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Abstract

A critical step in Raman spectroscopy is baseline correction. This procedure eliminates the background signals generated

by residual Rayleigh scattering or fluorescence. Baseline correction procedures relying on asymmetric loss functions have

been employed recently. They operate with a reduced penalty on positive spectral deviations that essentially push down

the baseline estimates from invading Raman peak areas. However, their coupling with polynomial fitting may not be suitable

over the whole spectral domain and can yield inconsistent baselines. Their requirement of the specification of a threshold

and the non-convexity of the corresponding objective function further complicates the computation. Learning from their

pros and cons, we have developed a novel baseline correction procedure called the iterative smoothing-splines with root

error adjustment (ISREA) that has three distinct advantages. First, ISREA uses smoothing splines to estimate the baseline

that are more flexible than polynomials and capable of capturing complicated trends over the whole spectral domain.

Second, ISREA mimics the asymmetric square root loss and removes the need of a threshold. Finally, ISREA avoids the

direct optimization of a non-convex loss function by iteratively updating prediction errors and refitting baselines. Through

our extensive numerical experiments on a wide variety of spectra including simulated spectra, mineral spectra, and

dialysate spectra, we show that ISREA is simple, fast, and can yield consistent and accurate baselines that preserve all

the meaningful Raman peaks.
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Introduction

Raman spectroscopy is an established tool used for both

qualitative and quantitative analyses of molecular compos-

ition of macro- and nanomaterials and biological systems.1

More recently, advances in instrumentation have improved

sensitivity greatly, reduced interference from fluorescence

and environmental sources, and have led to spectrometers

that are relatively inexpensive and have a small footprint.2,3

It has also found applications in a variety of medical studies,

such as disease diagnosis and monitoring efficacy and

progress of therapy.4–8

In Raman spectrum generation, a background signal gen-

erated by fluorescence or Rayleigh scattering can heavily

interfere with accurate analysis of the underlying Raman

spectrum. This background signal, commonly known as

the baseline, often appears as a smooth curve in the raw

spectrum. Therefore, one critical step in Raman spectros-

copy is to perform a baseline correction that involves

estimating the baseline by a smooth function and then

removing it from the raw spectrum by subtraction.9

Numerous baseline correction methods have been pro-

posed over the years. Almost all baseline correction meth-

ods implement an algorithm that employs a smoother to

capture the smooth trend and a loss function to adjust the

fitting. Commonly used smoothers include first- and

second-order differentiation, Fourier transformation,10,11
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polynomial fitting,12,13 splines,14–16 and wavelets.17–19 For

example, Zhang and Ben-Amotz used the Savitzky–Golay

second-derivative method on spectral data.20 Although

differentiation is unbiased and efficient for fluorescence

subtraction, it can severely distort shapes of Raman spectra

and relies on complex fitting algorithms to reproduce con-

ventional spectra according to Mosier-Boss et al.,10 who

applied the fast Fourier transform filtering technique to

Raman spectra to eliminate interference due to fluores-

cence. Fourier transform filtering depends on direct

human intervention to choose its upper and lower limits

in the frequency domain each time. This process is tedious

and does not lend well to automated analyses. In contrast,

polynomials are simple and convenient and thus popular in

the biomedical field. To preserve peak intensities of Raman

spectra, they often rely on manual recognition of back-

ground points. Otherwise the fitted baseline would include

both fluorescence background and Raman peaks.

Furthermore, the manual selection of background points

can be time consuming, which, again, does not lend well

to automated spectra processing. To avoid the human-

intervention input to the selection process, iterative pro-

cedures were considered.11,13 Splines were used in baseline

correction as early as the 1990s.14 More recently, Cai et al.

presented a method that combines penalized B-splines with

vector transformation.21 Wavelet transformation has been

another popular tool for baseline correction. For example,

Cai et al. applied the multi-resolution wavelet transform-

ation and suppressed the empirical wavelet coefficients in

groups with a blockwise threshold.17 However, the major

drawbacks of wavelets are their assumption of a well sepa-

rated background from the rest of the signal22 and the need

of selecting the wavelet type and the wavelet coefficient

threshold. Furthermore, wavelets may sometimes lead to

a sub-optimal filter for experimental signals.18 A second-

generation adaptive wavelet transform, which makes use

of a spatial domain to generate new wavelet filters, was

also developed.18 Yet, it is still complex and computationally

expensive to implement, limiting its practical application.

