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Abstract: Smart manufacturing, which integrates a multi-sensing system with physical manufac-
turing processes, has been widely adopted in the industry to support online and real-time decision
making to improve manufacturing quality. A multi-sensing system for each specific manufacturing
process can efficiently collect the in situ process variables from different sensor modalities to reflect
the process variations in real-time. However, in practice, we usually do not have enough budget to
equip too many sensors in each manufacturing process due to the cost consideration. Moreover, it is
also important to better interpret the relationship between the sensing modalities and the quality
variables based on the model. Therefore, it is necessary to model the quality-process relationship
by selecting the most relevant sensor modalities with the specific quality measurement from the
multi-modal sensing system in smart manufacturing. In this research, we adopted the concept of
best subset variable selection and proposed a new model called Multi-mOdal beSt Subset modeling
(MOSS). The proposed MOSS can effectively select the important sensor modalities and improve the
modeling accuracy in quality-process modeling via functional norms that characterize the overall
effects of individual modalities. The significance of sensor modalities can be used to determine the
sensor placement strategy in smart manufacturing. Moreover, the selected modalities can better
interpret the quality-process model by identifying the most correlated root cause of quality variations.
The merits of the proposed model are illustrated by both simulations and a real case study in an
additive manufacturing (i.e., fused deposition modeling) process.

Keywords: data fusion; fused deposition modeling; multi-modal sensing; quality modeling;

smart manufacturing

1. Introduction

Smart manufacturing integrates multi-modal sensing systems and computing re-
sources (e.g., Fog computing and Cloud computing) to support efficient real-time quality
modeling, monitoring, diagnosis, and control in manufacturing [1-4]. Specifically, one
modality in this paper is defined as a group of features extracted from the sensing signal
that measures the same kind of physical quantity from the same place in the manufacturing
process [5]. Therefore, based on the multi-modal sensing systems, variables that can reflect
the status of manufacturing processes are collected from different modalities to effectively
model the quality-process relationship in smart manufacturing [6,7]. However, how to ef-
fectively design and achieve the multi-modal sensing system in smart manufacturing is still
an open question [8]. For example, one can equip sensors and collect the corresponding pro-
cess variables as many as possible to accurately model the quality-process relationship in
the manufacturing process. But this approach is not cost-effective, because some modalities
might be redundant or comparable with each other. On the other hand, with a multi-modal
sensing system, it is important to identify the most relevant modalities in a quality-process
model to effectively interpret the potential root cause of the quality variation [9]. Moreover,
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from the sensitivity analysis perspective, it is important to identify how the model will
be changed with or without a specific sensor modality, and how the modality contributes
to modeling the response. Therefore, it is critical to find a quality-process model strategy
that can effectively select the best subset from the multi-modal sensing data, and rank the
relevance for each modality toward the modeled quality variable.

Take the fused deposition modeling (FDM), which is an extruder based additive
manufacturing (AM) process, as an example [10]. As a promising advanced manufacturing
process, FDM can efficiently fabricate personalized products with a high degree of geomet-
ric complexity [11-13]. and has been employed in many significant applications [14,15].
However, most of these applications are not yet widely deployed in practice due to the
quality variation of products, such as geometric deviations [16,17]. Because the fabrication
mechanism of the FDM process is complex, the potential root cause for the geometric
deviation is also diverse. As shown in Figure 1 [18], in order to comprehensively study how
the anomaly can influence the geometric deviations, a smart manufacturing paradigm of
the FDM process with a multi-modal sensing system is proposed. The data collected from
these sensor modalities can directly or indirectly reflect the characteristics and variations
of the fabrication in the FDM process. However, this design for the multi-modal sensing
system might not be the most cost-effective. For example, the data collected from the in-
frared sensor and the thermocouple on the extruder might be correlated since both of them
measure the thermal distribution near the melting pool area [12]. In the literature, there has
been a series of quality-process models to study the influence of different sensor modalities
on the quality variable [10,12,19-21]. However, most of the existing quality-process models
cannot work for nonlinear model components, and thus cannot identify the significant
modalities to obtain a cost-effective (e.g., without redundant or comparable modalities)
multi-modal sensing system. Moreover, the interpretability of these quality-process models
might be questionable, without identifying the significant sensing modalities and ranking
their contributions toward a specific quality variable in the FDM process. Therefore, it is
important to quantify the relevance of each sensor modality toward the specific quality
response in quality modeling. In this way, we can provide a cost-effective multi-modal
sensing system to the FDM process, and also accurately pinpoint the potential root cause
of a defect based on the sensor modality selection result to reduce or avoid the product
defect in the future [10].
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Figure 1. A Delta fused deposition modeling (FDM) Printer with a Multi-Modal Sensing System
(Redrawn from [18] with author’s permission).



