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a b s t r a c t

Methods for stochastic trace estimation often require the repeated evaluation of
expressions of the form zT pn(A)z, where A is a symmetric matrix and pn is
a degree n polynomial written in the standard or Chebyshev basis. We show
how to evaluate these expressions using only ⌈n/2⌉ matrix–vector products, thus
substantially reducing the cost of existing trace estimation algorithms that use
Chebyshev interpolation or Taylor series.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Given a symmetric matrix A ∈ Rd×d and a function f : R → R, we consider the problem of estimating

tr(f(A)) =
d∑

i=1
f(λi), (1)

where λ1, . . . , λd are the eigenvalues of A. When A is large enough to make computing its eigenvalues
impractical, one common approach is to use Hutchinson’s method [1]. This method samples m independent
vectors {z(i)}m

i=1 from a Rademacher distribution (entries ±1 with equal probability), and yields the estimate

tr(f(A)) ≈ 1
m

m∑
i=1

(
z(i)

)T

f(A)z(i). (2)

For many functions f of interest (e.g., exp(x), x−1, xp/2, or log(x)), the right hand side of (2) is
urther simplified by approximating f by a degree n polynomial pn, most commonly through Chebyshev
nterpolation or a Taylor series.
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A common way to evaluate an expression of the form zT pn(A)z is to compute zn = pn(A)z and return
zT zn (see [2–4] for examples). We refer to this method as one-sided evaluation, and it will in general require
n matrix–vector products (matvecs) with A. For polynomials written in the standard or Chebyshev bases
we show how to reduce the number of matvecs to ⌈n/2⌉. Since the cost of many existing trace estimation
algorithms is dominated by matvecs, our method will cut their runtime approximately in half.

1.1. Related work

A related idea is explored in [5] where the authors exploit the symmetry of A to reduce the cost of their
estimator. Our proposal is more efficient and is more generally applicable, as their method applies only when
f(A) is positive definite.

The Chebyshev identity (6) that this paper relies on is also used in [6] for trace estimation problems.
There, the authors show how to efficiently compute the products {pn(A)zj}m

j=0 where zj = Tj(A)z0 and
Tj is the jth Chebyshev polynomial.

For more general background on computing matrix polynomials, see [7, Ch. 4] or [8, Sec. 9.2]. Our method
bears some resemblance to that of Paterson and Stockmeyer [9], but aims to compute zT pn(A)z rather than
pn(A) itself.

A few recent papers that use Chebyshev approximations for stochastic trace estimation are [2,3,5,10], and
Taylor series are used similarly in [4]. For more applications of stochastic trace estimation, see [11].

One primary competitor to Chebyshev interpolation is stochastic Lanczos quadrature. For more infor-
mation on this method and its pros and cons with respect to using Chebyshev polynomials, see [12]. In
short, the authors suggest that Lanczos quadrature is generally superior since it converges at twice the rate
of Chebyshev interpolation. If this is true, then our method (which does not to our knowledge extend to
Lanczos quadrature) should put Chebyshev interpolation back on more or less equal footing. It may require
an approximating polynomial with twice the degree of that needed by Lanczos, but can compute it with the
same number of matvecs!

2. Standard basis

It is noted in [5] that expressions of the form zT Anz can be evaluated with ⌈n/2⌉ matvecs by letting
k = ⌊n/2⌋ and computing zk = Akz, then returning zT

k zk if n is even and zT
k Azk if n is odd. We first extend

this idea to polynomials of the form pn(x) =
∑n

j=0 αjxj . Algorithm 1 requires ⌈n/2⌉ matvecs and at each
step j needs to store only the two most recent vectors zj , zj−1 in memory.

Algorithm 1 Two-sided evaluation (standard basis)

Input: Symmetric A ∈ Rd×d, z0 ∈ Rd, polynomial coefficients a = [α0, α1, . . . , αn]
utput: s = zT

0 pn(A)z0
1: s = α0zT

0 z0
2: for j = 1, 2, . . . , ⌈n/2⌉ do
3: zj = Azj−1 {zj = Ajz0}
4: s = s + α2j−1zT

j−1zj

5: if n = 2j − 1 then stop
6: s = s + α2jzT

j zj

7: end for
2
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. Chebyshev basis

We use Chebyshev polynomials of the first kind, which can be defined by the recurrence

Tj+1(x) = 2xTj(x) − Tj−1(x), (3)

where T0(x) = 1 and T1(x) = x. A function f : [−1, 1] → R can then be approximated by a polynomial of
the form

f(x) ≈ pn(x) =
n∑

j=0
αjTj(x). (4)

The polynomial pn interpolates f at a set of Chebyshev nodes {xj}n
j=0. Several different choices for the

nodes are available [13,14], but as one example Trefethen [13] uses the nodes

xj = cos jπ

n
, 0 ≤ j ≤ n (5)

and shows how to quickly compute the coefficients {αj}n
j=0 by using an FFT. Our concern is only that the

polynomial in (4) is expressed in the Chebyshev basis.
The key idea is to use the fact that Chebyshev polynomials follow the relation [15]

Tj(x)Tk(x) = 1
2

(
Tj+k(x) + T|k−j|(x)

)
, ∀j, k ≥ 0. (6)

By letting k = j or k = j + 1 in the above equation and rearranging, it follows that for all j ≥ 0,

T2j(x) = 2Tj(x)2 − T0(x) = 2Tj(x)2 − 1 (7)

and
T2j+1(x) = 2Tj(x)Tj+1(x) − T1(x) = 2Tj(x)Tj+1(x) − x. (8)

We can therefore evaluate terms of the form zT T2j(A)z by computing zj = Tj(A)z and returning 2zT
j zj−zT z.

