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Abstract
Dielectric elastomers are employed for a wide variety of adaptive structures. Many of these soft elastomers exhibit sig-
nificant rate-dependencies in their response. Accurately quantifying this viscoelastic behavior is non-trivial and in many
cases a nonlinear modeling framework is required. Fractional-order operators have been applied to modeling viscoelastic
behavior for many years, and recent research has shown fractional-order methods to be effective for nonlinear frame-
works. This implementation can become computationally expensive to achieve an accurate approximation of the
fractional-order derivative. Accurate estimation of the elastomer’s viscoelastic behavior to quantify parameter uncer-
tainty motivates the use of Markov Chain Monte Carlo (MCMC) methods. Since MCMC is a sampling based method,
requiring many model evaluations, efficient estimation of the fractional derivative operator is crucial. In this paper, we
demonstrate the effectiveness of using quadrature techniques to approximate the Riemann–Liouville definition for frac-
tional derivatives in the context of estimating the uncertainty of a nonlinear viscoelastic model. We also demonstrate
the use of parameter subset selection techniques to isolate parameters that are identifiable in the sense that they are
uniquely determined by measured data. For those identifiable parameters, we employ Bayesian inference to compute
posterior distributions for parameters. Finally, we propagate parameter uncertainties through the models to compute
prediction intervals for quantities of interest.
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1. Introduction

Models employing fractional-order derivatives have
become increasingly popular in a wide variety of scien-
tific disciplines, and it has been found particularly use-
ful in modeling viscoelasticity in soft elastomers
(Mashayekhi et al., 2018). The rate-dependent hystere-
tic responses of viscoelastic materials pose significant
challenges for traditional integer-order models.
Fractional-order models on the other hand are adept at
modeling this rate-dependent phenomenon due to the
non-local behavior of the fractional-order operators.
Given the current popularity of fractional-order mod-
els, efficient approaches for approximating these math-
ematical operators is extremely important. This can be
challenging, as many fractional derivatives require
extended numerical precision to achieve reasonable
accuracy.

There are various definitions for fractional deriva-
tives, such as Riemann–Liouville, Caputo, and
Grünwald–Letnikov (Podlubny, 1998). In this investi-
gation, we present numerical methods for approximat-
ing the Riemann–Liouville definition for fractional
derivative in the regime where the fractional-order is in
the interval a 2 ½0, 1). This interval is of particular
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interest in viscoelastic domains because this fractional-
order combines both zero-order elastic and first-order
viscous effects. We discuss the Grünwald–Letnikov def-
inition since this method is often used in situations
where only discrete data is available, making it the pre-
ferred definition when numerical approximation is
required. The Grünwald–Letnikov is used as a baseline
to assess the accuracy of several of our numerical meth-
ods for the Riemann–Liouville definition.

To fully assess the robustness of these fractional-
order models requires estimation of model parameter
uncertainty in order to provide greater confidence in
the models predictive ability. By taking a Bayesian
approach, we can efficiently estimate the uncertainty of
fractional-order viscoelastic models. Furthermore, by
utilizing sensitivity analysis, we can reduce the para-
meter space to be estimated, thereby simplifying the
task of model calibration. From our statistical frame-
work, propagation of uncertainty provides credible and
prediction intervals, which help quantify the overall
confidence in the model.

2. Model framework

For our application, the quantity of interest (QoI) is
the nominal stress (Holzapfel, 2000). We utilize a set of
energy density functions which describe the hyperelastic
and viscoelastic phenomena observed in the material.
These energy functions relate to the nominal stress to
its work conjugate variable, the deformation gradient
(Holzapfel, 2000). The energy functions presented here
include thermal effects; however, in our analysis and
model validation we assume isothermal deformation.
For more details regarding the specific models used
here, the reader is referred to Miles et al. (2015) and
Mashayekhi et al. (2018). For clarity, we summarize
key model equations.

The total free energy density is given by
ĉ=c� p(J � 1), where J is the determinant of the
deformation gradient which is constrained to be one by
the hydrostatic pressure p such that the deformation is
incompressible.