Sensors 2021, 21, 243

30f18

The objective of this research is to propose a model that can effectively select the
real-time sensing modalities in quality modeling to support the cost-effective multi-modal
sensing system design in smart manufacturing. To tackle the knowledge gap, we propose a
new modeling method called Multi-mOdal beSt Subset modeling (MOSS) that adopts the
best subset selection idea from the best subset regression [22]. The proposed MOSS can
effectively select the best subset from the original data set via a two-level variable selection
(i.e., among sensor modalities and within each modality) effort. Specifically, two regular-
ization norms are embedded in the quality-process model to realize this effort. The first
one is a functional norm that can effectively identify the relevance of each sensor modality
toward the quality response in model estimation. Smoothing splines framework [23] is
used to represent nonlinear model components, and quantify the contribution of each
modality in the proposed MOSS. By comparing the magnitudes of functional norms among
modalities estimated from the model, the rank of relevance toward the quality response
can be accurately identified. The second norm is an /-1 norm that encourages the sparsity
of model coefficients corresponding to features within each data modality. By comparing
with the existing methods [24-28], the proposed MOSS can realize the two-level variable
selection simultaneously with both linear and nonlinear model components, and further
select the sensor modalities in smart manufacturing. To evaluate the quality prediction
performance and the variable selection accuracy for the proposed MOSS, both simulations
and a real case study are implemented. The results show the proposed MOSS can effectively
select the significant modalities with an accurate variable selection accuracy via the smooth
spline framework compared with three benchmark methods (i.e., Lasso regression [24],
group Lasso [25], and hierarchical Lasso [26]).

The rest of the paper is organized as follows—Section 2 summarizes the state-of-the-
art of quality improvement and modeling for FDM processes and multi-modal modeling
methods. Section 3 introduces the proposed MOSS model in detail. Section 4 validates the
prediction performance and the variable selection accuracy of the proposed method via a
simulation study. Section 5 employs a real case study on the FDM process to model multiple
geometric quality measurements via the proposed MOSS. Lastly, Section 6 concludes and
discusses future work.

2. Related Works

In this section, the state-of-the-art research on quality improvement and modeling for
the AM process is reviewed. First, to improve the product quality from the AM process, the
optimized process recipe (i.e., the combination of process setting variables) has been studied.
For example, Fordan et al. identified how the important setting variables (e.g., layer
thickness) can influence the mechanical property of the AM products through a design of
experiment study [29]. Moreover, for the geometric deviation of the product, Sood et al.
employed the gray Taguchi method to study the influence of five setting variables (i.e., part
orientation, deposition width, layer thickness, air gap, and deposition angle) on the product
geometric deviation [30]. Similarly, Zhang and Peng applied the Taguchi method which
is combined with a fuzzy comprehensive evaluation to established empirical relations
between the setting variables and the geometric deviation of product [31]. However, the
aforementioned works mainly concentrate on the run-to-run study to optimize the process
recipe and identify the significant process setting variables in the AM process, instead of
modeling the relationship between the product quality with the process variables from the
sensing system which can reflect the real-time fabrication variation.

To model the in situ sensing data with the product in an AM process, many data-
driven models have been proposed in the literature. For instance, Rao et al. presented an
advanced Bayesian nonparametric analysis method for in situ sensing data to identified
process failures and the types of failures in a FDM process in real-time [10]. Sun et al.
proposed a functional quantitative and qualitative model to predict two types of quality
responses via offline setting variables and in situ process variables [12]. Tlegenov et al.
presented a nozzle clogging monitoring system based on the in situ vibration data through
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a physics-based dynamic model for a FDM process [32]. Li et al. proposed a data-driven
method for in situ monitoring and process diagnosis based on the vibration sensors.
The least-squares support vector machine (LS-SVM) method was employed to identify
the filament clogging event in real-time. Liu et al. proposed a data-driven model to
predict the product surface roughness based on the features generated from thermocouples,
infrared temperature sensors, and accelerometers [33]. Kousiatza and Karalekas illustrated
a geometric deviation monitoring system based on the fiber Bragg grating sensors and
thermocouples. The in situ data collected from the sensors is employed to generate the
temperature distribution and product profile based on a data-driven model [34]. However,
the aforementioned methods typically only focus on quality-process modeling instead
of selecting the relevance of sensing modality. Thus, they may not provide insights on
the contribution of each sensing modality toward the quality variable. Therefore, the
existed method might be not sufficient to guide the multi-modal sensing system design in
smart manufacturing.

On the other hand, there are many modality and variable selection modeling methods
that have been proposed in the literature [35]. For example, Tibshirani proposed the
Lasso penalty to employ the variable selection effort in an ordinary regression model
by constraining the sum of the absolute value of the model coefficients being less than
a constant [24]. To extend the variable selection efforts for the different modality of
predictors, the group Lasso was proposed [36]. The group Lasso proposed a group-wise
penalty to encourage the group (i.e., data modality) sparsity in model estimation. To
effectively implement the modality selection and the variable selection within each modality
simultaneously, Huang et al. proposed the group bridge method to simultaneously select
the important modality and also the feature within each modality at the same time via
a specially designed group bridge penalty [37]. However, the proposed group bridge
penalty is not always differentiable and tends to be inconsistent for feature selection [38].
Zhou and Zhu proposed the hierarchical Lasso approach to effectively remove insignificant
modality and implement the variable selection within each modality by penalizing the
coefficients using two levels of [-1 penalty [26]. Paynabar et al. [27] and Sun et al. [28]
proposed a hierarchical nonnegative garrote method to achieve these two-level variable
selection efforts in linear regression models. Fan and Li developed the smoothly clipped
absolute deviation (SCAD) penalty to effectively select variables and estimate linear model
coefficients simultaneously [39]. However, the aforementioned methods mainly focus on
selecting linear functional model components, and cannot deal with the nonlinear model
components. For the nonlinear model components, Lin and Zhang proposed the component
Selection and Smoothing Operator (COSSO) method to regularize the data modality as the
summation of component norms based on the smooth spline method [40]. Ravikumar et al.
proposed the sparse additive model (SpAM) to regularize the data modality based on an
empirical functional norm via a non-parametric smoother [41]. However, these methods do
not involve the variable selection effort within each modality among the nonlinear model
components. Therefore, it is important to propose a model that can handle the nonlinear
model components with the capability that can simultaneously select both the significant
modalities and the variables within each modality in model estimation.

