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Abstract

A dispersive wave hydro-sediment-morphodynamic model developed by complementing the shallow water hydro-sediment-
morphodynamic (SHSM) equations with the dispersive term from the Green–Naghdi equations is presented. A numerical
solution algorithm for the model based on the second-order Strang operator splitting is presented. The model is partitioned into
two parts, (1) the SHSM equations and (2) the dispersive correction part, which are discretized using discontinuous Galerkin
finite element methods. This splitting technique provides a facility to select dynamically regions of a problem domain where
the dispersive term is not applied, e.g. wave breaking regions where the dispersive wave model is no longer valid. Algorithms
that can handle wetting–drying and detect wave breaking are provided and a number of numerical examples are presented
to validate the developed numerical solution algorithm. The results of the simulations indicate that the model is capable of
predicting sediment transport and bed morphodynamic processes correctly provided that the empirical models for the suspended
and bed load transport are properly calibrated. Moreover, the developed model is able to accurately capture hydrodynamics
and wave dispersion effects up to swash zones, and its application is justified for simulations where dispersive wave effects
are prevalent.
c⃝ 2021 Elsevier B.V. All rights reserved.
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1. Introduction

A sediment transport process in coastal applications is a type of a two-phase fluid–solid flow with sea water as
the fluid and pebbles and stones of varying sizes, and quartz sand as the solid. There are three modes of sediment
transport: bed load, suspended load, and wash load transport. The bed load transport is characterized by motion of
the sediment particles without detaching from the sediment bed for a significant amount of time, i.e. the sediment
particles move by sliding, rolling, and saltating. There are a number of empirical models developed for the bed load
transport, for example Meyer-Peter and Mueller [1], Fernandez Luque and Van Beek [2], Nielsen [3], Ribberink
[4]. In the suspended load transport, the sediment particles suspended in water are advected with the water flow.
These sediment particles, which are typically of a fine silt and clay size, remain suspended in water by turbulent
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flows and require a significant amount of time to settle on the sediment bed. Sediment particles in the wash load
are transported without deposition while remaining close to the water surface in near-permanent suspension. Due
to a limited effect of the wash load on the sediment bed morphology, effects of the wash load transport are not
considered in the presented work.

Hydrodynamic, sediment transport, and bed morphodynamic processes are closely interrelated: hydrodynamic
parameters of a water flow affect sediment transport rates, these rates influence the bed morphology that in
its turn affects the water flow and sediment transport. These hydro-sediment-morphodynamic processes driven
by astronomical tides, winds, and long-wave currents in coastal areas attract a high degree of interest since
morphological changes of a coastal area can negatively affect its infrastructure and environment. Elements of coastal
infrastructure, such as bridges, piers, and levees, can become structurally compromised as a result of excessive
erosion of the sediment bed due to scouring. Environmental concerns include shoreline and beach erosion that may
damage natural habitats of endangered protected species, and the effect of sediment transport on contaminants,
i.e. sediment deposits may serve as dangerous contaminant sinks or sources. It is thus evident that mathematical
modeling of hydro-sediment-morphodynamic processes in coastal areas has clear engineering relevance. Deriving
such models poses, however, a number of challenges since they have to couple non-linear hydrodynamic, sediment
transport, and bed morphodynamic equations along with modeling their two-way interactions.

A number of hydro-sediment-morphodynamic models, ranging from one to three dimensional models, have been
developed for coastal applications over the last four decades. These models are discussed in detail in [5] and [6]. A
three-dimensional model has the capacity for a more accurate and detailed resolution of the process [7–9]; however,
the amount of computational resources required to run any sizable simulation with such a model is prohibitively
large. Therefore, application of three-dimensional models is typically limited to short-time simulations over small-
size domains. As an alternative, a depth averaged two- or, in some cases, one-dimensional model can be used
to resolve hydro-sediment-morphodynamic processes in coastal areas. One such model is formed by the shallow
water hydro-sediment-morphodynamic (SHSM) equations, which are derived by integrating and averaging the three-
dimensional mass and momentum conservation equations of motion (e.g. see Wu [10]). In the SHSM equations, the
nonlinear shallow water equations, which resolve water–sediment mixture hydrodynamics, are fully coupled with
sediment transport and bed morphodynamic models (see Cao et al. [11] for variations of the SHSM equations).
Within the last decade, the SHSM equations have been successfully applied in studies of coastal hydro-sediment-
morphodynamic processes (e.g. Xiao et al. 2010 [12], Zhu and Dodd, 2015 [13], Kim, 2015 [14], Incelli et al.
2016 [15], Briganti et al. 2016 [16]).

Numerical solution algorithms for the SHSM equations are typically developed with finite volume methods for
applications with unstructured grids. Cao et al. [17] use the total-variation-diminishing (TVD) weighted average
flux method (WAF) in conjunction with the Harten–Lax–van Leer-contact (HLLC) approximate Riemann solver
to develop their numerical solution algorithm for the SHSM equations. Examples of works that employ HLLC
as an approximate Riemann solver for numerical flux definitions include [18,19], and [20]. Algorithms based on
upwinding numerical fluxes and Roe-averaged states are developed in [21] and [22]. Liu et al. [23–25] develop
numerical methods for the SHSM equations that employ a central-upwind scheme along with the Lagrange theorem
to approximate the upper and lower bounds of the local wave speeds. Xia et al. [26] use the operator-splitting
technique for the source term and the FORCE (first-order centered) approximate Riemann solver for a numerical
treatment of the model. Discontinuous Galerkin discretizations of the SHSM equations are used less often, see,
e.g., [27] and [28].

