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Abstract

A critical step in Raman spectroscopy is baseline correction. This procedure eliminates the background signals generated
by residual Rayleigh scattering or fluorescence. Baseline correction procedures relying on asymmetric loss functions have
been employed recently. They operate with a reduced penalty on positive spectral deviations that essentially push down
the baseline estimates from invading Raman peak areas. However, their coupling with polynomial fitting may not be suitable
over the whole spectral domain and can yield inconsistent baselines. Their requirement of the specification of a threshold
and the non-convexity of the corresponding objective function further complicates the computation. Learning from their
pros and cons, we have developed a novel baseline correction procedure called the iterative smoothing-splines with root
error adjustment (ISREA) that has three distinct advantages. First, ISREA uses smoothing splines to estimate the baseline
that are more flexible than polynomials and capable of capturing complicated trends over the whole spectral domain.
Second, ISREA mimics the asymmetric square root loss and removes the need of a threshold. Finally, ISREA avoids the
direct optimization of a non-convex loss function by iteratively updating prediction errors and refitting baselines. Through
our extensive numerical experiments on a wide variety of spectra including simulated spectra, mineral spectra, and
dialysate spectra, we show that ISREA is simple, fast, and can yield consistent and accurate baselines that preserve all
the meaningful Raman peaks.
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Introduction
estimating the baseline by a smooth function and then

Raman spectroscopy is an established tool used for both  removing it from the raw spectrum by subtraction.’

qualitative and quantitative analyses of molecular compos-
ition of macro- and nanomaterials and biological systems.'
More recently, advances in instrumentation have improved
sensitivity greatly, reduced interference from fluorescence
and environmental sources, and have led to spectrometers
that are relatively inexpensive and have a small footprint.>?
It has also found applications in a variety of medical studies,
such as disease diagnosis and monitoring efficacy and
progress of therapy.*®

In Raman spectrum generation, a background signal gen-
erated by fluorescence or Rayleigh scattering can heavily
interfere with accurate analysis of the underlying Raman
spectrum. This background signal, commonly known as
the baseline, often appears as a smooth curve in the raw
spectrum. Therefore, one critical step in Raman spectros-
copy is to perform a baseline correction that involves

Numerous baseline correction methods have been pro-
posed over the years. Almost all baseline correction meth-
ods implement an algorithm that employs a smoother to
capture the smooth trend and a loss function to adjust the
fitting. Commonly used smoothers include first- and
second-order differentiation, Fourier transformation,'®''
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polynomial fitting, splines, and wavelets.'”™'? For
example, Zhang and Ben-Amotz used the Savitzky—Golay
second-derivative method on spectral data.*® Although
differentiation is unbiased and efficient for fluorescence
subtraction, it can severely distort shapes of Raman spectra
and relies on complex fitting algorithms to reproduce con-
ventional spectra according to Mosier-Boss et al.,'® who
applied the fast Fourier transform filtering technique to
Raman spectra to eliminate interference due to fluores-
cence. Fourier transform filtering depends on direct
human intervention to choose its upper and lower limits
in the frequency domain each time. This process is tedious
and does not lend well to automated analyses. In contrast,
polynomials are simple and convenient and thus popular in
the biomedical field. To preserve peak intensities of Raman
spectra, they often rely on manual recognition of back-
ground points. Otherwise the fitted baseline would include
both fluorescence background and Raman peaks.
Furthermore, the manual selection of background points
can be time consuming, which, again, does not lend well
to automated spectra processing. To avoid the human-
intervention input to the selection process, iterative pro-
cedures were considered.'""'? Splines were used in baseline
correction as early as the 1990s.'* More recently, Cai et al.
presented a method that combines penalized B-splines with
vector transformation.?' Wavelet transformation has been
another popular tool for baseline correction. For example,
Cai et al. applied the multi-resolution wavelet transform-
ation and suppressed the empirical wavelet coefficients in
groups with a blockwise threshold.'” However, the major
drawbacks of wavelets are their assumption of a well sepa-
rated background from the rest of the signal** and the need
of selecting the wavelet type and the wavelet coefficient
threshold. Furthermore, wavelets may sometimes lead to
a sub-optimal filter for experimental signals.'® A second-
generation adaptive wavelet transform, which makes use
of a spatial domain to generate new wavelet filters, was
also developed.'® Yet, it is still complex and computationally
expensive to implement, limiting its practical application.
Also commonly seen are model-based approaches where
baseline correction involves specifying models for additive
and multiplicative forms of background noises. One exam-
ple is the singular value decomposition-based method
where multivariate loadings were used for background cor-
rection.”? Another example is the extended multiplicative
signal correction (EMSC), which was first proposed for the
near infrared spectroscopy24 and later extended to Raman
spectra.”>*” An EMSC model decomposes a raw spectrum
into three components: a polynomial baseline function, a
multiple of a reference spectrum, and the residual that actu-
ally contains the spectrum of interest for the scanned
sample. Through an ordinary or weighted least squares
estimation, it produces spectra similar to the reference
spectrum. The choice of the reference spectrum thus
depends on the ensuing analysis. When peak heights or
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related information are not required, a commonly used
reference spectrum is the mean spectrum. Otherwise, a
baseline-corrected reference spectrum should be used to
achieve baseline correction for all spectra.”®