3. Methodology

In order to clarify the scope of this study, we assume that an additive model structure
is sufficient to model the quality-process relationship. This assumption is validated in
Figure Al in Appendix A. Moreover, in order to reduce the spatio-temporal data registra-
tion complexity and the corresponding intensive computation loads of model estimation,
the overall geometric quality variable for product i is treated as the output in modeling,
denoted as y; and i = 1, ... ,n. The model can be expressed as:

yi=a+ ifr (xiTr.Br) + €, ¢))
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where « is an unknown intercept, f,’s are unknown smooth functions, x;, = (xj1, ..., Xirp, )T
is the feature vector generated from modality r for product i with p, number of features,
and Br = (Bs1,...,Brp,) T is the vector of weight coefficients for the predictor vector x;,.
It is worth to mention that the data can be aligned based on the dynamic time warping [42].
To guarantee that model Equation (1) is estimable, in this paper, we shall use the constraints
f fr=0,r=1,...,d[43]. Therefore the quality-process relationship in Equation (1) can
be expressed as an additive model where each modality is represented by an additive
component function f,. This model structure can help better interpret the contribution of
each modality component [9]. The proposed model framework can potentially be extended
to multidimensional output with a proper spatio-temporal registration strategy and an
appropriate model structure to estimate the spatio-temporal effects, such as functional
regression [44]. To estimate component function f;, f, is formulated in a reproducing
kernel Hilbert space (RKHS) framework. Specifically, the whole mean response function
(e + Zle fr) in Equation (1) is assumed to reside in an RKHS F of functions. The space
has a tensor sum decomposition F = 1 F; with F; = @le F',where F1,..., F?ared
orthogonal subspaces of F such that f, € F" to indicate d modalities. To estimate the model
parameters (f;, «, Br), a penalized least square optimization formulation is proposed as:

d 2 d
arfgr;nnz@i —«=Yf, (x%)) + M LB+ A2 Y frl @
r/Pr i r=1 r r=1

2
where the first term ) ; (yi —a—Y% f (xL ﬁr)) represents the least-square loss for model

estimation; ) .|| Br]l; = L, Zf;l |Bri| is the I-1 regularization term which implements the
variable selection effort within each modality [24]; A; is the tuning parameter to control the

sparsity of the B,; Y4_||f+|l, = X%, \/ [ f? is the L-2 functional norm regularization to
determine the sparsity among data modalities [37]. Therefore, the proposed MOSS can ef-
fectively and simultaneously select the significant sensing modalities for nonlinear function
components, and also identify the important predictors within each modality. To effectively
estimate the functional norm for each modality, modality inputs xl-Tr Bri=1,...,n, are
all standardized to [0, 1] within each modality. Therefore, by comparing the magnitude
of functional norms, the best subset of modalities toward the quality response can be
effectively identified. It is worth to mention that, once the significant modalities and the
important features within each modality are identified, the raw sensor features can be
used to interpret the root cause of the product defects. Moreover, by choosing the different
tuning parameter A,, the number of selected modalities in the best subset can be controlled.

To estimate the model parameters in Equation (2), a block updating algorithm is de-
veloped to break down the proposed optimization problem into two simpler optimization
problems as follow:

d

p 2
argminZ(}/i —a— ;fr (xiTrﬁr)> + A2 ZHferr ®)

r=1

)T

and 2
d
ar%;minz (yi —n— ;fr (x?,,&)) + A ZH.BYHL 4)

a direct optimization of Equation (3) is difficult due to the functional norm regularization
term. Inspired by the COmponent Selection and Smoothing Operator (COSSO) [40], an
equivalent formulation of Equation (3) is proposed as follow:

d 2 d d
argminZ(yi - — Zfr<x;rrﬂ,)> + A 297_1||fr||§—|—)\2 ZQr, (5)
r=1 r=1 r=1

“rfrzer i
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where A is a tuning constant and 6, > 0 is the constrained weight coefficients for each
sensor modality. By the representer theorem for smooth splines [23], the solution of f;
has the form f,(x) = Y/ ¢;0,R,(x] By, x), where ¢;’s are unknown coefficients and R,
is the reproducing kernel function of F". Let R} be the n x n matrix with the (i, j)-th
element being R,((x;.rrﬁr), (x]Tr,Br)), i=1,...,n,j=1,...,n Define Ry = Zle 9,R, and

