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Abstract
To analyze the role of electron–electron correlation effects in structural (local-geometry),
spectral and polarization properties of tetragonal BaTiO3 we apply DFT + U approach. We
demonstrate that the system properties drastically change when the value of the local Coulomb
repulsion U crosses the critical value Uc ≈ 7 eV. In particular, the correlation effects cause a
change of the ratio of the in-plane and inter-plane Ti–O bond lengths, which results in a flip of
the order of the Ti d-bands and change of the polarizability of the system. Since the consensus
value of U in BaTiO3 is unknown, we discuss how the obtained results may be revealed in
experimental data, especially in the optical response and ultrafast charge dynamics, where
effective U is dynamically tuned.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Ferroelectric perovskite BaTiO3 is a non-magnetic band insu-
lator with unfilled d-electron shells (bandgap ∼3.2 eV at
300 K) that exists in five different phases—hexagonal, cubic
(non-ferroelectric phase), tetragonal (under ambient condi-
tions), orthorhombic, and rhombohedral crystal structure in
decreasing-temperature order. Only the cubic phase is non-
ferroelectric [1]. Barium titanate has many fascinating proper-
ties and exhibits various phenomena, such as photorefractive
effects and piezoelectricity. Some perovskite oxides, includ-
ing BaTiO3, show spontaneous polarization at ambient tem-
perature and pressure due to the relative displacement of the
cationic and anionic sublattices inside the unit-cell [2, 3]. Con-
version of strain/stress to electrical response and vice versa are
very important characteristics of this and other ferroelectrics
[3–8]. These and other properties are or may be used in prac-
tical applications, e.g. in capacitors, electromechanical trans-
ducers, optical devices [9], and ultraviolet sources based on

1 Author to whom any correspondence should be addressed.

high-order harmonic generation [10]. Recently, it was shown
that BaTiO3 can be used as a part of proposed multilevel
cell memories for calculators and memory devices [11]. Lack
of inversion symmetry BaTiO3 is a ferroelectric with a fixed
direction of polarization) helps to efficiently separate photoex-
cited charges (electrons and holes) in the system and makes
BaTiO3 a good candidate to be used in photovoltaic applica-
tions [12–14], as well as in nonlinear optics. For photovoltaic
applications, though, one needs to reduce the large bandgap
(the energy difference between the Ti-d and O-p levels). This
can be done by doping, applying pressure or even using ultra-
fast laser-pulse excitations that generate a quasi-equilibrium
state [15, 16] (see also reference [17] on the case of LaTiO3).
In general, photoexcitedBaTiO3 demonstrates very interesting
ultrafast electronic [18] and ionic [15] dynamics. In particular,
as it was shown in reference [18], there are two characteris-
tic decay times when the system relaxes to the equilibrium.
Finally, in the case of reduced geometry, BaTiO3 also shows
several unique and potentially useful properties, like an uncon-
ventional crystal-field splitting in thin films [19] and surface-
assisted dynamical ferroelectric–paraelectric transition [20].
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Figure 1. The unit cell of tetragonal BaTiO3.

Figure 2. Optimized values of the lattice parameters of tetragonal
BaTiO3, as functions of the Hubbard parameter U (the experimental
values for the parameters at room temperature are a = 3.986 A and
c = 4.026 [40, 41]).

To gain a deeper understanding of these and to predict new
properties of BaTiO3, it is fundamental to properly understand
the spectrum and other electronic properties of the system
including band ordering, density of states (DOS), electronic
and optical gaps, and polarization. One of the most impor-
tant steps in this tasks case is to properly take into account
the effects of electron–electron correlations which are usually
important in transition-metal oxides, since they have d-orbital
electrons with localized charges (Ti d-orbitals in the case of
BaTiO3). Electron–electron interactions affect also the local
geometry in the system, which define the polarization, as well
as the electron dynamics and ultrafast optical response.