The free energy (c) within this equation includes

c=c‘(FiK ,Y)+Y(FiK ,Y, jniK) ð1Þ

which is decomposed into two terms: (1) c‘ is the rever-
sible, hyperelastic free energy function that depends on
the deformation gradient FiK and temperature Y, and
(2) Y is an energy function that additionally depends on
a set of internal state variables, jniK , n= 1, . . . , n. These
internal states contribute to the dissipation observed
during rate-dependent deformation. In all analyses pre-
sented here, we let n= 1 as done in prior model valida-
tion (Mashayekhi et al., 2018; Miles et al., 2015).

For the reversible energy term, we consider the non-
affine function (Davidson and Goulbourne, 2013):

c‘ =
1

6
GcI1 � Gcl

2
max ln (3l

2
max � I1)

+Ge

X
j

lj +
1

lj

� �
,

ð2Þ

where Gc is the crosslink network modulus, Ge is the
plateau modulus which describes entanglement effects,
lmax is the maximum stretch of the effective affine tube,
and I1 = lili is the first stretch invariant where sum-
mation on i is implied. We note that the stretch (li) is a
measure of deformation and corresponds to the princi-
pal components of the deformation gradient (FiK).
Since we are only considering uniaxial loading, stretch
is a sufficient description of the deformation.

For the purpose of our analysis, we employ the fol-
lowing, internal state energy function

Y=
1

2
gjiKjiK � b‘

∂c‘

∂FiK

jiK +b‘c‘: ð3Þ

Here b‘ and g are viscoelastic model parameters.
This energy function is quadratic in the internal state
jniK which leads to a linear viscoelastic relation.

However, the terms proportional to b‘ lead to non-
linear viscoelasticity behavior since it is proportional to
the nonaffine energy function in equation (2) and non-

affine stress s‘iK = ∂c‘

∂FiK
. Details describing this viscoelas-

tic modeling framework is given by Holzapfel and
Simo (1996). Additional details describing the model
derivation, fractional viscoelastic assumptions, and
experimental validation can be found in Mashayekhi
et al. (2018).

The QoI is the nominal stress,

siK =
∂ĉ

∂FiK

=
∂c‘

∂FiK

� pJHiK +
∂Y

∂FiK

, ð4Þ

which applies equations (1) to (3) to obtain the reversi-
ble stresses from the first two terms and the viscoelastic
stress from the last term.

The viscoelastic stress given by the last term in equa-
tion (4) is explicitly given to highlight how fractional-
order time derivatives are introduced within our model.
The viscoelastic stress can be described by

∂Y

∂FiK

=b‘ s‘iK � ∂s‘mN
∂FiK

1

g
(b‘s

‘
mN � hDa

t s
‘
mN )

� �� �
: ð5Þ

Additional details describing the derivation and the
assumptions that go into this equation are described by
Mashayekhi et al. (2018). The key relation introduced
here is the fractional operator Da

t , where a is the order
of the fractional time derivative and h is the viscoelastic
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parameter. To obtain this relation, a time rate of
change of jmN is introduced in a positive definite
entropy generation function. This time rate of change
of jmN is assumed to be proportional to the fractional
time rate of change of s‘mN which leads to the final term in
equation (5). The introduction of this operator still satis-
fies all thermodynamic requirements of the energy model
and positive definite entropy generation. Details regarding
fractional derivatives are provided in Section 3.

3. Fractional-order derivatives

As detailed in (Mashayekhi et al., 2018), we make the
assumption that the rate of internal state variables is
proportional to the local fractional time derivative of
the hyperelastic stress to obtain the model detailed in
Section 2. This section introduces the fractional deriva-
tive operator as well as methods for accurately and effi-
ciently approximating this operator.