the matrix Ry = Zle 0,R;. For fixed 6,’s, we can find the estimates of the intercept & and
the coefficient vector ¢ = (cy, ..., cn)T by

argmin(y — a1, — Rjc)’ (y — a1, — Rjc) + nAoc Rje, (6)

w,c

which is a standard smoothing spline problem [23] and can be solved, including the tuning
of Ag, by standard smoothing splines software [43]. By fixing « and ¢, defining g, = R} ¢
and letting G be the n x r matrix with the r-th column being g,, we can efficiently solve
0= (91,... ,Gd)T by

d
argmin(z — GB)T(Z —GO) +nA, Z 0;, subjecttof, >0,r=1,...,d, ?)
0 r=1

where z =y — (1/2)nAgc — al,. Therefore, by iterating Equations (6) and (7), the intercept
« and the functional components f, can be estimated via the penalized constrained least
squares fitting framework in [45,46].

Based on the formulations above, an alternately updating strategy is proposed to
find the solution of the proposed model as shown in Algorithm 1. The root mean square
errors (RMSEs) from the cross-validation is used to select A1 and A;. In Algorithm 1, first,
the model coefficient 8 will be initialized as an all-ones vector. To determine the tuning
parameter Ay, a 5-fold cross-validation strategy is employed when solving the smoothing
spline problem as shown in Equation (6) [43]. The selected Ay will be fixed in all later steps.
The model coefficient 3, will be initialized via ridge regression [47]. Next, an alternately up-
dating strategy is used to iteratively update the coefficients based on Equations (3) and (4)
to find the solution for the proposed model. The solution for Equation (3) can be obtained
by iteratively update «, ¢ and 6 as shown in Equations (6) and (7). Then, by fixing « and
fr, the model coefficient §,,7r =1, ... ,d in Equation (4) can be efficiently estimated via the
coordinate descent algorithm [48]. This alternately updating will be implemented until
the improvement of the model performance (i.e., the RMSE) is less than the tolerance (i.e.,
1 x1079).

Algorithm 1 Block Updating Algorithm

Input: data (xj1,xp,...,%xi4,¥i),i = 1,...,n; where x;, = (xirl,...,xi,pr)T is the r-th
modality for product i with p, number of features

Initialization: 6 = 1;; Ag: solving the smoothing spline problem as [43], and tuning Ag
according to cross-validation; f,: initialized via ridge regression, r =1, ... ,d.

Repeat
Select the tuning parameter A, based on cross-validation
Repeat until «, ¢, and 6 coverage:
Step 1: argmin(y — a1, — R;C)T(y —al, — Rjc) + nAoc'Rje
u,c
Step 2: argmin(z — GO)"(z — GB) + 1Ay Y% .6, subjecttof, >0,r=1,...,d.
0

Select the tuning parameter A; based on cross-validation
Repeat until B, coverage:

2
Step Liargmin I (vi—a =X A (TB)) + M Bl
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4. Simulation
4.1. Simulation Setting

The objective of this simulation study is to efficiently evaluate the statistical perfor-
mance (i.e., prediction accuracy and cost-effectiveness of variable selection) of the proposed
model compared with other benchmark models. Specifically, this simulation study is to
validate the robustness of variable selection performance with redundant predictors in
each modality. The redundancy among sensor modalities will be demonstrated in the
real case study. In total, eight different simulation settings are summarized in Table 1.
Specifically, the sample size for each simulation case represents how many samples are
generated. In each sample, the multi-modal data and the corresponding model response
are generated based on a pre-defined model structure. The Decibels signal-to-noise ratio

(SNR) is defined as SNRy4p = 101log;, (ﬁjﬁi‘"‘: ), where Mgigna1 is the mean of signal power
for multi-modality data, and Mige is the power for the noise. The sparsity represents the
ratio between the total significant variables and the total number of variables in the model.
Finally, we chooses linear and nonlinear structures to test the robustness of the proposed
methods to model a nonlinear system.

Table 1. Simulation Settings.

Sparsity (Total Significant Variables in

Case No. Sample Size Signal-to-Noise Ratio (db) All Modalities) Model Structure
1 100 1 0.1 (6) Linear
2 100 0.6 0.25 (16) Nonlinear
3 100 1 0.1 (6) Nonlinear
4 100 0.6 0.25 (16) Linear
5 300 1 0.1 (6) Nonlinear
6 300 0.6 0.25 (16) Linear
7 300 1 0.1 (6) Linear
8 300 0.6 0.25 (16) Nonlinear