Also commonly seen are model-based approaches where

baseline correction involves specifying models for additive

and multiplicative forms of background noises. One exam-

ple is the singular value decomposition-based method

where multivariate loadings were used for background cor-

rection.23 Another example is the extended multiplicative

signal correction (EMSC), which was first proposed for the

near infrared spectroscopy24 and later extended to Raman

spectra.25–27 An EMSC model decomposes a raw spectrum

into three components: a polynomial baseline function, a

multiple of a reference spectrum, and the residual that actu-

ally contains the spectrum of interest for the scanned

sample. Through an ordinary or weighted least squares

estimation, it produces spectra similar to the reference

spectrum. The choice of the reference spectrum thus

depends on the ensuing analysis. When peak heights or

related information are not required, a commonly used

reference spectrum is the mean spectrum. Otherwise, a

baseline-corrected reference spectrum should be used to

achieve baseline correction for all spectra.28

In addition to the smoother, the choice of the loss func-

tion is also critical for baseline correction. Most existing

methods rely on a symmetric loss function, generally the

least square loss. This is now recognized as inappropriate

for the baseline correction purpose29 as it tends to pro-

duce a baseline that invades into Raman peaks. More spe-

cifically, a high peak in a raw spectrum is often expected to

be made up of a Raman scattering signal represented by

high peaks and a smooth baseline signal that forms the

bottom of the peaks. A fitted function based on the least

squares loss, however, often cuts into the peak areas

instead of properly estimating the bottom of the peaks.

Therefore, the heights of the peaks in the baseline-cor-

rected spectrum would be smaller than their true values.

This can create problems for ensuing quantitative analysis of

Raman spectra since, according to Beer’s Law, there is a

proportional relationship between the height of a peak and

the concentration of the molecule(s) creating it. The defi-

ciency of the least squares loss lies in that it often pulls up

the fitted curve to match up with a peak in order to min-

imize their squared difference.

Based on the limitations noted in these observations,

several asymmetric loss functions have been proposed.

These asymmetric functions share the common feature of

a reduced loss for large positive deviations compared with

the least squares loss. The asymmetric least squares (ALS)

loss was first proposed, which is essentially a weighted least

squares with second-order derivatives as the penalty

term.30 However, the ALS may produce artificial negative

peaks on the corrected spectrum.31 Peng et al. generalized

this approach for multiple spectra baseline correction

taking advantage of means of the similarity among the mul-

tiple spectra.32 They assumed that baseline stays the same

or changes little for spectra of samples collected continu-

ously over time. He et al. proposed an improved ALS

method, which adds the first-order derivative of residuals

to the least squared loss to achieve smoothness and used

second-order polynomials as the smoother.33 Mazet et al.

replaced the symmetric squared loss with asymmetric

Huber loss and asymmetric truncated quadratic loss to

suppress the effect of large positive residuals, i.e., peak

areas, and estimated the baseline by a low-order polyno-

mial.22 But selections of two tuning parameters, the thresh-

old of loss functions and the order of polynomial, can be

tricky. The order of polynomial demands manual selection

based on the smoothness of background. The authors sug-

gested that splines may provide a better fitting than

polynomials.

More recently, Liu et al. developed the Goldindec

method using polynomials with an asymmetric Indec loss

and implemented it through a half-quadratic algorithm.29
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This method was chosen for baseline correction in the ini-

tial versions of the Raman chemometrics (Rametrix) LITE

and PRO Toolboxes for Matlab.5,7 Among asymmetric

losses, the asymmetric Indec loss has been shown to have

the best performance. However, one major drawback of

the Goldindec algorithm is its use of polynomials to repre-

sent a baseline signal. Polynomials, especially low-degree

polynomials, are often used to fit simple smooth functions.

Due to its small number of tuning parameters (the coeffi-

cients in a polynomial), polynomials may not be sufficiently

flexible to capture complicated smooth trends and can be

easily distorted by a few influential points. Another draw-

back is that Goldindec requires the selection of a change

point in the asymmetric Indec loss function. This change

point is critical for the success of the algorithm since it

specifies the threshold such that a positive deviation

beyond it will be less penalized than in the least squares

loss. However, there is no systematic way to choosing this

change point although some empirical (i.e., subjective)

choices are suggested and their performance may not be

satisfactory in practice.

As described above, a simple polynomial or smoothing

spline fitted to a raw Raman spectrum is likely to produce a

baseline that moves up with peaks, while a true baseline

should leave the peaks untouched and take out only the

background signals. That is, after the subtraction of a well-

estimated baseline, the remaining spectrum should have the

peak intensities preserved in the peak areas and intensities

close to zero in the non-peak areas. Therefore, our goal is

to develop a baseline correction method whose baseline

estimate stays close to the true baseline with all the inter-

esting peaks well-preserved.

