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Abstract

Cogdell et al. [‘Evaluating the Mahler measure of linear forms via Kronecker limit formulas on complex

projective space’, Trans. Amer. Math. Soc. (2021), to appear] developed infinite series representations for

the logarithmic Mahler measure of a complex linear form with four or more variables. We establish the

case of three variables by bounding an integral with integrand involving the random walk probability

density a
∫ ∞

0
tJ0(at)

∏2
m=0 J0(rmt) dt, where J0 is the order-zero Bessel function of the first kind and a and

rm are positive real numbers. To facilitate our proof we develop an alternative description of the integral’s

asymptotic behaviour at its known points of divergence. As a computational aid for numerical experiments,

an algorithm to calculate these series is presented in the appendix.

2020 Mathematics subject classification: primary 11R05; secondary 33C10, 60G50.

Keywords and phrases: Mahler measure, random walk, Bessel function.

1. Introduction

The Mahler measure of a multi-variable complex polynomial figures prominently in

many mathematical contexts. Lehmer sought large primes by relating the growth of the

Pierce numbers,
∏d

i=1(1 ± αm
i

), where the αi are the roots of the polynomial, to that of

the Mahler measure of the polynomial (see [13]). Shinder and Vlasenko showed that

Mahler measure is related to certain L-values of modular forms (see [9]). Values of the

Mahler measure have interpretations in ergodic theory [13] and also arise in the study

of topological polynomial invariants [9]; its ubiquity makes its effective computation

of some importance.

1.1. Calculating Mahler measure. If the arsenal of an analyst is stocked with

inequalities, the stockpile of one studying Mahler measure might be rife with series
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2 G. Anton, J. A. Malathu and S. Stinson [2]

representations. Considerable toil is involved with numerically evaluating logarith-

mic Mahler measure directly from its integral definition. The inefficiency of this

direct method has stressed the necessity of expressing Mahler measures in terms of

fast-converging infinite series, so that a truncated series gives a high-precision estimate

in a timely manner [1]. Analytic conjectures on closed-form expressions relating to

Mahler measures are not infrequently conceived and then sharpened as the result of

extensive computations [1, 3, 13], so such formulations can be of considerable value.

Much progress in this vein has been made by Rodriguez-Villegas et al., who estab-

lished such expressions in terms of J-Bessel functions [12]. Borwein et al. [4] estab-

lished series expressions for the Mahler measure of the linear forms x0 + x1 + · · · + xn,

involving the even moments of the (n + 1)-step densities pn+1. More recently, Cogdell,

Jorgenson and Smajlović have obtained a series formulation for the logarithmic Mahler

measure of an arbitrary complex linear form by expressing the log-norm of a linear

polynomial as an infinite series [5]. This latter investigation settled the case of four

or more variables. Our aim is to establish the Cogdell–Jorgenson–Smajlović Mahler

measure series representations for the unexamined case of three variables. We invoke a

result due to Nicholson on three-step uniform random walks of varying but prescribed

step lengths (see [15]). Also, we develop an alternative description of the associated

integral’s asymptotic behaviour more amenable to our proof and which provides

further insight on a related integral.

1.2. Random walks. Suppose a man wanders into the complex plane, finds himself

at the origin and determines to go on a ramble. He walks from his starting point for

some distance rm at angle θm, both chosen at whim, and does this n times successively.

Curious observers wish to know the probability his distance from the origin at the

conclusion of the n stretches is between r and r + δr for some pre-determined r, δ > 0.

This is the well-known problem of the random walk in the plane [15]. The study of

this problem began with Pearson, whose motivation was to construct an idealised

system modelling the complex natural phenomenon of species migration [11]; the

integrals associated to such probability densities have been called ramble integrals in

Pearson’s honour. Kluyver established the classical result that for a positive number a,

the probability density pn+1 associated to an (n + 1)-step walk has the Bessel integral

representation

pn+1(a) = a

∞
∫

0

tJ0(at)

n
∏

m=0

J0(t) dt,

corresponding to the case where each step length is 1 [4]. Nicholson generalised this

result in the case of three steps where the wanderer’s step lengths need not coincide.