In addition to the smoother, the choice of the loss func-
tion is also critical for baseline correction. Most existing
methods rely on a symmetric loss function, generally the
least square loss. This is now recognized as inappropriate
for the baseline correction purpose29 as it tends to pro-
duce a baseline that invades into Raman peaks. More spe-
cifically, a high peak in a raw spectrum is often expected to
be made up of a Raman scattering signal represented by
high peaks and a smooth baseline signal that forms the
bottom of the peaks. A fitted function based on the least
squares loss, however, often cuts into the peak areas
instead of properly estimating the bottom of the peaks.
Therefore, the heights of the peaks in the baseline-cor-
rected spectrum would be smaller than their true values.
This can create problems for ensuing quantitative analysis of
Raman spectra since, according to Beer’s Law, there is a
proportional relationship between the height of a peak and
the concentration of the molecule(s) creating it. The defi-
ciency of the least squares loss lies in that it often pulls up
the fitted curve to match up with a peak in order to min-
imize their squared difference.

Based on the limitations noted in these observations,
several asymmetric loss functions have been proposed.
These asymmetric functions share the common feature of
a reduced loss for large positive deviations compared with
the least squares loss. The asymmetric least squares (ALS)
loss was first proposed, which is essentially a weighted least
squares with second-order derivatives as the penalty
term.>° However, the ALS may produce artificial negative
peaks on the corrected spectrum.?' Peng et al. generalized
this approach for multiple spectra baseline correction
taking advantage of means of the similarity among the mul-
tiple spectra.32 They assumed that baseline stays the same
or changes little for spectra of samples collected continu-
ously over time. He et al. proposed an improved ALS
method, which adds the first-order derivative of residuals
to the least squared loss to achieve smoothness and used
second-order polynomials as the smoother.>3 Mazet et al.
replaced the symmetric squared loss with asymmetric
Huber loss and asymmetric truncated quadratic loss to
suppress the effect of large positive residuals, i.e., peak
areas, and estimated the baseline by a low-order polyno-
mial.?? But selections of two tuning parameters, the thresh-
old of loss functions and the order of polynomial, can be
tricky. The order of polynomial demands manual selection
based on the smoothness of background. The authors sug-
gested that splines may provide a better fitting than
polynomials.

More recently, Liu et al. developed the Goldindec
method using polynomials with an asymmetric Indec loss
and implemented it through a half-quadratic algorithm.?’
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This method was chosen for baseline correction in the ini-
tial versions of the Raman chemometrics (Rametrix) LITE
and PRO Toolboxes for Matlab.>’ Among asymmetric
losses, the asymmetric Indec loss has been shown to have
the best performance. However, one major drawback of
the Goldindec algorithm is its use of polynomials to repre-
sent a baseline signal. Polynomials, especially low-degree
polynomials, are often used to fit simple smooth functions.
Due to its small number of tuning parameters (the coeffi-
cients in a polynomial), polynomials may not be sufficiently
flexible to capture complicated smooth trends and can be
easily distorted by a few influential points. Another draw-
back is that Goldindec requires the selection of a change
point in the asymmetric Indec loss function. This change
point is critical for the success of the algorithm since it
specifies the threshold such that a positive deviation
beyond it will be less penalized than in the least squares
loss. However, there is no systematic way to choosing this
change point although some empirical (i.e., subjective)
choices are suggested and their performance may not be
satisfactory in practice.

