu.edu/CropScape/ ). For Canada 

and Mexico, land cover is from MODIS ( Channan et al., 2014 ). 
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. Model spin-up and calibration 

For calibration purposes, a simplified 12-month model —using the

easonal averaged climate variables from 1950 to 2010 —was created for

he model spin-up and calibrated to estimate the groundwater level in an

quilibrium state and to calibrate the extinction depth of groundwater-

ourced evapotranspiration using the Farm Process version 4 (FMP) of

ODFLOW-OWHM2. The simplified, 12-month model was run with the

easonal climatology, allowing for errors in initial conditions to dissi-

ate. Evaluation of the water levels in the model shows that changes

n water levels exponentially decline across several months, such that

ater levels are stable by the end of the 12-month run. These errors can

lso be due to uncertainty in the estimated hydraulic conductivity used

n this model. Errors in the hydraulic conductivity can lead to incorrect

ydraulic gradients and lateral water movement. In addition, hydraulic
radients between rivers and the surrounding topography can lead to

naccurate baseflow estimates until equilibrium is reached. At the end

f the 12-month model spin-up, the water levels are used as the initial

onditions for both the calibration and the full study period simulations.

For modeling evapotranspiration, it is important to note that MF-

WHM2 does not separately simulate the near-surface soil moisture that

s directly accessible to the plants in their rooting zone ( Hanson et al.,

014b ). Instead, the near-surface soil moisture is included in the ground-

ater budget as part of the water stored in the unconfined aquifer layer.

hus, the change in both soil moisture and groundwater level is included

n the simulated change in groundwater level. In the FMP, evapora-

ion and transpiration are modeled separately. One of evapotranspira-

ion concepts employed in FMP is to linearly increase groundwater con-

umption as transpiration when the water table plus a capillary fringe

ength intersects the average root depth until the water table reaches

he average root depth. When the water table intersects the average

oot depth, the transpiration consumption linearly decreases to repre-

ent anoxic conditions. Due to the size of this simulation domain, a pos-

tive feedback loop occurred when the water table resulted in too much

noxia causing a reduction in transpiration, which further increased the

ater table elevation and the amount of anoxia. To avoid this feedback

oop, all evapotranspiration is modeled as evaporation, which does not

nclude anoxia as part of its simulation. Because crop coefficients are

sed in conjunction with reference evaporation, this results in reason-

ble simulations of evapotranspiration within the model structure. 

In this model, a linear relationship is used for the subsurface-

ourced evapotranspiration calculations, where the calculated evapo-

ranspiration will be equal to the potential evapotranspiration when the

roundwater level reaches the ground surface elevation, and subsurface

vapotranspiration (from groundwater and near-surface soil moisture)

qual to zero when the groundwater level is lower than the ground-

ater evapotranspiration extinction depth. The model extinction depth

as calibrated using the 12-month calibration model with the objec-

ive of matching the evapotranspiration calculated by the VIC model.

pecifically, the spatial average of the absolute difference between MF-

WHM2 and VIC-simulated ET is minimized. Compared to the VIC-

stimated ET, the MF-OWHM2 simulated evapotranspiration, for the

2-month model of the CONUS simulation domain, had an average ab-

olute bias of 1.033 mm/month and a root mean square error of 3.701

m/month. Because there are no accurate observations of evapotran-

piration over the US, we are using VIC-estimated ET to calibrate the

onstant extinction depth for this model. For the 732-month model, the

verage absolute bias is 2.66 mm/month and the average root mean

quare error is 5.46 mm/month. These error statistics demonstrate that

he calibration with the simplified model can be used with the full ver-

ion, with a small increase in errors. This allows for a much faster cali-

ration over such a large domain. 

The surface runoff coefficient was calibrated using the full model

imulation from 1950 to 2010. This calibration was conducted because

ensitivity studies show that the cumulative change in groundwater level

s very sensitive to the surface runoff coefficient parameter, as this con-

rols infiltration to the subsurface. The calibration allows for the assump-

ion of negligible change in groundwater storage from 1950 to 2010. The

alibration error of groundwater level for the calibrated surface runoff

oefficient is calculated as the spatial average of root mean square er-

or, and it is equal to 0.135 m for the CONUS simulation domain. This

alibrated surface runoff coefficient was used for the full monthly model

imulation from 1950 to 2010, which also included groundwater pump-

ng. 