The nonlinear shallow water equations, which form the hydrodynamic part of the SHSM equations, have a
number of advantages: a capacity to approximate water motion with a sufficient accuracy in the shallow water flow
regime, a plethora of developed numerical solution algorithms (e.g. Zhao et al. [29], Anastasiou and Chan [30],
Sleigh et al. [31], Aizinger and Dawson [32], Yoon and Kang [33], Kubatko et al. [34], Samii et al. [35]), efficient
parallelization strategies (e.g. hybrid MPI+OpenMP and HPX parallelization in Bremer et al. [36]), and its ability
to approximate wave breaking effects in surf zones. However, this hydrodynamic model does not have a capacity
to capture wave dispersion effects; and, therefore, an application of the SHSM equations is not feasible in areas
where the dispersion effects are prevalent. An alternative depth-averaged hydrodynamic model that can reproduce
dispersion effects is formed by the Green–Naghdi equations developed in [37]. A number of numerical solution
algorithms exist for the Green–Naghdi equations that use various discretization techniques, from finite difference to
finite element methods, and a Strang operator splitting technique (e.g. see [38–45]). The use of a Strang operator
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Fig. 1. A model representation of a body of water as a domain Dt ⊂ R
d+1.

splitting in these algorithms provides the capacity to switch between the nonlinear shallow water equations and the
Green–Naghdi equations whenever one of the hydrodynamic models is more accurate than the other [42].

The purpose of the presented work is to introduce dispersive wave effects into the SHSM equations. This is
achieved through considering the Green–Naghdi equations which results in a dispersive wave hydro-sediment-
morphodynamic model. Since the difference between the nonlinear shallow water equations and the Green–Naghdi
equations is constituted by the dispersive term defined through a differential operator that forms an elliptic
system [39], this new model is formed by incorporating the dispersive term into the SHSM equations. The resulting
model has the potential to be used in the simulation of morphodynamic processes in areas where dispersive wave
effects are prevalent. Numerical solution algorithms for this model are developed employing a Strang operator
splitting technique and discontinuous Galerkin finite element methods. A significant portion of this work comprises
the development of a massively parallel solver that uses the developed numerical solution algorithms. The solver
extends a C++ software package developed by Bremer and Kazhyken.1

The rest of the paper is organized as follows. Section 2 presents the governing equations for the dispersive
wave hydro-sediment-morphodynamic model. The developed numerical solution algorithms are introduced in
Section 3. Section 4 presents a number of numerical tests, including one-dimensional and two-dimensional dam
break simulations and solitary wave runs over an erodible sloping beach, that are used to perform verification and
validation of the developed algorithms. Final conclusions are presented in Section 5.

2. Governing equations

A body of water can be represented by a domain Dt ⊂ R
d+1, where d is the horizontal spatial dimension that

can take values 1 or 2, and t represents the time variable. The domain Dt is filled with a water–sediment mixture,
modeled as an incompressible inviscid fluid, and bounded vertically by the bottom and top boundaries, ΓB and ΓT ,
which the fluid particles cannot cross (cf. Fig. 1). It is assumed that ΓB and ΓT can be represented as graphs that
vary in time: ΓB due to sediment transport and bed morphodynamic processes, ΓT as the evolving free surface of
the body of water. The bathymetry, b(X, t), and the free surface elevation, ζ (X, t), of the body of water are used
in the parameterization of ΓB and ΓT :

ΓB = {(X, −H0 + b(X, t)) : X ∈ R
d}, (1a)

ΓT = {(X, ζ (X, t)) : X ∈ R
d}, (1b)

and the domain Dt is defined as a set of points (X, z) ∈ R
d × R where −H0 + b(X, t) < z < ζ (X, t).

A depth-averaged model that can resolve water wave dynamics, and subsequent sediment transport and bed
evolution in the domain Dt is the shallow water hydro-sediment-morphodynamic (SHSM) equations (e.g. see Cao
et al. [17]). The hydrodynamic part of the equations is represented by the nonlinear shallow water equations, which
provide a sufficiently accurate approximation to the water wave dynamics whenever the shallowness parameter
µ = H 2

0 /L2
0, where L0 is the characteristic length, and H0 is the reference depth, is less than unity. The present

work aims to develop a hydro-sediment-morphodynamic model that has the capacity to capture wave dispersion
effects, which the nonlinear shallow water equations are unable to resolve. Therefore, the nonlinear shallow water

1 The software is under development on the date of the publication, and can be accessed at www.github.com/UT-CHG/dgswemv2. Should
there be any questions, comments, or suggestions, please contact the developers through the repository issues page.
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equations in the SHSM model are replaced with a single parameter variation of the Green–Naghdi equations, a depth-
averaged hydrodynamic model which has the capacity to capture wave dispersion effects, introduced by Bonneton
et al. in [39]. This forms a set of equations defined over a horizontal domain Ω ⊂ R

d :