As described above, a simple polynomial or smoothing
spline fitted to a raw Raman spectrum is likely to produce a
baseline that moves up with peaks, while a true baseline
should leave the peaks untouched and take out only the
background signals. That is, after the subtraction of a well-
estimated baseline, the remaining spectrum should have the
peak intensities preserved in the peak areas and intensities
close to zero in the non-peak areas. Therefore, our goal is
to develop a baseline correction method whose baseline
estimate stays close to the true baseline with all the inter-
esting peaks well-preserved.

In this article, we propose a new computationally effi-
cient algorithm, called the iterative smoothing-splines with
root error adjustment (ISREA). In ISREA, the baseline is
fitted by smoothing splines, given their better flexibility in
capturing the overall shape of the spectrum. To correct the
aforementioned peak-invading problem of smoothing spline
baseline estimate, we notice that peak invasion mostly hap-
pens in the regions of “positive deviations” or “positive
prediction errors”, that is, the regions where the observed
intensity deviates from the fitted baseline intensity by a
positive amount. Therefore, we propose the following
iterative fitting procedure to adjust for the peak invasion.
In each iteration, the prediction errors are adjusted down
through a root transformation and added back to the fitted
baseline intensities to form a new set of intensities. Then
smoothing splines are applied to this new set of intensities
to obtain a new baseline estimate, based on which a new
set of prediction errors are calculated. This adjustment
procedure is repeated until the errors drop to a negligible
level. The error transformation used in the adjustment is
motivated from asymmetric loss functions where large
positive deviations are penalized less than in a least
square loss. So, the ISREA baseline estimate inherits the
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nice properties of those estimates obtained from asymmet-
ric losses. Furthermore, the simple root error adjustment
avoids the tricky optimization of a non-conventional object-
ive function otherwise required in all the methods based on
asymmetric losses.

Therefore, it is much easier to implement, much more
computationally efficient, and lends well to automated
analyses.

In our numerical experiments, we compared ISREA with
the ALS*® and Goldindec algor'i'chm29 on both simulated and
real Raman spectral data. In simulations, we considered
both spiky and non-spiky data. In real applications, we stu-
died spectra of pure mineral data from public databases and
spectra of waste dialysate samples collected from patients
undergoing hemodialysis treatments in a clinic. The spec-
trum of a pure mineral generally contains a small number of
Raman peaks. Additionally, there is an expert-corrected
spectrum available so that a “true” baseline can be recov-
ered as the reference. On the other hand, a waste dialysate
sample is a complicated solution containing many mol-
ecules, so its spectrum is expected to contain many
Raman peaks. Furthermore, there is no ground truth or
expert correction available as the reference although
some signature chemicals such as urea are always present
in the sample. Our experiments show that ISREA is adap-
tive to spectra with sparse or dense Raman peaks and has
better performance on both simulated and real data.

Methods

Notation and Asymmetric Losses for Baseline
Correction

Informed consent for the collection of urine specimens
from healthy volunteers was obtained. A raw Raman spec-
trum consists of a sequence of intensity measurements y; at
Raman shifts or wavenumbers (in cm™'), i=1,....n. Let

Yot = (Y5 .- ,y,,)T be the vector of observed intensities.
The model for a raw Raman spectrum is

y=m-+a-+e )
where mp =(my,... ,mn)T, an = (a,... ,C'n)Tv and

€nx1 = (€1, ... ,a,,)T, are respectively vectors of unknown
true baseline intensities, peak intensities, and random
noises. In particular, the baseline intensities m; are often
assumed to come from an unknown smooth baseline func-
tion f, say, defined on the interval [0, 1], such that
m; = f (i/n). The goal of a baseline correction procedure
is thus to recover this unknown baseline function f.
While smoothers, such as polynomials or splines, are
often used to model the baseline function f, a proper
model for peak intensities g; is extremely hard. Each peak
in the spectrum represents a specific molecular structure
present in the scanned sample. When all the chemical
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compositions of the sample are known, the peaks can be
modeled as properly sized spikes at expected wavenumbers
on the spectrum. In practice, the composition of the sample
(e.g., the waste dialysate sample in our hemodialysis experi-
ment) is often unknown, making it hard or even impossible
to model the peak intensities properly. Instead, most base-
line correction methods simply build up a smoother
through the minimization of a loss function without any
explicit modeling of peak intensities g;. That is, the baseline
is estimated essentially with peak intensities a; absorbed
into the random error part of model in Eq. |. For example,
when the least squares loss Lie(x) = x% is used, a smoother
is trained through the minimization of Y"_ & where
6 =y —m; is the deviation of the fitted baseline from
the observed intensity, and m; = f (i/n) is the fitted baseline
intensity derived from the smooth function estimate f of f.