We restate this important finding in Theorem 1.1(i), for which we now establish

notation.

Let K(k) :=
∫ π/2

0
(1 − k2 sin2 θ)−1/2 dθ be the complete elliptic integral of the first

kind, r0, r1, r2 > 0 be the step lengths of a random walk and order r0 ≥ r1 ≥ r2 without
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[3] An integral of J-Bessel functions 3

loss of generality. Let a > 0 and define a1, a2, a3, a4 by ordering the set {a, r0, r1, r2} so

that {a1 ≥ a2 ≥ a3 ≥ a4}. In the case where a1 ≤ a2 + a3 + a4, set

∆
2 := 1

16
(r0 + r1 + r2 − a)(a + r1 + r2 − r0)(a + r0 + r2 − r1)(a + r0 + r1 − r2) ≥ 0.

1.3. Logarithmic Mahler measure. The Mahler measure M(P) of an (n + 1)-

variable complex polynomial P is defined by

M(P) = exp

(

1

(2π)n+1

∫ 2π

0

∫ 2π

0

· · ·
∫ 2π

0

log(|P(eiθ0 , eiθ1 , . . . , eiθn )|) dθ0 dθ1 . . . dθn

)

.

The logarithmic Mahler measure is defined as m(P) := log M(P). Let

PD(Z0, . . . , Zn) := W0Z0 +W1Z1 + · · · +WnZn

be a linear form in n + 1 complex variables and D := (W0, . . . , Wn) be its tuple of

coefficients. Let d(D) = |W0| + · · · + |Wn| and c(D) :=
√

(n + 1)(|W0|2 + · · · + |Wn|2).

1.4. Our main results. The primary implement to establish the series representation

for the Mahler measure is the following result.

THEOREM 1.1. Define I(a) :=
∫ ∞

0
tJ0(at)

∏2
m=0 J0(rmt) dt and let S be the set given by

S := {r0 + r1 − r2, r0 − r1 + r2,−(r0 − r1 − r2)}, requiring the elements to be strictly

positive. Set S∗ := S ∪ {0, r0 + r1 + r2} or S ∪ {r0 − r1 − r2, r0 + r1 + r2}, according as

we have r0 − r1 − r2 < or ≥ 0.

(i) For any a > 0, the integral I(a) is finite unless a ∈ S, differentiable unless a ∈ S∗

and has closed form

I(a) =











































0 if a1 > a2 + a3 + a4,

1

π2∆
K

(

√
ar0r1r2

∆

)

if ∆2 > ar0r1r2,

1

π2
√

ar0r1r2

K

(

∆
√

ar0r1r2

)

if ∆2 < ar0r1r2.

(ii) For b ∈ S, the integral I(a) diverges at a = b with I(a) = O(log |a − b|) as a→ b.

Before continuing, we pause to examine the features of various densities for a

three-step walk, which are of some analytic interest. We write p3(a; r0, r1, r2) for the

density corresponding to the ramble with step-length tuple (r0, r1, r2). The density

exhibits logarithmic singularities at points which vary according to the step-length

combination and is differentiable between these points. The integral I(a) vanishes to

the left of r0 − r1 − r2 and to the right of r0 + r1 + r2, as here a1 > a2 + a3 + a4. The

rambler’s prospect of concluding their travel at distance from the origin within the

sum of the three steps taken, or inside the distance r0 − r1 − r2, is certain and hopeless,

respectively, so has probability 1 and zero in these intervals. Since p3(a; r0, r1, r2) =

aI(a) is the derivative with respect to a of this probability [5], I(a) must be zero in

these intervals. See Figure 1, where p3(a; 5, 4, 3) illustrates Kluyver’s example of the

integral ‘defining distinct analytic functions in different intervals’ [8].
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4 G. Anton, J. A. Malathu and S. Stinson [4]
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FIGURE 1. Various ramble integrals.

COROLLARY 1.2. With notation as in Section 1.3, let

a(n, k, D) =
∑

l0+···+ln=k,lm≥0

(

k

l0, l1, . . . , ln

)2

|W0|l0 . . . |Wn|ln ,

(

k

l0, . . . , ln

)

=
k!

l0! . . . ln!
.