It is known that standard DFT approaches strongly under-
estimate effects of electron–electron correlations, which can
result, for example, in underestimation of the electronic
bandgap in BaTiO3 by∼1 eV with respect to the experimental
value (3.2 eV). As it was shown in reference [21] one can get
correct value of the gap in BaTiO3 by instead using DFT + U,
an approach that takes into account the local electron–electron

Figure 3. The Ti–O in-plane (black) and out-of-plane (red) bond
lengths as functions of U (for the definitions of the in-plane and
out-of-plane directions used in this paper, see figure 6).

repulsion. Here it must be noted that some alternative,
advanced DFT approaches, like Heyd–Scuseria–Ernzerhof
(HSE) hybrid DFT (GGA) [22], HSEsol [46], HSEint [47],
and meta-GGA [48–50], can also give the correct value of
the bandgap in BaTiO3 [23] (see also references [24–29]).
However, the physical reasoning beyond this result is not com-
pletely clear so far. Recently, several other DFT + U studies
of the properties of BaTiO3 were performed under different
conditions and in different states, such as that of the bulk
system under strain [30] and a thin film with defects [31].
Another study focusing on the properties of Mn-substituted
BaTiO3 was performed in reference [32] by using three dif-
ferent approaches—DFT, DFT + U, and its generalization
DFT + DMFT that takes into account local time-resolved
electron–electron interactions. It was demonstrated that such
interactions lead to strong charge and valence fluctuations in
the system, which are not captured by DFT and DFT + U.
Otherwise, as different studies have shown, the DFT + U
approach is an appropriate tool to study pure BaTiO3. For
example, as it was shown in another work, reference [33], this
approach is a physically motivated approximation to describe
free (self-trapped) O-hole polarons in BaTiO3. Though, gen-
erally speaking the nature of low-energy excitations, includ-
ing the mentioned polarons, and the role of local Coulomb
repulsion in formation of these states in BaTiO3 remain open.
Several other studies of excitations in BaTiO3 were performed
without including these effects: within the GW approximation
and solving the Bethe–Salpeter equation (that includes elec-
tron–hole coupling effects) in reference [34], and by using
first-principles calculations—in reference [35].

To summarize, DFT + U studies of BaTiO3 that take into
account strong electron–electron correlations of BaTiO3 are
very limited so far, and the research has mostly focused on
establishing the value of the bandgap and of the lattice param-
eter by using a particular value of the local Coulomb repulsion
U. Moreover, besides understanding the static properties of
materials there is another reason to analyze the effects of U.
Namely, it is well-known that the value of the strength of the
effective Coulomb interaction can dramatically change in the
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Figure 4. The Ti–O bond length in-plane (a) and out-of-plane (b) as a function of U in the case of different initial configurations: DFT
(black) and experimental lattice constants [40, 41] (magenta). For comparison, the optimized-case results (red, with fixed to U = 0 lattice
parameters) are shown in figure 3.

Figure 5. The xz-plane charge density in BaTiO3 at different values of U. The plane crosses the in- and out-of-plane Ti and an O atom. The
charge density units are arbitrary.

excited regime. As a matter of fact, the U can also strongly
depend on time (see work [36] and references therein). Thus,
understanding static properties of a material at different values
of U, may help to understand details of the ultrafast dynamics
in the system.

In this work, we perform a systematic DFT + U study of
the role of U in determining the local geometry, spectral, and
polarization properties of the ambient-temperature tetragonal
barium titanate by tracking the evolution of these properties
with increasing U. As we demonstrate, with increase of U,
the system shows dramatic qualitative changes of its proper-
ties. Since the consensus value of U is unknown, we conclude
with a discussion of how the obtained results can be tested
experimentally in the case of ultrafast response.

2. Computational details

In thiswork,we have performedcalculations based onDFT+U
with the plane-wave and pseudo potential method as imple-
mented in the Quantum Espresso package [37] using the
LDA–PZ exchange–correlation potential [38]. The ultrasoft
pseudo potentials are used to describe the core-valence interac-
tions. The valence wave functions, and the electron density are
described by a plane-wave basis set with kinetic energy cutoffs
of 70 Ry and 280 Ry, respectively. In order to take into account
the effects of electron–electron correlations we used the

on-site Coulomb repulsion U parameter for the d-orbital elec-
trons on the Ti atoms with values ranging from 0.0 to 10.0 eV.
The Brillouin zone was sampled by using 8 × 8 × 8 Mon-
ckhorst–Pack k-point grid [39] for the geometry optimization
and 24×24×24 grid for the band structure calculations.

