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ABSTRACT: The metal binding motif of all nitrile hydratases (NHases, EC 4.2.1.84) is highly conserved (CXXCSCX) in the a-
subunit. Accordingly, an eight amino acid peptide (VCTLCSCY), based on the metal binding motif of the Co-type NHase from
Pseudonocardia thermophilia (PtNHase), was synthesized and shown to coordinate Fe(II) under anaerobic conditions. Parallel-mode
EPR data on the mononuclear Fe(II)—peptide complex confirmed an integer-spin signal at g’ ~ 9, indicating an S = 2 system with
unusually small axial ZFS, D = 0.29 cm™' Exposure to air yielded a transient high-spin EPR signal most consistent with an
intermediate/admixed S = 3/, spin state, while the integer-spin signal was extinguished. Prolonged exposure to air resulted in the
observation of EPR signals at g = 2.04, 2.16, and 2.20, consistent with the formation of a low-spin Fe(III)—peptide complex with
electronic and structural similarity to the NHase from Rhodococcus equi TG328—2 (ReNHase). Coupled with MS data, these data
support a progression for iron oxidation in NHases that proceeds from a reduced high spin to an oxidized high spin followed by
formation of an oxidized low-spin iron center, something that heretofore has not been observed.

itrile hydratases (NHases, EC 4.2.1.84) are metal-

loenzymes that contain either a nonheme low-spin
Fe(III) ion (Fe-type) or a noncorrin low-spin Co(III) ion (Co-
type) in their active site.' ~* NHases have proven useful as
biocatalysts in preparative organic chemistry and the industrial
production of acrylamide and nicotinamide.” They have also
been used in the bioremediation of nitrile-based chemicals and
pesticides such as bromoxynil and are thus recognized as
“Green” catalysts.’ In both Fe- and Co-type NHases, the metal
ions are six-coordinate and bound by a labile water, three
cysteines, and two backbone amide nitrogen’s that are
deprotonated with significant double bond character in the
CN bond.” Interestingly, two of the active site cysteine
residues are post-translationally modified to cysteine—sulfinic
acid (—SO,H) and cysteine—sulfenic acid (—SOH), yielding
an unusual metal coordination geometry that was termed a
“claw-setting”. It has been shown that unless this Cys oxidation
process occurs, NHase is inactive, consistent with the sulfenic
acid ligand acting as the nucleophile during -catalytic Figure 1. Active site of the Co-type NHase from Pseudonocardia
turnover,s’9 ‘While an activator Protein has been implicated in thermophilia (PtNHase) based on the X—ray crystal structure (PDB:
inserting a divalent metal ion into the q-subunit,'”"" little is 1IRE)"" showing eight of the amino acid residues that make up the
known regarding how the controlled oxidation of the active site peptide VCTLCSCY.
metal ion and the two equatorial Cys residues occur, as it
happens in vivo, to produce the required active site
architecture."

We recognized that the NHase metal binding motif
(CXXCSCX), which is ubiquitous among NHases,”"? contains
all of the active site ligands in an eight amino acid sequence
and hypothesized that such a peptide could bind Fe(II) Received: = October 1, 2020 Inoganlf(hemlstry
forming a biomimetic NHase complex.””****® An eight amino Published: March 29, 2021 /
acid peptide (VCTLCSCY), based on the metal binding motif
of the Co-type NHase from Pseudonocardia thermophilia
(PtNHase), was synthesized (GenScript) (Figure 1) with an
acetyl group attached to the N-terminal to enhance solubility

Tyr 114

Thr 109

Val 107

(Figure 2I). As the active site is ubiquitous among both Co-
and Fe-type NHases, we chose to titrate Fe(Il) into this
peptide in 10 mM NEM buffer pH 8.0 under anerobic
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Figure 2. 0.76 mM PtNHase peptide solution in 10 mM NEM buffer
pH 8.0 at 25 C under anaerobic conditions. (i) PtNHase peptide
solution with no metal, (ii) Fe(II)-bound PtNHase peptide complex,
(iii) oxidized Fe-bound PtNHase peptide complex after exposure to
air for S min, and (iv) oxidized Fe-bound PtNHase peptide complex
after exposure to air for 3 h.