Then, for n = 2, the logarithmic Mahler measure m(PD) of the linear polynomial PD is

given by

m(PD) = log c(D) − 1

2

∞
∑

j=1

1

j

j
∑

k=0

(

j

k

)

(−1)ka(n, k, D)

c(D)2k
. (1.1)

COROLLARY 1.3. Let H0 := 0 and Hl :=
∑l

j=1 1/j, l ∈ N+, be the harmonic numbers

and, for any integer l ≥ 0, define

SD(l) :=

∞
∑

j=1

2j + l

j(j + l)

j
∑

k=0

(

j + l + k − 1

k

)(

j

k

)

(−1)ka(n, k, D)

c(D)2k
.

(i) For n = 2 and all l ≥ 0 with D , r(1, 1, . . . , 1) for some r , 0,

m(PD) = log c(D) − 1
2
Hl − 1

2
SD(l). (1.2)

(ii) Additionally, if l ∈ {0, 1}, then (1.2) holds for any D.

By taking these results together with those of the paper [5], the Mahler measure

series in (1.1) and (1.2) are valid for arbitrary linear polynomials of three or more
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[5] An integral of J-Bessel functions 5

variables (n ≥ 2). Mahler measure calculation in the two-variable case (n = 1) is met

in standard complex analysis texts using Jensen’s formula (see [10, page 345].

The proof of Corollaries 1.2 and 1.3 yields error bounds for the truncated series

given in (1.1) and (1.2). We denote the constant arising from bounding I(a) as AD and

|S| for the size of the singularity set S and obtain the following results.

COROLLARY 1.4. Let E1(N; n, D) be the right-hand side of (1.1). Then

|m(PD) − E1(N; n, D)| ≤ |S|
4
√

2πADc(D)2

3
4
√

N3
.

COROLLARY 1.5. Let E2(N; n, D) be the right-hand side of (1.2). For l = 1,

|m(PD) − E2(N; n, D)| ≤ |S|3
4
√

2ADc(D)2

√
π
√

N
.

COROLLARY 1.6. Let A(D, l) = 6
√

2(1 − d(D)2/c(D)2)−(l−1)/2. For l ≥ 2,

|m(PD) − E2(N; n, D)| ≤ |S|3
√

2c(D)2ADA(D, l)

2
√

N
.

1.5. Finer truncation bounds and Mahler measure estimates. One may refine

these truncation bounds experimentally by utilising the algorithm presented in the

appendix to compute a truncated series at some N and then comparing the result to

known values. All computations in this section employ (1.2) with l = 1. By suitably

modifying the given code, an experimental bound for |m(PD) − E1(N; n, D)| may be

similarly obtained.

Consider m(x0 + x1 + x2) for which high-precision estimates are available [1]. Com-

puting for values of N up to 200, we observe that |m(PD) − E2(N; n, D)| ·
√

N ≤ C for

C ≈ 3.8 × 10−2, so one might estimate the error bound as simply C/
√

N, eliminating

AD and the other constant terms altogether. For an arbitrary linear polynomial, we

have recourse to an identity of Cassaigne and Maillot (see [9]), which relates Mahler

measure to the Bloch–Wigner dilogarithm function and the usual logarithm. Let rm:=

|Wm| be the lengths of the coefficients {W0, W1, W2} of PD and r0 ≥ r1 ≥ r2 without

loss of generality. We have

πm(PD) =



















γ0 log r0 + γ1 log r1 + γ2 log r2 +D
(

r2

r1

eiγ0

)

triangle case,

π log r0 nontriangle case,

where the triangle case means {r0, r1, r2} can form the sides of a triangle, the

nontriangle case is its negation and γm is the angle opposite the side rm.

The Bloch–Wigner dilogarithm is D(α) := Im(Li2(α)) + arg(1 − α) · log |α| for

α ∈ C\[1,∞), where Li2 denotes the analytic continuation of the usual dilogarithm

to C\[1,∞) [16]. In Table 1, we present approximations of Mahler measures, cor-

responding dilogarithms computed therefrom and estimates for the constant C. The

logarithms are computed independently. We do not certify the correctness of the digits,
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6 G. Anton, J. A. Malathu and S. Stinson [6]

TABLE 1. Mahler measures.