. Model validation, results, and discussion 

.1. Groundwater validation 

The full monthly model simulation from 1950 to 2010 with ground-

ater pumping is validated against the observed groundwater levels

https://nassgeodata.gmu.edu/CropScape/
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Fig. 5. (a) Validation between the average annual values of the reference observed water level from USGS wells (x-axis) and the model simulated water level (y-axis) 

from 1950 to 2010, with root mean square value of 3.82m. (b) Histogram of average monthly model bias of simulated water levels [m], the mean bias is 2.28m. 
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rom the selected USGS wells for unconfined aquifers. The validation

as implemented between USGS well measurements and the simulated

roundwater level in the grid cell that contains that well for the months

hen a measurement was made. The criteria to select the USGS observa-

ion wells for the groundwater level validation is similar to the criteria

sed for the model initial condition, but wells with only one month of

bservations were removed. This results in 151,415 USGS wells with

ime series for the groundwater validation. Of the selected wells, 900

ave at least 30 years of data and 16,054 have at least five years of

ata. Because the well observations have different record lengths, the

tatistics are calculated for each well for those months with observed

roundwater levels. The statistics for grid cells with observations begin-

ing in January 1950 and those grid cells with later data are similar,

ndicating that the assumption made to include wells in the initial con-

itions, regardless of data availability at the start of the model period,

id not significantly impact the model performance. 

Simulated and measured mean annual groundwater levels for 1950

o 2010 across the 151,415 USGS groundwater observation sites have

n R 2 value of 0.9926 ( Fig. 5 a). This is similar to the R 2 of the esti-

ated groundwater level by previous studies. For example, an R 2 value

f 0.999 was calculated by Fan et al. (2007) , where the water table was

stimated as the equilibrium of long-term climatic forcing on ground-

ater level under a steady state model. Maxwell et al. (2015) simulated

he water table using the ParFlow groundwater model ( Maxwell et al.,

015 ) over most of CONUS using a high spatial resolution, steady state

un with an R 2 value of 0.998. Another example of simulating the water

able is a study by de Graaf and others (2017) using MODFLOW model

lobally, with R 2 value of 0.94. 

Fig. 5 b shows the histogram of model bias in groundwater level. The

ean bias is 2.28m, with relatively few wells having a large bias. For

xample, 5.2% of the wells have a negative bias greater than -50m and

.1% of the wells have a positive bias greater than 50m. The bias results

or many reasons. There is uncertainty in model parameters, bound-

ry conditions, and pumping observations. Errors are introduced due

o the difference between the observed water level for each individual

SGS well and the average groundwater level for wells located on a

3 × 13 km grid cell area. In other words, the elevation of the water

evel measurement can be very different from the average grid cell el-
 a  
vation. The largest error in groundwater level values occurs in three

egions ( Fig. 6 and Figures S2-S4): heterogeneous terrain, near rivers,

nd the regions with high pumping rates. In heterogeneous terrain, the

rrors occur for two reasons. First, significant errors are introduced due

o the topography, as groundwater levels can vary significantly within

 13 × 13km grid cell; the error is calculated as an average through-

ut the grid cell and is therefore sensitive to where the individual USGS

ells are located within a grid cell. The large, 13 km, grid cell may

ischaracterize the deep arid zones in the west and increase the simula-

ion error. In addition, this model includes only unconfined aquifer type

ells following previous studies ( Fan et al., 2007 ; Maxwell et al., 2015 ).

roundwater flow in the confined aquifer is neglected. This assumption

ncreases the model uncertainty and misrepresents the aquifers system

ecause groundwater in the confined aquifer has much lower storativ-

ty, therefore calibrating to groundwater head will lead to skewed pa-

ameterization. Second, there is simulation error due to the uncertainty

n model parameters. For example, overestimating hydraulic conduc-

ivity (K) allows the groundwater to move too quickly from higher to

ower groundwater levels, resulting in a milder hydraulic gradient than

he hydraulic gradient of the interpolated USGS observation wells. Near

ivers, the errors occur due to the uncertainty in river parameters and

ue to topography. For example, in the SFR module, the errors result

rom uncertainty in the river bed hydraulic conductivity, the difference

etween the groundwater level and water level in streams, and accumu-

ated errors from river routing. Outside of heterogeneous regions and

long rivers, the model has a high correlation with the USGS historical

bserved groundwater levels. In these areas, the model is able to sim-

late the mean water levels well, with larger errors in simulating the

ariability (Figure S5). 