We would like to note that we did not analyze the temper-
ature effects in this work which are beyond the scope of the
paper and focusing on the tetragonal phase stable at ambient
conditions. Even thoughDFT is a zero-temperature theory, one
can model different-temperature by using the corresponding
experimental lattice structures as the input (and optimizing the
system). Temperature effects can be also included when using,
e.g., Quantum Espresso code by changing the electronic tem-
perature (broadening) parameter that controls the occupation
numbers around the Fermi energy (or in the case of semi-
conductors and insulators, occupation numbers at the top of
valence and bottom of conduction bands), and by changing ion
temperature.

3. Correlation effects and the local geometry

The unit cell of tetragonal BaTiO3 is shown in figure 1, while
the U-dependence of the in- and out-of-plane (in the i.e., xy-
plane and perpendicular, z-direction,) lattice parameters for
the relaxed structure are shown in figure 2. So far, the role
of U is rather trivial: the values of the cell parameters grow

3



J. Phys.: Condens. Matter 32 (2020) 475601 N U Din et al

Figure 6. A qualitative representation of the U dependence of the Ti–O in- and out-of-plane plane bonds.

Figure 7. Orbital resolved band structure of BaTiO3 (a) and projected d-orbital density of states for the Ti atoms (b) obtained by using the
LDA–PZ exchange–correlation potential [38].

Figure 8. Calculated indirect band gap of tetragonal BaTiO3 as a
function of U. The results are obtained with the same computational
schemes as described in caption to figure 4.

as U increases, reducing the probability of electron hopping
between the correlated Ti-d orbitals, and hence reducing the
energy of their on-site repulsion.

The situation is more interesting for the local geometry. In
figure 3, we show dependencies of the lengths of the in-plane
and out-of-plane Ti–O bonds (defined in figure 6), that play a
very important role in the system polarization, as functions of
U. As it follows from the figure, the out-of-plane bond length

increases rapidly with increasing U, while the in-plane bond
length increases much more slowly. For U ≈ 7 eV the Ti–O
in-plane and out-of-plane bond lengths become equal, and for
larger values of U the out-of-plane bond length is larger than
in-plane one. The significant bond length increase occurs for
U values between ∼4 to 8 eV. Such a dramatic change of
the out of plane bond length could significantly impact the
polarization.

To test the validity of the results in figure 3, we performed
the calculations using two other sets of the lattice parameters
obtained from experiment (defined exp LC below) and from
DFT, i.e. at U = 0, (LDA LC), respectively, and compared
the results for the ones in figure 3 obtained with the optimized
lattice parameters for each value of U (optimized LC). TheU-
dependence of the obtained bond lengths are shown figure 4.
As it follows from this figure, the main conclusion of figure 3
holds: atU ≈ 7 eV the out-of-planeTi–O bond becomes larger
than the in-plane one, i.e. the electron–electron correlations
affect the internal geometry of BaTiO3.

The charge density distributions in the O–Ti–O plane
(figure 6) for three different values of U—below-critical, crit-
ical, and above-critical—are shown in figure 5. From these
figures, one can clearly see the redistribution of the strength
of covalent TiO bondings, from out-of-plane bond to in-plane
bonds asU increases. The resulting change of the bond lengths
is shown in a cartoon figure 6.
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Figure 9. The dependence of the band structure of BaTiO3 on U, projected into the Ti-d/O-p orbitals. In this and the next two figures, the
results were obtained with the optimized lattice constants.

Figure 10. The projected d-orbital density of states for the Ti-d atoms at different values of U.

The reason for redistribution of the bonding strength with
increasing U is connected with stronger localization of d
orbitals on Ti atoms, which results in weaker hybridization
between the neighboring Ti and O atom orbitals. Since the dis-
tance between the nearest Ti atoms is largest along the c axis,
the hopping, and hence hybridization, gets more suppressed in
this direction, and as a result the bond lengths in the c direction
increase most.

4. Correlation effects and spectral properties

Results of the DFT calculations of the electronic band struc-
ture and orbital-resolved density of states show that the system
is indirect-bandgap insulator with gap ∼1.8 eV. The valence
bands are formed predominantly by hybridized oxygen p-
orbital states, and the conductionbands—by titanium d-orbital
states. The bottom of the conduction band consists mostly of
dxy electron states, indicating that low-energy excitations are

xy-plane quasi-particles (i.e., excitations in the xy-plane cross-
ing the Ti atoms, centers of the corresponding xy-plane dxy
orbitals, figure 6), i.e. that low-energy dynamics of the excited
system occur primarily within two dimensions (figure 7).

