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Anomalous exciton transport in response to a uniform in-plane electric field
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Excitons are neutral objects that, naively, should have no response to a uniform electric field. Could the
Berry curvature of the underlying electronic bands alter this conclusion? In this work, we show that Berry
curvature can indeed lead to anomalous transport for excitons in two-dimensional materials subject to a uniform
in-plane electric field. By considering the constituent electron and hole dynamics, we demonstrate that there
exists a regime for which the corresponding anomalous velocities are in the same direction. We establish the
resulting center-of-mass motion of the exciton through both a semiclassical and fully quantum mechanical
analysis, and elucidate the critical role of Bloch oscillations in achieving this effect. We identify transition metal
dichalcogenide heterobilayers as candidate materials to observe the effect.
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I. INTRODUCTION

Berry curvature of electronic bands plays an important
role in the transport phenomena and optical responses of a
system [1]. Among the myriad consequences of a finite Berry
curvature is the anomalous velocity, in which an electron
experiencing a force perpendicular to the Berry curvature of
the band acquires a contribution to the velocity perpendicular
to both. The anomalous velocity can be well understood from
a single-particle and semiclassical treatment, and leads to a
variety of interesting features including the quantum anoma-
lous Hall effect. In this work, we consider the role played by
the anomalous velocity for exciton transport.

Excitons have attracted renewed interest for their dominant
role in the optical response of van der Waals materials [2—11].
An exciton is a neutral boson consisting of an electron-hole
pair bound by Coulomb interactions. In van der Waals ma-
terials, such as transition metal dichalcogenides (TMDs) [2],
excitons exhibit a variety of interesting behaviors intimately
tied to Berry curvature, including valley selective optical re-
sponse [12—-19], topological bands in the presence of a moiré
potential [20-23], and nonhydrogenic spectra [24—27]. In par-
ticular, anomalous exciton transport in response to electric
and magnetic fields has garnered significant interest [28-32].
Typically, such transport requires a net force acting on the
exciton center of mass, e.g., by utilizing the exciton dipole
moment. In contrast, here we consider excitons confined to a
two-dimensional system in the presence of a uniform in-plane
electric field [33]. Given the absence of a net force on the
exciton center of mass, anomalous transport can only arise by
considering the internal structure of the exciton.

Heuristically, one might anticipate that in response to
a uniform in-plane electric field, the electron and hole
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composing the exciton would initially move apart until they
reach an equilibrium point at which the force from the electric
field is balanced by the Coulomb interaction. If the electronic
bands have some out-of-plane Berry curvature component,
both constituent particles will move with an anomalous veloc-
ity while they experience a net force [1]. In the case of inter-
valley excitons, the electron and hole bands can experience the
same Berry curvature. As a result, the anomalous velocity will
point in the same direction for the electron and hole, thereby
resulting in exciton center-of-mass motion as depicted in
Fig. 1. However, this anomalous motion will only happen for
the short period of time that it takes the electron and hole to
reach their equilibrium separation, after which the exciton will
once again remain stationary.

In this work, we show that when the electron and hole un-
dergo Bloch oscillations, the anomalous velocity persists over
an extended period of time, resulting in a measurable anoma-
lous exciton drift. While the effect is predicted to be stronger
for topological bands, it does not require them. Essentially,
Bloch oscillations bound the relative separation of the electron
and hole by the bandwidth so that the electron and hole can
never reach their equilibrium separation. The exciton center
of mass moves as a result of the sustained anomalous velocity,
resulting in anomalous transport in response to a uniform
in-plane electric field. A semiclassical analysis predicts Bloch
oscillations when the electric field is sufficiently large com-
pared to the Coulomb interaction. Surprisingly, we find that
Bloch oscillations can also occur when the interaction strength
is large compared to the electric field. This additional region
of parameter space supporting anomalous exciton transport
only manifests when evolving the exciton quantum mechani-
cally. Our main goal is to identify a proof-of-principle of this
anomalous exciton transport through toy models. Although
we roughly choose the toy model parameters on the basis of
existing materials, we avoid a material specific calculation and
overlook some of the complications present in such materials.
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FIG. 1. Schematic of an interlayer exciton with electron and hole
bound to opposite layers. When the valence and conduction bands
have the same Berry curvature, the anomalous velocity of the elec-
tron and hole, v¢/"_ points in the same direction, resulting in a net

transverse drift of the exciton.

The remainder of this work is organized as follows. In
Sec. II, we identify the necessary ingredients for anomalous
exciton transport. We first consider a semiclassical anal-
ysis and derive a lower bound on the electric field for
the electron and hole to experience Bloch oscillations. We
then motivate why the small-field, strong-interaction limit
also supports Bloch oscillations, with insight from a sim-
ple one-dimensional (1D) toy model. In Sec. III, we present
numerically simulated phase diagrams of the anomalous ex-
citon drift when the underlying electronic bands are both
topological and trivial. We plot the semiclassical equations
of motion for both harmonic and Coulombic potentials. We
further simulate exciton dynamics quantum mechanically for
a toy model of the electron and hole, again with both harmonic
and Coulombic potentials. Section IV identifies additional
complications beyond the models considered in the previous
sections and argues that TMD heterobilayers are an attractive
candidate system to observe anomalous exciton transport. Fi-
nally, in Sec. V, we discuss the relation to previous works
and identify future directions. Details of the analytical and
numerical analyses are relegated to the appendices.

II. ANOMALOUS EXCITON DRIFT: THEORY

In this section, we introduce the toy models used to study
anomalous exciton transport. We begin with a semiclassical
analysis highlighting the critical role of Bloch oscillations. We
then motivate how a quantum mechanical treatment indicates
an additional region supporting the effect that is not predicted
by semiclassics.

A. Semiclassical exciton dynamics

We model the exciton as an electron-hole pair subject to
an interaction potential U(r, — r;), with the electron in the
conduction band and the hole in the valence band. We assume
both bands have finite Berry curvature Qz/ .- In the presence
of a uniform in-plane electric field, the semiclassical equations
of motion are

ke/h = _Vrg/hU(re - rh) + eEv (1)

Fosn = Oy Eepn(Kesn) — Kesn X Q). )

where we have set =1 and e&.(k,,) denotes the
electron/hole band dispersion. In Eq. (2), the first term
corresponds to the group velocity resulting from the band
dispersion, while the second term is the anomalous velocity
resulting from finite Berry curvature.

The force experienced by the electron and hole are pre-
cisely opposite for uniform E. As such, the force on the
exciton center of mass is strictly vanishing,

K=k, +k,=0. 3)

The relative and center-of-mass (COM) position coordinates
evolve according to

I = 0,8 (ke) — O, en(kn) — ke x [2(k.) + R, (ky)], )
O, ee(Ke) + O en(kn) K x 2, (k.) — @) (k)
2 ¢ 2 '
when m, = my,. Note that for a given band «, 7 (k;) =
—Q¢(—k;); see Appendix A for a derivation.

In a particle-hole symmetric two-band model,
gc(k.) = ep(—Kkp) and R¢(k) = ) (k). Therefore, a direct
momentum exciton k, = —k; has no center-of-mass motion,
R = 0. In this case, the Berry curvature can only affect
the relative motion of the electron and hole. These internal
dynamics can affect the exciton spectra [24,25], but do not
result in anomalous transport.

In contrast, any deviation from the two-band, direct-
momentum, particle-hole symmetric system can result in
Berry curvature effects on COM motion. Motivated by in-
tervalley excitons in TMD bilayers, we consider a direct
momentum exciton k, = —k;, with opposite Berry curvatures
for the conduction and valence bands [34]. The corresponding
relative and COM equations are

r= 2ake8e(ke)’

R = &)

R =2k, x (k). (6

In the absence of interactions, the relative and center-of-mass
motions decouple, and an electric field E results in a net
transverse drift of the exciton if the line integral of the Berry
curvature along the direction of E is nonzero.

