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a b s t r a c t

In this digital era, massive digital misinformation was ranked first by the World
Economic Forum among the top future global risks. As human and financial resources
are limited, governments or companies would like to use the optimal level of debunking
effort and the most efficient debunking strategy. There exists a rich literature that studies
the rumor spreading process on social media. However, a huge gap exists on studying the
simultaneous propagation of false rumors and debunking information, and the interplay
between them. The spreading of rumors and anti-rumors is a dynamic and reciprocal
process. Acknowledging that effective debunking strategy is a potential tool to reduce
the loss of massive digital misinformation, this paper proposes a novel rumor spreading–
debunking (RSD) model by ordinary differential equation (ODE) system to explore the
interplay mechanism between rumor spreading and debunking processes. We derive and
discuss the key factors and parameters that influence the debunking process. Firstly,
we consider the spreading pattern of a rumor before Debunkers appear based on the
Susceptible–Infected–Recovered (SIR) model with its own characteristics of rumor, and
obtain a series of results including the final scope of the rumor spreading, the maximal
scale of the rumor spreader, the number of Stiflers at any time point, and the popularity
level of the rumor. Secondly, with the data from the real world rumor case, which is
the "Immigration Rumor" during Hurricane Harvey in 2017, we determine the case-
specific parameters, and validate our model by comparing the simulated curve with
the real data. Our model helps to understand the impact of the rumor on the social
media, and predict the future trend. Finally, we use our model to simulate the influence
of different debunking strategy, and identify more efficient debunking measures that
should be used by the government officials or companies when facing rumor mill under
different situations.
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1. Introduction

In today’s world, online social media plays a vital role in the information diffusion. With the arrival of the social media,
the patterns, role and impact of word-of-mouth have evolved, and new forms of communities were shaped. In the social
media age, word-of-mouth can travel faster [1], and opinions may become more asymptotically clustered [2]. The scale,
speed and real-time nature of the social Web and the increased possibilities for people to share and express themselves
play a crucial role in this [3]. Information diffusion on social media is a double-sided sword. It can be used by authorities
for effective information distribution and events management, or by malicious entities to spread rumors and fake news.

Propaganda and misinformation have been used throughout history to influence public opinion. In this digital era,
massive digital misinformation was ranked first by the World Economic Forum among the top future global risks, along
with water supply crisis, major systemic financial failures, and failure to adapt to climate change [4]. Social media sites
such as Facebook and Twitter are reported to be major platforms used to spread fake news [5]. The content of the
misinformation includes various topics, such as politics, disasters, economics, entertainment, and sports. For example, on
April 23, 2013, a false rumor about a terror attack on the White House, in which President Obama was allegedly injured,
provoked an immediate crash in the stock market. Another example is that, during Hurricane Harvey in 2017, false rumors,
such as ‘‘mandatory evacuations are underway in the City of Houston’’ [6], ‘‘Immigration status has to be checked before
you are allowed to enter a shelter’’ [6], and ‘‘residents could not return to the coastal city until all critical services were
restored’’ [7], caused great confusion, panic, and anger among people in the affected area. Great loss of life and property
might be caused if people without legal immigration status dare not to enter a shelter for self-protection. During this
rumor propagation event, a large amount of Twitter users play an important role both spreading and debunking the
misinformation [8].

When a rumor starts circulating on the social media, the first thing the stakeholders would like to do is to debunk
the rumor and reduce the loss as soon as possible. Human and financial resources are required for the information
management. Typically, once the rumor was brought to the forefront, anti-rumors will be posted on official media
immediately, such as official websites, Twitter accounts, and TV news. However, if the scope of the rumor propagation
is too wide, the influence of the static anti-rumor on one official media may not be enough. Multiple further debunking
strategies could be applied through the social media, for example, by increasing the number of accounts to disseminate
the anti-rumors, attracting more people to re-tweet the anti-rumor, or encouraging existing rumor spreaders to delete or
clarify the rumors.