In this article, we propose a new computationally effi-

cient algorithm, called the iterative smoothing-splines with

root error adjustment (ISREA). In ISREA, the baseline is

fitted by smoothing splines, given their better flexibility in

capturing the overall shape of the spectrum. To correct the

aforementioned peak-invading problem of smoothing spline

baseline estimate, we notice that peak invasion mostly hap-

pens in the regions of ‘‘positive deviations’’ or ‘‘positive

prediction errors’’, that is, the regions where the observed

intensity deviates from the fitted baseline intensity by a

positive amount. Therefore, we propose the following

iterative fitting procedure to adjust for the peak invasion.

In each iteration, the prediction errors are adjusted down

through a root transformation and added back to the fitted

baseline intensities to form a new set of intensities. Then

smoothing splines are applied to this new set of intensities

to obtain a new baseline estimate, based on which a new

set of prediction errors are calculated. This adjustment

procedure is repeated until the errors drop to a negligible

level. The error transformation used in the adjustment is

motivated from asymmetric loss functions where large

positive deviations are penalized less than in a least

square loss. So, the ISREA baseline estimate inherits the

nice properties of those estimates obtained from asymmet-

ric losses. Furthermore, the simple root error adjustment

avoids the tricky optimization of a non-conventional object-

ive function otherwise required in all the methods based on

asymmetric losses.

Therefore, it is much easier to implement, much more

computationally efficient, and lends well to automated

analyses.

In our numerical experiments, we compared ISREA with

the ALS30 and Goldindec algorithm29 on both simulated and

real Raman spectral data. In simulations, we considered

both spiky and non-spiky data. In real applications, we stu-

died spectra of pure mineral data from public databases and

spectra of waste dialysate samples collected from patients

undergoing hemodialysis treatments in a clinic. The spec-

trum of a pure mineral generally contains a small number of

Raman peaks. Additionally, there is an expert-corrected

spectrum available so that a ‘‘true’’ baseline can be recov-

ered as the reference. On the other hand, a waste dialysate

sample is a complicated solution containing many mol-

ecules, so its spectrum is expected to contain many

Raman peaks. Furthermore, there is no ground truth or

expert correction available as the reference although

some signature chemicals such as urea are always present

in the sample. Our experiments show that ISREA is adap-

tive to spectra with sparse or dense Raman peaks and has

better performance on both simulated and real data.

Methods

Notation and Asymmetric Losses for Baseline
Correction

Informed consent for the collection of urine specimens

from healthy volunteers was obtained. A raw Raman spec-

trum consists of a sequence of intensity measurements yi at

Raman shifts or wavenumbers (in cm�1), i ¼ 1, . . . , n. Let
yn�1 ¼ ð y1, . . . , ynÞ

T be the vector of observed intensities.

The model for a raw Raman spectrum is

y ¼ mþ aþ e ð1Þ

where mn�1 ¼ ðm1, . . . ,mnÞ
T , an�1 ¼ ða1, . . . , anÞ

T , and

en�1 ¼ ðe1, . . . , enÞT , are respectively vectors of unknown

true baseline intensities, peak intensities, and random

noises. In particular, the baseline intensities mi are often

assumed to come from an unknown smooth baseline func-

tion f, say, defined on the interval 0, 1½ �, such that

mi ¼ f ði=n). The goal of a baseline correction procedure

is thus to recover this unknown baseline function f.

While smoothers, such as polynomials or splines, are

often used to model the baseline function f , a proper

model for peak intensities ai is extremely hard. Each peak

in the spectrum represents a specific molecular structure

present in the scanned sample. When all the chemical
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compositions of the sample are known, the peaks can be

modeled as properly sized spikes at expected wavenumbers

on the spectrum. In practice, the composition of the sample

(e.g., the waste dialysate sample in our hemodialysis experi-

ment) is often unknown, making it hard or even impossible

to model the peak intensities properly. Instead, most base-

line correction methods simply build up a smoother

through the minimization of a loss function without any

explicit modeling of peak intensities ai. That is, the baseline

is estimated essentially with peak intensities ai absorbed

into the random error part of model in Eq. 1. For example,

when the least squares loss LlseðxÞ ¼ x2 is used, a smoother

is trained through the minimization of
Pn

n¼1 d
2
i where

di ¼ yi � m̂i is the deviation of the fitted baseline from

the observed intensity, and m̂i ¼ f̂ ði=nÞ is the fitted baseline

intensity derived from the smooth function estimate f̂ of f .