Interactions complicate the story by coupling the relative
and center-of-mass motion. The relative strength of the in-
teractions, bandwidth, and electric field result in two limiting
regimes:

(1) Harmonic oscillator regime. The restoring force is able
to overcome the applied electric field and the relative mo-
mentum k of the exciton is not able to reach the Brillouin
zone boundaries. As a result, k changes sign and the exciton
oscillates perpendicular to the direction of E.

(2) Bloch oscillation regime. The electric field is suffi-
ciently large that k has the same sign as E at all times.
The relative momentum of the exciton crosses the Brillouin
zone momentum-space boundary. The cooperative anoma-
lous velocity results in a nonvanishing transverse drift in
the center-of-mass position whenever the line integral of the
Berry curvature along the direction of E is nonzero.

The restoring force is provided by the attraction between
the electron and hole; as such, it depends on both the
strength of the interactions (e.g., dielectric constant) and the
displacement from the equilibrium position. The nature of
the electron-hole interaction depends on the type of exciton
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(intralayer or interlayer), as well as material specific pa-
rameters. In TMD monolayers, the interaction is often
approximated by the Keldysh potential [35-37], while for
TMD bilayers, it takes a somewhat different form, discussed
in Ref. [8], that depends on the polarizability of both layers
and the surrounding environment. However, in both cases,
the interaction is approximated by a simple harmonic po-
tential near the equilibrium point. Below, we gain intuition
by first considering toy models with a harmonic interaction
to identify the necessary conditions for excitons to undergo
anomalous transport. We then turn to a Coulombic interac-
tion, thereby demonstrating a parameter regime for which the
effect survives away from the harmonic limit. While these two
toy models are sufficient for establishing proof-of-concept, a
quantitative analysis of the anomalous exciton transport in
a specific material would need to account for these more
realistic models of the interaction.

1. Harmonic potential

When the attraction between the electron and hole is mod-
eled as a harmonic potential,

1
Ur) = -V, + Exrz, @)

the nonvanishing equations of motion in the presence of a
uniform electric field E = EX are

i(1) = 2Jasin [k,(t)a] X + 2Jasin (k,a) ¥, (8)
k(t) = —[kx(t) + eE]1% — ky(1) ¥, 9)
R(t) = 2k, Qk(1)]1§ — 2k, QC[k(1)]R, (10)

where r =r, —r;, and k = (k, — k;,)/2. If there is no inter-
action, we expect Bloch oscillations in relative space with
amplitude and period,

2J 2
-, T = —.
oE Bloch eEa

The exciton COM experiences a net transverse drift provided
¢ Q(k)dk, # 0.

Interactions reduce the magnitude of R(t), and thus slow
down the anomalous velocity. If, at any point, x(¢) exceeds
the equilibrium position x.q = eE /k, the electron/hole does
not reach the Brillouin zone boundary and k() changes sign.
In this case, both the relative and COM motion oscillate,
corresponding to the harmonic oscillator regime.

The value of E for which x¢q > Xgioch sets alower bound on
E to achieve Bloch oscillations; in the absence of interactions,
this bound is given by

QY

XBloch =

eE > /2Jk. (12)

Interactions modify the above, but do not change the fact that
semiclassics only predict anomalous exciton transport when
the electric field is sufficiently large compared to J and «.
Thus far, we have focused on the simple limit
Q¢ (k) = (k) for which the relative and COM motion de-
couple, with Berry curvature affecting only the latter. In the
opposite limit £¢(k) = —}(k), the relative and COM mo-
tion again decouple, with Berry curvature affecting only the

former. More generally, both the relative and COM motion
will be coupled by the Berry curvature terms. We discuss this
intermediate case in Appendix B.

2. Coulombic potential

The harmonic potential considered above is a limiting
case for which there exists a bound state for all values of
electron and hole separation. To go beyond this limit, we con-
sider the Coulomb interaction for interlayer excitons, where
the electron and hole are confined to layers separated by a
distance D,

Ur) ke? 1 kD? (13)

e VD2+72  J1+12/D*

In the above, x = ke?/(eD?). When r < D, U(r) is well
approximated by Eq. (7) with V; = xD?. For a system with
anisotropic dielectric response, the interlayer separation D
should be rescaled by a factor of /€, /¢ and € should be
replaced by JELE] where €| (¢)) is the out-of plane (in-plane)
dielectric constant. For TMD monolayers separated by layers
of hBN, € /¢| is of the order of unity [38], and thus does not
qualitatively affect our results.

The corresponding equations of motion for the relative and
COM positions are again given by Egs. (8) and (10), but U (r)
modifies Eq. (9) to

k(t) = —V,U(r) — ¢E k. (14)

We again expect a net transverse drift in exciton COM motion
for sufficiently large E. When (x) < D, the transition between
the Bloch and harmonic oscillator regimes should agree with
the bound derived for a harmonic potential. When (x) ~ D,
the restoring force is weaker than for the harmonic potential
case. We expect this to result in the anomalous drift persisting
for a larger region of E versus k space.

Our semiclassical analysis considers separate wave packets
for the electron and hole. Alternatively, the single-particle
semiclassical formalism can be extended for an exciton, as
was done recently by Ref. [39]. We compare these approaches
in Appendix C.

B. Small-field limit: Intuition from 1D toy model

The semiclassical analysis predicts anomalous exciton
transport only when the electric field E is sufficiently large
compared to the interaction strength x. Our numerics, how-
ever, indicate that there is also anomalous drift in the
small-field regime. We can gain insight into this regime by
considering a 1D toy model,

Hp=-Y" |:J(|n)(n + 1| +Hc) + %Kaz ﬁ2|n)(n|]

n

+eEay  aln)(nl, (15)

where |n) corresponds to the position eigenstate on the nth lat-
tice site and 7i|n) = n|n). The position n represents the relative
coordinate of the electron and hole in the exciton discussion.
In the previous section, we argued that for appropriate
Berry curvature profiles, the exciton experiences an anoma-
lous drift when the electron and hole cannot reach their
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equilibrium separation. The analogous consideration for the
1D toy model in Eq. (15) is to consider when the position
expectation value (a1) is less than the equilibrium separation
Xeq ~ eE /. If we begin in the ground state of Hp for £ = 0
and evolve for finite E, we find two regimes. When xa®/J <
1, the ground state resembles a wave packet in both position
and momentum space, resulting in good agreement with the
semiclassical dynamics. In contrast, when /caz/J > 1, the
ground state wave function v (x) is confined to a single site
and is therefore spread over the full Brillouin zone. The wave
function experiences an averaged group velocity, resulting in
a much smaller restoring force compared to the semiclas-
sical regime. The position expectation value (a1) oscillates
with amplitude ~[J?/(xa* MXeq K Xeq (see Appendix D), al-
lowing Bloch oscillations even in the small £ field limit.
Extrapolating to exciton dynamics, we should therefore
expect anomalous drift in both the semiclassical Bloch
oscillation regime and in the small-field large interaction
limit. We emphasize that the latter required taking into ac-
count the finite spread of the wave function in position and
momentum space, and thus only emerges in a quantum me-
chanical treatment of the dynamics.

III. ANOMALOUS EXCITON DRIFT: NUMERICS

We now numerically simulate a toy model of an exciton
whose electron and hole occupy bands with the same Berry
curvature profile. We consider both a semiclassical and a
quantum mechanical model with similar band dispersion and
Berry curvature profiles. For each case, we consider both
harmonic and Coulombic potentials.