Definition 1. The Riemann–Liouville definition for frac-
tional derivatives is

Da
RL½f (t)�=

1

G(n� a)

dn

dtn

ðt
0

f (s)

(t � s)a+ 1�n
ds, ð6Þ

where n ¼ ad e. We will restrict our analysis further by
only considering the regime where a 2 ½0, 1). Therefore
n= 1, and the definition simplifies to

Da
RL½f (t)�=

1

G(1� a)

d

dt

ðt
0

f (s)

(t � s)a
ds: ð7Þ

Definition 2. The Grünwald–Letnikov fractional deriva-
tive of order a is defined as

Da
G½f (t)�= lim

h!0

1

ha

X
0łm\‘

(� 1)m
a

m

� �
f (t � mh): ð8Þ

Lemma 1. (Oldham and Spanier, 1974): If f (t) is (n� 1)
times differentiable in ½0, b� and the nth derivative of f (t)
is integrable in ½0, b�. Then, for every n� 1\a\n we
have

Da
G½f (t)�=Da

RL½f (t)�, 0ł tł b: ð9Þ

Our goal is to approximate the value of the
Riemann–Liouville fractional derivative operator
defined in equation (7), where a 2 ½0, 1). To facilitate
our numerical approximations, we define the term

F½t�=
ðt
t0

(t � s)�af (s)ds: ð10Þ

Note that equation (10) is the integral portion of the
fractional derivative in equation (7). We can evaluate

F(t) at any time and observe that equation (7) can be
equivalently expressed as

Da
RL½f (t)�= x

d

dt
F½t�’x

F(tj+ 1)� F(tj)

tj+ 1 � tj
, ð11Þ

where x=G(1� a)�1. This approach to approximating
the Riemann–Liouville fractional derivative comes
from Atangana and Gómez-Aguilar (2017). Here we
extend their work by presenting various approaches to
efficiently evaluate the integral expression in equation
(10). Figure 1 illustrates the issues associated with
approximating the Riemann–Liouville fractional deri-
vative. We approximate the area under each curve,
where the distance between the upper limits is sepa-
rated by some finite time. By taking the difference in
areas and dividing by the finite step length, we can
approximate the Riemann–Liouville fractional deriva-
tive. There is a singularity at the upper limit of integra-
tion, which will require special quadrature methods as
outlined below.

3.1. Quadrature methods

In general, all quadrature methods can be represented
as

ðtn
t0

f (x)dx’
XN
i= 1

f (xi)wi, ð12Þ

where xi and wi are the quadrature nodes and weights.
To present a consistent notation with respect to equa-
tion (10), we instead use the following quadrature
representation,

ðtn
t0

(tn � s)�af (s)ds ’
XN
i= 1

f (xi)wi ð13Þ

Figure 1. The integral approximations must account for the
boundary singularity at the upper limit of integration.
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where the singularity is now accounted for in the
weights, wi.

3.2. Riemann-sum

As presented in Atangana and Gómez-Aguilar (2017),
the two integral expressions, F(tj+ 1) and F(tj), can be
approximated using the following methodology. If one
assumes that the function f (t) behaves in a piecewise
smooth manner for each sub-interval of integration,
one can then factor it out of the integral. By taking rea-
sonably small intervals, one can approximate f (t) as
being constant, typically by evaluating the function at
the average of the end points of the interval.
Mathematically, for the integral F(tn), this leads to the
following approximation

F(tn)=

ðtn
t0

(tn � s)�af (s)ds ’
Xn�1

k= 0

f (xk)wk , ð14Þ

where

xk =
tk+ 1 + tk

2
, wk =

ðtk+ 1

tk

(tn � s)�ads: ð15Þ

The weights can be computed analytically because
we are assuming that the fractional-order is less than 1.
Therefore, we can reduce the weights into an explicit
expression

wk =
�1

1� a
(tn � s)1�ajtk+ 1

s= tk

=
�1

1� a
½(tn � tk+ 1)

1�a � (tn � tk)
1�a�:

ð16Þ

For the present analysis, we typically define the eva-
luation times to be a uniform grid from t0 to tn.

It should be noted that this approach effectively
accounts for the singularity in the upper limit of inte-
gration seen in equation (10). However, if f (t) were to
vary significantly with small time steps, this method
may not be accurate. Assuming that f (t) is approxi-
mately a piecewise constant in each sub-interval may
necessitate the use of extremely dense grids to maintain
accuracy.