D m(pD) log r0 α = (r2/r1)eiγ0 D(α) C

(3, 2, 1) 1.0986 1.0986 – – 0.028

(4, 2, 1) 1.3862 1.3862 – – 0.064

(e2, e, e) 2.0000 2 – – 0.080

(1, 1, 1) 0.3203 – eπi/3 1.0149 0.038

(
√

2, 1, 1) 0.4648 – eπi/2 0.9159 0.027

(1.732, 1, 1) 0.5815 – e2πi/3 0.6766 0.027

(1.8478, 1, 1) 0.6272 – e3πi/4 0.5238 0.034

(1.932, 1, 1) 0.6624 – e5πi/6 0.3569 0.035

but note that they coincide with known logarithm and dilogarithm values to at least four

digits. One may also obtain an analytic refinement of the error bounds via numerical

integration using the closed form of I(a), but the estimate is unsurprisingly much

cruder. Nevertheless by employing this method one may conclude, for example, that

|m(PD) − E2(N; n, D)| ≤ C/
√

N for C ≈ 2.324, where D = (1, 1, 1).

1.6. Organisation of the paper. In Section 2 we include relevant facts from the

literature. In Section 3 we establish our main results and, finally, in Appendix A,

Friedman presents an algorithm to compute the terms a(n, k, D) and SD(l) as an aid

to Mahler measure numerical evaluations.

2. Background

2.1. J-Bessel functions. Recall that J0(t) is a solution to Bessel’s differential

equation [7] and hence continuous. Poisson’s formal expansion of J0(t) [15, page 194]

for large arguments (that is, |t| ≥ 45 [7]) is given by

J0(t) =

√

2

πt

[

cos

(

t − π
4

)

P0(t) + sin

(

t − π
4

)

Q0(t)

]

. (2.1)

We use this expansion for t ≥ 1 without loss of generality. Stieltjes discovered useful

estimates for the series P0(t) and Q0(t) in a finite number of terms and we shall utilise

the approximations [15, page 208],

P0(t) = 1 − θ1
9

128t2
and Q0(t) = − 1

8t
+ θ2

225

3072
· 1

t3
, (2.2)

where 0 < θ1, θ2 < 1. By [14, Theorem 7.31.2], J0 is bounded. In particular,

|J0(c(D)vt)| ≤

√

2

πc(D)v
for all t ≥ 1. (2.3)
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[7] An integral of J-Bessel functions 7

2.2. Integral evaluations involving J-Bessel functions. Here we summarise inte-

gral evaluations from [6, 6.699-1 and 6.699-2, page 731] for the cases λ = − 1
2

and

ν = 0:
∫ ∞

0

t−1/2J0(at) sin(bt) dt = 21/2a−3/2bF

(

3

4
,

3

4
;

3

2
;

(

b

a

)2)

for 0 < b < a, (2.4)

∫ ∞

0

t−1/2J0(at) sin(bt) dt = b−1/2

√
2π

2
F

(

3

4
,

1

4
; 1;

(

a

b

)2)

for 0 < a < b, (2.5)

∫ ∞

0

t−1/2J0(at) cos(bt) dt =
2−1/2a−1/2

Γ(1/4)

Γ(3/4)
F

(

1

4
,

1

4
;

1

2
;

(

b

a

)2)

for 0 < b < a, (2.6)

∫ ∞

0

t−1/2J0(at) cos(bt) dt =
b−1/2

√
2π

2
F

(

1

4
,

3

4
; 1;

(

a

b

)2)

for 0 < a < b, (2.7)

where Γ denotes the Gamma function and F denotes the Gaussian hypergeometric

series. Note that the evaluations are finite for the given arguments of the respective

functions.