A. Semiclassical numerics

We simulate the center-of-mass motion according to the
semiclassical equation of motion given by Eq. (5) with a
simple cosine dispersion and with the Berry curvature profile
set by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian [40].
More explicitly, we take the electron and hole to evolve ac-
cording to the upper band of the band-flattened Hamiltonian,

Hpuz(k)
HEB (k) = e(k)————. (16)
Bz Epuz(K)
In the above, Hgyz and Egyz are the BHZ Hamiltonian and
energy spectrum,

Heuz (k)= Y ¢;(K)o;, (17)
Jjelx.y.z}
EonzK) = e (0 + ¢, (k2 + (K2, (18)

for ¢, = my — b[cos(k.a) + cos(kya)l, cy/y = vy/y sin(kyya).
We take the dispersion ¢ to be

e(k) = —J[cos (ka) + cos (kya)]. (19)

Figures 2 and 3 plots the average transverse COM motion
per Bloch cycle in units of the lattice constant a for topological
(my = 1.4 eV) and trivial (my = 2.4 eV) bands, respectively.
We see that in the presence of harmonic interactions, the
semiclassical Bloch oscillation regime for topological bands

J=0.04eV, Topological
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4
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T3
>
~ -10
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FIG. 2. Semiclassical dynamics for harmonic potential. Average
Y per Bloch cycle in units of the lattice constant a plotted against
E and « for J = 0.04 eV (top) and J = 0.4 eV (bottom) for topo-
logical bands (my = 1.4 eV). The white dashed curve shows 227k
separating the harmonic oscillator regime (dark blue) from the Bloch
oscillator regime (red) in the case of topological bands. Note that
the x axis is in units of eV/a® and the y axis is in units of V/a,
where a is the lattice constant. For E = 0.25 V/a, a = 8 nm, a trans-
verse displacement of Sa indicates an anomalous velocity, v
3 x 10% m/s.

Y N
anom

is bounded by

eE > 2/2Jk. (20)

Above this bound, the exciton experiences an anomalous drift;
below it, the exciton’s center-of-mass displacement averages
to zero. The top and bottom panels correspond to different
values of the bandwidth J; as expected, the phase diagram
is unchanged by scaling J, «, and E by the same factor.
We take parameters b = 1 eV, v, = :I:v;/h = 0.9 eV, and set
e = 1. With these parameters and £ = 0.25 V/a,a = § nm, a
transverse displacement of 5a indicates an anomalous veloc-
ity, Uinom A 3 x 10° m/s.

We plot the same phase diagrams for the Coulombic po-
tential in Figs. 4 and 5. The white dashed curve again plots
the bound in Eq. (20). We see that for large D (top), the plot
agrees with the phase diagram for the harmonic potential. As
anticipated, for small D, the Bloch oscillation regime extends
beyond this bound. We take the same parameters as for Fig. 2.
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J=0.04eV, Trivial

0.5
4
2
1 0
0.0 0.1 0.2 0.3 0.4
K (eV/a?)
5 J=0.4eV, Trivial
4
2
0

FIG. 3. Semiclassical dynamics for harmonic potential. Average
Y per Bloch cycle in units of the lattice constant a plotted against
E and « for J = 0.04 eV (top) and J = 0.4 eV (bottom) for trivial
bands (my = 2.4 eV). The white dashed curve shows 2+/2Jk sep-
arating the harmonic oscillator regime (dark blue) from the Bloch
oscillator regime (red) in the case of topological bands. The Bloch
oscillator regime is reduced, comparatively, for trivial bands.

B. Exact dynamics simulation

We simulate the exact dynamics of the exciton for a
four-band model with the same Berry curvature profiles and
electron and hole dispersion as for the semiclassical numerics.
We consider the Hamiltonian

Hy = Hipy ¢ ® 1y + 1, ® Higy ¢

+Y V)L ® 1, @ [r)r, @1

where HEP,  is a tight-binding Hamiltonian obtained from
the partial Fourier transform (performed in k space) of the
band-flattened BHZ Hamiltonian in Eq. (16), 1./, is the iden-
tity matrix for the electron/hole Hilbert space, and V (r) is
the potential modeling the interaction (either harmonic or
Coulombic). Note that as the interaction only depends on the
relative coordinate, the Hamiltonian decouples into different
K sectors. We initialize the system in the state

Vo) = Zw(K)|<D0(K)), (22)
K

where w(K) is a narrow Gaussian envelope and |®((K)) is
the ground state of the Hamiltonian projected into the exciton

J=0.04eV, a =D/5, Topological

Kk (meV/nm?)
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0.5 0
0.4 -5
g
> 0.3 —10
Ll
0.2
-15
0.1
0.0 0.1 0.2 0.3 0.4
K (eV/a?)
J=0.04eV, a=D, Topological
K (meV/nm?)
0 5 10 15 20 25
0.5 0
0.4 -5
g
> 0.3 —10
L
0.2
-15
0.] M=
0.0 0.1 0.2 0.3 0.4
K (eV/a?)

FIG. 4. Semiclassical dynamics for Coulombic potential. Same
phase diagram as in Fig. 2 for Coulombic interaction with J =
0.04 eV. For a < D (top), the phase diagram is similar to that in
Fig. 2. For a = D (bottom), there is an increased Bloch oscillation
regime compared to the harmonic potential case. The top x axis
in blue indicates the absolute scale of x in meV/nm?. The Berry
curvature profile is again similar to that of Eq. (17) with the same
parameters as in Fig. 2.

Hilbert space,
HZ = B, B, Hx P, P.. (23)

The operators Pe/h project onto the upper band of HEE, .
thereby ensuring the electron remains in the conduction band
and the hole in the valence band. Our simulations use a
real-space tight-binding approximation. Further details of the
numerics are given in Appendix E.

For a harmonic potential, Fig. 6 plots the average COM
motion of the exciton over a Bloch cycle when the BHZ
parameters are chosen such that the bands are topological (top
panel) and trivial (bottom panel). The former corresponds to
mo = 1.4 eV, while the latter corresponds to my = 2.4 eV.
The remaining parameters are the same as in Fig. 2. The
dashed curves again indicate the semiclassical boundary in
Eq. (20). Just as was seen for semiclassical simulations of the
harmonic potential, the plots remain the same when J, E, and
Kk are scaled by the same factor.

For nontrivial Chern number, we observe a large trans-
verse drift in the COM position throughout the semiclassical
Bloch oscillation regime. Additionally, we also observe the
large « regime discussed in the previous section. The latter
has a smaller anomalous drift compared to the semiclassical
regime. There is no transverse drift when we choose our band
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J=0.04eV, a=D/5, Trivial

K (meV/nm?)

0 200 400 600
4
2
. 0
0.0 0.1 0.2 0.3 0.4
K (eV/a?)
] =0.04eV, a =D, Trivial
K (meV/nm?2)
0 5 10 15 20 25
0.5
0.4 4
c
> 0.3
w 2
0.2
0.1 < 0
0.0 0.1 0.2 0.3 0.4
K (eV/a?)

FIG. 5. Semiclassical dynamics for Coulombic potential. Same
phase diagram as in Fig. 3 for Coulombic interaction with J =
0.04 eV. For a < D (top), the phase diagram is similar to that in
Fig. 2. For a = D (bottom), there is an increased Bloch oscillation
regime compared to the harmonic potential case. The top x axis
in blue indicates the absolute scale of ¥ in meV/nm>. The Berry
curvature profile is again similar to that of Eq. (17) with the same
parameters as in Fig. 2.

projection such that the electron and hole bands have opposite
Berry curvature.

The bottom panel of Fig. 6 demonstrates that trivial elec-
tronic bands can still support an anomalous exciton drift,
albeit of reduced magnitude. We see that the effect only exists
for the semiclassical Bloch oscillation regime corresponding
to small x and large E. This can be understood as a conse-
quence of large k binding the ground state wave function more
tightly in relative real space: as a result, the wave function
spreads in relative momentum space, and thus experiences
an averaged Berry curvature. The averaged Berry curvature
approaches the Chern number C over the area of the Brillouin
zone, and thus becomes vanishingly small when C = 0. Cor-
respondingly, trivial bands do not support a large « regime of
anomalous exciton transport.

Figures 7 and 8 plot the anomalous exciton drift for
the case of Coulomb interaction with topological and trivial
bands, respectively. We take the same parameters as for Fig. 6.
As expected, when a < D (top panels), we see good agree-
ment with Fig. 6, including the “large «” Bloch oscillation
regime for the case of topological bands. When a = D, we
again see an increased Bloch oscillation regime. The bottom

J=0.04eV, Topological

0.25
0.20
©
50.15 -5
“0.10
0.05 —10
0.05 0.10 0.15 0.20
K (eV/a?)
0.25- J=0.04eV, Trivial
3
0.201
©0.15 2
b
*0.10; 1
0.05 13
0
0.05 0.10 0.15 0.20
K (eV/a?)