To explicate the advantages of the proposed method, in each simulation, four modali-
ties of data are generated as the raw signals. The summary of these four data modalities
and the number of their corresponding features are shown in Table 2. Specifically, Modality
1 and Modality 2 are time series signals generated respectively from AR(2) model with
¢1 = [0.9,-0.2]T and AR(3) model with ¢, = [—0.7,0.3,0.1]T [49]. Moreover, the i.i.d noise
for both AR models is generated from N(0,0.5). In practice, the features generated from the
raw signal are widely used as predictors in modeling to reduce the data dimension and de-
crease the computation intensity [28]. Therefore, to effectively generate the signal features
from Modality 1 and Modality 2, the discrete wavelet analysis is employed because it can
effectively extract the features from both time and frequency domain [50]. Moreover, x;
and x, are the features that are the Levell and Level2 db4 detailed wavelet coefficients from
Modality 1. Similarly, x3 and x4 are Levell and Level2 db4 detailed wavelet coefficients
extracted from Modality 2. Moreover, since there might be a 2-D image signal in the smart
manufacturing system, such as a thermal distribution image, we also generate the 2-D
image as Modality 3 in each sample. Specifically, the 2-D image is generated from a multi-
variate normal distribution, and the covariance function defined by inverse exponential

squared Euclidean distance: X(z,z') = exp{ —|lz—2 Hz} [51]. z is an arithmetic sequence

from 0 to 2 with 10 elements. An example of the image generated in the simulation is
shown in Figure 2. Moreover, x5 and x4 are Levell (i.e., high-resolution image features)
and Level2 (i.e., low-resolution image features) 2-D sym4 wavelet coefficients extracted
from Modality 3. As disturbances, we also generate Modality 4 as the noise feature to
validate the robustness of variable selection performance for the proposed model. The
corresponding feature xy for Modality 4 is generated from a Gaussian distribution N(0,1)
that has the same numerical range as the wavelet features in Modality 1-3.
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Mesh View Pixel View

Figure 2. The simulated thermal distribution Signal.

Table 2. Data Summary in Simulation (number of features is shown in parenthesis).

Data Modality 1 Modality 2 Modality 3 Modality 4
ngh_ LOW._ ngh._ LOW._ ngh._ LOW._ Noise generated
resolution resolution resolution resolution resolution resolution
Features . . . . . . . . . . from Normal
time-series time-series time-series time-series image image

features (8)

features (4) features (8) features (4) features (25) features (4) distribution (11)

After generating the features from each data modality, we need to determine the
significant modalities and corresponding significant features in each sample. The significant
modalities and the features will be randomly selected from Modalities 1 to 3 following
a uniform distribution. Moreover, for each significant variable x; ; (i.e., jth variable from
ith modality), the corresponding model coefficients f; ; is generated through a uniform
distribution as Unif(—3,3). Therefore, for the simulation that has a linear model structure,
the response y for each sample can be generated as:

y= ZZ,Bi,jxi,j +¢. (8)
i

Moreover, for the simulation that has a nonlinear model structure, the response is
generated as:

y=3.Y Bijexp(xi;) +¢, ©)
i

where ¢ ~ N(0, ’yz), and the magnitude of 7?2 is determined by the signal-to-noise ratio
from the simulation setting.

For each simulation setting shown in Table 1, 100 replicates are simulated. The pro-
posed MOSS is compared with three benchmark models to evaluate its prediction perfor-
mance and also the variable selection accuracy: (1) the Lasso regression which can only
implement the variable selection efforts without the concept of data modality [24]; (2) the
group Lasso which can implement the variable selection in modality level but cannot select
the variable within each modality [37]; and (3) the hierarchical Lasso which can implement
the variable selection in both among modalities and within each modality [26]. These
three benchmarks can help to comprehensively validate the performance of the MOSS for
both variable selection and prediction accuracy. To evaluate the prediction accuracy, in
each replication of the simulation, 80% samples are used as the training data set, and the
remaining 20% of samples are used as the testing data set. To fairly compare the variable
selection accuracy, the significant variables for each simulation case are the same among
each replication. Moreover, the number of modalities selected from the MOSS is fixed as
the maximum number of modalities selected among benchmarks in each replication. Based
on this scenario, we can validate whether the proposed MOSS can effectively guide the
multi-modal sensing system design with a limited budget (i.e., limited sensor modalities)
by selecting the most relevant sensor modalities compared with benchmarks.
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4.2. Results and Discussion

The average of the normalized root-mean-squared error (RMSE) and the correspond-
ing standard error for eight simulation cases are shown in Table 3. The values shown in
bold are the smallest prediction errors and the corresponding standard error obtained
from different models in each simulation case. From the results, the proposed MOSS
yields the best prediction accuracy in most of the cases with both linear and nonlinear
model structures. It is because the proposed MOSS can deal with the nonlinear model
components, and can effectively implement the variable selection for both among the
modalities and within each modality compared with the benchmarks via the function norm
and /-1 norm simultaneously. For the Lasso regression, it can be observed that the standard
error is relatively large than other methods. It is because without considering the variable
relationships among modalities, the variable selection result might not be stable among
replications. Moreover, since the group Lasso cannot effectively implement the variable
selection within each modality, more insignificant variables are included in the model and
the prediction accuracy is relatively low. For the hierarchical Lasso, it has a comparable
result with the proposed MOSS method, but for the nonlinear model components, the
proposed MOSS has a better prediction accuracy since the functional norm can work with
both linear and nonlinear model components.

Table 3. Normalized Root-Mean-Square Error (RMSE) (Standard Error) of Each Simulation Case.