As reviewed in the Introduction section, the baseline
function estimate f based on the least squares loss often
cuts into the peak areas. To address this issue, various
asymmetric loss functions Ls(x), where s > 0 is a pre-spe-
cified threshold, are introduced such that Li(x) = x> when
x <'s but Ly(x) < x* for x >s. The principle for such a
setup is to reduce the punishment otherwise enforced by
the least squares loss when the difference §; is a big positive
number, a phenomenon often observed at the peak area.
For example, the left panel of Fig. | shows several such
asymmetric loss functions. From top to bottom, the
curves are respectively the asymmetric Huber function
with Li(x) = 2sx — x> when x >s, the asymmetric trun-
cated quadratic function with Li(x) =s®> when x>,
and the asymmetric Indec function with Li(x) = %+%
when x > s.

These asymmetric loss functions all share the same
shape with the least squared loss for negative deviations
while they have reduced loss for large positive deviations.
This helps discourage invasions into the high peaks
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commonly seen in a baseline minimizing the least squares
loss. However, these asymmetric loss functions have a
couple of critical drawbacks: (1) the selection of threshold
s can be tricky; (2) the optimization of these loss functions
is often time-consuming due to their nonstandard forms. To
address the issue of threshold selection, we propose the

following threshold-free asymmetric root error loss
function
L= ¥ ifx=0 2)
Jx, if x>0

As plotted in the right panel of Fig. |, the asymmetric
square root error function clearly preserves the discour-
agement of large positive deviations. And it has the advan-
tage of not requiring any manual selection of a threshold. To
further improve the computational efficiency, we shall avoid
the direct optimization of the loss function in Eq. 2. Instead,
we propose a computational procedure that iterates
between smoothing and updating “observations” with posi-
tive deviations by the sums of current smooth baseline
estimates and square-root-adjusted deviations.

The ISREA Algorithm

We now introduce our algorithm called the ISREA. The
basic idea is to yield a baseline function estimate that tar-
gets at minimizing a loss function similar to Eq. 2 without
really resorting to its direct optimization which can be
complicated and time consuming.

In the ISREA algorithm, we first obtain an initial baseline
estimate by fitting smoothing splines to the raw spectrum.
Recall that ; = y; — m; is the deviation of the smooth base-
line estimate m; from the observed raw spectral intensity
value y;. Then, intensities are adjusted in a way such that in
the areas with 9; < 0 the intensities remain the same, while

o —
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Figure 1. Loss functions in baseline correction methods. Left: Existing asymmetric loss functions (from top to bottom, the asymmetric
Huber function as the dashed line, the asymmetric truncated quadratic function as the dash-dotted line, and the asymmetric Indec
function as the dotted line) with the least squares loss function (solid line) imposed. Right: Proposed asymmetric root error loss

function.
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in the areas with §; > 0 intensities are updated as
y") = i + /5. To see how this adjustment is related
to the asymmetric root error loss function L(x) in Eq. 2,
we note that squared errors at areas with non-positive
deviations remain SIZ, while squared errors at areas with
positive deviations become /5. We then feed the new
intensities ™™ into smoothing spline estimation again to
get an updated baseline function estimate f and thus
updated baseline intensity estimates m; = f (i/n).

These steps are repeated until the difference between
two consecutive fitted baselines is small. The complete
algorithm of ISREA is shown in Algorithm | in Fig. 2.

In each iteration, intensities at peak areas are reduced
and intensities at non-peak areas remain the same. So
smoothing splines are actually fitted to a modified spectrum
with reduced peak heights. Consequently, the fitted base-
line can stay low at the bottom of peaks like the true base-
line and provides a properly corrected spectrum with
retained peak heights.

Function Smooth.spline in the R package stats is used to
fit a cubic smoothing spline to the data. For the number of
knots, we use five for general raw spectra and |5 for really
spiky raw spectra. For the constant € in the convergence
criterion, we have tested different choices of € in a range
from 10 to 0.0001 on simulated spectra, dialysis spectra,
and mineral spectra. The results, collected in the supple-
mental material, are quite similar and do not appear to be
sensitive to its choice. More time is taken as € decreases
since more iterations are needed.

Numerical Studies

In this section, we compare the ISREA with two existing
baseline correction methods, the ALS and Goldindec.