FIG. 6. Exact dynamics for harmonic potential. Same phase di-
agram as in Fig. 2 simulated for exact dynamics with J = 0.04 eV
and harmonic potential. Changing m, tunes the system between
topological bands (top, my = 1.4 eV) and trivial bands (bottom,
my = 2.4 eV). The exciton ground state corresponds to the electron
and hole both occupying the upper band of their respective copies
of HER,, with the remaining parameters the same as in Fig. 2. The
white dashed curve again corresponds to the semiclassical bound-
ary between the harmonic (dark blue) and Bloch (red) oscillation
regimes. Large « corresponds to the exciton ground state being a
wide wave packet in relative momentum space. As a result, the group
velocity is close to zero, which suppresses the effect of the restoring
force. When the band is topological, there is still a net transverse
drift from the average Berry curvature in this regime, in contrast to
the semiclassical case in Fig. 2.

panel of Fig. 7 can be understood analogously to the semiclas-
sical simulation with Coulomb interactions in Fig. 4. Note that
for fixed D, the bottom panel corresponds to a smaller range
of E and « compared to the top panel (see top axis in blue).

IV. CANDIDATE PHYSICAL SYSTEMS

In the previous sections, we demonstrated regimes of
anomalous exciton transport in response to a uniform in-
plane electric field. We now discuss additional complications
beyond the scope of the models considered. We posit that
transition metal dichalcogenide (TMD) heterobilayers are po-
tential platforms for hosting this effect due to their ability
to support intervalley, interlayer excitons with large bind-
ing energies and long lifetimes. Moiré TMDs are especially
intriguing given the presence of flat, topological bands. How-
ever, the large moiré lattice period compared to the exciton
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J=0.04eV, a=D/5, Topological
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FIG. 7. Exact dynamics for Coulombic potential: topological
bands. Same phase diagram as in Fig. 2 simulated for exact dynamics
with J = 0.04 eV and Coulombic potential for a = D/5 (top) and
a = D (bottom). The exciton ground state corresponds to both the
electron and hole occupying the upper band of Eq. (17) with the same
parameters as in Fig. 2.

Bohr radius, as well as the presence of additional bands, add
complications beyond the scope of the current analysis. At
the end of this section, we describe potential measurement
schemes for observing anomalous exciton transport.

A. Physical constraints

The toy models considered earlier demonstrate that in prin-
ciple, an exciton can move in response to a uniform in-plane
electric field when the constituent electron and hole undergo
Bloch oscillations. We now discuss additional physical con-
straints not captured by these models. We reinsert factors of
i throughout this section for ease of conversion to physical
units.

First, if the electric field is sufficiently large, the gain in po-
tential energy from spatially separating the electron and hole
can overcome the binding energy eg. When this occurs, the
electron and hole dissociate into two freely moving particles
and there is no well-defined exciton. For the effect consid-
ered here, the electron and hole undergo Bloch oscillations
and thus their maximum spatial separation is bounded by the
Bloch amplitude xgjoch in Eq. (11). Therefore, provided the
bandwidth does not exceed the binding energy, the exciton
remains well defined throughout the Bloch oscillation regime,

J=0.04eV, a=D/5, Trivial

K (meV/nm?2)

100 200
3
2
1
0.05 0.10 0.15
K (eV/a?)
J=0.04eV, a=D, Trivial
K (meV/nm?2)
2.5 5.0 7.5 10.0 3
g
-
0.20 -
o 2
S 0.15
0.10
0.05 0.10 0.15
K (eV/a?)

FIG. 8. Exact dynamics for Coulombic potential: trivial bands.
Same phase diagram as in Fig. 2 simulated for exact dynamics
with J = 0.04 eV and Coulombic potential for a = D/5 (top) and
a = D (bottom). The exciton ground state corresponds to both the
electron and hole occupying the upper band of Eq. (17) with the same
parameters as in Fig. 2, except for my = 2.4 eV, corresponding to the
trivial regime.

i.e., we require
ep > eE xgioen ~ 2J. 24)

When a system has multiple electronic bands, we also need
to consider the possibility of Landau-Zener transitions. For
instance, an electron transitioning to a higher band effectively
increases the bandwidth, potentially allowing the electron and
hole to reach their equilibrium position, thereby transitioning
to the harmonic oscillator regime (no anomalous COM drift).
For a Landau-Zener Hamiltonian Hy 7 = cto, + Aoy, the tran-
sition probability is given by p = exp{—n A?//ic}. Minimizing
these transitions thus amounts to finding a regime where the
sweep rate ¢ satisfies /ic < mwA2. In the case of an electron
transitioning out of the conduction band, A corresponds to the
minigap at the Brillouin zone boundary. We can roughly ap-
proximate the sweep rate c as the linearized slope of the band
J/(m /a) multiplied by ik, = eE (neglecting interactions), so
that fic = (JaeE)/m. Landau-Zener transitions can then be
neglected, provided that

722

Jae

E K Emax = (25)

As such, flatter bands and larger minigaps can sustain a larger
electric field, and thus a stronger effect. Note that Eq. (25)
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competes with the lower bound of the semiclassical regime
given in Eq. (20), but not with the large « regime identified in
our simulations.

Additionally, when evaluating the attractiveness of any
candidate physical system, we must further consider the
timescales of the exciton. Clearly, the exciton lifetime must
be sufficiently long that the anomalous drift can be observed.
At a minimum, this requires the exciton lifetime exceeding
the Bloch oscillation period. Moreover, if the exciton relaxes
to its equilibrium position, e.g., through phonon scattering,
the anomalous velocity will vanish. Provided the energy sep-
aration between the excited exciton (undergoing anomalous
drift) and the (stationary) exciton ground state is less than the
optical phonon band gap, we only need to consider acoustic
phonon scattering. Assuming the bands are flat enough that
the electron and hole group velocities are slower than the
speed of sound, such scattering only occurs when the exciton
hits an impurity and should therefore be negligible for suffi-
ciently clean systems.

Finally, the anomalous velocity grows linearly with
Q(k,) — 2/ (ky), and thus a system that hosts intervalley
excitons and topological bands will have a stronger response.
We emphasize that topological bands are not a prerequisite
(see Figs. 6 and 8), but will make the effect more visible.

B. TMD heterobilayers

TMDs are an excellent platform to study Berry curvature
effects on excitonic properties: excitons in these materials
have large binding energies and dominate the optical re-
sponses of the system. In particular, we posit that TMD
heterobilayers are an attractive platform to observe the anoma-
lous excitonic drift studied in this paper.

One of the key requirements of the anomalous excitonic
drift is the formation of intervalley excitons so that the elec-
tron and hole bands have opposite Berry curvature. In a TMD
monolayer, such an exciton requires a large COM momentum
and thus is optically dark. However, a TMD heterobilayer
with a type-II band alignment (e.g., MoX,/WX;) supports
excitons whose electron and hole are localized in different
layers. When the two layers are twisted by an angle 6 ~ 60°
(Fig. 3(g) in Ref. [41]), the system can support an intervalley
exciton with close to zero COM momentum. There are two
distinct benefits: (1) such an exciton can be optically bright
and as such can be easily excited and detected, and (2) the
spatial separation of the electron and hole enhances the exci-
ton lifetime to anywhere from hundreds of nanoseconds to a
few microseconds [42,43].