As reviewed in the Introduction section, the baseline

function estimate f̂ based on the least squares loss often

cuts into the peak areas. To address this issue, various

asymmetric loss functions LsðxÞ, where s4 0 is a pre-spe-

cified threshold, are introduced such that Ls xð Þ ¼ x2 when

x5 s but Ls xð Þ5 x2 for x � s. The principle for such a

setup is to reduce the punishment otherwise enforced by

the least squares loss when the difference �i is a big positive
number, a phenomenon often observed at the peak area.

For example, the left panel of Fig. 1 shows several such

asymmetric loss functions. From top to bottom, the

curves are respectively the asymmetric Huber function

with Ls xð Þ ¼ 2sx � x2 when x � s, the asymmetric trun-

cated quadratic function with Ls xð Þ ¼ s2 when x � s,

and the asymmetric Indec function with Ls xð Þ ¼ s3

2x
þ s2

2

when x � s.

These asymmetric loss functions all share the same

shape with the least squared loss for negative deviations

while they have reduced loss for large positive deviations.

This helps discourage invasions into the high peaks

commonly seen in a baseline minimizing the least squares

loss. However, these asymmetric loss functions have a

couple of critical drawbacks: (1) the selection of threshold

s can be tricky; (2) the optimization of these loss functions

is often time-consuming due to their nonstandard forms. To

address the issue of threshold selection, we propose the

following threshold-free asymmetric root error loss

function

L xð Þ ¼
x2, if x � 0ffiffiffi
x

p
, if x4 0

�
ð2Þ

As plotted in the right panel of Fig. 1, the asymmetric

square root error function clearly preserves the discour-

agement of large positive deviations. And it has the advan-

tage of not requiring any manual selection of a threshold. To

further improve the computational efficiency, we shall avoid

the direct optimization of the loss function in Eq. 2. Instead,

we propose a computational procedure that iterates

between smoothing and updating ‘‘observations’’ with posi-

tive deviations by the sums of current smooth baseline

estimates and square-root-adjusted deviations.

The ISREA Algorithm

We now introduce our algorithm called the ISREA. The

basic idea is to yield a baseline function estimate that tar-

gets at minimizing a loss function similar to Eq. 2 without

really resorting to its direct optimization which can be

complicated and time consuming.

In the ISREA algorithm, we first obtain an initial baseline

estimate by fitting smoothing splines to the raw spectrum.

Recall that di ¼ yi � m̂i is the deviation of the smooth base-

line estimate m̂i from the observed raw spectral intensity

value yi. Then, intensities are adjusted in a way such that in

the areas with di � 0 the intensities remain the same, while

Figure 1. Loss functions in baseline correction methods. Left: Existing asymmetric loss functions (from top to bottom, the asymmetric

Huber function as the dashed line, the asymmetric truncated quadratic function as the dash-dotted line, and the asymmetric Indec

function as the dotted line) with the least squares loss function (solid line) imposed. Right: Proposed asymmetric root error loss

function.
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in the areas with di 4 0 intensities are updated as

y
ðnewÞ
i ¼ m̂i þ

ffiffiffiffi
di4

p
. To see how this adjustment is related

to the asymmetric root error loss function L xð Þ in Eq. 2,

we note that squared errors at areas with non-positive

deviations remain d2i , while squared errors at areas with

positive deviations become
ffiffiffiffi
di

p
. We then feed the new

intensities y
ðnewÞ
i into smoothing spline estimation again to

get an updated baseline function estimate f̂ and thus

updated baseline intensity estimates m̂i ¼ f̂ ði=nÞ.
These steps are repeated until the difference between

two consecutive fitted baselines is small. The complete

algorithm of ISREA is shown in Algorithm 1 in Fig. 2.

In each iteration, intensities at peak areas are reduced

and intensities at non-peak areas remain the same. So

smoothing splines are actually fitted to a modified spectrum

with reduced peak heights. Consequently, the fitted base-

line can stay low at the bottom of peaks like the true base-

line and provides a properly corrected spectrum with

retained peak heights.

Function Smooth.spline in the R package stats is used to

fit a cubic smoothing spline to the data. For the number of

knots, we use five for general raw spectra and 15 for really

spiky raw spectra. For the constant e in the convergence

criterion, we have tested different choices of e in a range

from 10 to 0.0001 on simulated spectra, dialysis spectra,

and mineral spectra. The results, collected in the supple-

mental material, are quite similar and do not appear to be

sensitive to its choice. More time is taken as e decreases

since more iterations are needed.