2.3. The Ramanujan asymptotic formula for the Gaussian hypergeometric series.

We characterise the behaviour of the above integrals as a approaches b, for which we

examine the asymptotic behaviour of the hypergeometric series F(α, β;α + β; z). Let

B(α, β) denote the Euler Beta function and define

R := R(α, β) = −ψ(α) − ψ(β) − 2γEM , ψ(α) =
Γ
′(α)

Γ(α)
,

where γEM denotes the Euler–Mascheroni constant. As a→ b, the argument z of F in

the evaluations in Section 2.2 satisfies 0 < z < 1 and approaches 1. The Ramanujan

asymptotic formula [2, page 96] gives

F(α, β;α + β; z) =
1

B(α, β)
[R − log(1 − z) + O((1 − z) log(1 − z))].

3. Proof of the main results

PROOF OF THEOREM 1.1. (i) The convergence behaviour and closed form for I(a) is a

reformulation of Nicholson’s result (see [15, page 414]). To examine differentiability,

let b1 and b2 be two consecutive points in S∗, a ∈ (b1, b2) and

k := min

{

√
ar0r1r2

∆
,

∆
√

ar0r1r2

}

∈ [0, 1).

Define C(a) to be the relevant coefficient of K(k), that is, C(a) := 1/π2
∆ for

k =
√

ar0r1r2/∆ and C(a) := 1/π2 √ar0r1r2 otherwise. Note that C(a) and K(k) are

indeed well-defined functions of a on this interval, by the continuity of k as a

function of a and the fact that I(a) diverges if and only if a ∈ S. Both C(a) and the
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8 G. Anton, J. A. Malathu and S. Stinson [8]

argument k are differentiable functions of a on (b1, b2) and the elliptic integral K(k) is

differentiable for k = f (a) ∈ (0, 1), so I(a) = C(a) · K( f (a)) is differentiable at a. For

a ∈ (0, r0 − r1 − r2) or (r0 + r1 + r2,∞), I(a) is continually zero and so differentiable.

It is clear that (two-sided) differentiability fails at the points of S∗.
(ii) Since tJ0(at)

∏2
m=0 J0(rmt) is integrable on [0, 1], we consider the integral on

the interval [1, ∞). By applying Poisson’s formal expansion (2.1), Szegö’s bound for

J0 (2.3), Stieltjes’ estimates (2.2) for the auxiliary functions P0(t) and Q0(t), standard

inequalities and elementary trigonometric identities,

∫ ∞

1

tJ0(at)

2
∏

m=0

J0(rmt) dt

=

4
∑

i=1

(

αi

∫ ∞

1

t−1/2J0(at) cos(ait) dt + βi

∫ ∞

1

t−1/2J0(at) sin(ait) dt

)

+

∫ ∞

1

B(t) dt,

where the αi and βi are nonzero constants satisfying α1 = −β1 and α4 = −β4, the ai

are constants lying in the set {r0 ± r1 ± r2} and the function B(t) ∈ L1([1,∞)). Next

apply the closed evaluations (2.4)–(2.7) for the individual integrals and then invoke

the Ramanujan asymptotic formula for the hypergeometric series F. By (i), I(a) con-

verges at a = r0 + r1 + r2 and a = r0 − r1 − r2 > 0 and we obtain I(a) = O(log |a − b|)
for a→ b ∈ S, as claimed. �

REMARK 3.1. From the above analysis, we can obtain some additional information

concerning the behaviour of integrals of the form
∫ ∞

1
t−1/2J0(at)(cos(at) − sin(at)) dt

for a > 0. Although
∫ ∞

1
t−1/2J0(at) cos(at) dt and

∫ ∞
1

t−1/2J0(at) sin(at) dt diverge indi-

vidually,
∫ ∞

1
t−1/2J0(at)(cos(at) − sin(at)) dt must be finite.