.2. River routing and water budget validation 

Results of both SFR and RIV modules were post-processed by adding

he monthly simulated baseflow between the rivers and groundwater

n the RIV module to the SFR module, where the RIV flow within

ach watershed was uniformly distributed across the SFR grid cells lo-

ated within the same watershed. The routed streamflow was validated

gainst the observed discharge from the available USGS gage stations
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Fig. 6. Absolute bias (m, top) and relative bias (%, bottom) of the time-averaged water level [m] from 1950 to 2010, between the model simulated water level and 

the interpolated, grid cell averaged observed water level from USGS wells. A positive bias indicates the simulated water level is higher than the measured water 

level. 
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ocated on the SFR river network with at least 50 years of monthly

treamflow observations from 1950 to 2010. The simulated routed out-

ow from each river segment downstream was validated with the USGS

age station located on the upstream of next river segment that con-

ected with it. The USGS observed streamflow is used as the upstream

oundary condition for each routed segment. Fig. 7 a shows the scatter

lot of the average observed versus simulated streamflow on a log scale,

nd Fig. 7 b shows Nash-Sutcliffe Efficiency values which represents how

ell the model simulates both the mean and variability in streamflow.
he results show a strong correlation between the simulated and ob-

erved discharge for each SFR river segment, with a R 2 equal to 0.95 for

he actual values and 0.87 for the log values. The model overestimates

treamflow in smaller basins; this occurs because the current version of

he Farm Process (FMP) distributes surface runoff water equally over the

FR river grid cells that are located within the same water balance sub-

egion. Time series of randomly selected gages are plotted in Figure S6.

urface water withdrawals for irrigation are not included in this model.

ecause USGS observations are used as upstream boundary conditions,
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Fig. 7. (a) Average daily observed streamflow (x-axis) and average monthly simulated streamflow (y-axis). Each dot represents one of 358 USGS gage stations 

located on the SFR river network with at least 50 years of streamflow observations. The R 2 is 0.95 for the actual streamflow values and 0.87 for the log-transformed 

streamflow values and root mean square error of 0.277 [m 
3 /day]. (b) Nash-Sutcliffe Efficiency. 

Fig. 8. Monthly evapotranspiration averaged over the Mississippi basin estimated from different methods from 2003 to 2006 [mm/month]. VIC (red) represents 

the model simulation used as boundary conditions for MF-OWHM2, which simulates evapotranspiration using the Farm Process version 4. The NARR inferred 

evapotranspiration was calculated by Sheffield et al. (2009) as the residual of the atmospheric water budget and the RC-PM ( Ferguson et al., 2008 ; Sheffield et al., 

2009 ) calculates evapotranspiration using remote sensing inputs with the Penman-Monteith equation. 
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his will not have a significant impact on the routed streamflow as it is

mplicitly accounted for in the observations. 

Fig. 8 shows the time series of the simulated evapotranspiration

gainst evapotranspiration estimated using different methods over the

ississippi basin presented by Sheffield et al. (2009) ; the data were

igitized from the published paper. The simulated evapotranspira-

ion using MF-OWHM2 is compared with three estimation methods

f daily evapotranspiration: (1) Estimation of daily evapotranspira-

ion using remote sensing based on the Penman-Monteith equation

 Monteith, 1965 ). These remote sensing, Penman-Monteith (RC-PM) es-

imations of evapotranspiration data are the ensemble mean with vary-

ng inputs, which are calculated using a revised Penman-Monteith equa-

ion from Mu et al. (2007) . (2) Evapotranspiration inferred as a residual

rom the North American Regional Reanalysis (NARR) ( Mesinger et al.,

006 ) atmospheric water budget. (3) Estimation of daily evapotranspi-

ation using the VIC hydrologic model set-up described in Section 2.6 . In

his MF-OWHM2 set-up, the extinction depth of groundwater evapotran-

piration was calibrated to get simulated evapotranspiration similar to

he estimated evapotranspiration using this VIC hydrologic model. The

oot mean square error between the MF-OWHM2 simulated evapotran-

piration and the RC-PM, NARR Inferred, and VIC estimations are 8.57,

.29, and 4.69 mm/month, respectively, over the Mississippi basin from

003 to 2006. The evapotranspiration from near-surface soil moisture

as assumed to be part of the groundwater budget, and both groundwa-
 g  
er and near-surface soil moisture changes are accounted for in the sim-