∂t q + ∇ · F(q) + D(q) = S(q), (2)

where the vector of unknowns q and the flux matrix F(q) are

q =

⎧
⎪⎪⎨
⎪⎪⎩

h

hu

hc

b

⎫
⎪⎪⎬
⎪⎪⎭

, F(q) =

⎧
⎪⎪⎨
⎪⎪⎩

hu

hu ⊗ u + 1
2 gh2I

hcu

qb

⎫
⎪⎪⎬
⎪⎪⎭

, (3)

the source term S(q) is defined as

S(q) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

E−D
1−p

−gh∇b − ρs−ρw

2ρ
gh2∇c − (ρ0−ρ)(E−D)

ρ(1−p) u + f

E − D

− E−D
1−p

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

, (4)

u is the water velocity represented by a d dimensional vector and h is the water depth represented by the mapping
h(X, t) = ζ (X, t) + H0 − b(X, t) and assumed to be bounded from below by a positive value. Moreover, c is the
volume concentration of sediment in water–sediment mixture, E and D are the sediment entrainment and deposition
rates, respectively, p is the bed porosity, ρw and ρs are the water and the sediment densities, ρ and ρ0 are the
water–sediment mixture and saturated bed densities defined as ρ = (1 − c)ρw + cρs and ρ0 = (1 − p)ρs + pρw, qb

is the bed load sediment flux, f comprises additional source terms for the momentum continuity equation (e.g. the
Coriolis, bottom friction, and surface wind stress forces), g is the acceleration due to gravity, and I ∈ R

d×d is the
identity matrix. Finally, the wave dispersion effects are introduced into the model through the dispersive term

D(q) =

⎧
⎪⎪⎨
⎪⎪⎩

0
w1 − α−1gh∇ζ

0
0

⎫
⎪⎪⎬
⎪⎪⎭

, (5)

where w1 is defined through an elliptic system

(I + αhT h−1)w1 = α−1gh∇ζ + hQ1(u), (6)

with operators T and Q1 defined as

T (w) =R1(∇ · w) + R2(∇b · w), (7a)

Q1(w) = − 2R1

(
∂x w · ∂yw⊥ + (∇ · w)2

)
+ R2 (w · (w · ∇)∇b) , (7b)

where operators R1 and R2 are

R1(w) = − 1

3h
∇(h3w) − h

2
w∇b, (8a)

R2(w) = 1

2h
∇(h2w) + w∇b, (8b)

and w⊥ = (−w2, w1)T. Parameter α ∈ R in the dispersive term is used to optimize dispersive properties of the
presented hydro-sediment-morphodynamic model. By adjusting α, the difference between the phase and group
velocities coming from the Stokes linear theory and the Green–Naghdi equations can be minimized. A common
strategy aims at minimizing the averaged variation over some range of wave number values [39].

In the presented model E , D and qb are defined through empirical equations. The sediment entrainment rate E

may be defined as in [46]:

E =
{

φ(θ − θc)|u|h if θ > θc

0 if θ ≤ θc,
(9)
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where φ is a calibration parameter, θc is the critical Shields parameter and θ is the Shields parameter given by
θ = |τ b|/

√
sgd50, where τ b is the bottom friction, s = ρs/ρw − 1 is the submerged specific gravity, and d50 is the

mean sediment particle size. The sediment deposition rate D can be estimated by an empirical model from [17]:

D = ωoCa(1 − Ca)2, (10)

where ωo is the setting velocity of a sediment particle in still water, and Ca = cαc is the near-bed sediment volume
concentration with the coefficient αc = min(2, (1 − p)/c). A number of empirical models for qb is proposed as
(see [47,48] and all the references therein)

qb = A(h, u)u|u|m−1, (11)

where 1 ≤ m ≤ 3 and A(h, u) is an empirical equation, e.g. the Grass model takes A as a constant calibrated for
the application under investigation and sets m = 3, cf. [49].

3. Numerical methods

Discontinuous Galerkin finite element methods are used to discretize the governing equations. This choice
facilitates the use of unstructured meshes that are well suited for irregular geometries of coastal areas. Thus, the
problem domain Ω is partitioned into a finite element mesh Th = {K } that provides an approximation to the domain:

Ω ≈ Ωh =
∑

K∈Th

K , (12)

where the subscript h stands for the mesh parameter represented by the diameter of the smallest element in the
mesh. The set of all mesh element faces, ∂Th , and the set of all edges of the mesh skeleton, Eh , are defined as

∂Th = {∂K : K ∈ Th}, (13a)

Eh = {e ∈
⋃

K∈Th

∂K }. (13b)

Note that in Eh the common element faces appear only once but in ∂Th they are counted twice.
To develop variational formulations of the governing equations, inner products are defined for finite dimensional

vectors u and v through:

(u, v)Ω =
∫

Ω

u · v dX, (14a)

⟨u, v⟩∂Ω =
∫

∂Ω

u · v dX, (14b)

for Ω ⊂ R
d and ∂Ω ⊂ R

d−1.
An approximating space of trial and test functions is chosen as the set of square integrable functions over Ωh

such that their restriction to an element K belongs to Qp(K ), a space of polynomials of degree at most p ≥ 0 with
support in K :

V
p,m

h := {v ∈ (L2(Ωh))m : v|K ∈ (Qp(K ))m ∀K ∈ Th}, (15)

and, similarly, an approximation space over the mesh skeleton is chosen as

M
p,m

h := {µ ∈ (L2(Eh))m : µ|e ∈ (Qp(e))m ∀e ∈ Eh}. (16)