conditions, which provided a colorless solution (Figure 2II).
Upon exposure to air, the solution turned light orange and
over time and intensified to an orange-brown color (Figure
2IILIV). UV—vis spectra exibited an absorption band at 490
nm with a shoulder at ~435 nm (Table S1 and Figure SI).
These bands are characteristic of S-to-Fe(IlI) LMCT bands'®
and are similar to those observed for the Fe-tglpe NHases from
Rhodococcus equi TG328-2 (ReNHase).'® However, the
characteristic axial S-to-Fe(IIl) LMCT band at ~700 nm
observed for Fe-type NHases was absent for the Fe(III)-bound
peptide model complex.'® These data indicate ligation of
Fe(Il) to the cysteine residues of the peptide followed by
oxidation to Fe(III).

The electronic and structural aspects of the observed iron
oxidation process were further investigated by X-band EPR of
the anaerobically prepared Fe(Il)—peptide complex (Figure 3,
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Figure 3. EPR spectra of a 0.76 mM Fe(Il)-bound PtNHase peptide
complex in 10 mM NEM bufter, pH 8.0, under anaerobic conditions.
The top two traces show the perpendicular- and parallel-mode EPR
spectra, respectively, while the bottom trace is a computer simulation
invoking an S = 2 system with a zero-field splitting envelope that is
partially accessible by the microwave quantum (9.37 GHz).

top trace). In perpendicular mode (ByLB;), the signal
exhibited no immediately assignable features except an ill-
defined low-field trough extending from zero-field to around
1200 G, with a minimum at g’ ~ 9. EPR spectra recorded in
parallel-mode (B,lIB,) yielded an intense resonance at g’ ~ 9
(Figure 3, middle), suggesting an S = 2 system by virtue of the
g =~ 4S rule."” The signal disappears into zero-field because the
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envelope of zero-field splitting energies extends beyond the
microwave quantum energy and, additionally, a signal from
only one non-Kramers doublet is observed, so the spin
Hamiltonian parameters are not uniquely determinable.'”
However, a good simulation was obtained (Figure 3, bottom)
using S = 2, g = 2, and a zero-field splitting envelope with D =
0.29 cm™, E/D = 0.14, 6D = 1.2 GHz, and oF = 200 MHz,
consistent with high-spin Fe(II) with octahedral coordination.

After exposure to air for 3 h. the integer-spin signal was
diminished by a factor of 3 and an intense high-spin half-
integer signal was observed with overlapping low-field peaks at
g =6.0and g’ = 5.2 (Figure 4). No signals were observed at
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Figure 4. EPR spectra of a 0.76 mM Fe-bound PtNHase peptide
complex in 10 mM NEM buffer, pH 8.0. Top panel: The top two
traces show the parallel-mode EPR spectra (10 K, 80 mW, 9.37 GHz)
under anaerobic conditions (top) and after 3 h exposure to air
(bottom). The bottom two traces show the corresponding
perpendicular-mode spectra (10 K, 10 mW, 9.63 GHz) sample
exposed to air for 3 and 20 h, respectively. Bottom panel: The main
trace shows the entire spectrum of the Fe-bound PtNHase peptide
complex exposed to air for 20 h (inset: g ~ 2 region).

resonant fields corresponding to g > 6, and there was no
evidence to suggest that the g 6.0 resonance was a
derivative-like feature rather than a peak. The signal also
exhibited a broad “S”-shaped absorption from 1600 to 4300 G,
suggestive of a rhombic signal with g," & 3.3 and g’ < 2, in
addition to the prominent g, = 5.2 signal. That ensemble of
resonances is inconsistent with the expected S = %/, spin
system but is entirely consistent with the Mg = +'/, doublet of
an S = 3/, spin system. In addition, the sharp resonance and
cutoff of absorption at g’ = 6.0 are expected for an Mg = +'/,, S
=3/, signal with g,., = 2 and a line shape determined by strains
in the rhombic zero-field splitting parameter, E/D; an
analogous phenomenon is observed for rhombic (E/D > 0)
high-spin Fe(III) at g’ = ~ 10."®