TMD heterobilayers have a slight lattice mismatch. When
the layers are closely aligned, a moiré potential forms with
amplitude up to ~150 meV [43] and lattice period up to
~20 nm [22]. As a result, the electronic bands flatten to a
bandwidth ~10-50 meV [44], which can be adjusted further
by changing the twist angle. The resulting interlayer excitons
[5,45-52] retain a large binding energy ~100-200 meV and
a Bohr radius ~2 nm [44]. At first glance, moiré TMDs seem
especially promising for observing anomalous excitonic drift
due to the flatter bands and similar binding energy making the
Bloch oscillation regime more accessible. We might further
hope that the possibility of topological moiré bands [20-23]

and the larger moiré lattice period would result in a more
pronounced exciton anomalous velocity. We note there are
two features that complicate interpretation of our numerics for
moiré TMDs. First, the exciton’s Bohr radius is significantly
smaller than the moiré lattice period; in our simulations, this
corresponds to the large x region of phase space only (for
which the ground state wave-function extent is less than a
lattice constant). Second, our assumption that electron and
hole occupy a single band may not apply given the reduced
size of the moiré Brillouin zone. Survival of the anomalous
excitonic drift in moiré TMDs remains an interesting open
question that we plan to investigate in a future work.

A back-of-the-envelope estimate suggests that the param-
eters of TMD heterobilayers are compatible with the bounds
identified in the previous section. The binding energy ~100—
200 meV easily exceeds the typical bandwidth ~10-50 meV,
satisfying the necessary condition in Eq. (24) to avoid ex-
citon ionization. The upper bound on the electric field in
Eq. (25) from Landau-Zener transitions is compatible with
the lower bound in Eq. (20) from the semiclassical Bloch
oscillation regime. For instance, the antiparallel configuration
of MoSe, /WS, has a bandwidth J ~ 5 meV, an energy gap
between lowest flat band to next moiré band A ~ 20 meV,
and a lattice constant a ~ 8 nm [44,53], corresponding to
Enax ~ 7272/ (Jae) ~ 60 mV/nm. Taking interlayer separa-
tion D ~ 3 nm, dielectric constant € ~ 4, and interaction
parameter x ~ 20 meV/nm? [54], Epax > Emin ~ 2v/2Jk &
30 mV/nm. We further note that optical phonons in most
TMDs have energies greater than 30 meV [55,56]; given
that the energy gained by the exciton is of the order of the
bandwidth J, the exciton cannot relax to its ground state
by emitting a phonon. As noted previously, relaxation from
acoustic phonon scattering can be neglected for sufficiently
clean systems.

C. Measurement

Lastly, we discuss possible measurements to observe the
anomalous exciton drift in TMD heterobilayers. As noted in
the previous section, several TMD heterobilayers naturally
support optically bright intervalley, interlayer excitons [43].
Thus, we consider a situation where excitons are excited by
illuminating one side of the sample, a uniform in-plane elec-
tric field E = EX is turned on, and we look for signatures of
the excitons in the transverse direction.

The exciton trajectories can be directly observed using
photoluminescence [4,29,57]. Polarization-resolved photolu-
minescence has been proposed [12,58,59] and used [31] to
observe the excitonic Hall effect on the micron scale. A simi-
lar approach could be used here, provided the anomalous drift
survives sufficiently many Bloch cycles. A photolumines-
cence measurement in the transverse direction from where the
excitons are initially excited should have a stronger response
than the same measurement performed in the direction parallel
to the electric field.

An alternative approach is to separately contact and mea-
sure the current in the TMD layers. For a TMD heterobilayer
with type-II band alignment, all interlayer excitons have elec-
trons localized to one layer, and holes to the other. As such,
the anomalous exciton drift should manifest as a current in the
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transverse direction (positive for one layer, negative for the
other). Separately contacting the layers requires an insulating
layer inserted between the TMDs so as not to short circuit the
sample. Interlayer excitons have been predicted and observed
in TMD monolayers separated by hBN [43,45,48,60-63].
This approach is analogous to a Coulomb drag measurement,
in which a voltage is applied in one layer and the current
is measured in the other. Coulomb drag has previously been
used to measure spatially indirect exciton transport in bilayer
two-dimensional electron gases (2DEGs) [64].

Other potential measurement schemes could utilize the
out-of-plane dipole moment of the interlayer excitons partic-
ipating in the effect, or the thermal gradient resulting from
exciton transport across the system. The former would require
measuring the dipole density to detect that excitons excited on
one edge of the sample had traveled in the transverse direction.
Both such measurements would likely require a high density
of excitons to be observable, as could be provided by an
exciton condensate.

V. DISCUSSION AND OUTLOOK

In this work, we have studied anomalous exciton drift
in response to a uniform in-plane electric field. We have
demonstrated this effect semiclassically for intervalley ex-
citons when the electron and hole bands have finite Berry
curvature. We have further simulated a toy model exhibiting
this effect for a range of electric field and interaction strengths.
Our numerics indicate a Bloch oscillation regime not pre-
dicted by semiclassics, which we can analytically understand
through a simple 1D model. We have postulated that TMD
heterobilayers are an attractive candidate system for observing
anomalous exciton transport.

Previous works have also considered anomalous exciton
transport resulting from finite Berry curvature when the ex-
citon center of mass experiences a net force [12,23,28,39].
Recently, Cao et al. [39] proposed that a similar anomalous
effect can arise from a COM momentum-dependent dipole
curvature of the exciton ground state, originating from the ge-
ometry of the exciton ground state. They primarily considered
excitons in a magnetic field, with the exception of excitons in
bilayer graphene (Sec. IV of Ref. [39]), where an asymmetry
of the two layers is required for a nonvanishing effect. In
contrast, the anomalous exciton transport established here is
a dynamical effect at zero magnetic field, which cannot be ac-
counted for without considering the internal exciton dynamics
and binding interaction. Nonetheless, the underlying origin of
both proposals is related, particularly in the small-field limit.
We leave a detailed comparison of our results with Ref. [39]
to future work.

Lastly, we note that moiré TMDs remain an interesting
potential platform for the anomalous exciton drift due to the
flat bands, enhanced Berry curvature, and large lattice spac-
ing. We emphasize that additional care is needed to apply our
results to these systems given our assumption that electron and
hole each occupy a single band. Potentially, more complicated
TMD heterostructures might also provide a platform for ob-
serving the effect, for instance a pair of moiré TMD bilayers
separated by insulating hBN layers.
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APPENDIX A: RELATION BETWEEN BERRY
CURVATURE OF ELECTRON AND HOLE
IN A GIVEN BAND

The Berry curvature 2, and Berry connection A, for a
band « can be defined as

Qo (k) = Vi x Ay (k), (AD)

Au(K) = (e |iVilug), (A2)

where |u,) is the Bloch state for band «. We can write the
Berry connection in terms of the Bloch wave functions using

Au(k) = / I it 1) i Vi i)

=i [ drlua o V. @)
In order to understand the connection between the Berry cur-
vature for a hole in band & compared to the Berry curvature for
an electron in the same band, we can assume that the creation
operator for a hole in band « at momentum K is equal to the
annihilation operator for an electron in band o at momentum
—k:

df , = c ka (A4)

where d is for the hole and c is for the electron. In real space,
we have

cl(r) = dy(r). (A5)
Therefore, we see
o= / dre™ ul, | (r)ck(r), (A6)
dya = / dre™*[u! _, (1)] dy (1) (A7)
= 14 (1) = [, (O] (A8)

Using the above equations, the Berry connection for the hole
can be related to the Berry connection of the electron by
Alk) =i / dr[u! ()] Vil (1) (A9)

=i / drut, _ (V[ ()] (A10)

= —i/dr[ugﬁk(r)]*vkuzﬁk(r) (A11)
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=i / drlu, (O] Vol (r)  (A12)

= A%(—k). (A13)
It follows that the Berry curvatures are related by
Q! (k) = Vi x Al(k) = Vi x A%(—k)

= V. x A%(—k) = —Q(—Kk). (Al4)

Now, if the momentum of the created hole is kj, then the
momentum of the electron that was removed is k, = —k; and

(k) = -2 (k). (A15)

APPENDIX B: INTERMEDIATE SEMICLASSICAL CASE

In the main text, we considered the fine-tuned limit of equal
Berry curvature for electron and hole, £2¢(k) = 7 (k), equiv-
alently Q¢(k) = —£;(—k) from Eq. (A15). In this particular
case, Berry curvature effects appear only in COM motion.
Similarly, for ¢(k) = 7 (—k), Berry curvature only affects
the relative motion. However, in type-II heterobilayers, none
of these conditions are satisfied exactly, and Berry curvature
effects couple the COM and relative space equations of mo-
tion. For a direct momentum exciton, the relative and COM
position evolve according to

I = [2Jasin (ka) — k,AQY (k)] &
+ [2Jasin (ka) + kAQ(K)], (B1)

R = 2k,Q%%(k) § — 2k, Q%2 (k) &, (B2)

where the difference and average Berry curvatures are defined
by

AQY(K) = QS(k) — QU(K), (B3)

1
QYe(k) = E[szg(k) + QU(K)]. (B4)

Bloch oscillations are obfuscated in the relative motion
when R and r are coupled. We continue to define the Bloch
period as Tjoch = 27 /(aekE).