3.3. Gauss–Laguerre

An alternative quadrature approach for integrals with
boundary singularities is the Gauss–Laguerre method
(Griebel and Oettershagen, 2014). To modify this
method for the Riemann–Liouville fractional deriva-
tive, we must map the Gauss–Laguerre quadrature
domain from ½0,‘� to ½0, 1�. This is accomplished via
the u-substitution:

ðtn
t0

f (s)

(tn � s)a
ds=

ð1
0

f ((tn � t0)u+ t0)

(tn � t0)
1�a(1� u)a

du:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Substitute u=

s� t0
tn � t0

; ds=(tn�t0) du ; u (s=t0)=0 , u (s=tn)=1

ð17Þ

The expression in equation (17) can be approximated
via the quadrature

F(tn) ’
Xn
k= 1

f (xk)wk , ð18Þ

where

xk =(tn � t0)(1� e�x�
k )+ t0,

wk =(tn � t0)
1�a(1� xk)

�aw�
i :

ð19Þ

The variables x�k and w�
k correspond to the typical

nodes and weights for Gauss–Laguerre quadrature,
respectively, and the 1� e�x�

k operation maps the nodes
from ½0,‘� to ½0, 1�. This mapping is demonstrated in
Figure 2. Note that there is a clustering of Gauss–
Laguerre quadrature nodes near the singularity at the
end of the interval.

Under appropriate conditions, this method is a
viable means for approximating equation (7). However,
the Gauss–Laguerre quadrature often requires extended
numerical precision to achieve reasonably accurate
results. This will be discussed further in Section 3.5,
where we compare using this approach with and with-
out extended numerical precision.

3.4. Hybrid quadrature methods

The two quadrature methods detailed previously pro-
vide reasonably accurate approximations for equation
(7); however, each has specific limitations. The
Riemann-Sum approach is extremely efficient since it
does not require extended precision, but a potentially
dense grid is required to maintain the assumption of a

Figure 2. Four-point Gauss–Laguerre quadrature nodes
demonstrated for kernel exp (2t)=(1� t)0:9 on domain t 2 ½0, 1�.
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piecewise constant function f (t). In contrast, the
Gauss–Laguerre method can provide reasonable
approximations with fewer terms, with the notable
exception that extended precision is required to achieve
accurate estimates.

The main features of these quadrature methods is
their ability to account for boundary singularities.
Therefore, we propose a hybrid quadrature method
that utilizes a more efficient approach in regions suffi-
ciently far from the singularity. For example, Gauss–
Legendre quadrature is an optimal approach for many
integrals. Gauss–Legendre methods are not intended to
be used to approximate integrals with boundary singu-
larities; however, there is no reason why it cannot be
utilized for the first part of the domain in equation
(10). Mathematically, we observe that we can break the
integral expression in equation (10) into two distinct
components,

ðt
t0

f (s)

(t � s)a
ds=

ðd
t0

f (s)

(t � s)a
ds

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
R1

+

ðt
d

f (s)

(t � s)a
ds|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

R2

: ð20Þ

An efficient quadrature method, such as Gauss–
Legendre, can be utilized in R1 as long as a threshold
value d=f(t � t0) maintains sufficient distance from
the singularity. The remaining portion of the integral
R2 can be approximated using one of our more specia-
lized methods, Riemann-Sum or Gauss–Laguerre. One
adjusts how the domain is partitioned by specifying dif-
ferent values of f. Details regarding the hybrid meth-
ods employed in this work, such as Gauss–Legendre,
Riemann-Sum or Gauss–Legendre, Gauss–Laguerre
may be found in Miles et al. (2018).

3.5. Convergence of quadrature methods

To properly assess the viability of these numerical
methods, we will compare their performance on several
test problems. We first consider the fractional deriva-
tive of two simple functions: (1) f (t)= exp (2t) and (2)
f (t)= cos (2t). Furthermore, we will consider the frac-
tional derivative of these functions at several different
points in time. The reference solutions for each test
problem were calculated using Mathematica (Wolfram
Research, Inc., 2018). The numerical implementations
can be found in the Python package pyfod (Miles and
Pash, 2019). The convergence trends presented in
Figure 3 appear to be approximately linear with respect
to the number of quadrature nodes in log–log space,
which is not surprising. Utilizing the hybrid quadrature
approach with Gauss–Legendre and Riemann-Sum
enables one to expend more computational effort in the
region near the singularity. Depending on the accuracy
requirements, using just a few Riemann-Sum terms
near the singularity can provide reasonable results.