As human and financial resources are limited, governments or companies would want to use the more efficient
debunking strategy. The spreading of rumors and anti-rumors is a dynamic and reciprocal process. The debunking
strategies could be affected by some key factors. The first is the current spreading scope of the rumor. If the rumor is
just beginning to circulate in a small scope, less debunking effort is needed. The second is the popularity of the rumor.
For some deceptive rumor that are like real and with astonishing content, the spreading could be surprisingly fast. Under
such circumstance, more debunking effort should be made. The third is the effectiveness of different debunking strategies.
As the interplay between rumor spreading and debunking is dynamic, the effectiveness of the strategies could be different
for rumor with different scope and popularity. Therefore, it is imperative to understand the underlying dynamics of the
interplay between rumor and anti-rumor, and to investigate the efficiency of different debunking strategy.

Acknowledging that the effective debunking strategy is a potential tool to reduce the loss of massive digital misinfor-
mation, this paper proposes a novel model to explore the interplay mechanism between rumor spreading and debunking
processes. Specifically, this study attempts to answer three research questions when the government or an organization
are in the trouble of rumor mill:

• RQ1: What is the current scope, popularity level, and controllable performance of the rumor?
• RQ2: What is the more efficient debunking strategy for the rumor at current stage?
• RQ3:What is the predicted scope and duration of the rumor, and how do these values vary under different debunking

strategies?

Specifically, we use a mathematical method to model the dynamic spreading–debunking process. Rumor spreading is
similar to infectious disease spreading, one person could not get to know the rumor unless he or she saw the rumor posted
by others. The online rumor spreading would fit into the epidemic modeling even better than the oral spreading, because
the underlying social network is relatively tractable [9]. Hence, most of the existing rumor spreading models are built
based on epidemic models [10]. In this paper, ordinary differential equations (ODEs) are applied to describe the dynamic
spreading–debunking system [11]. The key characteristics of the social network, rumor, and anti-rumor are parameterized
in the system of ODEs. With the data from the real world rumor cases, which is the ‘Immigration Rumor’ during Hurricane
Harvey in 2017, we design a Rumor spreading–debunking (RSD) work-flow to determine the case-specific parameters.
Then we use our model to simulate the influence of different debunking strategy, and identify the effective debunking
efforts under various circumstances.

The rest of paper is organized as follows. In Section 2, we review the existing literature on rumor spreading and online
information dissemination. In Section 3, we present our model formulation and analytic propositions. Numerical results
and case analyses are presented in Section 4, followed by discussion and concluding remarks in Section 5. The related
proofs of this study are available in Appendix.
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Fig. 1. The life-cycle of the Spreading and Debunking process of a rumor.

2. Literature review

Rumor is a tall tale of explanations of events circulating from person to person and pertaining to an object, event, or
issue in public concern [12]. Existing literature have widely varying definitions of rumor. Knapp [13] defined rumor as
‘‘a proposition for belief of topical reference disseminated without official verification’’. The key word in this definition is
‘‘unverified’’. Similarly, Harsin [14] identified rumor as ‘‘a claim whose truthfulness is in doubt and which often has no
clear source even if its ideological or partisan origins and intents are clear’’.

The factors that influences the spreading of rumor are various, such as spreading media [15], spreading network
topology [16], information characteristics [17], event uncertainty [18], topic type [19], and the interplay among these
factors [20]. Moreover, existing literature investigated the rumor spreading process from different angles, such as rumor
detection [21], prevention [22], dissemination [23], debunking and intervention [24], rumor source tracking [25]. Some
specific users may play an influential role in the information spreading [26]. The spreading of rumor has been studied in
multiple disciplines and analyzed from multiple aspects. In this paper, we focus on the interplay between rumor spreading
and debunking behaviors, which is still a gap in existing literature. Specifically, we study how the characteristics of the
social network, rumor content, and various debunking strategies impact this interplay process.