A Strang operator splitting technique is used in the numerical solution of the hydro-sediment-morphodynamic
model presented in Eq. (2). To this end, the model is split into two separate parts: (1) the SHSM equations obtained
by dropping the dispersive term of the equations, and (2) the dispersive correction part where the wave dispersion
effects on flow velocities are introduced into the model through the dispersive term. If S1 is a numerical solution
operator for the SHSM equations, i.e. S1(∆t) propagates numerical solution by a time step ∆t , and, similarly, S2

is a numerical solution operator for the dispersive correction part, then the numerical solution operator for the full
hydro-sediment-morphodynamic model in Eq. (2) can be approximated with the Strang operator splitting technique
[50]:

S(∆t) = S1(∆t/2)S2(∆t)S1(∆t/2), (17)
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where S is a second-order temporal discretization if both S1 and S2 use a second-order time discretization method.
A numerical solution operator S1 for the SHSM equations is developed using a discontinuous Galerkin finite

element formulation where an approximate solution qh ∈ V
p,d+3
h is sought such that it satisfies the variational

formulation

(∂t qh, v)Th
− (Fh, ∇v)Th

+ ⟨F∗
h, v⟩∂Th

− (Sh, v)Th
= 0 ∀v ∈ V

p,d+3
h , (18)

where Fh = F(qh) and Sh = S(qh), F∗
h is a single valued approximation to Fhn over element faces, called the

numerical flux, and n is the unit outward normal vector to element face. To define the numerical flux, the bed update
part of the SHSM equations is singled out for a separate treatment. The numerical flux for this formulation is then
defined as

F∗
h =

{
G∗

h

q∗
b

}
, (19)

where q∗
b is the numerical bed load flux, and G∗

h is the numerical flux for the remaining part of the system where
the vector of unknowns r and the flux matrix G(r) are

r =

⎧
⎨
⎩

h

hu

hc

⎫
⎬
⎭ , G(r) =

⎧
⎨
⎩

hu

hu ⊗ u + 1
2 gh2I

hcu

⎫
⎬
⎭ . (20)

Assuming that the sediment transport is always in the flow direction, the numerical flux q∗
b is defined as in [51]:

q∗
b =

{
q+

b if û · n ≥ 0

q−
b if û · n < 0,

(21)

where û is the Roe-averaged velocity defined as

û = u+√
h+ + u−√

h−
√

h+ +
√

h−
. (22)

Here and for the rest of this article, superscript + denotes a variable value at ∂K when approaching from the
interior of an element K , and − when approaching from the exterior. An upwinding scheme is employed for the
numerical bed load flux q∗

b since computing the eigenvalues of the normal Jacobian matrix for the flux matrix F(q)
requires computationally intensive numerical approximation techniques and does not guarantee real values except
in the case where the Grass model is used for qb [47,48]. Therefore, using numerical flux definitions that involve
the eigenvalues of the normal Jacobian matrix for the full system may prove to be unfeasible.

The normal Jacobian matrix A = ∂r(Gn) of the remaining part of the system has four real eigenvalues:
λ1,2 = u · n ±

√
gh, λ3,4 = u · n. A Godunov-type Harten–Lax–van Leer scheme is used to define the numerical

flux for the remaining system [52]:

G∗
h =

⎧
⎪⎨
⎪⎩

G+
h n if S+ > 0

GHLL
h if S+ ≤ 0 ≤ S−

G−
h n if S− < 0,

(23)

where Gh = G(rh), the truncated characteristic speeds S+ and S− are

S+ = min(u+ · n −
√

gh+, u− · n −
√

gh−), (24a)

S− = max(u+ · n +
√

gh+, u− · n +
√

gh−), (24b)

and the Harten–Lax–van Leer flux GHLL
h is

GHLL
h = 1

S− − S+ ((S−G+
h − S+G−

h )n − S+S−(r+
h − r−

h )). (25)

A hybridized discontinuous Galerkin scheme may be used to define the numerical flux through r̂h ∈ M
p,d+2
h , an

approximation to r over the mesh skeleton called the numerical trace [53]:

G∗
h = Ĝhn + τ (rh − r̂h), (26)
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where Ĝh = G(̂rh), and τ = λmax (̂rh) is the stabilization parameter defined as the maximum eigenvalue of the
normal Jacobian matrix A:

λmax(r) = |u · n| +
√

gh. (27)

The numerical trace r̂h ∈ M
p,d+2
h must be such that the numerical flux is conserved across all internal edges in

the mesh skeleton, and boundary conditions are satisfied at all boundary edges through the boundary operator Bh

defined according to an imposed boundary condition [53]:

⟨G∗
h, µ⟩∂Th\∂Ωh

+ ⟨Bh, µ⟩∂Th∩∂Ωh
= 0 ∀µ ∈ M

p,d+2
h . (28)

Eqs. (18) and (28) along with the definition of q∗
b form a system of equations that is used to solve for an approximate

solution qh ∈ V
p,d+3
h . The boundary condition operator Bh is defined as

Bh = A+rh − |A|̂rh − A−r∞, (29)

where A± = 1
2 (A ± |A|), and r∞ is the weakly imposed boundary state [53] . For a slip wall boundary condition,

Bh is defined as

Bh = r̂h − rslip, (30)

where rslip = {(h)h (hu)h − ((hu)h · n)n (hc)h}T is a state with its normal velocity component truncated [53].
In order to generate S2, a numerical solution operator for the dispersive correction part of the presented hydro-

sediment-morphodynamic model, Eq. (6) is written as a system of first order equations using the definition for
operator T [44]:

{
∇ · (h−1w1) − h−3w2 = 0

w1 − 1
3∇w2 − 1

2 h−1w2∇b + 1
2∇(h∇b · w1) + w1∇b ⊗ ∇b = s(q)

, (31)

where s(q) = α−1gh∇ζ + hQ1(u). A discontinuous Galerkin finite element discretization for Eq. (31) forms a
global system of equations. A hybridized discontinuous Galerkin formulation can be used to reduce the dimension
of the global system of equations. Therefore, the hybridized discontinuous Galerkin method developed by Samii
and Dawson in [44] is employed to treat numerically Eq. (31) to obtain an approximate solution w1h ∈ V

p,d

h .
The result is then used in the dispersive correction to seek an approximate solution qh ∈ V

p,d+3
h that satisfies the

variational formulation

(∂t qh, v)Th
+ (Dh, v)Th

= 0 ∀v ∈ V
p,d+3
h , (32)

where Dh = D(qh). High order derivatives of uh , present in Q1(uh), are computed weakly using a discontinuous
Galerkin method with centered numerical fluxes.

In the developed depth-averaged hydro-sediment-morphodynamic model, it is assumed that the water depth h

is bounded from below by a positive value. This assumption implemented by a wetting–drying algorithm which
ensures that the water depth remains positive. The numerical solution operator S2 does not affect the water depth;
therefore, the wetting–drying algorithm should work in conjunction with the numerical solution operator for the
SHSM equations S1. In the presented work, the wetting–drying algorithm developed for the nonlinear shallow water
equations by Bunya et al. in [54] is adapted to the SHSM equations. In the adapted version of the Bunya et al.
wetting–drying algorithm, the sediment term hc in the SHSM equations is treated the same way as the momentum
term hu and the rest of the algorithm remains the same. The bed update part of the equations does not affect the
water depth and, therefore, it does not require the wetting–drying algorithm. Finally, in the dispersive correction
part of the equations the wet–dry front is modeled as a slip wall boundary.

Using the Green–Naghdi equations as the hydrodynamic part of the presented model allows capturing wave
dispersion effects; however, the Green–Naghdi equations are limited to parts of the problem domain that are free
from discontinuities in numerical solutions [43]. This poses certain limitations on the application of the Green–
Naghdi equations, e.g. wave breaking phenomena in surf zones present themselves as a water depth discontinuity
in numerical solutions. While the Green–Naghdi equations cannot accurately resolve wave breaking, the nonlinear
shallow water equations are more suitable for such areas [43]. Using the Strang operator splitting allows switching
to the nonlinear shallow water equations from the Green–Naghdi equations by setting S2 = 1 in regions with
discontinuities in numerical solutions. Thus, a discontinuity detection criterion is required to dynamically switch to
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S2 = 1. In the presented work, the numerical solution algorithm is augmented with the water depth discontinuity
detection criterion adopted by Duran and Marche in [43] from Krivodonova et al. [55]. A water depth discontinuity
is identified over an element K if the parameter [55,43]

IK =
∑

F∈∂Kin
|
∫

F
(h+ − h−)dX |

h
p+1

2
K |∂Kin| ∥h∥L∞(K )

(33)

is greater than a specified threshold that is typically O(1). In this description of the parameter IK , hK is the element
diameter, ∂Kin are the inflow faces of the element where u ·n < 0, and |∂Kin| is the total length of the inflow faces.

Since S2 is not applied in regions with discontinuities in the numerical solutions, a slope limiting is not needed
for the dispersive correction part of the presented model. However, whenever discontinuities occur in the numerical
solutions to the SHSM equations a slope limiting algorithm is required in order to remove the oscillations at sharp
discontinuities and to preserve numerical stability. Thus, the Cockburn–Shu limiter [56] is incorporated into the
numerical solution algorithm and applied in conjunction with the operator S1. The details of the limiter are not
presented here, but readers are encouraged to consult the original source.

4. Numerical experiments and discussion

The developed numerical model has been implemented in a software framework written in C++ programming
language with the use of open source scientific computing libraries, such as Eigen [57], Blaze [58], and
PETSc [59]. The software has been parallelized for shared and distributed memory systems with the use of a hybrid
OpenMP+MPI programming, and HPX [60]. Performance comparison between the hybrid programming and HPX
has been performed by Bremer et al. in [36].

The presented numerical model is validated in five numerical examples. In the first four set-up only the numerical
solution operator for the SHSM equations is validated against four dam break experiments. In these experiments the
dispersive wave effects are negligible; therefore, S2 = 1 in the simulations. The last example uses the full dispersive
wave hydro-sediment-morphodynamic model to simulate water waves, sediment transport, and bed morphodynamics
caused by solitary wave runs over a sloping beach.

The first-order Dubiner polynomials from [61] are used for the approximating space Vh , and the first-order
Legendre polynomials are used for the approximating space Mh . In all presented examples, numerical solutions are
computed using two different definitions of the numerical flux G∗

h : (1) the Harten–Lax–van Leer discontinuous
Galerkin scheme (HLL DG), (2) the Nguyen–Peraire hybridized discontinuous Galerkin scheme (NP HDG).
Consequently, the numerical results obtained using these two definitions for the numerical flux are compared against
each other.