PROOF OF COROLLARY 1.2. Armed with Theorem 1.1, we are now ready to establish

Corollary 1.2. By [5, Equation (46)],

∣

∣

∣

∣

∣

2m(PD) − 2 log c(D) +

N
∑

j=1

1

j

j
∑

k=0

(

j

k

)

(−1)ka(n, k, D)

c(D)2k

∣

∣

∣

∣

∣

≤
∞
∑

j=N+1

1

j
ID1

,

where

ID1
:=

∣

∣

∣

∣

∣

c(D)2

∫ d(D)/c(D)

0

(1 − v2) jv

(

∫ ∞

0

tJ0(c(D)vt)

2
∏

m=0

J0(rmt) dt

)

dv

∣

∣

∣

∣

∣

with v ∈ (0, 1] and rm:= |Wm| for each m from 0 to 2. It suffices to derive a suitable

bound for ID1
. Set a := c(D)v. Then a lies in (0, c(D)] and b ≤ d(D) ≤ c(D) for b ∈ S

by construction and the ℓ1– ℓ2 norm inequality. Set cb := b/c(D) ∈ (0, 1]. We have
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ID1
≤ c(D)2

∫ 1

0

∣

∣

∣

∣

∣

(1 − v2) jv
∑

b∈S
log |v − cb|

(

∫ ∞
0

tJ0(c(D)vt)
∏2

m=0 J0(rmt) dt
∑

b∈S log |v − cb|

)

∣

∣

∣

∣

∣

dv,

≤ AD c(D)2

∫ 1

0

∣

∣

∣

∣

∣

(1 − v2) jv
∑

b∈S
log |v − cb|

∣

∣

∣

∣

∣

dv

by Theorem 1.1 for some AD > 0. We show that for each j and for any b ∈ S,

∫ 1

0

∣

∣

∣(1 − v2) jv log |v − cb|
∣

∣

∣ dv ≤ Ã

j3/4

for some Ã > 0, which yields the result. Note that both log |v − cb| and (1 − v2) jv are in

L2([0, 1]) and by a change of variables the square of the norm of (1 − v2) jv is

∫ 1

0

(1 − v2)2jv2 dv =
1

2

∫ 1

0

(1 − u)2ju1/2 du.

Utilising [6, Section 3.196.3] with a = 0, b = 1, µ = 3/2 and ν = 2j + 1 and applying

the Cauchy–Schwarz inequality,

∫ 1

0

∣

∣

∣(1 − v2) jv log |v − cb|
∣

∣

∣ dv ≤

√

Γ(3/2)

2 · (2j)3/2
· Ã1 =

Ã

j3/4
,

where Ã1 denotes the L2 norm of log |v − cb| and Ã =
√

Γ(3/2)/25/2 · Ã1 > 0, as

claimed. �

PROOF OF COROLLARY 1.3. Considering (1.2) for l = 1 and [5, Equations (53), (54)],

|m(PD) − E2(N; n, D))| ≤ C
√

N
c(D)2

∫ 1

0

(1 − v2)−1/4v1/2

∫ ∞

0

tJ0(c(D)vt)

2
∏

m=0

J0(rmt) dt dv,

(3.1)

where E2(N; n, D) is the right-hand side of (1.2) with C = 2
4
√

2/
√
π. For l ≥ 2, one

must assume that D , r(1, 1, 1) and [5, Equations (56) and (57)] yield

|m(PD) − E2(N; n, D)| ≤ 1

2

∞
∑

j=N+1

2j + l

j(j + l)
ID2

,

where

ID2
=

c(D)2A(D, l)
√

2j + l

∫ 1

0

(1 − v2)−1/4v1/2
(

∫ ∞

0

tJ0(c(D)vt)

2
∏

m=0

J0(rmt) dt

)

dv, (3.2)

noting that A(D, l) is a constant (see Corollary 1.6) as a consequence of the assumption

D , r(1, 1, 1). In both of these cases it suffices to show that the (coincident) integrals
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in the right-hand sides of (3.1) and (3.2) converge. For l ≥ 1, this integral is equal to

∫ 1

0

(1 − v2)−1/4v1/2
∑

b∈S
log |v − cb|

(

∫ ∞
0

tJ0(c(D)vt)
∏2

m=0 J0(rmt) dt
∑

b∈S log |v − cb|

)

dv

≤ AD

∣

∣

∣

∣

∣

∫ 1

0

(1 − v2)−1/4v1/2
∑

b∈S
log |v − cb| dv

∣

∣

∣

∣

∣

for some AD > 0 by Theorem 1.1. By the Cauchy–Schwarz inequality, for each b ∈ S,

the integral converges, yielding the claim for l ≥ 1. The case l = 0 follows from the

case l = 1 and a manipulation of the inner sum in [5, Equation (8)]. �

Appendix A. Numerical evaluations by Joshua Friedman

A.1. Introduction. The goal of this appendix is to compute the terms a(n, k, D) and