Numerical Studies

In this section, we compare the ISREA with two existing

baseline correction methods, the ALS and Goldindec.

For the ALS, we use the ‘‘als’’ method of the baseline func-

tion in the R package baseline with the options

lambda¼ 7.5 and weight¼ 0.05, as found by optimizing

baseline accuracy over a grid of plausible values.34 For the

Goldindec, we use degree three polynomials and a peak

ratio of 0.5 as suggested in the paper by Liu et al.29 We

test the ISREA with different choices of the number of

knots.

Simulated Spectra

Simulated data were generated from the assumed

Raman spectrum model Eq. 1. In the simulation, the true

baseline intensity m was set to be a polynomial function of

degree five whose coefficients were generated from

Normal distributions. The first five coefficients were gen-

erated from Nð0, 102Þ while last one was generated from

Nð0, 0:012Þ. Peaks were simulated from groups of Gaussian

distributions, with the number of them randomly selected

between 1 and 10. Their central locations were randomly

set within the spectral range. Standard deviations of those

peaks were independently selected in the range from 1 to

15 such that the width of those artificial peaks was simi-

lar to peaks on real Raman spectra. Noise signals were

generated from Nð0, 1Þ. One-thousand Raman spectra

were simulated this way and tested with the ISREA and

Goldindec.

We used a statistical measure, called AC_rate, to evalu-

ate the performance of ISREA. It was proposed by Liu

et al.29 to assess the accuracy of the Goldindec method

and defined as

ACkrate ¼ 1�
m� m̂ 2

m 2

ð3Þ

Figure 2. The ISREA algorithm procedure.
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where m represents the true/expert-fitted baseline

intensity, m̂ represents the fitted baseline intensity, and

jj � jj2 is the L2 norm of a function on the spectral range.

The AC_rate compares the true/expert-corrected baseline

with the fitted baseline. Generally, a bigger AC rate

that is close to one is desired. Besides the AC_rate, we

also considered the root mean square error (RMSE)

between the true and estimated baselines.33 For simulated

data and minerals data, we used AC_rate and RMSE to

compare the ALS, ISREA, and Goldindec baseline estimates

against the true baselines or expert-corrected baselines.

For dialysis data, since there are no true/expert-correction

baselines, we plotted baseline-corrected spectra of dialysis

samples to compare the ALS, ISREA, and Goldindec

methods.

Tables I and II present the AC_rate and RMSE percent-

iles for the ALS, Goldindec, and ISREA with different num-

bers of knots (NK). While the Goldindec and ALS methods

yielded a satisfactory AC_rate for 50% of the simulated

spectra, we also note the much-deteriorated AC_rate for

the lower 25% of the spectra. In particular, the smallest

AC_rates were even negative for both methods, indicating

a complete miss of the true baseline. On the other hand,

the AC_rates of the ISREA with different numbers of knots

are consistently better than those of the Goldindec and

ALS. In terms of the RMSEs in Table II, the ISREA com-

pletely dominated the other two methods with much smal-

ler RMSEs. In general, although NK¼ 5 generally gave the

best performance for ISREA, the AC_rates and RMSEs for

NK¼ 10 and NK¼ 15 were remarkably close. This indicates

that the ISREA method is not sensitive to different choices

of the number of knots.

Mineral Spectra

In this section, we compare the ALS, Goldindec, and ISREA

methods on Raman spectra of minerals obtained from the

RRUFF database.35 The database provides both the raw

spectra and expert-corrected spectra for many minerals,

the differences of which can be treated as the ‘‘true’’

baselines.

The ALS, ISREA, and Goldindec methods were applied

to spectra of six minerals, namely, andersonite, eastonite,

marialite, parascholzite, sugilite, and wadeite. These six

minerals, two of which also appeared in the Goldindec

paper,29 were selected to represent some typical variations

of Raman peak locations (in the middle versus at the ends

of the spectral domain), sharpness (sharp peaks versus low

peaks), and spread (clustered peaks versus spread-out

peaks). Compositions of these minerals are simple and

pure. Therefore, their Raman spectra are also simple with

clear Raman peaks. Fig. 3 compares the three versions of

baseline-corrected spectra against the expert-corrected

spectra. Clearly, both the ALS and the ISREA-corrected

spectra almost overlap the expert-corrected spectra for

all the six minerals, whereas Goldindec sometimes gener-

ated spectra that deviated from the expert-corrected spec-

tra by large margins at parts of the spectral domain. Further

examination of the AC_rates in Table III and RMSEs in

Table IV confirmed that Goldindec did not do so well in

baseline correction for three of the six minerals, namely,

andersonite, eastonite, and wadeite. A close inspection of

the raw spectra for these minerals revealed that their

underline baselines have complicated shapes which are gen-

erally hard to be captured by polynomials. Next, we com-

pare the ALS with the ISREA. In terms of the AC_rates in

Table I. Percentiles of the AC_rates for ALS, Goldindec, and ISREA on 1000 simulated spectra.