Lasso Group Lasso Hierarchical MOSS
Regression P Lasso (Proposed)
Case 1 8.72% 8.35% 8.37% 7.58%
(0.04) (0.02) (0.02) (0.02)
Case 2 9.42% 9.10% 8.82% 7.71%
(0.07) (0.01) (0.02) (0.01)
Case 3 15.75% 14.97% 13.24% 11.92%
(0.05) (0.03) (0.05) (0.02)
Case 4 9.94% 9.51% 8.42% 7.93%
(0.05) (0.02) (0.02) (0.02)
Case 5 13.41% 12.75% 12.69% 10.46%
(0.06) (0.04) (0.05) (0.02)
Case 6 7.81% 7.04% 7.15% 6.67%
(0.07) (0.01) (0.01) (0.01)
Case 7 8.65% 8.17% 7.81% 7.23%
(0.06) (0.01) (0.04) (0.02)
Case 8 12.89% 10.61% 10.17% 8.82%
(0.08) (0.01) (0.02) (0.02)

On the other hand, to evaluate the variable selection accuracy of each method, the
Recall is employed as the performance measurement:

Number of Significant Variables Selected

Recall = Total Number of Selected Variables

It is because the Recall can reasonably reflect the cost-effectiveness of variable selection
results. The results are shown in Table 4. The proposed MOSS yields the best cost-effective
performance in all simulation settings. It shows the merits of the proposed MOSS that can
efficiently select the significant modalities and variables simultaneously. Moreover, the
group Lasso has good precision for most simulation cases. The Lasso regression almost
has the worst variable selection performance on all simulation settings since it cannot
address the modality structure among variables, and can only consider the variables that
are independent in variable selection. Moreover, it is not surprising since the group Lasso
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does not implement the variable selection within each modality, therefore the number of
selected variables for group Lasso is much higher than other methods. The recall for the
group Lasso also proves this idea. The hierarchical Lasso usually has a comparable variable
selection precision with the MOSS since it can also implement the variable selection for
both modalities and within each modality. But limited by its linear model component
assumption, the proposed MOSS can be more flexible compared with the hierarchical Lasso.

Table 4. Average Variable Selection Recall of Each Simulation Case.

Lassq Group Lasso Hierarchical MOSS
Regression Lasso (Proposed)

Case 1 51.2% 56.2% 61.2% 64.8%
Case 2 54.3% 57.1% 62.3% 68.7%
Case 3 55.1% 60.8% 63.3% 61.9%
Case 4 48.2% 52.4% 62.9% 68.7%
Case 5 60.2% 54.1% 70.4% 75.4%
Case 6 63.4% 58.7% 68.6% 73.2%
Case 7 66.1% 59.2% 67.3% 71.5%
Case 8 63.2% 53.8% 70.6% 73.6%

5. A Real Case Study
5.1. Experiment Setup

In order to evaluate the performance of the proposed model, we apply the proposed
method to the data sets collected from a real FDM system showed in Figure 1 [18]. In
the data sets, the in situ process variables collected from different sensor modalities, and
the geometric quality variables measured from the coordinate-measuring machine for
each product were organized to model the corresponding quality-process relationship.
Specifically, in the data sets, 48 products were fabricated based on a full factorial design
with three replications. The modified national aerospace standard 979 test part design
(as shown in Figure 3) is selected as the product design [10]. The selected process setting
variables in the experiment are shown in Table 5. In total, there are four setting variables in
two levels: extruder speed, extruder temperature, temperature disturbance, and platform
vibration disturbance. The full design of the experiment table is attached in Appendix A
Figure Al. The extruder speed and the extruder temperature are both the significant
setting variables that can directly influence the product quality [52]. To introduce extra
disturbance to the system, two types of process noise are involved in the experiment. The
disturbances are introduced by a fan near the extruder, which can significantly change the
thermodynamic in the near area, and a vibrator with a fixed frequency on the printing bed.
This vibrator can provide a periodic impetus to the accelerometer that was equipped on the
printing bed. Therefore, it can introduce a non-stationary signal component to the signal
collected from the accelerometer. These disturbances are employed during the fabrication
process, and expect to validate whether the proposed method can identify the disturbance
in variable selection results.

Table 5. Setting Variables in the Experiment [18].

Extruder Travel Extruder Temperature Vibration
Speed Temperature Disturbance Disturbance
Level 1 40 mm/s 225° On On

Level 2 70 mm/s 245° Off Off
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Figure 3. Standard drawing of NAS 979 part (unit: inch) [10].

The multi-modal sensing system for the FDM process in the experiment is shown
in Figure 1. It is equipped with two tri-axis accelerometers, two thermocouples, and
one infrared (IR) sensor. The infrared sensor and the thermocouple on the extruder can
generate correlated raw signals and introduce the redundant data to this system. All
signals are measured at a sampling frequency of 1 Hz via a data acquisition system built
by Ni-cRIO-9073. Such a sensor selection and frequency combination has shown to be
effective to reflect the real-time FDM process condition [10,12]. For the vibration sensor, it
contains the vibration signals from the two-axis, and each axis is considered as one separate
data modality. It is because the signal from each axis can reflect different types of process
variation for a FDM process, and can further help to accurately identify the significant
modality in the process. The wavelet analysis is used to compactly represent the in situ
signals collected from these sensors in this case study. Specifically, the Level4 detail wavelet
coefficients generated based on the db4 basis are employed as signal features in this case
study. Finally, there are 47 features extracted from each data modality, and there are nine
data modalities in total. After the product fabrication, the coordinate measuring machine
is used to measure the corresponding geometric quality variables (i.e., length, flatness,
and concentric).