The dissemination of rumors is a person-to-person informational contagion process [27]. It is natural to mathematically
model rumor transmission based on the theory of epidemics [28]. The earliest references in dynamic rumor spreading are
based on the Susceptible–Infected–Recovered (SIR) epidemic model, in which the population is stratified into three health
states: susceptible state (denoted by S) represents the ones that are susceptible to the infection of the pathogen, infected
state (denoted by I) includes those that are infected by the pathogen, and recovered state (denoted by R) refers to those
that have been recovered from the infection [29]. Two classical SIR-based models that describe the spread of a rumor
were introduced by Kendall et al. [30] and Maki et al. [31] for closed, finite, and homogeneously mixing populations. In
the SIR-based rumor propagation model, the population is also divided into three classes: Ignorants (similar to Susceptible,
people who never heard the rumor), Spreaders (similar to Infected, people who spread the rumor), and Stiflers (similar
to Recovered, people who know the rumor but are not spreading it to others), where the rumor is propagated according
to the transition rate among these three classes [32].

There has been one stream of research on the extension of the SIR-based rumor spreading models. Zanette [33]
established a rumor spreading model based on small-world networks and provided a threshold of rumor spreading. Zhao
et al. [10] extends the classical SIR rumor spreading model by adding a forgetting mechanism. Wang et al. [34] investigated
a case when two or more kinds of rumors spread at the same time. However, to our best knowledge, none of the existing
literature considered the simultaneous propagation of false rumors and debunking information, and the interplay between
them. An initial false report can be circulated very widely if lacking efficient debunking strategies. Therefore, we are
motivated to propose a novel interplay model based on the classical SIR rumor propagation model, exploring the interplay
mechanism between rumor spreading and debunking processes, and proposing the more efficient debunking strategy.

3. Spreading–debunking competitive model

The life-cycle of a rumor could be divided into two stages. The first stage is the emerging stage, which refers to the
time period between the rumor starting point and official debunking point. Various user behaviors exists in this stage,
including spreading, questioning, seeking confirmation in the social media [35]. Yet, for most of those who see the rumor,
they simply read the information without any posting behavior.

The second stage refers to the time period between the point when the first official anti-rumor appears and the point
when the rumor ends. In the second stage, because of the release of official debunking information, people start to spread
the anti-rumor in the social network. The number of rumor spreaders starts to decrease. We define the ends of the life-
cycle as the point of time when the number of rumor spreaders become under 1. The life-cycle of a rumor is shown in
Fig. 1.

In stage 1, the population in the social network consists of three types of people, namely Ignorants, Spreaders, and
Stiflers. In stage 2, a new type of people, Debunkers, appear. Debunkers are those who spread the anti-rumor recently. If
someone reposts both rumor and anti-rumor recently, we define him as a Debunker. Moreover, in stage 2, there are two
type of Stiflers: those who know about the rumor but did not spread the rumor recently (referred to as Stifler_r), and
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Table 1
Definitions of the five states.
State Definition
Ignorant People who never heard about rumor
Spreader People who spread the rumor and are contagious
Debunker People who spread the anti-rumor and are contagious
Stifler_r People who know about the rumor but do not have contagiousness
Stifler_d People who know about the anti-rumor but do not have contagiosity

Fig. 2. The transition among Ignorant, Spreader, and Stifler on Stage 1.

those who know about the anti-rumor but did not spread the anti-rumor recently (referred to as Stifler_d). If someone
knows about both rumor and anti-rumor but did not spread any recently, we define him as a Stifler_d. Following Kendall
et al. [30], we assume the homogeneity of the population. In this way, the rumor spreading and debunking process could
be modeled in a macro level. We summarize the definitions of the states of people in Table 1.

In the social media, the role of one individual change over one rumor life cycle. We use an example to illustrate the
process. In the very beginning, everyone is the Ignorant, except the initial spreaders (who is the rumor creator). When one
individual, say John, saw the rumor posted by his friend on his time-line, he chose to spread it. At the time he reposted the
rumor, he became a Spreader. John’s friends could see his post and further spread the rumor. Due to information overload,
as time goes by (e.g., after one day), people would stop reading and reposting John’s post. Hence, we assume that, after
one day, he was not a Spreader any more, because he was not contagious to others. At this point of time, he became a
Stifler_r. Later, he saw his another friend posted an anti-rumor information to debunk the previous rumor. He reposted
the anti-rumor and became a Debunker. Finally, after one day, he lost contagiousness and became a Stifler_d. During the
life cycle of this specific rumor, the role of John changes as follows: Ignorant ! Spreader ! Stifler_r ! Debunker !
Stifler_d. In this example, only under two states, i.e. Spreader and Debunker states, do people have the ability to infect
others. For John, the duration of the Spreader and Debunker states are the one day after which he reposted the rumor or
the anti-rumor. We then study the rumor propagation behavior in the two stages, respectively.