Percentile 0% 5% 25% 50% 75% 95% 100%

ALS –0.6198 0.7748 0.9322 0.9555 0.9789 0.9853 0.9896

Goldindec –0.8795 0.6959 0.9107 0.9515 0.9700 0.9833 0.9895

ISREA

NK¼ 5 0.6909 0.9355 0.9843 0.9935 0.9965 0.9985 0.9995

NK¼ 10 0.6178 0.9214 0.9812 0.9921 0.9957 0.9981 0.9994

NK¼ 15 0.5832 0.9123 0.9785 0.9906 0.9950 0.9979 0.9992

Note: NK is the number of knots used in ISREA.

ALS: asymmetric least squares; ISREA: iterative smoothing-splines with root error adjustment.

Table II. Percentiles of the RMSE for ALS, Goldindec, and ISREA

on 1000 simulated spectra.

Percentile 0% 5% 25% 50% 75% 95% 100%

ALS 0.85 0.95 1.10 1.31 1.80 2.75 4.80

Goldindec 0.90 1.13 1.27 1.55 2.36 4.10 15.32

ISREA

NK¼ 5 0.05 0.10 0.18 0.27 0.35 0.45 0.68

NK¼ 10 0.08 0.13 0.22 0.33 0.42 0.54 0.76

NK¼ 15 0.08 0.15 0.26 0.38 0.48 0.61 0.91

Note: NK is the number of knots used in ISREA.

ALS: asymmetric least squares; ISREA: iterative smoothing-splines with

root error adjustment.
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Table III, the ALS and ISREA had similar AC_rates although

the ISREA with different choices of NK had slightly higher

AC_rates for five of the six minerals, except for paraschol-

zite where both methods essentially had the same AC_rate.

In terms of the RMSEs in Table IV, the ISREA with NK¼ 15

had smaller RMSEs than the ALS for five of the six minerals,

except for parascholzite where the ALS had a slightly lower

RMSE.

In our numerical experiments, we also considered dif-

ferent choices of NK for the ISREA. As Tables III and IV

show, in general ISREA is not sensitive to the choice of NK

with different NKs yielding similar AC_rates and RMSEs.

This confirmed our finding in the previous simulations.

One noticeable exception is the NK¼ 5 case for anderso-

nite, where the sharp peak at the left end of the raw spec-

trum might be hard to capture when the number of knots is

too small. As demonstrated by our results in Tables III

and IV, this can be easily handled by using a slightly larger

number of knots.

Dialysate Spectra

The last set of spectra was collected in our hemodialysis

experiment. Hemodialysis is one of the most common

treatments for patients with end-stage kidney diseases. In

a hemodialysis treatment session, typically about four hours

Figure 3. Comparison of ALS, Goldindec, and ISREA (with NK¼ 15) baseline correction on Raman spectra of six minerals against the

expert-corrected spectra (purple solid). Horizontal axis: Raman shift (in cm�1); vertical axis: intensity. The curves are respectively:

raw spectra (black solid), ALS baseline estimates (cyan dashed), ALS-corrected spectra (cyan solid), Goldindec baseline estimates

(red dashed), Goldindec-corrected spectra (red solid), ISREA baseline estimates (blue dashed), and ISREA-corrected spectra (blue solid).
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long, a machine called a dialyzer is connected to the patient

to help partially purify blood by removing metabolic waste

products and rebalancing water and electrolytes. The dia-

lyzer pumps the blood to a filter chamber, composed of a

semipermeable polysulfone membrane that separates the

patient’s blood from a fluid called dialysate. Wastes in the

blood are released to the dialysate in the chamber, as fresh

blood flows out of the chamber. Our hemodialysis study

consisted of a total of 30 treatment sessions for 10 chronic

kidney disease patients. The detailed description of the

cohort is in the supplemental material. We now describe

the analysis of the Raman spectral data from one treatment

session since our analysis of other treatment sessions yield

similar results. We collected used dialysate samples (con-

taining metabolic wastes) at 10, 60, 120, 180, and 240min

(the end) of the session. Each sample was divided into 10

portions and each portion was analyzed by a Raman spec-

trometer (Peakseeker Pro 785, Agiltron Inc.) to produce a

raw spectrum. Therefore, we generated a total of 50 raw

Raman spectra with 10 spectra associated with each time

point. As discussed earlier, there were no expert-corrected

spectra of waste dialysate for references.