We plot the effect of A2)°(k) # 0 in Fig. 9. The top panel
shows the average transverse COM drift per Bloch cycle in
E versus « space. The magnitude of the transverse drift is
less than when the Berry curvatures of the electron and hole
bands are equal (Fig. 2), and thus a system that approaches
particle-hole symmetry should have a stronger anomalous ex-
citon response. We note the transition between harmonic and
Bloch oscillation regimes is affected by the fact that relative
and COM motion are now coupled. The bottom panel plots
the relative transverse motion when AQY“(k) = 0 (right) and
AQY (k) # O (left). As predicted by Egs. (B1) and (B2), the
former corresponds to no Berry curvature effects on y, while
the latter corresponds to y and Y being coupled.

APPENDIX C: COMPARISON OF SEMICLASSICAL
APPROACHES

We review different semiclassical approaches used to study
the dynamics of electrons and excitons in Bloch bands. We

J=0.04eV

0']0.0 0.1 0.2 0.3 0.4

K (eV/a?)
J=0.04eV, mg=mp =14, E=0.216 1, )=004eV. mg=14, mj=12, E=0216
0.050 ——
k=0.105
0.025 — k=0211
—_ —— k=0.316 —_ 0
S 0.000 s
> > — k=0.0
k=0.105
-0.025 —1f Rz \4/\
0.050 — k=0.316
2 4 6 8 0 2 4 6 8

t(Taioch) t(Taiocn)

FIG. 9. Intermediate semiclassical dynamics. The top panel plots
average Y per Bloch cycle when AQ¢(k) # 0. To give the electron
and hole bands slightly different Berry curvature, we use m§ =
1.4 eV and m] = 1.2 eV. The other parameters are the same as in
Fig. 2. The dashed white curve is again the semiclassical boundary
E = 24/2Jx shown in Figs. 2-7; Berry curvature couples ¥ and y,
thereby reducing the Bloch oscillation regime compared to the sym-
metric case considered in Fig. 2. In the bottom panel, we compare
transverse drift in y as a function of time for equal (left) and different
(right) electron and hole Berry curvatures.

contrast them with the semiclassical and exact dynamics ap-
proach used in the main text.

1. Semiclassical description for noninteracting electron wave
packet in a Bloch band

In this section, we review the semiclassical dynamics of
a noninteracting electron wave packet in a Bloch band. We
closely follow the approach presented in Ref. [65]. Consider
a wave packet in k space described by the wave function

|W(r)) = fdka(k,t)llﬂn(k)), (C1H
where |¢,(K)) =D, €®7)u,(K)) ® |r) are Bloch wave func-

tions of the nth eigenstates, and |a(k, )| is centered around
the point

k. = /dk[k|a(k,t)|2]. (C2)
We express
ak, t) = |a(k, 1)|e” v &, (C3)

The center of the wave packet in real space is

r. = (¥|r|¥) (C4)
= Viy (K, t)lk=k, + (@@®)|iVg|u(K)) k=, (C5)
= Vi v (Ke, 1) + (u(k)|iVy uk,)). (C6)

The dynamics of the mean position r, and momentum k.
can be obtained using a time-dependent variational principle
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with the Lagrangian
L (‘I’I'd H|W) €N
= 11— — .
dt

where H = Hgjocn — ¢E - r. We have

<\p|i‘2—‘f> [dk|a(k,t)|2

x (u(k, t>|e"y“‘-”%{e"’”“v”m(k, 1 (C8)

ke 1) 9
= o + <u(kc, t)|15u(kc, t)>. (C9)

We can write

Iy ke, 1) dy(ke) K. ay(k.)
o dt “ Ok,

(C10)

and

(V|H|W) = (V|HBioch| V) — €E - 1. = Eploch — €E - Tc.
(C11)
Now, the Lagrangian is

. ou ou
L=— Jk)+k.-r.+ k.- 1 + i
g(rc’ c) ¢ Te c <u|18kc> <u|18t>

dy (k1)

+ P

In the above, E(r., k.) = (V|Hgioen|¥V) — E - 1, and we used
Vi v (e, 1) = e — {u(ko)|i Vi Ju(k,). ,

This Lagrangian is a function of r., r., k., K., and . If
we assume (u|ig—’t‘) = 0 (as is usually the case for adiabatic
evolution and a translationally invariant system), the equations
of motion for the wave-packet center are

d (9L oL _, d(iL oL _,
dt \ dr, ar.  dr\ 9k, ok,

which implies

(C12)

(C13)

dt or,

) a& d . ou .0 . ou
X, = + — | (uli — kye—(uli
ok,  dt ok, ok, ok,
.0 d
— kye —{uli . s
7 Okye 0kyc
. o0& .0 _ou .0 _Ou
Ye=— + ke (uli=—) ) — ke {uli
Okyc Okye Okyc ok Okyc
& . (0A, 0A,
= — k |l — — — ).
TR (akyc akm)
In the above, A is the Berry connection and we use the fact
that
d L du .0 . ou
—\ (uli = kye— | (uli
dt oky, - Ok Okyc
.0 ou
kxc_ [ )
HFTS (<“'lakxc >)

dk.  9E(r:, Ke) 14

(C15)

(C16)

(C17)

U . . .
as we already assumed (u||i5) = 0. Similarly,

) o0& .9 . ou .9 _ou
Ye=——7+ kye— uli — ke uli
ke ok \ ke ok \\ " ke

9E . [0A, 0A,
= + kxc — .
Ok, Okye  Okyc

Combining Egs. (C14), (C16), and (C18), we get the more
familiar expressions

(C18)

l'(c = ek,

& .
rza—kL—i-kCX(VXA)

(C19)

(C20)

2. Comparison to Ref. [39]

We have employed a simple semiclassical description of
the exciton that considers separate wave packets for the
electron and hole. Reference [39] instead extended the single-
particle formalism for semiclassical dynamics to an exciton.
In this case, the initial state is given by

W =0)) = /dKa(K)cho(K)), (C21)
where K is the COM momentum, a(K) = |a(K)|e™7®" and
|a(K)| centered at K = K. The exciton ground state |$,(K))
for a given COM momentum is

|D(K)) = D GuK)|och) @ o )- (C22)
k
At a later time ¢, this system is described by
|W(r)) = /dKa(K, DIP(K, 1)), (C23)

where [®(K, 1)) = Y, Ge(K, )|og ) ® |65 ). In order to
study the dynamics of this system, we can again employ the
time-dependent variational principle with the Lagrangian of
Eq. (C7) for H=Hy+E-(r,—r;) and Hy = H* ® 1" +
1¢ ® H" + V(r, — r;). Here, we can calculate the expectation
value (V|r, — r,| W) using

(e, T D(K, 1) = /54 37 G (K, 1)e ™)
k

x [ugh) @ ). (C24)

where |uf(/ﬁ(‘T) is the cell-periodic part of the Bloch wave

functions of H¢/" with momentum k, /= % + k. Similar to
the technique employed in Ref. [39], we can express

(DK, H)|r, —rp| @K, 1)) = AV K, 1) — A"(K, 1), (C25)

where AYK, 1) =i(PK, 1, 0)|Vk|PXK, 1, «)) and
DK, 1, )) = ¢ KT O(K, 1),
If we assume the adiabaticity condition, E does not change

the exciton eigenstate for a given K. As a result, |®(K, t)) =
|®y(K)) and thus

(WO|Ho +E- (re —r)|W(1)) =Eo(K.) + E-D(K,.), (C26)

where D(K,) = A/(K.) — A°(K,) is referred to as dipole
curvature and K, = K (¢) = ]dK|a(K, 1)]?K is the mean of
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distribution at time ¢t and Ey(K,) is the ground state energy
of the exciton with COM momentum K,. Following the same
steps as the single-particle case, it can be shown that

R, = — Vi Eo(K.) — Vg [E - D(K,)]
+ K, x [Vk, x AK)],
K. =0,

(C27)

where A(K,) = i(®g(K,)|Vk|Po(K,)) is the Berry connec-
tion of the exciton. Reference [39] found that the dipole
curvature Vi [E - D(K,)] usually points in the direction Z x
K. for a simple 2D system with finite Berry curvature. Hence,
in addition to the exciton Berry curvature, the dipole curvature
term Vg [E - D(K,)] also gives rise to an anomalous trans-
verse drift.