4.1. 1D dam break

In this numerical experiment the SHSM equations are used to simulate a 1D dam break over a mobile bed. Initial
conditions for this experiment are set as a clear (c0(x) = 0) still water (u0(x) = 0) with its depth distributed as

h0(x) =
{

40 if x ≤ 0

2 if x > 0,
(34)

and the bathymetry set to b0(x) = 0. The mobile bed in this experiment has the sediment density ρs = 2650 kg/m3,
the bed porosity p = 0.4, the critical Shields parameter θc = 0.045, and the mean sediment particle size d50 set
as 4 mm and 8 mm for two separate simulation runs. For the sediment entrainment rate model, the calibration
parameter is set as φ = 0.015. The bed load transport is not considered in this numerical experiment by setting
qb = 0. The bottom friction force is introduced into the model through the source term S(q) by setting

f = gn2

h1/3
|u|u, (35)

with the Manning’s roughness coefficient n = 0.03.
The problem domain Ω = (−5000, 5000) × (−10, 10) m2 is partitioned into a finite element mesh with 500 × 1

square cells each containing 2 triangular elements. The explicit Euler time stepping scheme is employed with the
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Fig. 2. Free surface elevation and bathymetry from the 1D dam break simulation compared with Cao et al. experiment [17].

time step ∆t = 0.1 s. Two simulations with varying mean sediment particle sizes are run for 2 min, and their results
are compared to the numerical experiments carried out for the same 1D dam break problem by Cao et al. in [17].
The results of the numerical simulations at t = {60, 120} s for d50 = {4, 8} mm are presented in Fig. 2. Smaller
sediment particle sizes imply larger magnitude for sediment entrainment rate E , which presents itself as a larger
bed erosion for d50 = 4 mm. The numerical results for both the free surface elevation, ζ , and the bathymetry, b, are
in good agreement with the results obtained by Cao et al. The numerical results obtained with HLL DG and NP
HDG schemes closely match each other except in the area of the hydraulic jump where NP HDG scheme provides
a smoother solution for the free surface elevation.

4.2. 1D dam break with wetting–drying

This example simulates a 1D dam break over a mobile dry bed and is used to validate the wetting–drying
algorithm employed in the presented numerical model. Numerical simulations for this experiment are performed
with the SHSM equations where water is initially in clear still state, the water depth is set to

h0(x) =
{

0.1 if x ≤ 0

0 if x > 0,
(36)

and the initial bathymetry is b0(x) = 0. Two physical experiments have been performed for this setup: (1) the
Louvain experiment by Fraccarollo and Capart [62], (2) the Taipei experiment by Capart and Young [63]. These
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Fig. 3. Free surface elevation and bathymetry from the 1D dam break with wetting–drying simulations compared with the Louvain [62] and
Taipei [63] experiments.

experiments are set up similarly except for the sediment properties. In the Louvain experiment the sediment density
ρs = 1540 kg/m3, the bed porosity p = 0.3, the critical Shields parameter θc = 0.05, and the mean sediment
particle size d50 = 3.5 mm. On the other hand, in the Taipei experiment the sediment density ρs = 1048 kg/m3, the
bed porosity p = 0.28, the critical Shields parameter θc = 0.05, and the mean sediment particle size d50 = 6.1 mm.
The calibration parameter for the sediment entrainment rate model, φ, is set as 4.0 for the Louvain experiment, and
2.5 for the Taipei experiment. In both experiments, the bed load transport is disregarded by setting qb = 0, and the
Manning’s friction model from Eq. (35) is used for the bottom friction force with n = 0.025.

The problem domain Ω = (−1, 1) × (−2 · 10−3, 2 · 10−3) m2 is partitioned into a finite element mesh with
500 × 1 square cells each containing two triangular elements. The explicit Euler time stepping scheme with the
time step ∆t = 5 · 10−4 s is used to propagate simulations in time for 1 s. The simulations of the 1D dam break
over mobile dry bed are carried out with the parameters from the Louvain and Taipei experiments. The results are
compared with the Louvain experiment at t = {5t0, 7t0, 10t0} and with the Taipei experiment at t = {3t0, 4t0, 5t0},
where t0 =

√
g/h0 ≈ 0.101 s (h0 = 0.1 m), in Fig. 3. The numerical solution algorithm successfully models

the wetting–drying process while providing sufficiently accurate numerical results for the free surface elevation, ζ ,
and the bathymetry, b. Similar to the previous example, HLL DG and NP HDG results closely match each other
everywhere other than the hydraulic jump area.
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Fig. 4. Sediment erosion/deposition measurements from the 2D flume with abrupt widening experiment compared with Goutiere et al.
results [64].