Often one is more constrained by evaluation time
than storage to perform the computation. We present
the computation times for the various methods in
Figure 4. Note that run time requirements for the
methods that use Gauss–Laguerre are significantly lon-
ger due to the use of symbolic expressions and extended
precision. The trends presented in Figures 3 and 4 also
hold for the test problem f (t)= cos (2t) as well as at
various evaluation times and fractional-orders in ½0, 1�.

One additional factor to account for when employ-
ing hybrid-quadrature methods is the choice of the
threshold value f that partitions the integration
domain. In general it is desirable for f to be large, so
as to use an efficient quadrature scheme on the major-
ity of the interval. However, this must be balanced with
a degradation in performance if an inappropriate
scheme is used near the boundary singularity. We
investigate the effect of the f on three test problems:
f (t)= exp (2t), cos (2t), t2 � t+ 1 on the domain ½0, 1�
with a= 0:9 using the Gauss–Legendre, Riemann-Sum
hybrid method. The results of this study are presented
in Figure 5.

The trends in Figure 5 demonstrate the phenomenon
that when f is chosen so that the Gauss–Legendre
domain of integration approaches the singularity,

Figure 4. Relative error versus compute time for various
quadrature methods for the test problem f (t)= exp (2t).

Figure 3. Relative error versus number of nodes for various
quadrature methods for the test problem f (t)= exp (2t).
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performance begins to drastically degrade. Conversely,
when f is too small, then many of the benefits of using
a more efficient quadrature are lost. As a heuristic, the
authors recommend and employ a selection of f= 0:95
that represents a 95%/5% partition of the integration
domain.

3.6. Reference solution

In many cases, a reference solution cannot be analyti-
cally or symbolically determined, such as for the viscoe-
lastic model. Thus, we consider the Grünwald–
Letnikov (GLet) fractional derivative to be our refer-
ence given its general acceptance in literature. Since we
are primarily interested in testing our numerical meth-
ods ability to achieve accuracy to the first decimal
place, we run our reference solution until it has con-
verged up to the second decimal place in accuracy.
Mathematically, we compare increased levels of grid
density at certain reference points until the residuals
satisfy variation in only the third decimal place; that is,

jjxGLetk+ 1 � xGLetk jj‘ ł 10�2: ð21Þ

Note that k refers to the level of grid resolution, so
k+ 1 is a more refined grid, that is more nodes than k.
When comparing the overall accuracy of our other
numerical methods, we will consider their ability to
achieve accuracy to the second decimal place with
respect to the reference solution found using the
Grünwald–Letnikov definition. We can express this as

jjxGLetref � xik jj‘ ł 10�1, ð22Þ

where i refers to one of our numerical methods; for
example, Riemann-Sum (RS) or Gauss–Laguerre (GL),
and k is the grid level being tested.

3.7. Convergence of viscoelastic model

When using our nonlinear viscoelastic model in studies
that require numerous model evaluations, such as

Bayesian inference, we are concerned with the trade-off
between numerical fidelity and computational speed.
Moreover, the model response is highly dependent on
fractional-order. Figures 6 and 7 show that the numeri-
cal methods converge to similar estimates of the frac-
tional derivative for both small and large fractional-
orders, a. Additionally, we can look at convergence of
the various operators with respect to the reference solu-
tion in the ‘2 and ‘‘ norms as in Figures 8 and 9.
Similar to the results from Section 3.5, we note that the
hybrid Gauss–Legendre and Riemann Sum (GQRS)
method achieves a good trade-off between accuracy
and computational efficiency. Moreover, we have
demonstrated that our quadrature schemes converge to
the desired level of accuracy (L‘ � normł 10�1) with
regard to the fractional-order derivative operation.

4. Experimental data

To perform model calibration, we consider the set of
experiments performed in Miles et al. (2015). The

Figure 6. Operator comparison with small fractional order, a.

Figure 7. Operator comparison with large fractional order, a.