5.2. Results and Discussion

To evaluate the prediction performance of the proposed model, a 5-fold CV training-
testing strategy is employed. Similar to the simulation study, the Lasso, group Lasso,
and hierarchical Lasso are used as the benchmark methods. The average of normalized
RMSEs for testing from 5-fold CV is shown in Table 6. It can be observed that the proposed
MOSS yields the best prediction accuracy for all three quality measurements. It is because
the proposed method can properly identify the significant data modalities based on the
smooth spline functional norm and also the important features within each modality. The
Lasso regression has the worst prediction accuracy since it does not consider the modality
structure among each variable. This issue might lead to an inaccurate variable selection
result. Similarly, the group Lasso has comparable results with the Lasso regression since
it can only consider the variable selection among modalities. Moreover, the hierarchical
Lasso has a better result compared with Lasso and group Lasso since it can implement the
variable selection on two-levels simultaneously. However, due to it might usually restrict
on a local optimal when estimating the model coefficients, the proposed method could be
more effective to identify the significant modalities.
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Table 6. Average of Normalized RMSEs.

Quality
Measurements Lasso Group Hierarchical MOSS
(from CMM) Lasso Lasso (Proposed)
Length 20.15% 17.65% 16.14% 14.57%
Flatness 12.43% 11.44% 9.79% 7.91%
Concentric 11.06% 9.83% 9.02% 7.86%

On the other hand, to evaluate the modality selection results, the number of times
that each modality is selected in the 5-fold CV for product flatness is shown in Figure 4.
Specifically, the modality selection results for two scenarios are studied: (1) the modality
selection results with all samples collected from the experiments; and (2) the modality
selection results for the samples that do not have the vibration disturbance on the printing
bed. The motivation of this sensitivity analysis is to evaluate whether the proposed
method and the benchmarks can accurately identify the significant data modalities in
model estimation. In Figure 4, it can observe that when the printing platform has the
vibration disturbance, the proposed MOSS method can effectively identify the influence
of extruder and platform vibration in the model estimation, which are the most relevant
modalities for product flatness [12]. Once the vibration disturbance is removed, the
number of selection times for platform vibration is significantly reduced. It is because the
contribution of platform vibration is decreasing without the vibration disturbance during
the fabrication process. On the other hand, other benchmarks cannot always select these
important modalities in model estimation. Moreover, after removing the samples that have
the vibration disturbance, the proposed MOSS method can also effectively identify the most
relevant modalities (i.e., extruder vibration) in this scenario and have a better selection
accuracy compared with other benchmarks in a 5-fold CV. Therefore, it can be concluded
that the proposed MOSS can effectively select the sensing modalities in a quality model.
This result can further guide the multi-modal sensing system design and support the root
cause analysis to improve the product quality and the process reliability of the FDM.

Number of Times for each
Modality Selected in S-fold CV
(Leave Vibration Disturbance Samples Out)

Number of Times for each
Modality Selected in 5-fold CV

Lasso

Group
Lasso

Hierarchical

LASSO
1
MOSS 0 1 0 o
0 1 0
Eixtruc!er P}ﬂtlﬂfm Extruder Extruder Platform Extruder
Vibration Vibration Temperature| Vibration Vibration Temperature
(%7 x2) (%y2) ¥2)
Melt Pool Platform Melt Pool Platform
Temperature Temperature ‘Temperature Temperature
(@) (b)

Figure 4. (a) Number of Times for each Modality Selected in 5-fold CV; (b) Number of Times for each
Modality Selected in 5-fold CV after Leaving Vibration Disturbance Samples Out.

Moreover, to identify whether the proposed MOSS can effectively identify the best
subset of modalities when modeling the quality-process relationship, the prediction results
for product flatness with a different number of selected modalities are shown in Figures 5-7.
The number of modalities selected represents the maximum number of modalities that
the method can select in model estimation. To guarantee the modeling performance, the
number of selected modalities is started from three. It can be observed that in Figure 5
the proposed MOSS method yield the best prediction accuracy in all scenarios compared
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with benchmarks. It is because that the proposed MOSS method can accurately select the
significance of the sensing modality. To validate this point of view, we also summarized
the selected modalities in detail. Due to the limited space, we mainly showed the selected
modalities for MOSS and Hierarchical Lasso in Figures 6 and 7 for the number of modalities
from three to eight. Since the hierarchical Lasso has the closest prediction accuracy with
the MOSS. Based on the modality selection result, it can be observed that the proposed
MOSS can accurately select the modalities in a proper order compared with the benchmark.
For example, when the number of selected modalities increased to four, the MOSS selected
x-axial extruder vibration as the additional modality, and the hierarchical Lasso selected
platform temperature as the additional modality. For the flatness of the product, as dis-
cussed above, the variation of platform temperature is not significant compared with the
vibration on the extruder. This modality selection result also explains why the prediction
accuracy for Moss is much better than hierarchical Lasso when the number of selected
modalities is four. On the other hand, it can also be found that even though the selected
modalities are the same for both MOSS and hierarchical Lasso, the prediction accuracy
of Moss is still slightly better than the hierarchical Lasso. One possible explanation is the
MOSS can better leverage the selection efforts between the modalities and the variables
within each modality based on the smooth spline non-parametric estimation. Moreover,
the hierarchical Lasso usually yields a local optimal due to the modeling estimation restric-
tion [27]. The MOSS also has the flexibility to control the number of modalities selected
in the model estimation, and further guide a cost-effective multi-modal sensing system
design. Therefore, when there are limited resources and have to select the best subset of
modalities, the MOSS can still select the most relevant modalities, and while estimating an
accurate quality-process model.