Visual comparisons of ALS, Goldindec, and ISREA are

displayed in Fig. 4. Clearly, both NK¼ 5 and NK¼ 10 for

ISREA produced consistent baseline estimates and yielded

similar baseline-corrected spectra for the 50 raw spectra.

ALS also generated consistent baseline estimates, with

slightly lower peaks than those from ISREA. On the other

hand, a good portion of the Goldindec baselines completely

missed the trend at the right end of the spectral domain.

Since peaks in this area can be associated with important

molecules in used dialysate, this can cause serious trouble

for ensuing quantitative analysis of the compositions of used

dialysate samples.

To study this further, we also numerically examined how

much ALS, ISREA, and Goldindec respectively preserved

the similarities between spectra. As shown in Fig. 4, since

all the raw spectra were from used dialysate samples col-

lected in the same treatment session, they are all displayed

similar trends. Such similarity is expected to be preserved

even after the baseline correction. To represent this simi-

larity, we paired the first raw spectrum with each of the

other raw spectra, resulting in 49 pairs of spectra. For each

pair, we calculated the correlation between the intensities

of the two spectra. Then these 49 correlations represented

the similarity between the 50 raw spectra. Similarly, we

obtained 49 correlations each for the ALS baseline-cor-

rected spectra, the Goldindec baseline-corrected spectra,

Table IV. RMSE comparisons of ALS, Goldindec, and ISREA for six minerals.

Andersonite Eastonite Marialite Parascholzite Sugilite Wadeite

ALS 1075.25 559.36 36.96 81.85 11.41 16.02

Goldindec 2110.84 1382.52 69.68 274.02 24.74 28.90

ISREA

NK¼ 5 1174.22 494.93 36.68 121.57 4.77 16.11

NK¼ 10 336.14 491.04 19.35 90.67 5.37 13.96

NK¼ 15 124.54 173.34 27.91 82.24 7.72 15.69

NK¼ 20 194.33 110.57 43.78 86.93 10.92 12.53

NK¼ 25 135.10 185.63 63.91 131.90 13.47 12.71

ALS: asymmetric least squares; ISREA: iterative smoothing-splines with root error adjustment.

Table III. AC_rate comparisons of ALS, Goldindec, and ISREA for six minerals.

Andersonite Eastonite Marialite Parascholzite Sugilite Wadeite

ALS 0.8891 0.9412 0.9935 0.9825 0.9815 0.8916

Goldindec 0.7822 0.8546 0.9878 0.9413 0.9598 0.8044

ISREA

NK¼ 5 0.8789 0.9479 0.9936 0.9740 0.9923 0.8910

NK¼ 10 0.9653 0.9484 0.9966 0.9806 0.9913 0.9055

NK¼ 15 0.9872 0.9818 0.9951 0.9824 0.9875 0.8938

NK¼ 20 0.9800 0.9884 0.9924 0.9814 0.9823 0.9152

NK¼ 25 0.9861 0.9805 0.9888 0.9717 0.9781 0.9140

ALS: asymmetric least squares; ISREA: iterative smoothing-splines with root error adjustment.
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the ISREA baseline-corrected spectra with NK¼ 5, and the

ISREA baseline-corrected spectra with NK¼ 10. We then

calculated the similarity changes by subtracting each of

these three sets of correlations for baseline-corrected

spectra from the correlations for raw spectra. Hence,

these correlation differences represented the similarity

changes after each baseline correction procedure. The

means and standard deviations of these correlation differ-

ences are summarized in Table V. It shows that Goldindec

baseline correction dramatically decreased the similarities

between raw spectra, whereas ALS and the ISREA baseline

Figure 4. Comparison with ALS, Goldindec, and ISREA (with NK¼ 5 and NK¼ 10) on dialysate spectra at 10min of the session. NK

refers to number of knots selected. Right: 10 dialysate spectra. Left: All 50 dialysate spectra. Horizontal axis: Raman shift (in cm�1);

vertical axis: intensity. The curves are respectively: raw spectra (black solid), ALS baseline estimates (cyan dashed), ALS-corrected

spectra (cyan solid), Goldindec baseline estimates (red dashed), Goldindec-corrected spectra (red solid), ISREA baseline estimates (blue

dashed), and ISREA-corrected spectra (blue solid).