3. Comparison to exact dynamics simulation

A key assumption of the above derivation is adiabaticity,
so that for a given COM momentum K, the exciton always
remains in its ground state,

|D(K, 1)) = ch<K>|¢ W) ® o

|Po(K)) = k). (C28)

J

As a result, the expectation values of relative momentum k
and relative position r, — r, remain fixed during the evolution
if K, = 0. This condition does not allow the difference in
Berry curvature of the electron and hole band to affect the
COM motion and corresponds to the deep harmonic regime
where the exciton is stuck at its equilibrium position both in k
and r space.

In our exact dynamics, we start with a wave packet in COM
space similar to the one described in Eq. (C21) and then we
evolve it numerically. Hence, in our case, we are not imposing
this adiabaticity condition. Accordingly, the only way k and r
can change in the absence of a net COM force is if the applied
electric field mixes the ground state with other exciton states
or other continuum states. The exciton remains bounded as
long as all states involved in the mixture are bounded. Mixing
with continuum states would dissociate the exciton before it
can traverse the full Brillouin zone.

APPENDIX D: 1D MODEL

1. Perturbation theory in J;p/(ka?)

Consider the following one-band tight-binding model with
nearest-neighbor hopping and a harmonic potential trap,

1
Hip = Z ‘%qm(n +1+mn=1D+ Z <§Ka2 A+ eEaﬁ)ln)(n|

n

2xa* —2eEa J‘TD 0 0 0
J‘TD %/ca2 —eEa J‘TD 0 0
J]]') JID
- 0 o 0 o 0 (D1)
0 0 & lya’ +eEa 4o
0 0 0 o 2ka* 4+ 2¢Ea
In the second line, we truncate the Hamiltonian at states |n = £2). To second order in J;p/ (ka?), the eigenvalues and eigenstates
are
1 Jip\? 1 1
E, = —ka’n® + eEan + (2) < g — I ) (D2)
2 2 ka*n+eEa — sxka*>  ka*n+ eEa+ jxa?
1 4 eEan + (J )2 dica® D3)
= —ka’n* + eEan ,
2 2 /) 4(ka’n + eEa)? — k2a*
and
~ 1/Jip 1 J1D 1
m=ml1-5(2) ¥ Y ol
2\ 2 ) = [5 /<a2+0(n/<a2+eEa) o ska® + o (nka® + eEa)
1 JlD) [ 1 1 ]
= n+ 2o . D4
2( 2 J=Zﬂ| ) 1ka® + o (nka® + eEa) ka> + o (nka® + eEa) Y
We initialize the system at t+ = 0 in the ground state for £ = 0,
I3 Jip Jip I3 J3
|w(t=0)>=< K;24>|0>—@| )= —Sl=D 4 512+ 5l -2). (D5)
Rewriting the position eigenstates in terms of energy eigenstates |i), such that H|7i) = E,|7i), we have
J]D 2 2 ~ JlD ~ JlD k1
0)=131—(— 0 1 -1, D6
1 { ( 2 ) |:(Ka2+2eEa)2+(Ka2—2eEa)2:|}| )+Ka2+2eEa| )+Ka2—2eEa| ) (D6)
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= Jip ~ Jip x )
+1) =1) — 0) + 2) + OUip), D7
+h =1 Ka2+26Ea|) 3/<a2—|—26Ea|) (/ip) ®7)
~ J]D ~ JID A 2
1) =|-1)- 0 =2y + Oy, DS
=l =1=D Kaz—ZeEa| +3Ka2—|—26Ea| ) +OUip (D8)
14+2) = 12) + O(p), (D9)
|-2) = [-2) + OUp). (D10)
In addition to Jip < k, we have also assumed that Jip < |nkx £ 2E| for all n. Ignoring the 0(J12D) terms, we find
~ 2J1DeEa ~ 2J1DeEa ~
tr=0)~0)- ———F—— —_—|-1). D11
v N~ 10 ka*(ka? + 2eEa) ka*(ka? — 2eEa)| ) (D1D)
Evolving |¢) according to H with E # 0, we find
. ~ o 2JipeEa ~ o 2JipeEa -
) A e~ | () — g~ iE1—Eo) 1) 4 ¢ iE-1—Eo) -1 |, D12
V@) ~e |:| ) e ka’(ka? ~|—2eEa)| ) e ka’(ka? — 2eEa)| ) (D12)
with position expectation value
- 2JipeEa S 2JipeEa 2
Hlanly(t)) = a0|a0) + a| ——————— | (1A|l) +a| ———————| (—1]A]—1
(W (©O)laily ) = a(D|al0) “[mzwz +2€Ea)} @Al +a) — 2 s | <Tal=D)
2acos [(Ey — Byl ——2PL_ §1aT) + 2acos[(B; — Byl ——2E%__©jaj—T). @13)
—2acos — ——(0)a cos[(E_y — al—1).
“ : 0 ka*(ka? + 2eEa) 4 : 0 ka*(ka? — 2eEa)
Plugging in the position expectation values of the energy eigenstates,
J2 1 4+ 4n%. + 4neg cos ([neg + 4 |cat 1 4+ 4n2 — 4neg cos ([neg — L cat
(w(t)laﬁlw(t)) — 21D4a €q eq ([ zeq 2] ) _ €q €q ([ ;q 2] ) , (D14)
K*a (1 + 2neq) (1 — 2neq)
where we have defined neq = xeq/a = eE /ka. The above can be rewritten as
J? cos ([ne + l]Kazt) —1 cos ([ne — l]Kazt) -1
Oaflv (1) = 41D a3 4 2 . D15
(W (Olanly (1)) K2a4xeq{ T T (D15)

The maximum amplitude |{a7i)| = xmax corresponds to
both cosines taking value —1 (note it is not always possible
to simultaneously maximize both cosines),

J 12D 1674

. D16
k20" (1 + 216 2(1 — 2neg)? (D16)

Xmax =

When xpax < Xeq, the system never reaches its equilibrium
value and always experiences a net force. In the context of
excitons, this implies that there is a regime of large « for
which the electron and hole never reach their equilibrium
separation and therefore undergo Bloch oscillations. Figure 10
plots Sign(xmax — Xeq) for Jip =0.08 eV. The analysis in
this Appendix relies on perturbation theory; it does not ap-
ply to regions of the phase diagram for which Jip/ka® and
Jip/|nka? & 2Ea| are not small.

2. Comparison between one-band model and HES, (k, = 0)

In order to verify that the above 1D model can capture the
dynamics of the exciton Hamiltonian used in our numerical
simulations, we compare the evolution of relative coordinate
x for the two cases. We compare the dynamics according to
Hip presented above and the 1D form of Eq. (21) with a
harmonic potential and K = 0. More specifically, the latter

1651

(

replaces each copy of HEB, (K, r) with the real-space version
of HiE, (K = 0, k, = 0).

Figure 11 shows qualitative agreement between the two
cases. We note that large « suppresses the Bloch oscillations
in both cases.