3.1. Stage 1: RSD modeling of emerging stage (before Debunkers appear)

In this section, we study the spreading pattern of a rumor before Debunkers appear. We define the initial debunker
as the officially verified account who firstly posted the anti-rumor on social media. Before the appearance of the first
debunker and/or verification information, the system simply consists of Ignorants, Spreaders, and Stiflers. The spreading
scope of rumor at this stage depends on the transition rate among the three states.

We use the transition diagram to describe the transformation among different states of people, see Fig. 2. In this period,
the entire population is divided into three groups: Ignorants (S1), Spreaders (S2), and Stiflers (S3). The values of S1, S2, and
S3 are all between 0 and 1, indicating the fractions of the population that are in these states. At the initial time point
(t = 0), the whole population are all Ignorants, except the initial spreaders. The initial spreaders are individuals who
firstly spread the rumor intentionally or unintentionally. When Ignorants see the post of the initial Spreaders, some of
them repost the rumor and become Spreaders, the others choose to do nothing and become Stiflers. In the transition
diagram, �1 is the spreading rate. When one Ignorant contacts a Spreader, the Ignorant becomes a Spreader with the rate
�1. The spreading rate depends on multiple factors, such as the importance, anxiety, popularity of the rumor content [18].
As all Spreaders will gradually loss contagiosity over time, one Spreader becomes a Stifler with the rate �2. We name this
rate �2 as the fading rate. When an Ignorant contacts a Spreader, the Ignorant becomes a Stifler with a rumor impression
rate �3. The underlying reason might be that the Ignorant do not believe in the rumor, not be interested in it, or simply
do not want to reposted it. The percentages of the population of Ignorants, Spreaders, and Stiflers at time t are S1(t), S2(t),
and S3(t), respectively. They satisfy the normalization condition: S1(t)+ S2(t)+ S3(t) = 1.

The rules of rumor propagation are as follows. When a Spreader contacts an Ignorant, the Ignorant may become a
Spreader with the rate �1. Thus, in the equation system, the percentage of people who transit from Ignorant state to
Spreader state per time unit is �1kS1(t)S2(t). When a Spreader contacts an Ignorant, the Ignorant may choose not to
repost the rumor, and become a Stifler with the rate �3. The percentage of people who transit from Ignorant state to
Stifler state per time unit is �3kS1(t)S2(t). Overtime, the spreader loses contagiousness because of information overload.
The percentage of people who transfer from Spreader state to Stifler state per time unit is �2S2(t). The index k is the
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average degree of the network, which is closely related to the density of the network. We use the non-linear ordinary
differential equation system to describe the process as follows:

8
>>>>><

>>>>>:

dS1(t)
dt

= ��1kS1(t)S2(t) � �3kS1(t)S2(t),

dS2(t)
dt

= �1kS1(t)S2(t) � �2S2(t),

dS3(t)
dt

= �3kS1(t)S2(t)+ �2S2(t).

(1)

In this stage, we are interested in studying the following issues:
(1) Predicting the final scope of the rumor spreading. In other words, without being intervened by the Debunkers,

how many people in the social network will be finally impacted by the rumor? Moreover, we study the key factors that
influence the final scope.

(2) Predicting the maximal scale of the rumor spreader. In other words, our model tried to predict when would the
rumor propagation process arrives the peak, and what will be the maximal number of spreaders that exist in the social
network?

(3) Calculating the number of Stiflers at any time point. When a rumor is detected, our model helps officials to calculate
how many people have been already aware of the rumor (not necessary spread the rumor) in the social network.

(4) Estimating the popularity level of the rumor. When a rumor is detected, our model helps officials to estimate how
fast the rumor is spreading in the social network.

Without debunking effort, some rumors will disappear naturally with very little influence, while some others spread
fast and become known by everyone. Hence, we are interested to investigate the expected final scope of the rumor. In
other words, without being intervened by Debunkers, how many people will know about the rumor at the end? Let R
be the final scale of the rumor, i.e., the fraction of Stiflers at the end, R = S3(1) 2 (0, 1). By investigating the equation
system (1), we draw the two conclusions below. Because of the technical complexity of this problem, formal proofs are
deferred to Appendix.