Similarly, we can evaluate terms of the form zT T2j+1(A)z by computing zj+1 = Tj+1(A)z and returning
2zT

j zj+1 − zT Az.
Our method is presented in Algorithm 2. It requires ⌈n/2⌉ matvecs and at each step j needs to store only

the two most recent vectors zj , zj−1 in memory. It should therefore take about half the time required by
one-sided evaluation.

Algorithm 2 Two-sided evaluation (Chebyshev basis)

Input: Symmetric A ∈ Rd×d, z0 ∈ Rd, Chebyshev coefficients a = [α0, α1, . . . , αn]
utput: s = zT

0 pn(A)z0
1: z1 = Az0
2: ζ0 = zT

0 z0
3: ζ1 = zT

0 z1
4: s = α0ζ0 + α1ζ1 + α2

(
2z1

T z1 − ζ0
)

5: for j = 2, 3, . . . , ⌈n/2⌉ do
6: zj = 2(Azj−1) − zj−2 {zj = Tj(A)z0}
7: s = s + α2j−1

(
2(zT

j−1zj) − ζ1
)

8: if n = 2j − 1 then stop
9: s = s + α2j

(
2(zT

j zj) − ζ0
)

10: end for
3
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Fig. 1. Relative (left) and absolute (right) errors in the computed values of zT
0 Tj (A)z0 from one-sided and two-sided evaluation.

.1. Stability

The three-term recurrence of scalar Chebyshev polynomials is shown in [16] to satisfy a mixed forward–
ackward stability condition, and for vectors the Clenshaw algorithm is shown in [17] to be backward stable.
he latter result implies that each individual vector {zj}n

j=0 produced by Algorithm 2 satisfies a backward
tability condition, but it remains an open question whether Algorithm 2 is itself stable. In particular, the
uantity computed in line 9 may be inaccurate if 2zT

j zj − ζ0 is small compared to 2∥zj∥2
2 + ∥z0∥2, and

similarly for line 7. We expect that the effect of these rounding errors will typically be minor, but leave a
more rigorous analysis for future exploration.

4. Numerical experiments

In order to gain some insight into the behavior of Algorithm 2, we test it on two synthetic problems. In
he first example, A ∈ R50×50 and z0 ∈ R50 are chosen so that the quantities zT

0 Tj(A)z0 are small for a few
elect values of j (31–34 and 45–48) even though z0 and zj have 2-norms close to 1. For each j = 0 : 60,
e evaluate zT

0 Tj(A)z0 using both one-sided and two-sided evaluation and compare these quantities to the
esults obtained using one-sided evaluation in extended precision.

Results are shown in Fig. 1. The two algorithms had more or less the same behavior, with the absolute
rror increasing slowly as a function of the degree j. As expected, the outputs from two-sided evaluation had
large relative error when zT

0 Tj(A)z0 was small. More interestingly, the outputs from one-sided evaluation
ere just as inaccurate due to cancellation from computing the inner products zT

0 zj .
In the second example, A ∈ R50×50 and z0 ∈ R50 are chosen so that ∥Tj(A)z0∥2 is small for j = 35 only—in

articular, the matrix A is chosen to have several eigenvalues close to numbers of the form cos((k+1/2)π/35).
ne-sided and two-sided evaluation are again compared to one-sided evaluation in extended precision.
Results are shown in Fig. 2. Once again, the two algorithms had more or less the same behavior. This

ime, however, |zT
0 zj | was not much smaller than ∥z0∥2∥zj∥2, so the error from one-sided evaluation did

not come from cancellation in the inner product. Instead, the error arose from the computation of zj itself:
compared to the result produced using extended precision, the vector zj computed in double precision had
a relative 2-norm error of about 5 × 10−5. By contrast, none of the other Chebyshev vectors had a relative
error larger than 10−14.

These experiments suggest that although it is possible to create cases where two-sided evaluation will
have a large relative error, our algorithm appears to have roughly the same accuracy as one-sided evaluation.
Although further investigation is required, we suspect that it is possible to show that Algorithm 2 satisfies

a backward stability condition.

4
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Fig. 2. Relative (left) and absolute (right) errors in the computed values of zT
0 Tj (A)z0 from one-sided and two-sided evaluation.

. Conclusion

We have shown how to evaluate the expression zT pn(A)z, where A is symmetric and pn is a polynomial
n the standard or Chebyshev basis, using no more than ⌈n/2⌉ matvecs with A. Our proposed method is
imple to implement and can be used for any stochastic trace estimation technique that relies on Taylor
xpansions or Chebyshev interpolation. The stability of our method remains an open question, but numerical
xperiments suggest that its output will have accuracy comparable to that of standard one-sided evaluation.
e therefore recommend that two-sided evaluation be incorporated into existing algorithms.
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