Applied Spectroscopy 75(1)

For the ALS, we use the “als” method of the baseline func-
tion in the R package baseline with the options
lambda=7.5 and weight=0.05, as found by optimizing
baseline accuracy over a grid of plausible values.>* For the
Goldindec, we use degree three polynomials and a peak
ratio of 0.5 as suggested in the paper by Liu et al.?’ We
test the ISREA with different choices of the number of
knots.

Simulated Spectra

Simulated data were generated from the assumed
Raman spectrum model Eq. I. In the simulation, the true
baseline intensity m was set to be a polynomial function of
degree five whose coefficients were generated from
Normal distributions. The first five coefficients were gen-
erated from N(O, 102) while last one was generated from
N(0,0.012). Peaks were simulated from groups of Gaussian
distributions, with the number of them randomly selected
between | and 10. Their central locations were randomly
set within the spectral range. Standard deviations of those
peaks were independently selected in the range from | to
I5 such that the width of those artificial peaks was simi-
lar to peaks on real Raman spectra. Noise signals were
generated from N(O, I). One-thousand Raman spectra
were simulated this way and tested with the ISREA and
Goldindec.

We used a statistical measure, called AC_rate, to evalu-
ate the performance of ISREA. It was proposed by Liu
et al?’ to assess the accuracy of the Goldindec method
and defined as

-m — ﬁ1_2

AC|rate = | — ——= (3)
-m_

Algorithm 1: The ISREA algorithm

input : Raw spectumy = (y1,...,yn)" with intensity y; at Raman shifts
i =1,...,n; convergence constant e.
output: Fitted baselines th = (11, ..., 17,)7.
1 begin
2 compute an initial estimate 77(®) from the raw spectrum by smoothing
splines.
3 Set D = 2¢ (or any number > €)
4 while D > e do
5 5@) =y - [h[t)
p if 5/ < 0 then
7 | ¥ =u
8 else
o || L =mo s ifi0
10 Replace y with y(*) and fit a new baseline 7i2(**1) by smoothing spline
1 | D =D — m®|3

Figure 2. The ISREA algorithm procedure.
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where m represents the true/expert-fitted baseline
intensity, m represents the fitted baseline intensity, and
[| - ||, is the L% norm of a function on the spectral range.
The AC_rate compares the true/expert-corrected baseline
with the fitted baseline. Generally, a bigger AC rate
that is close to one is desired. Besides the AC_rate, we
also considered the root mean square error (RMSE)
between the true and estimated baselines.* For simulated
data and minerals data, we used AC_rate and RMSE to
compare the ALS, ISREA, and Goldindec baseline estimates
against the true baselines or expert-corrected baselines.
For dialysis data, since there are no true/expert-correction
baselines, we plotted baseline-corrected spectra of dialysis
samples to compare the ALS, ISREA, and Goldindec
methods.

Tables | and Il present the AC_rate and RMSE percent-
iles for the ALS, Goldindec, and ISREA with different num-
bers of knots (NK). While the Goldindec and ALS methods
yielded a satisfactory AC_rate for 50% of the simulated
spectra, we also note the much-deteriorated AC_rate for
the lower 25% of the spectra. In particular, the smallest
AC_rates were even negative for both methods, indicating
a complete miss of the true baseline. On the other hand,
the AC_rates of the ISREA with different numbers of knots
are consistently better than those of the Goldindec and
ALS. In terms of the RMSEs in Table Il, the ISREA com-
pletely dominated the other two methods with much smal-
ler RMSEs. In general, although NK=5 generally gave the
best performance for ISREA, the AC_rates and RMSEs for
NK =10 and NK= 15 were remarkably close. This indicates
that the ISREA method is not sensitive to different choices
of the number of knots.

Mineral Spectra

In this section, we compare the ALS, Goldindec, and ISREA
methods on Raman spectra of minerals obtained from the
RRUFF database.’® The database provides both the raw
spectra and expert-corrected spectra for many minerals,
the differences of which can be treated as the “true”
baselines.
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The ALS, ISREA, and Goldindec methods were applied
to spectra of six minerals, namely, andersonite, eastonite,
marialite, parascholzite, sugilite, and wadeite. These six
minerals, two of which also appeared in the Goldindec
paper,”? were selected to represent some typical variations
of Raman peak locations (in the middle versus at the ends
of the spectral domain), sharpness (sharp peaks versus low
peaks), and spread (clustered peaks versus spread-out
peaks). Compositions of these minerals are simple and
pure. Therefore, their Raman spectra are also simple with
clear Raman peaks. Fig. 3 compares the three versions of
baseline-corrected spectra against the expert-corrected
spectra. Clearly, both the ALS and the ISREA-corrected
spectra almost overlap the expert-corrected spectra for
all the six minerals, whereas Goldindec sometimes gener-
ated spectra that deviated from the expert-corrected spec-
tra by large margins at parts of the spectral domain. Further
examination of the AC_rates in Table Ill and RMSEs in
Table IV confirmed that Goldindec did not do so well in
baseline correction for three of the six minerals, namely,
andersonite, eastonite, and wadeite. A close inspection of
the raw spectra for these minerals revealed that their
underline baselines have complicated shapes which are gen-
erally hard to be captured by polynomials. Next, we com-
pare the ALS with the ISREA. In terms of the AC_rates in