lated groundwater level change. This assumption was made because

F-OWHM2 does not explicitly account for the soil moisture term in its

quations. 

.3. Water budget 

Fig. 9 shows the seasonal cycle of the simulated water budget for

arious water resource regions across the United States. The water bud-

et is averaged from 1950 to 2010, which includes the average monthly

recipitation as input data, the simulated total evapotranspiration (ET)

nd the partitioning of ET from precipitation and groundwater sources,

he simulated surface runoff, and the deep percolation, which is calcu-

ated as the residual of the surface water budget: precipitation minus the

urface runoff minus the evapotranspiration from precipitation. Results

how how the simulated water budget components vary spatially and

easonally over the model domain. Each region has a different seasonal

ehavior depending on its climatological and geological conditions. For

xample, California has a Mediterranean climate with precipitation oc-

urring in the winter whereas the the Ohio and Missouri river basins

ave higher precipitation in the summer. Consequently, the evapotran-

piration seasonality is weaker in California than other regions. New

ngland demonstrates the importance of snowmelt on the water bud-

et, whereas the Texas Gulf water resource region has the smallest ef-
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Fig. 9. Seasonal cycle of the modeled water budgets from 1950 to 2010 [mm/month]. The range of the vertical axes are the same except over the United States. 
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i  
ect of snow. Incorporating snowmelt into MODFLOW affected the sim-

lated seasonality of the water budget but not the long-term averages.

igure S7 plots the last decade of model results, showing that rainfall

nd runoff have the largest interannual variability. Variability in evapo-

ranspiration is dominated by the seasonal cycle rather than interannual

ariability. In humid climates, like the Great Lakes and Ohio water re-

ource regions, deep percolation primarily occurs in the winter months

hen ET demand is low. The same is true for California, but in this case

he wet season coincides with low ET in the winter months, leading to

tronger seasonality. The Great Basin, which is arid, shows a tighter re-

ationship between precipitation and deep percolation than in the other

ater resource regions. Throughout the USGS water resource regions,

vapotranspiration has the lowest coefficient of variation of the hydro-

ogic fluxes analyzed here. Deep percolation and evapotranspiration had

t  
he largest, likely due to the model structure and that these integrate

he impacts of both precipitation variability and ET variability. Drier

egions have larger variation in precipitation, and this propagates into

igher coefficients of variation in all the other hydrologic fluxes in these

egions. 

. Conclusions 

In this paper, the groundwater and surface water budgets were sim-

lated on a monthly time step across the United States, using the tran-

ient MODFLOW-One-Water Hydrologic Model Version 2 (MF-OWHM2,

oyce et al. 2020 , Boyce 2020 ). The model includes the impact of cli-

ate variability and human activities, specifically groundwater pump-

ng, on the groundwater levels, including their seasonality. In addition,

he lateral groundwater flow is simulated and interacts with surface wa-
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er. This model contributes to the literature by fully coupling the simu-

ation of surface and groundwater processes over a large spatial scale in

 publicly-available, USGS-supported model. In this paper, version 4 of

he Farm Process (FMP) is used for evapotranspiration, surface runoff,

nd recharge estimations. The FMP module works simultaneously with

he groundwater, streamflow routing, and wells pumping modules as

ne integrated hydrologic model. 

Model validation shows that both the simulated groundwater levels

nd streamflow have a good correlation with the 151,415 selected ob-

ervation wells and the 358 selected river gage stations, with a R 2 equal

o 0.992 and 0.946, respectively. The simulated evapotranspiration (ET)

lso is well simulated compared with other estimation methods. The root

ean square error values between the simulated evapotranspiration us-

ng MF-OWHM2 and RC-PM, NARR Inferred, and VIC estimations are

.97, 7.23, and 3.27 mm/month respectively, over the Mississippi basin

rom 2003 to 2006. Based on validation of ET, streamflow, and water

evels, the model is well-constrained and able to simulate the water bud-

ets. 