4.3. 2D flume with abrupt widening

A 2D dam break is simulated in an “L-shaped” flume which is 0.25 m wide in its initial 4 m and has an abrupt
widening on one side to 0.5 m for the remaining 2 m. The flume bed is covered with 0.1 m of sediment (b0(x) = 0.1)
with the following properties: the sediment density ρs = 2630 kg/m3, the bed porosity p = 0.39, the critical Shields
parameter θc = 0.047, the mean sediment particle size d50 = 1.72 mm. In this experiment, only the suspended load
in taken into account while setting the calibration parameter for the sediment entrainment rate model, φ, to 0.35.
Initial conditions for the SHSM equations simulations are clear still water with its initial depth

h0(x) =
{

0.25 if x ≤ 3

0 if x > 3,
(37)

which implies that the abrupt expansion of the flume is located 1 m downstream from the dam break location. The
Manning’s friction model from Eq. (35) is used for the bottom friction force with n = 0.0165.
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The “L-shaped” problem domain Ω for this simulation is partitioned into nearly 4 · 104 triangular elements. The
explicit Euler time integration scheme is used for this numerical simulation with the time step ∆t = 2 · 10−4 s.
The simulation is run for 20 s after which the sediment erosion/deposition measurements are taken at 4 lateral
sections located at x = {4.1(S1), 4.2(S2), 4.3(S3), 4.4(S4)} m. These measurements are compared with the results
of the physical experiment performed by Goutiere et al. in [64] in Fig. 4. The results of the numerical simulation
generally agree with the results of the physical experiment. A general tendency for sediment erosion on the left side
and sediment deposition on the right side of the flume is captured in the numerical simulation. The model is also
able to capture large sediment deposition on the right side at Sections 3 and 4 where the water flow experiences
sudden deceleration due to an impact with the side wall [64]. No significant differences can be observed between
HLL DG and NP HDG schemes in this example.

4.4. 2D partial dam break

A partial 2D dam break is simulated in a flume that consist of two 3.6 m wide reservoirs that are connected by a
1 m long and 1 m wide channel with a gate in the middle, which is removed at the beginning of the experiment to
simulate a partial dam break. The channel connects the reservoirs along their longitudinal axes. The wet reservoir
that holds water is 10 m long, and the dry reservoir is 15 m long. The bed of the dry reservoir is covered by 0.085 m
of sediment with the sediment density ρs = 2630 kg/m3, the bed porosity p = 0.42, the critical Shields parameter
θc = 0.047, and the mean sediment particle size d50 = 1.61 mm. The bed load transport is not taken into account in
this experiment, and the calibration parameter for the sediment entrainment rate model φ = 0.05. Initially, the wet
reservoir water is in clear still state and is 0.47 m deep. The bottom friction force is modeled with the Manning’s
friction model from Eq. (35) with n = 0.0165.

The problem domain Ω for this numerical experiment is partitioned into over 105 triangular elements. The
numerical simulation is propagated in time with the explicit Euler time stepping scheme with the time step
∆t = 5 · 10−4 s. After 20 s of the numerical simulation, the sediment erosion/deposition measurements are taken at
3 longitudinal sections of the dry reservoir located at y = {0.2(S1), 0.7(S2), 1.45(S3)} m away from the longitudinal
axis of the reservoir. Fig. 5 presents the measurements and compares them with the results of the physical experiment
performed by Soares-Frazão et al. in [65]. The results of the numerical simulation are in good agreement with
the results of the physical experiment. The sediment is mostly eroded near the channel, where the bed is nearly
completely scoured away and deposited downstream by the water flow from the dam break, as is evident from the
measurements at Section 1. In this example, HLL DG and NP HDG schemes did not lead to significantly different
numerical solutions.

4.5. Solitary wave over a sloping beach

In this experiment, the full dispersive wave hydro-sediment-morphodynamic model is used to simulate water
waves, and subsequent sediment transport and bed evolution during run up and run down of a solitary wave over
a linearly sloping beach. This experiment showcases a number of features of the presented model: (1) the use
of the Green–Naghdi equations as a hydrodynamic component of the model since wave dispersion effects play a
significant role during run up of a solitary wave over a sloping beach, (2) switching to the nonlinear shallow water
equations as a hydrodynamic model in swash zones since solitary waves in this experiment have a sufficiently high
amplitude to experience wave breaking, (3) solitary waves that run over a sloping beach in this experiment cause
significant erosion/deposition of the beach bed; thus, the ability of the model to estimate sediment transport and bed
morphology can be evaluated. Initial conditions for solitary waves in this experiment are characterized by equations

h0(x) = H0 + a0 sech2 (κ(x − x0)) , (hu)0(x) = c0h0(x) − c0 H0, (38)

where a0 is the solitary wave height, x0 the initial wave position, and

κ =
√

3a0

2H0
√

H0 + a0
, c0 =

√
g(H0 + a0). (39)

Initially, a simulation has been performed over a rigid bed to validate the dispersive wave hydrodynamic model.
To carry out this numerical simulation, the problem domain Ω = (−10, 10) × (−2.5 · 10−2, 2.5 · 10−2) m2 is
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Fig. 5. Sediment erosion/deposition measurements from the 2D partial dam break experiment compared with Soares-Frazão et al. results [65].

partitioned into a finite element mesh comprised of 400 × 1 square cells containing two triangular elements. A
two-stage second-order Runge–Kutta method is used to perform time integration with the time step ∆t = 5 ·10−3 s.
The Manning’s roughness coefficient n = 0.03 is used for the bottom friction force. The toe of the sloping
beach for this simulation is located at x = 0 where an initially flat bed starts climbing linearly up at a 1:14
rate. The parameters for the solitary wave in this simulation are: H0 = 0.4 m, a0 = 0.071 m, and x0 = −5 m.
This simulation setup corresponds to the solitary wave run over a sloping beach experiment performed by Sumer
et al. [66]. Fig. 6 presents numerical solutions for the free surface elevations recorded at 5 measuring stations located
at x = {0.0(Toe), 4.63(S1), 4.87(S3), 5.35(S5), 5.85(S8)} m during 20 s of the simulation and compares them to the
experimental results provided by Sumer et al. The experimental results suggest that wave breaking occurs somewhere
between Sections 3 and 5. This is accurately captured with the dispersive wave hydrodynamic model. However, the
free surface elevation measurements at the onshore Section 8 show that the hydrodynamic model is less precise in
resolving water waves in the swash zone. Subsequently, the hydrodynamic model is unable to simulate accurately
the water motion during the run down stage. Nevertheless, considering complexities associated with modeling water
motion induced by solitary waves over a sloping beach, the results of the simulation can be regarded as satisfactory.