Table Il. Percentiles of the RMSE for ALS, Goldindec, and ISREA
on 1000 simulated spectra.

Percentile 0% 5% 25% 50% 75% 95% 100%
ALS 085 095 .10 131 180 275 4.80
Goldindec 090 I.13 127 .55 236 410 1532
ISREA
NK=5 005 0.10 0.18 027 035 045 0.68
NK=10 0.08 0.13 022 033 042 0.54 0.76
NK=15 008 0.15 026 038 048 0.6l 0.91

Note: NK is the number of knots used in ISREA.
ALS: asymmetric least squares; ISREA: iterative smoothing-splines with
root error adjustment.

Table I. Percentiles of the AC_rates for ALS, Goldindec, and ISREA on 1000 simulated spectra.

Percentile 0% 5% 25% 50% 75% 95% 100%
ALS —0.6198 0.7748 0.9322 0.9555 0.9789 0.9853 0.9896
Goldindec —0.8795 0.6959 0.9107 0.9515 0.9700 0.9833 0.9895
ISREA
NK=5 0.6909 0.9355 0.9843 0.9935 0.9965 0.9985 0.9995
NK=10 0.6178 0.9214 0.9812 0.9921 0.9957 0.9981 0.9994
NK=15 0.5832 0.9123 0.9785 0.9906 0.9950 0.9979 0.9992

Note: NK is the number of knots used in ISREA.

ALS: asymmetric least squares; ISREA: iterative smoothing-splines with root error adjustment.
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Figure 3. Comparison of ALS, Goldindec, and ISREA (with NK= |5) baseline correction on Raman spectra of six minerals against the
expert-corrected spectra (purple solid). Horizontal axis: Raman shift (in cm_'); vertical axis: intensity. The curves are respectively:
raw spectra (black solid), ALS baseline estimates (cyan dashed), ALS-corrected spectra (cyan solid), Goldindec baseline estimates
(red dashed), Goldindec-corrected spectra (red solid), ISREA baseline estimates (blue dashed), and ISREA-corrected spectra (blue solid).

Table Ill, the ALS and ISREA had similar AC_rates although
the ISREA with different choices of NK had slightly higher
AC_rates for five of the six minerals, except for paraschol-
zite where both methods essentially had the same AC_rate.
In terms of the RMSEs in Table IV, the ISREA with NK=15
had smaller RMSEs than the ALS for five of the six minerals,
except for parascholzite where the ALS had a slightly lower
RMSE.

In our numerical experiments, we also considered dif-
ferent choices of NK for the ISREA. As Tables Ill and IV
show, in general ISREA is not sensitive to the choice of NK
with different NKs yielding similar AC_rates and RMSEs.
This confirmed our finding in the previous simulations.

One noticeable exception is the NK=5 case for anderso-
nite, where the sharp peak at the left end of the raw spec-
trum might be hard to capture when the number of knots is
too small. As demonstrated by our results in Tables Il
and IV, this can be easily handled by using a slightly larger
number of knots.