Overall the simulation results match well with observed head,

treamflow, and VIC evapotranspiration estimates with the exceptions

ikely originating from model structural error, lack of sufficient input

atasets, and exhaustive automatic calibration. The largest source of

odel structural error is the large grid cell size (13km). Each grid cell

as uniform aquifer properties such as hydraulic conductivity, uniform

and surface properties such as elevation and land use, and calculates

 single water table elevation. The single water table elevation repre-

ents the hydraulic head at the center of the grid cell, which is used for

etermining stream-aquifer interaction and consumption of groundwa-

er as evapotranspiration consumption. Due to this large grid cell size,

ost model error occurs in highly heterogenous terrain due to the varia-

ion in surface elevation and aquifer properties within a single grid cell.

nother potential structural error is the monthly stress periods. Stress

eriods specify input stresses such as precipitation and potential evap-

transpiration rates and assumes they are constant over the time steps

n the stress period. Each stress period contained 2-time steps making

he average time step length about two weeks. Within the time step the

alculated evapotranspiration, surface runoff, infiltration, and stream

ow are constant, which averages out the effect of synoptic events. An-

ther source of error are the available input datasets for groundwater

umping and how accurate the pumping is reported or estimated. Lastly,

iven sufficient computing power and time a robust automatic calibra-

ion can improve the model simulation. Methods such as global and

radient based optimization schemes can refine the input parameters to

mprove the simulated results. Another model construction error is as-

uming the 2010 land use data does not vary in the simulation. That is

he same data set is repeated for multiple years. This assumption affects

he hydrological fluxes especially the evapotranspiration estimation and

an be improved in the future work by including landcover change over

ime. 

For streamflow simulations, we only included the major rivers for

he stream flow routing module (SFR) for computational efficiency. Fu-

ure studies can include the river tributaries to the routing (SFR) mod-

le instead of the river (RIV) module for improved representation of

he physics. In this model set-up, reservoirs are not explicitly included,

hich may affect the streamflow results particularly where there is sig-

ificant storage capacity. However, using USGS observed streamflow as

n upstream boundary condition for river segments implicitly incorpo-

ates the impacts of surface water management. 

This model does not simulate the water demand and irrigation sup-

ly from surface water. FMP can estimate unknown pumpage, but this

ption was beyond the scope of this study. A future study can include

stimating irrigation pumpage for a better representation of water use in

he United States. Further, this would improve the estimated stream flow

rom irrigation runoff and stream flow delivery as irrigation. As with any

odel, there are improvements that can be implemented to give more

ealistic simulations, but these improvements depend on data availabil-
ty and the model’s structural limitations. Hydraulic conductivity can

e estimated from the available baseflow data, or it can be calibrated to

etter estimate baseflow. In addition, the specific yield can be calibrated

o better estimate seasonal fluctuations in groundwater levels. 

The land surface simulation with the Farm Process can be improved

y specifying multiple crops per grid cell. This version of the model se-

ected the dominant crop to be represented as the land use for each grid

ell. In addition, we can include the historical land cover data change

ver time. This will allow us to analyze the impact the human activi-

ies, such as crops use for agriculture, and urbanizing expansion, and

he impact of the natural land cover changes, such as deforestation and

he natural vegetation change, on the hydrologic processes across the

nited States. With this addition, we can calculate the irrigation water

upply and demand for each crop type and include the water irrigation

rom surface water and groundwater. 

In conclusion, the model can simulate the groundwater levels and

urface water budgets well across the large-scale region of the con-

iguous United States; the results show high correlation with observa-

ional data. Tradeoffs were made between model realism and computa-

ional efficiency to realistically simulate the contiguous US, while pri-

ritizing the inclusions of the dominant hydrologic cycle dynamics. The

odel has the capacity of simulating the evapotranspiration, surface

unoff, infiltration, groundwater pumping, three-dimensional ground-

ater fluxes, interaction between surface water and groundwater, and

tream flow routing holistically on monthly time step across the large-

cale region of the United States. 
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