The spectral properties of the system change dramatically
as U grows from zero to 10 eV, as in the case of the bond
lengths. In particular, as U becomes larger than critical value
the band gap dependence on U changes from growing to
decreasing (figure 8). As was the case with the bond lengths,
the changes in the band gap with increasing U are stable with
respect to the optimization procedure. Calculations initialized
with lattice constants obtained from experiments andDFTboth
show similar behavior in agreement with the optimized lat-
tice constants, thoughwith some quantitative differences in the
observedmaximum band gap. Due to a rather good agreement
between the results above obtained with three different sets of
lattice constants, in the remaining part of the paper we present
results for optimized lattice constant only.
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Figure 11. Out-of-plane polarization as function of U (experimental
value of the room-temperature polarization directed out-of-plane is
approximately 26 uC cm−2 [42]).

To obtain a deeper insight on the reason for such a change
of the gap, we have performed calculations of the electronic
band structure (figure 9) and of the projected DOS (figure 10)
at different values of U. Besides decrease of the band gap, the
most interesting result of figure 9 is band flattening at the X–Γ
region when U becomes larger than the critical value. Much
more interesting effect ofU can be observed in the DOS shown
in figure 9. Namely, we observe a flipping of the order of the
conduction t2g and eg bands whenU becomes larger than 7 eV.
This is a very important result, suggesting that the in-plane
(dx2−y2 ) state will have an increased weight in the low-energy
excitation spectrum, while for smallU such states are predom-
inantly of the out-of-plane (dzx and dzy) symmetry. Thus, the
direction of the polarization and the dominant response direc-
tion of the system excited by, e.g., a laser pulse will change
from the out-of-plane to in-plane as U increases.

5. Correlation effects and polarization

This result is also confirmed by calculation of polarization as
function ofU, as shown in figure 11. As the calculations show,
the magnitude of the out-of-plane polarization dramatically
decreases, and the polarization changes sign, as U becomes
larger than the critical value. We find that the increase of
the out-of-plane Ti–O bond length with U (figure 3) is the
main reason for the accompanying decrease of polarization.
Indeed, longer distance between the ‘vertical’ Ti–O polariza-
tion charges (i.e., their weaker coupling) favors ‘leaking’ of the
Ti-atom charge to the left and right bonds with oxygen atoms,
and hence decrease of the polarization.

6. Summary and conclusions

We have applied DFT + U approach to study the role of
correlation effects in the geometric, spectral and polarization
properties of tetragonal BaTiO3. We have found a dramatic
change in these properties as U becomes larger than a criti-
cal value of ∼7 eV. Most notably, the in-plane Ti–O bonds
become shorter than the out-of-plane ones, electronic bandgap

dramatically decreases, and the t2g and eg conduction bands
flip order, resulting in exchange of the predominantly out-of-
plane low-energy excitations to in-plane ones. The band flip-
ping also leads to a dramatic decrease of the static polariza-
tion, originally oriented out-of-plane. All of these correlation-
induced effects may play an important role in the excitation
spectrum, ultrafast charge dynamics and other elements of the
optical response of the system. While there is no consensus on
value of the HubbardU for BaTiO3, the obtained critical value
is not very far from those often used, U = 4–6 eV.

The main findings of the work—change of different phys-
ical quantities with U (the in-plane and out-of-plane bond
lengths, band gap, band order and polarization) may be
revealed in the optical spectra and ultrafast response and tested
experimentally. Possible measurable effects include:

(a) Change of the transient absorption spectrum (due to
change of the band gap) [43, 44].

(b) Anisotropic response, including linear and non-linear
(higher-harmonic) emission, of the system to different-
angle perturbations (due to different change of the in- and
out-of-plane bond lengths and change of the polarization)
[9].

(c) Strong dependence of the beating [45] and the oscillatory
inter-orbital currents [43] on the pulse polarization (due
an oscillatory time-dependence of the orbitals population
[43] and the band-order flip, i.e. change of symmetry of
the low-energy conduction bands).

Theoretical analysis of these and otherU-dependent effects
in BaTiO3 is planned to be performed in near future.
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