Table V. Similarity change comparisons of ALS, Goldindec, and

ISREA on dialysate spectra.

Mean Standard deviation

ALS 0.0507 0.0082

Goldindec 0.2559 0.2282

ISREA

NK¼ 5 0.0446 0.0072

NK¼ 10 0.1238 0.0206

ALS: asymmetric least squares; ISREA: iterative smoothing-splines with

root error adjustment.
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correction procedure with NK¼ 5 or NK¼ 10 preserved

the similarities between raw spectra much better. The

mean similarity difference was the smallest for the ISREA

with NK¼ 5 while the mean similarity difference for the

ALS was only slightly larger.

To illustrate the trend over the treatment session,

we also provide the raw and baseline-corrected spectra

in Fig. 5 for dialysate samples collected at 60, 120, 180

and 240 minutes of the session. A more formal study of

the trend would require new statistical analysis tools that

are currently under development.

Figure 5. Comparison with ALS, Goldindec, and ISREA (with NK¼ 5) on dialysate spectra at different time points in one treatment

session. NK refers to number of knots selected. Time points 2, 3, 4, 5 refer to 60, 120, 180, 240min of the session. Horizontal axis:

Raman shift (in cm�1); vertical axis: intensity. The curves are respectively: raw spectra (black solid), ALS baseline estimates (cyan

dashed), ALS-corrected spectra (cyan solid), Goldindec baseline estimates (red dashed), Goldindec-corrected spectra (red solid), ISREA

baseline estimates (blue dashed), and ISREA-corrected spectra

Table VI. Computational time (s) of ALS, Goldindec, and ISREA

when processing batches of simulated spectra and dialysate

spectra.

1000 simulated

spectra

50 dialysis

spectra

ALS 3.16 0.16

Goldindec 885.36 38.54

ISREA 24.13 8.76

ALS: asymmetric least squares; ISREA: iterative smoothing-splines with

root error adjustment.
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Computational Cost Comparison

Another advantage of ISREA is its relatively low computa-

tional cost, making it ideal for efficient batch processing of a

large number of raw Raman spectra. Such computational

efficiency in batch processing is critical for applications like

real-time monitoring by Raman spectroscopy. In Table VI,

we present the total computational times that ALS,

Goldindec, and ISREA respectively take for 1000 simulated

spectra and 50 spectra of dialysate samples. As the table

shows, both ALS and ISREA are clearly efficient in compu-

tation and ideal for batch processing.

Conclusion

Motivated from the success of asymmetric loss functions,

ISREA is a simple and fast baseline correction procedure

that mimics the threshold-free asymmetric square-root loss

and well preserves all the meaningful Raman peaks. Its com-

putational efficiency is a natural by-product deriving from

the elimination of the threshold selection and non-convex

optimization required in existing asymmetric loss methods.

Our numerical experiments have demonstrated that ISREA

has excellent and consistent performance on a wide variety

of spectra, including mineral spectra that consist of sharp or

low but sparse peaks and spectra of complicated com-

pounds like used dialysate that contain many meaningful

peaks over the whole spectral domain. Although we have

implemented ISREA in R, it can be easily translated to other

common languages like Python, Matlab, and others to facili-

tate automation and processing of large Raman spectral

datasets.

Our comparisons of ISREA with the ALS and Goldindec

procedures indicate that both ISREA and ALS can perform

better baseline correction than the Goldindec. Against each

other, ISREA and ALS each have slight advantages from

different aspects.

As described in the Introduction, EMSC is another com-

monly used baseline correction procedure which produces

spectra similar to the chosen reference spectrum. In our

hemodialysis experiment, the baseline-corrected spectra

generated at different time points will be used in group

comparisons to determine whether there are any significant

changes in the chemical compositions of waste dialysate

samples collected at these time points. The comparison

analysis, to be reported in a later manuscript, would require

accurate representations of the Raman peaks of constituent

chemicals of waste dialysate. The EMSC method with the

mean spectrum as the reference spectrum at each time

point would not yield spectra with such kind of represen-

tations. A reference spectrum that is already baseline cor-

rected would be necessary. This would require a

combination of the EMSC with another baseline correction

method such as ALS or ISREA. The performance of such a

combination certainly merits further research but is beyond

the scope of this paper.
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