0.20 1.0
0.5
_0.15
Q)
S 0.0
“0.10
-0.5
0.05 -1.0
0.2 0.4
K (eV/a?)

FIG. 10. Phase diagram for 1D model: Sign(xpmax — Xeq) for dif-
ferent values of £ and k as obtained from Eq. (D16) for Jip =
0.08 eV. When xp.x — Xeq 18 negative, the particle cannot reach its
equilibrium position. We see this occurs even at large «, contrary to
semiclassical predictions.
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FIG. 11. Relative position x as a function of ¢ obtained from exact dynamics for the 1D version of Eq. (21) with COM momentum K = 0

(left) and for H)p (right).

APPENDIX E: EXACT DYNAMICS SIMULATION DETAILS

In this Appendix, we provide details of our numerical
simulations. We first explain our noninteracting Hamiltonian
composed of two copies of the BHZ Hamiltonian [40], i.e.,
one for the electron and one for the hole, written in relative
real space and COM momentum space. We then explain our
band-flattening method. Next, we describe our projection into
the exciton Hilbert space and incorporating electron-hole in-
teractions. Finally, we describe the ground state preparation
and its times evolution.

1. Noninteracting Hamiltonian

We consider two copies of the BHZ Hamiltonian,
Hgyy (Ky) = [mo — beos (kfa) — beos (kfa)]o:

+ vy sin (kfa)o, + vf sin (kfa)o,, (Bl

for o = e/h for the electron and hole, respectively. In Fig. 12,
we plot the Berry curvature profile for the two values of
mgp used in the figures in the main text; my = 1.4 eV (blue
curve) corresponds to topological bands with Chern number
C = —1, while my = 2.4 eV (yellow curve) corresponds to

trivial bands with Chern number C = 0. We introduce COM
and relative coordinates,

K=k, +k, k=&k —k)/2, (E2)
Q(a?)
27
— mp=1.4eV
1+ my=2.4 eV
: = ' -k, (m
1.0 05 ; 0.5 10 (A
\:_/

FIG. 12. Berry curvature profile of Hgnz(k, = 0). The Berry cur-
vature profile of the upper band is plotted for the topological and
trivial cases discussed in the main text, with v, = v, =0.93 m/s,
b=1¢eV.
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in terms of which the electron and hole momenta can be
written as

K
k= — + k.

> (E3)

In our simulations, K is conserved and thus different K sectors
are completely decoupled. For a given K,

Hgyy (K k)

S (L]
Eea (S}

= |:m0 - Zbcos ( > cos(k;a) F sin (I(za> sin(k; a)}o*z
n Z [sm ( ) cos(kia) = cos (Kza) sin(k; a)]

(E4)

(E5)

We do a partial Fourier transform on k to write Hgy,
which is a tight-binding Hamiltonian in a relative position
basis with nearest-neighbor hopping only. Now, the Hilbert
space is H, @ H;, ® Hy, where H,j;, is the two-dimensional
Hilbert space associated with electron/hole degrees of free-
dom and H, is the N, x N,-dimensional Hilbert space
spanned by the relative position eigenstates |r). We can ex-
press any state in the full Hilbert space as

)= Y > ajmle)e ) ),

ij=12 r

where 37, ;5 | j(r)|* = 1. Here, r=ma + na,
where a; are the lattice vectors of the underlying lattice. The
full noninteracting tight-binding Hamiltonian at a fixed K is
given by

(E6)

HI((O) = H];HZ,K QL +1.® Hl}alHZ,K’ (E7)
1.51 — BHZ
= flat band BHZ

S
21.0;
>
2
g
D 0.5

0.01 . ] !

-1.0 -0.5 0.0 0.5 1.0
k, (r/a)

FIG. 13. Band dispersion of the single-particle Hgyz before and
after the band-flattening process. This flat-band BHZ Hamiltonian
has a bandwidth determined by the extra nearest-neighbor hopping
added to ﬁBHZ.

where Hgyy, ¢ is a tight-binding model with nearest-neighbor
interactions in relative space obtained by performing a partial
Fourier transform in k space.

2. Band-flattening method

We now detail our band-flattening procedure. We modify
each band so that the eigenstates (and Berry curvatures) are
unchanged, but the bandwidth is significantly reduced. We

e copy h copy after PH
2 - J
0 J
//,’ \\\\ //,’ \\\\
-2 /// \\\ 1 /// \\\\
-1 0 1 -1 0 1
ky (r1/a) ky (m/a)
e copy h copy after PH
p ) e R
0 J
—2 ] e it T
-1 0 1 -1 0 1
kx (n/a) ky (r/a)
e copy h copy after PH
2 J
0 J
-2 ]
-1 0 1 -1 0 1
k, (r/a) k, (r/a)

FIG. 14. Schematic of simulation procedure. Top: We start with
two copies of a two-band Hamiltonian. Bands shown in dashed line
are fully occupied. An exciton is supposed to form between the upper
bands of electron and hole. Center: Same bands after band-flattening
procedure. Bottom: We project into the exciton Hilbert space.
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then add back in a finite, cosine dispersion. This scheme only
applies to a gapped Hamiltonian.

We first flatten each single-particle band completely by
replacing all positive eigenvalues g, > 0 by the same number
Ey, and all negative eigenvalues by the opposite constant —Ej.
In the eigenstate basis, Hguz|®y) = €q|¢Py), the transforma-
tion takes

Heuz = Y ealda)(@ul — Y culde)(dal  (E8)

a;6,>0 o) e, <0

to the completely flattened

Az =Eo ) 16a)(@ul —Eo Y 1$u)($ul.  (E9)

o;84>0 o, £,<0

We can then perform a basis change to write Hpgyy in relative
position space. More explicitly, the algorithm implements the
following steps:

(1) Express E, = ap + Zm,n;éo Ay cOS([mky + nkyla).

(2) Extract a,,, and introduce them as hopping between r,,,
neighbors. The resulting Hamiltonian should give completely
flat bands, but with the same spinor structure at each k point.

This scheme provides completely flat bands at the cost of
nonlocal hopping. In order to get a finite bandwidth, we scale
Hgyz by a matrix containing only nearest-neighbor hopping
so that the bandwidth is directly proportional to these nearest-
neighbor terms, as shown in Fig. 13.

3. Projection and interactions

After band flattening, our new Hamiltonian is given by
HI((O) = HISHZ,K @1, +1.® ﬁ];lHZ,K' (E10)

We want to project to the intervalley exciton Hilbert space,
formed by both the electron and hole occupying the upper
band of Hpyz. This is accomplished using the projectors P,

P = Z ’¢g/h>(¢g/h

, (ELD)

where |¢g‘/h) are eigenstates of Héﬁ'z. After projection, both
the valence and conduction bands (equivalently, hole and elec-
tron bands in our model) will have the same Berry curvature.
Figure 14 illustrates the projection procedure.

We incorporate interactions using

Hi = PP, (Z Vil ® 1, ® |r><r|>ﬁhﬁe. (E12)

Note that including the projectors ensures that we only con-
sider interactions between electrons and holes within the
exciton Hilbert space.

4. Ground state preparation and time evolution

For each K, our full Hamiltonian in absence of E is given
by

HZ =P, B, AY B, B, + Hin, (E13)
where A (r) and Hiy (r) are defined in Egs. (E10) and (E12).
Denote the ground state of this Hamiltonian by |®((K)). Be-
ginning from |®((K)), we evolve according to Hexciton + HE
where

Hy = P, By [Z(eE MLOL® |r><r|}13h B (El4)
r

We repeat the same process for each K on a grid of 27 x 81
points. At an arbitrary time, the full state of the system is given
by

V(1) = Z w(K)[P;(K)),

K

where w(K) = e K% |®,(K)) = e R +He) | (K)). We
choose a narrow wave packet with ox = 7 /15 and a numer-
ically smooth gauge such that the initial wave packet is a
coherent wave packet in both R and K space. We then extract
the COM position by performing a Fourier transform in COM
space. The observed Y does not change qualitatively as we
vary the wave-packet width ok from /10 to 7 /20.
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