Normalized NRMSEs for Flatness with Different Number of

35.00% Modalities
D —Lasso
= N Group Lasso
E N Hierarchical Lasso
&2 25.00% MOSS
z X Number of Modalities
ﬁ Selected from 5-fold CV
=
£ 15.00%
-
= —
7z,

5.00%
3 4 5 6 7 8 9
Number of Modalities Selected

Figure 5. Normalized NRMSEs for Flatness with Different Number of Modalities.
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Figure 6. Contribution of each Modality for Flatness Prediction with Different Numbers of Modalities
in MOSS.
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Figure 7. Contribution of each Modality for Flatness Prediction with Different Numbers of Modalities
in Hierarchical Lasso.

6. Conclusions

Smart manufacturing integrates the multi-modal sensing system and the computation
capability to effectively support real-time data analytics. However, how to design a multi-
modal sensing system with a cost-effective consideration for the manufacturing process
is a challenging question. Because it is difficult to accurately identify the relevance and
contribution of each sensor modality toward the specific quality response. Therefore, in this
research, we proposed a new model called MOSS, which can effectively rank the significant
sensor modalities and simultaneously identify the important features within each modality
in model estimation. It can guide the sensing system design in smart manufacturing, and
also provides a way to identify the contribution of each modality to potentially guide
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the diagnosis for the quality variation [10]. The MOSS can be easily extended to other
applications and domains, such as other manufacturing processes or healthcare applications
which usually need to model the data with a multi-modal format [53,54].

This research also leads to several future research directions. First, we can general-
ize the MOSS so that multiple quality responses can be jointly modeled. One possible
extension of the MOSS is to multiple response regression under the non-parametric esti-
mation framework [55]. Next, the spatial process variables and quality responses, such
as the thermal video and 3d profile of the product, can be incorporated into the MOSS to
reasonably quantify the spatio-temporal relationship contained in both process variables
and quality variables [56,57]. Finally, the monitoring and control strategy can also be
integrated with the MOSS in a real-time manner to effectively detect the anomaly event
during the fabrication process, and further improve process reliability and reduce process
variation [58].

Author Contributions: Conceptualization, P.D., R.J. and L.W.; methodology, P.D., R.J. and L.W,;
validation, L.W.; formal analysis, L.W.; investigation, L.W.; writing—review and editing, P.D., R.J.
and L.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by NSF with grant number DMS-1916174 and CMMI-1634867.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Table A1. Design of Experiment Table for Case Study [12].

Run Number Extruder Extruder Temperature Vibration
Number Speed Level Temperature Level Disturbance Level Disturbance Level
44 1 0 0 0 0
43 2 0 0 0 1
7 3 0 0 1 0
48 4 0 0 1 1
20 5 0 1 0 0
21 6 0 1 0 1
6 7 0 1 1 0
29 8 0 1 1 1
12 9 1 0 0 0
26 10 1 0 0 1
30 11 1 0 1 0
24 12 1 0 1 1
14 13 1 1 0 0
22 14 1 1 0 1
3 15 1 1 1 0
38 16 1 1 1 1
10 17 0 0 0 0
28 18 0 0 0 1
33 19 0 0 1 0
41 20 0 0 1 1
32 21 0 1 0 0
8 22 0 1 0 1
15 23 0 1 1 0
45 24 0 1 1 1
19 25 1 0 0 0
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Table Al. Cont.
Run Number Extruder Extruder Temperature Vibration
Number Speed Level Temperature Level Disturbance Level Disturbance Level

36 26 1 0 0 1
42 27 1 0 1 0
35 28 1 0 1 1
11 29 1 1 0 0
31 30 1 1 0 1
5 31 1 1 1 0
4 32 1 1 1 1
16 33 0 0 0 0
1 34 0 0 0 1
13 35 0 0 1 0
40 36 0 0 1 1
2 37 0 1 0 0
39 38 0 1 0 1
46 39 0 1 1 0
25 40 0 1 1 1
34 41 1 0 0 0
23 42 1 0 0 1
17 43 1 0 1 0
37 44 1 0 1 1
27 45 1 1 0 0
47 46 1 1 0 1
18 47 1 1 1 0
9 48 1 1 1 1

Histogram of Residuals for Flatness QQ-plot of Residuals for Flatness

| el L ;
Residuals vs. Prediction Results for Flatness Residual i vs. Residual i — 1 for Flatness
Figure A1. Residual Plot and Assumption Check for the Proposed MOSS in Case Study.
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