Figure 5. Relative error versus f for various quadrature
methods for the test problems f (t)= exp (2t), cos (2t), t2�t+1
on domain [0,1] with a= 0:9.
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reader is referred to that paper for more details, but the
key components of the experimental procedure our
outlined below.

A series of uni-axial, cyclic loading experiments were
performed on the elastomer Very High Bond (VHB)
4910 (made by 3M). Each experiment consisted of
stretching the specimen a fixed amount at a specified
rate, then returning the specimen to its original length
at the same rate. This deformation cycle was repeated
12 times in order to reach steady-state hysteresis. The
experiments were varied by performing the same defor-
mation sequence but at different deformation rates. In
this manner, a set of data highlighting the rate-
dependent qualities of VHB 4910 were collected. The
raw data collected from the MTS Instron machine pro-
vides the load (L33—assuming deformation in the x3-
direction) for each deformation state. Using the nom-
inal specimen dimensions (thickness and width) we
compute the original cross-sectional area (A0) and sub-
sequently the nominal stress—s33 = L33=A0. For the
purpose of model calibration, we compare our model
to the nominal stress, steady-state hysteresis response
achieved from the final cycle of each experiment.

5. Parameter subset selection

For our fractional-order nonlinear viscoelastic model, a
primary objective is to infer distributions for the para-
meter set

u= ½Gc,Ge, lmax,h,a, g,b‘�: ð23Þ

Previous research has shown that the full set of model
parameters may not be identifiable (Mashayekhi et al.,
2018; Miles et al., 2015), in the sense that they are not
uniquely determined by observed data. This motivates
the need for sensitivity analysis to inform parameter
selection. We use the parameter subset selection (PSS)
algorithm as detailed in Leon et al. (2019). Details of

this analysis were reported in Miles et al. (2019), but we
include the conclusions here for clarity.

The goal of PSS is to reduce the number of para-
meters to those that are identifiable. This is accom-
plished by a systematic comparison of the eigenvalues
of the Fisher Information matrix. Details of the algo-
rithm can be found in Quaiser and Mönnigmann (2009)
and Leon et al. (2018). Consider the sensitivity matrix
of the form

S=

∂f

∂u1
x11; u

�� �
� � � ∂f

∂up
x1p; u

�
	 


..

. ..
.

∂f

∂u1
xN1 ; u

�� �
� � � ∂f

∂up
xNp ; u

�
	 


2
6664

3
7775, ð24Þ

where u� is a nominal set of parameter values, and f is
the model for our quantity of interest (QoI). This
matrix reflects a system with N independent points of
evaluation, and p model parameters; p= 7 based on
the set defined in equation (23). The nominal para-
meters were identified using a least-squares fit between
the nominal-stress model outlined in Section 2 and a
set of experimental observations, details of which are
provided in Section 4. A summary of the nominal para-
meters identified by the least-squares fit are presented
in Table 1.

Upon performing the PSS algorithm using the scaled
Fisher information matrix STS, we observe the signifi-
cant jump in relative eigenvalues between the 5th and
6th parameter, shown in Figure 10. This indicates that
five of the model parameters are significantly more
influential in impacting the QoI. We determine the cor-
responding non-influential parameters by finding the
smallest relative eigenvalue, and then identifying the
largest magnitude eigenvector component. This eigen-
vector component corresponds to a specific parameter.
This process is repeated iteratively by removing the col-
umn and row corresponding to the non-influential

Figure 8. Operator convergence in L2-norm. Figure 9. Operator convergence in L‘-norm.
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parameter in the sensitivity matrix, then reassessing the
relative eigenvalue spectrum. From the iteration results
presented in Table 2, we conclude that the parameters
g and h are non-influential and use their nominal val-
ues identified from the least-squares fit for subsequent
model evaluation and calibration. With this informa-
tion, we consider the parameter set

u= ½Gc,Ge, lmax,b‘,a�:

6. Bayesian model calibration

With an efficient model representation and a set of sen-
sitive parameters, we now infer the model parameters
in the presence of observation uncertainty. As detailed
in (Smith, 2014) this is natural in a Bayesian frame-
work. The basic objective of Bayesian inference is to
construct the model parameter posterior densities given
some set of observations. This can be expressed using
Bayes’ relation

pðujMdataÞ ¼ pðMdatajuÞp0ðuÞÐ
R

� pðMdatajuÞp0ðuÞdu
: ð25Þ

We assume a statistical model of the form

Mdata =M(xi; u)+ ei: ð26Þ

Here M(xi, u) represents our model generating obser-
vations at xi with model parameters u. This form
assumes the observation errors are independent and
identically distributed (iid); that is, ei ;

iid:N (0,s2). A

direct result of this formulation is that the likelihood
function is

p(Mdataju)= e�SSq=(2s
2) ð27Þ

where SSq =
PD

i= 1 ½Mdata(i)�M(xi; u)�2 is the sum-of-
squares error, where D is the number of observations.
Any a priori information about the model parameters
is defined in the prior function, p0(u). So as not to bias
the sampling procedure, we assume a flat prior distri-
bution for all parameters.

Direct evaluation of Bayes’ relation is untenable for
most problems due to having to integrate in R

p.
Instead, we use Markov Chain Monte Carlo (MCMC)
methods. For this problem, we use the MCMC imple-
mentation available in the Python package pymcmcstat
(Miles, 2019). For sampling, we use the Delayed
Rejection Adaptive Metropolis (DRAM) algorithm
(Haario et al., 2006). Here we calibrate our model of
the nominal stress equation (4) with respect to two
experimental data sets together to infer a single set of
posterior densities. From a set of experiments described
in Miles et al. (2015), we choose the data from the
slowest and fastest stretch rates. Each data set is
assumed to have different error variances as the
amount of noise may differ between experiments.

Table 2. Results from performing parameter subset selection with the quasi-global sensitivity matrix to determine noninfluential
parameters in u.

Eigenvector Du1 with corresponding parameters

Iteration jl1j Gc Ge lmax h g b‘ a
1 3.60e-19 21.67e-03 22.72e-04 29.82e-08 5.25e-01 8.51e-01 1.03e-03 25.17e-09
2 2.32e-16 28.54e-03 21.39e-03 22.97e-06 9.99e-01 — 5.30e-03 25.80e-07
3 8.94e-08 7.90e-01 7.90e-02 1.17e-01 — — 25.97e-01 25.12e-03
4 2.68e-05 — 3.50e-01 29.28e-01 — — 21.27e-01 26.81e-04

Result: The parameters g and h are not influential.

Figure 10. Eigenvalues from first iteration of PSS algorithm
using quasi-global sensitivity matrix.

Table 1. Nominal model parameters identified from least-
squares fit.

Parameter Units Nominal value

Gc kPa 5.01
Ge kPa 0.82
lmax – 9.24
h 1060
a – 0.165
g 2720
b‘ – 2.07
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From the results of the sensitivity analysis reported
in Section 5, the calibration parameter set is

uDRAM = ½Gc,Ge, lmax,b‘,a�: ð28Þ

DRAM is used for calibration with 100,000 samples, of
which the first half are considered to be the ‘‘burn-in’’
period, where the chains are exploring the space and
the posteriors are converging. We present results of this
calibration in Figure 11. We note the unimodal appear-
ance of the kernel density estimate (KDE) of the mar-
ginal posterior densities on the main diagonal of Figure
11. This is not required for our purposes, but it is noted
that a Q–Q plot could be used to determine if the pos-
teriors are normally distributed.

Additionally, the calibration process allows us to
visualize parameter correlations as shown in the off-
diagonals of Figure 11. In the upper-diagonal, we
observe pairwise MCMC samples and in the lower-
diagonal we see the corresponding joint distribution
estimate. The upper- and lower-diagonal plots present
parameter correlation, but some readers may find one
representation more intuitive to understand than the
other. Figure 11 reveals correlation structure among
many of the parameters. A somewhat linear correlation
is observed between the parameter sets [a, b‘], [a, Gc],
[Gc, b‘], and possibly [Ge, lmax]. It is not surprising to
see correlated parameters in our calibration as the dif-
ferent components of the model interact with each
other. This is true for the viscoelastic parameters and

Figure 11. (Main Diagonal) Marginal posterior densities, (Lower Triangular) joint kernel density estimates, and (Upper Triangular)
pairwise correlations.