Dialysate Spectra

The last set of spectra was collected in our hemodialysis
experiment. Hemodialysis is one of the most common
treatments for patients with end-stage kidney diseases. In
a hemodialysis treatment session, typically about four hours
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Table Ill. AC_rate comparisons of ALS, Goldindec, and ISREA for six minerals.
Andersonite Eastonite Marialite Parascholzite Sugilite Wadeite
ALS 0.8891 0.9412 0.9935 0.9825 0.9815 0.8916
Goldindec 0.7822 0.8546 0.9878 0.9413 0.9598 0.8044
ISREA
NK=5 0.8789 0.9479 0.9936 0.9740 0.9923 0.8910
NK=10 0.9653 0.9484 0.9966 0.9806 0.9913 0.9055
NK=15 0.9872 0.9818 0.9951 0.9824 0.9875 0.8938
NK =20 0.9800 0.9884 0.9924 0.9814 0.9823 0.9152
NK =25 0.9861 0.9805 0.9888 0.9717 0.9781 0.9140
ALS: asymmetric least squares; ISREA: iterative smoothing-splines with root error adjustment.
Table IV. RMSE comparisons of ALS, Goldindec, and ISREA for six minerals.
Andersonite Eastonite Marialite Parascholzite Sugilite Wadeite
ALS 1075.25 559.36 36.96 81.85 I11.41 16.02
Goldindec 2110.84 1382.52 69.68 274.02 24.74 28.90
ISREA
NK=5 1174.22 49493 36.68 121.57 4.77 16.11
NK=10 336.14 491.04 19.35 90.67 5.37 13.96
NK=15 124.54 173.34 2791 82.24 7.72 15.69
NK =20 194.33 110.57 43.78 86.93 10.92 12.53
NK =25 135.10 185.63 6391 131.90 13.47 12.71

ALS: asymmetric least squares; ISREA: iterative smoothing-splines with root error adjustment.

long, a machine called a dialyzer is connected to the patient
to help partially purify blood by removing metabolic waste
products and rebalancing water and electrolytes. The dia-
lyzer pumps the blood to a filter chamber, composed of a
semipermeable polysulfone membrane that separates the
patient’s blood from a fluid called dialysate. Wastes in the
blood are released to the dialysate in the chamber, as fresh
blood flows out of the chamber. Our hemodialysis study
consisted of a total of 30 treatment sessions for 10 chronic
kidney disease patients. The detailed description of the
cohort is in the supplemental material. VWe now describe
the analysis of the Raman spectral data from one treatment
session since our analysis of other treatment sessions yield
similar results. We collected used dialysate samples (con-
taining metabolic wastes) at 10, 60, 120, 180, and 240 min
(the end) of the session. Each sample was divided into 10
portions and each portion was analyzed by a Raman spec-
trometer (Peakseeker Pro 785, Agiltron Inc.) to produce a
raw spectrum. Therefore, we generated a total of 50 raw
Raman spectra with 10 spectra associated with each time
point. As discussed earlier, there were no expert-corrected
spectra of waste dialysate for references.

Visual comparisons of ALS, Goldindec, and ISREA are
displayed in Fig. 4. Clearly, both NK=5 and NK= 10 for

ISREA produced consistent baseline estimates and yielded
similar baseline-corrected spectra for the 50 raw spectra.
ALS also generated consistent baseline estimates, with
slightly lower peaks than those from ISREA. On the other
hand, a good portion of the Goldindec baselines completely
missed the trend at the right end of the spectral domain.
Since peaks in this area can be associated with important
molecules in used dialysate, this can cause serious trouble
for ensuing quantitative analysis of the compositions of used
dialysate samples.

To study this further, we also numerically examined how
much ALS, ISREA, and Goldindec respectively preserved
the similarities between spectra. As shown in Fig. 4, since
all the raw spectra were from used dialysate samples col-
lected in the same treatment session, they are all displayed
similar trends. Such similarity is expected to be preserved
even after the baseline correction. To represent this simi-
larity, we paired the first raw spectrum with each of the
other raw spectra, resulting in 49 pairs of spectra. For each
pair, we calculated the correlation between the intensities
of the two spectra. Then these 49 correlations represented
the similarity between the 50 raw spectra. Similarly, we
obtained 49 correlations each for the ALS baseline-cor-
rected spectra, the Goldindec baseline-corrected spectra,
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Figure 4. Comparison with ALS, Goldindec, and ISREA (with NK=5 and NK=10) on dialysate spectra at 10 min of the session. NK
refers to number of knots selected. Right: 10 dialysate spectra. Left: All 50 dialysate spectra. Horizontal axis: Raman shift (in cm™');
vertical axis: intensity. The curves are respectively: raw spectra (black solid), ALS baseline estimates (cyan dashed), ALS-corrected
spectra (cyan solid), Goldindec baseline estimates (red dashed), Goldindec-corrected spectra (red solid), ISREA baseline estimates (blue

dashed), and ISREA-corrected spectra (blue solid).

the ISREA baseline-corrected spectra with NK=5, and the
ISREA baseline-corrected spectra with NK=10. We then
calculated the similarity changes by subtracting each of
these three sets of correlations for baseline-corrected
spectra from the correlations for raw spectra. Hence,
these correlation differences represented the similarity
changes after each baseline correction procedure. The
means and standard deviations of these correlation differ-
ences are summarized in Table V. It shows that Goldindec
baseline correction dramatically decreased the similarities
between raw spectra, whereas ALS and the ISREA baseline

Table V. Similarity change comparisons of ALS, Goldindec, and
ISREA on dialysate spectra.