To validate the sediment transport and bed morphodynamic part of the model, solitary wave run simulations
have been performed over the problem domain Ω = (−8, 42) × (−5 · 10−2, 5 · 10−2) m2. The problem domain
is partitioned into 500 × 1 square cells each containing two triangular elements, and a two stage second-order
Runge–Kutta method with the time step ∆t = 2.5 ·10−3 s is used for temporal discretization. The toe of the sloping

13



K. Kazhyken, J. Videman and C. Dawson Computer Methods in Applied Mechanics and Engineering 377 (2021) 113684

Fig. 6. Free surface elevation measurements at 5 measuring stations compared to the experimental results by Sumer et al. [66].

beach in the simulation is located at x = 12 m where the flat rigid bed starts climbing at 1:15 rate. The sloping part
of the beach is covered with mobile sediment with the sediment density ρs = 2650 kg/m3, the bed porosity p = 0.4,
the critical Shields parameter θc = 0.045, the mean sediment particle size d50 = 0.2 mm. The Manning’s roughness
coefficient n = 0.008 is used for the bottom friction force. The solitary wave in this simulation is parametrized
with H0 = 1 m, a0 = 0.6 m, and x0 = 2 m. A physical experiment with the same setup has been performed by
Young et al. in [67] where a number of solitary waves have been run over a sloping beach and subsequent sediment
erosion/deposition has been recorded. Two simulations are performed: (1) a simulation where only the suspended
load transport is taken into account with its results presented in Fig. 7, and (2) a simulation where both the suspended
and bed load transport are considered with its results presented in Fig. 8. For the suspended load, the calibration
parameter for the sediment entrainment rate model, φ, is set to 0.35; and the Grass model with A = 2 ·10−4 is used
as a model for the bed load flux qb. In both of these simulations sediment erosion/deposition measurements are
taken after 3 solitary waves have been run over the sloping beach for 2 m each, which is a sufficient time for water
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Fig. 7. Sediment erosion/deposition measurements for a simulation with the suspended load transport compared with the results by Young
et al. [67].

Fig. 8. Sediment erosion/deposition measurements for a simulation with the suspended and bed load transport compared with the results by
Young et al. [67].

to substantially settle. The results of these measurements are compared with the experimental results by Young et al.
and they are in good agreement. The experimental results indicate that [67]: (1) during the initial run up sediment
is entrained in water and deposited onshore at the maximum excursion point where the water flow stalls, (2) during
the run down process a shallow high velocity flow causes net sediment erosion in the region between x = 24 m
and x = 35 m, (3) this entrained sediment is then deposited offshore in the vicinity of the hydraulic jump, which is
formed by the retreating water, due to sudden deceleration of the sediment-rich flow. The numerical model is able
to capture the sediment transport and bed morphodynamics features observed in the experiment accurately.

5. Conclusions

A dispersive wave hydro-sediment-morphodynamic model has been developed by introducing the dispersive term
of a single parameter variation of the Green–Naghdi equations into the SHSM equations. The model can be used to
simulate water waves, and the resulting sediment transport and bed morphodynamic processes in areas where wave
dispersion effects are prevalent. A numerical solution operator has been developed for the model which employs
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the second-order Strang operator splitting technique. In order to employ this technique, the dispersive term has
been singled out for a separate numerical treatment with a hybridized discontinuous Galerkin method developed
by Samii and Dawson in [44], and Harten–Lax–van Leer discontinuous Galerkin, and Nguyen–Peraire hybridized
discontinuous Galerkin schemes have been developed for the remaining SHSM equations. The splitting technique
makes it possible to select regions where the dispersive term is not applied, e.g. in wave breaking regions where
the dispersive wave model is no longer valid. The numerical model is augmented with a wave breaking detection
mechanism that can dynamically determine regions where the dispersive term is not applied. To facilitate the use
of the developed model in problems where water may completely recede from parts of the problem domain, the
wetting–drying algorithm by Bunya et al. [54] has been incorporated into the numerical model.

The numerical model has been validated against a number of numerical examples. Dam break simulations have
been performed to validate the numerical solution schemes developed for the SHSM equations. The results of the
simulations indicate that the developed schemes are able to capture hydro-sediment-morphodynamic processes with
a sufficient accuracy. Since empirical models are used for the suspended and bed load transport, a close calibration
for the empirical models’ parameters may be required to improve the accuracy of the presented model. Simulations
of a solitary wave run-up over a sloping beach have been performed to validate the full dispersive wave hydro-
sediment-morphodynamic model. The results of the simulations indicate that the use of the presented model is
justified for flows where the wave dispersion effects are prevalent. Subsequently, the use of the presented model for
such flows accurately captures sediment transport and bed morphodynamic processes driven by these flows.
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