494 Journal of Intelligent Material Systems and Structures 32(4)



hyperelastic parameters as each parameter can influence
the stress state but in a different manner. For example,
the crosslink modulus, Gc depends on the network
crosslinking density while the entanglement modulus,
Ge, depends more strongly on neighboring monomer
interactions. It is also not surprising to see positive cor-
relations between the fractional viscoelastic order a and
b‘ which weights the viscoelastic stress. The MCMC
approach to calibration works well when dealing with
correlated parameters, and these results support the
conclusion from Section 5 that we are calibrating an
identifiable subset. If these correlation structures were
extremely tight (i.e., a completely straight line), then
that would imply a single-value correlation, which
means one parameter can be directly defined from the
value of another. If that were the case, then the para-
meters would not be uniquely identifiable, and we
would need to re-address the results of the sensitivity
analysis. Furthermore, we note that the parameter dis-
tributions are similar to those presented in Mashayekhi
et al. (2018) and Miles et al. (2015). Additionally, the
variance estimates for the two data sets used for calibra-
tion support our assumption that each data set has
unique measurement errors. As seen in Figure 12, the
measurement error for the fastest stretch rate (s2) has a
broader distribution with a larger mean value. This is
not surprising as we expect more sources of uncertainty
or noise to exist in the experiment when deforming the
specimen at a faster rate.

We now employ the posterior parameter distribu-
tions to evaluate model performance across stretch
rates by propagating the uncertainty through the
model. The results for the slowest and fastest stretch
rates are co-plotted in Figure 13. We note that the
fractional-order model is able to effectively quantify

the stress response of the material at both stretch-rates
and that the experimental data is entirely encapsulated
within our 95% prediction intervals. Prediction inter-
vals are the sum of propagated parameter uncertainties
and measurement uncertainty, and estimate the region
where new data measurements would be expected to
be. We note the tight intervals in Figure 13 are useful
for predictive estimation. For more details regarding
the interpretation of credible and prediction intervals,
the reader is referred to Smith (2014).

7. Conclusion

In this paper, we have outlined the development of a
nonlinear fractional-order viscoelastic modeling frame-
work for soft dielectric elastomers. We then introduce
the Riemann-Liouville definition of the fractional deri-
vative and the development of various quadrature
methods, including hybrid methods to compute the
fractional derivative. Convergence tests of the quadra-
ture methods indicate that the hybrid Gauss–Legendre,
Riemann-Sum method offers a good trade-off between
convergence speed and computational efficiency.
Moreover, we have demonstrated the ability of all of
the methods to converge for the nonlinear viscoelastic
model presented in Section 2.

We have also shown how parameter subset selection
can be used to identify the most sensitive model para-
meters and reduce the calibration set from seven to five
parameters by fixing g and h. MCMC calibration
results support the conclusion that the parameters in
equation (28) are all significant and identifiable.
Moreover, once calibrated, the nonlinear fractional-
order model shows good agreement with experiments
at multiple stretch rates with the data completely con-
tained in the prediction intervals.

The fractional viscoelastic order found from the
reduced calibration set was nominally 0.165. This result
is self-consistent with prior Bayesian parameter

Figure 13. Uncertainty propagation with non-linear fractional-
order viscoelastic model at slowest and fastest stretch rates.

Figure 12. Posterior estimates of measurement variance for
both data sets used for calibration.
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calibration of the full parameter set (Mashayekhi et al.,
2018). While a is significantly lower than 1 (conven-
tional dashpot model), the results given here provide
accurate viscoelastic prediction over a relatively large
strain rate range, as discussed elsewhere (Mashayekhi
et al., 2018). This is believed to be a consequence of the
non-local fractional order derivative. Its complexity
has also been shown to be related to fractal geometry
and power-law spectral dimensions of the underlying
polymer dynamics (Mashayekhi et al., 2019) which
offers additional opportunities to understand complex
multiscale effects associated with nonlinear mechanics
in soft materials.
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