Mean Standard deviation
ALS 0.0507 0.0082
Goldindec 0.2559 0.2282
ISREA
NK=5 0.0446 0.0072
NK=10 0.1238 0.0206

ALS: asymmetric least squares; ISREA: iterative smoothing-splines with
root error adjustment.
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Figure 5. Comparison with ALS, Goldindec, and ISREA (with NK=15) on dialysate spectra at different time points in one treatment
session. NK refers to number of knots selected. Time points 2, 3, 4, 5 refer to 60, 120, 180, 240 min of the session. Horizontal axis:
Raman shift (in cm™'); vertical axis: intensity. The curves are respectively: raw spectra (black solid), ALS baseline estimates (cyan

dashed), ALS-corrected spectra (cyan solid), Goldindec baseline estimates (red dashed), Goldindec-corrected spectra (red solid), ISREA

baseline estimates (blue dashed), and ISREA-corrected spectra

correction procedure with NK=5 or NK=10 preserved
the similarities between raw spectra much better. The
mean similarity difference was the smallest for the ISREA
with NK=05 while the mean similarity difference for the
ALS was only slightly larger.

To illustrate the trend over the treatment session,
we also provide the raw and baseline-corrected spectra
in Fig. 5 for dialysate samples collected at 60, 120, 180
and 240 minutes of the session. A more formal study of
the trend would require new statistical analysis tools that
are currently under development.

Table VI. Computational time (s) of ALS, Goldindec, and ISREA
when processing batches of simulated spectra and dialysate
spectra.

1000 simulated 50 dialysis

spectra spectra
ALS 3.16 0.16
Goldindec 885.36 38.54
ISREA 24.13 8.76

ALS: asymmetric least squares; ISREA: iterative smoothing-splines with
root error adjustment.
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Computational Cost Comparison

Another advantage of ISREA is its relatively low computa-
tional cost, making it ideal for efficient batch processing of a
large number of raw Raman spectra. Such computational
efficiency in batch processing is critical for applications like
real-time monitoring by Raman spectroscopy. In Table VI,
we present the total computational times that ALS,
Goldindec, and ISREA respectively take for 1000 simulated
spectra and 50 spectra of dialysate samples. As the table
shows, both ALS and ISREA are clearly efficient in compu-
tation and ideal for batch processing.

Conclusion

Motivated from the success of asymmetric loss functions,
ISREA is a simple and fast baseline correction procedure
that mimics the threshold-free asymmetric square-root loss
and well preserves all the meaningful Raman peaks. Its com-
putational efficiency is a natural by-product deriving from
the elimination of the threshold selection and non-convex
optimization required in existing asymmetric loss methods.
Our numerical experiments have demonstrated that ISREA
has excellent and consistent performance on a wide variety
of spectra, including mineral spectra that consist of sharp or
low but sparse peaks and spectra of complicated com-
pounds like used dialysate that contain many meaningful
peaks over the whole spectral domain. Although we have
implemented ISREA in R, it can be easily translated to other
common languages like Python, Matlab, and others to facili-
tate automation and processing of large Raman spectral
datasets.

Our comparisons of ISREA with the ALS and Goldindec
procedures indicate that both ISREA and ALS can perform
better baseline correction than the Goldindec. Against each
other, ISREA and ALS each have slight advantages from
different aspects.

As described in the Introduction, EMSC is another com-
monly used baseline correction procedure which produces
spectra similar to the chosen reference spectrum. In our
hemodialysis experiment, the baseline-corrected spectra
generated at different time points will be used in group
comparisons to determine whether there are any significant
changes in the chemical compositions of waste dialysate
samples collected at these time points. The comparison
analysis, to be reported in a later manuscript, would require
accurate representations of the Raman peaks of constituent
chemicals of waste dialysate. The EMSC method with the
mean spectrum as the reference spectrum at each time
point would not yield spectra with such kind of represen-
tations. A reference spectrum that is already baseline cor-
rected would be necessary. This would require a
combination of the EMSC with another baseline correction
method such as ALS or ISREA. The performance of such a
combination certainly merits further research but is beyond
the scope of this paper.
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