Intermediate spin (IS) or admixed spin S = */, Fe(IIl) is
unusual and its appearance warrants some scrutiny. Occur-
rences are most common in porphyrin systems with significant
deviations from planarity, and the signal reported herein
closely resembles that of a substituted Fe—porphyrin complex
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reported by Yatsunyk and Walker.'” In that case, the signal was
assigned to an Fe(Il)—porphyrinate radical antiferromagnetic
charge-transfer complex. However, simpler mononuclear
Fe(III) IS complexes have been studied and the S = */, state
of the Fe(Ill) ion substantiated with ab initio density
functional theoretical (DFT) calculations and structural
characterization,*® including for a functional mimic of
hydrogenase.”" This latter study indicated that the spin state
was a determinant of the structure of the biomimetic model
and may influence its chemical reactivity. Other possible
explanations for the signal are (i) an Fe(II)—protein radical
complex, (ii) a high-spin {FeNO}’ complex, and (iii) Co(1I),
which can be elimiated on the basis of metal analysis data.
Nitric oxide can also be eliminated as there is no source of it in
the Fe—peptide system. Finally, no highly reducing or oxidizing
conditions were employed that would likely result in radical
formation.

Exposure of the Fe—peptide complex to air for ~20 h
revealed that the high-spin Fe(III) signal persisted, retaining
~90% intensity, consistent with the observed UV—vis spectra;
however, an additional signal with high amplitude was
observed in the g ~ 2 region. This latter signal was
characterized as an axial gl resonance at g = 2.04 and two
distinct gll resonances at g = 2.20 and 2.16, respectively. These
EPR parameters can be compared to those reported for active
ReNHase with a bound water molecule (ReNHase*?), which
exhibits g-values of 2.20, 2.13, and 1.99,°%** and with those
from model compounds that exhibit g-values within the range
2.3 > g > 1.97.** Despite the very high amplitude of these low-
spin Fe(III) peptide complex EPR signals, their contribution to
the total spin density was ~5%.

In conclusion, the spectroscopic data reported coupled with
MALDI-TOF MS data (Table S1; Figures S2 and S3) provides
insight into a heretofore unknown iron maturation process for
NHase active sites (Scheme 1). The formation of a colorless

Scheme 1. Proposed Progression of Iron Oxidation in
NHases That Proceeds through Reduced High-Spin (1) —
Oxidized High-Spin (2, 3, & 4) — Oxidized Low-Spin (5)
Iron Centers

Cys-S ol Cys-S, ol Cys-SO
o o
*ECys-S-er(ll)”s —>——Cys-S-;Fe(ll)*S — Cys-8-:Fe(llHS
Cys-S" Cys-S’l Cys-S
1 2 3
Cys-SO2 Cys-SO Cys-SO>
*ECys—S-:EFe(III)'-S <« ——Cys-8-Fe(ll)S or %Cys-SEEFe(III)LS
Cys-SO Cys-SO Cys-S~
5 4b 4a

solution (1) upon the addition of Fe(Il) to the peptide is
associated with an S = 2 integer-spin signal from a
mononuclear Fe(II) complex that MS data verify as the fully
reduced peptide. Oxidation of Fe(Il) to Fe(III) upon exposure
to air is indicated by development of a straw colored sample
and by EPR data, as the integer-spin signal due to Fe(II) slowly
diminishes and is replaced by signals consistent with the
formation of an S = */, intermediate-spin Fe(III) peptide
complex (2) that MS data confirm is a mixture of fully reduced
and singly oxidized peptide. These data suggest that the first
step in the NHase maturation process is likely oxidation of the
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active site iron center. After exposure to air for 20 h, MS data
reveal that both fully reduced peptide (2) and singly oxidized
peptide (3) remain the prevalent forms. There is no evidence
for an S = °/, signal and therefore iron is likely still in the S =
3/, state. However, MS data also suggest small amounts of
both doubly oxidized (4) and triply oxidized (5) peptides.””
The presence of a small amount of () is also suggested by the
S = !/, EPR signal. The signal exhibits g-values that are
comparable to those from ReNHase.* A recent study
suggests that Fe(Il) is initially inserted onto the NHase active
site by the activator protein'® and that once high-spin Fe(II) is
bound to the NHase active site, oxidation to a high-spin
Fe(IlI) center with concomitent stepwise oxidation of the
equatorial Cys residues to sulfinic and sulfenic acids occurs,"
until a low-spin Fe(IIl) center is formed. Nevertheless, the
possibility remains that, in the peptide system, the S = '/, EPR
signal could arise from either species 4a, 4b, or §, although
available evidence favors species § as the source of at least one
of the S = '/, signals.
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