SD(l) (defined in Corollaries 1.2 and 1.3) for the case of n = 2 using high-precision

computation software. The first step towards efficient computation is to compute the

multinomial in terms of a product of binomials

(

k

l0, l1, . . . , ln

)

=

(

l0

l0

)(

l0 + l1

l1

)

· · ·
(

l0 + l1 + · · · + ln

ln

)

,

where l0 + · · · + ln = k. The second step is to compute all the a(n, k, D) terms together,

that is, for all values of k up to some pre-set maximum (in our code the constant M).

We use a triple for the loop and compute all possible sums of three indices:

for r in 0:M
for s in 0:M
for t in 0:M
k = r+s+t

and, each time a particular k-value appears, we add it to the running sum representing

a(n, k, D).

A.2. Technical details and results. Table 2 gives the first four digits of output from

our algorithm. It was implemented in the language Julia using the arbitrary precision

data types of BigInt and BigFloat, with a precision of 512 bits and a max of k ≤ 200.

Each line in the table took approximately 13 seconds on a single core of an Intel CPU

(2.6 GHz i7) Note that we do not certify correctness of the digits.

A.3. Julia implementation of the algorithm. Note that because Julia indexes

arrays starting from one rather than zero, we had to code a(n, k, D) as a[k + 1].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972721000484
Downloaded from https://www.cambridge.org/core. IP address: 71.190.129.142, on 29 Jul 2021 at 16:37:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972721000484
https://www.cambridge.org/core


[11] An integral of J-Bessel functions 11

TABLE 2. Output of the algorithm.

D l SD(l)

(1, 1,−1) 1 0.5511

(1, 1,−1) 2 0.0511

(1, 1,−1) 3 –0.28

(1, 2, 1) 1 0.5040

(1, 2, 1) 2 0.0039

(1, 2, 1) 3 –0.329

(4, 1, 1) 1 0.2164

(4, 1, 1) 2 –0.2836

(4, 1, 1) 3 –0.6169

#!/usr/bin/julia
const M = 200
const n = 2
const wr = BigFloat(1/2)
const ws = BigFloat(1/2)
const wt = BigFloat(1/2)
const Wr = wr^2
const Ws = ws^2
const Wt = wt^2
const C_D = (n+1)*(wr^2+ws^2+wt^2)
const l = 2
setprecision(512)

#multinomial code from https://github.com/JuliaMath/Combinatorics.jl
#We implement the multinomial as product of binomials
function multinomial(k...)
s = 0
result = 1
@inbounds for i in k
s += i
result *= binomial(s, i)

end
result
end

#main function to compute the a(n,k,D) and S_D(l) terms
function f1()
a = zeros(BigFloat,M+1)
for r in 0:M
for s in 0:M
for t in 0:M
k = r+s+t
if k <= M
a[k+1] += Wr^(r)*Ws^(s)*Wt^(t)
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*(multinomial(BigInt(r),BigInt(s),BigInt(t)))^2
end

end
end

end

#print the first 10 a(n,k,D)
print("M equals ",M, " printing first 10 ",’\n’ )
for k in 0:10
print(k,": " , a[k+1], ’\n’)

end

#compute S_D(l)
S = BigFloat(0)
T = BigFloat(0)
for j in 1:M
T = BigFloat(0)
for k in 0:j
T += binomial(BigInt(j+l+k-1),BigInt(k))

*binomial(BigInt(j),BigInt(k))*(-1)^k*a[k+1]/C_D^(k)
end

S+= BigFloat(2*j+l)/BigFloat(j*(j+l))*T
print("l= ",l, " j= ",j, ",", "W= ",wr, ’,’, ws,’,’, wt, ", " ,S,’\n’)
end

end
@time f1()
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