Proposition 1. Without debunking intervention, R satisfies the following equation

R = 1 � e� �1k
�2

R
. (2)

If �1k
�2

> 1, Eq. (2) has two solutions: zero and non-trivial solution R, 0 < R < 1.

Proposition 2. Let all variables of non-trivial solution R be constant except only one, we have that R increases in �1 and k,
and decreases in �2.

Remark 1. The above two propositions of R provides us some insights of the rumor spreading on the first stage.
Proposition 1 derived the implicit equation of the final scope R. This result indicates that the final size of the rumor
R is only dependent on three factors: the rumor spreading rate (�1), fading rate (�2), and the network degree (k). The
value of solution R and its relation with �1, �2, and k is investigated and shown in Fig. 3(a). In summary, when �1k

�2
> 1, the

final scale of the rumor can be non-zero, which means the rumor would circulate among the population if the spreading
rate is greater than the fading rate; when �1k

�2
< 1, the final scale of the rumor is 0, which means the rumor would not

start circulating if the spreading rate is less than the fading rate. The 3D plot and the contour plot in Fig. 3(b) and (c)
further illustrated how the final scale R vary over �1 and �2.

It is shown in Fig. 3(a) that the parameter �1k
�2

plays a key role to determine the final scope of the rumor. We summarize
this feature as follows:

Proposition 3. Without debunking intervention, the rumor spreading dynamics will remain under control when �1k
�2

< 1 and
uncontrollable when �1k

�2
> 1.

Remark 2. The parameter �1k
�2

is called the rumor spreading control coefficient. The rumor spreading control coefficient
is an important and useful parameter in rumor spreading model analysis in sense that it provides information about
the rumor spreading process, and it can be used to predict whether the rumor will propagates among the population or
not. This coefficient corresponds to the threshold, known as the basic reproduction number in epidemic disease model
analysis, see [29]. Proposition 3 suggests when �1k

�2
> 1, the rumor invades the population; when �1k

�2
< 1, the rumor will

gradually disappear, and then debunking interventions may not be needed. The similarity between the rumor spreading
mechanism and infectious disease transmission dynamics were highlighted.

Besides the final scale of the rumor, we are also interested in studying the maximum scale of the rumor spreaders. In
other words, during the rumor propagation process, how many people are spreading the rumor? We define Smax as the
maximum scale of the spreaders, which satisfies the following proposition.
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Fig. 3. Analysis of final scale of rumor R.

Proposition 4. Without debunking intervention, when S1 = �2
�1k

, the system reaches the maximum scale of the spreaders,
which is

Smax =
�2

(�1 + �3)k

✓
ln

�2

�1k
� 1

◆
+ �1

�1 + �3
.

Clearly, we obtain from Proposition 4 that at the point when the Spreaders reach their maximum scale, the percentage
of Stiflers is S3 = 1 � �2

�1k
� Smax. The third and fourth research questions at the stage 1 is analyzing the current scope

and popularity level of the rumor. In other words, how many people are aware of the rumor, and how fast the rumor is
spreading? In the real world, the government can only know how many people have re-posted the rumor from the social
media data. However, the majority of the population who know about and are impacted by the rumor may not have any
observable spreading behavior. It is unclear how many people have seen the rumor on the network. Moreover, it is hard
to directly observe how fast the rumor will keep spreading. In Section 4.1, we demonstrate our solution to this problem
by numerically solving our RSD system using real world case study. We design an implementation work flow to derive
the optimal solution. The case study validates our model with real life data. Finally, our model could predict the future
trend of the rumor spreading.

3.2. Stage 2: RSD modeling with Debunkers

In this section, we discuss the second stage of a rumor event. In this stage, we seek to study the interplay of the
rumor and the anti-rumor. Specifically, we are interested to investigate how the final scope and duration of the rumor
be impacted by various factors. The factors include the anti-rumor popularity, number of initial Spreaders/Debunkers,
intervention time, and so on.

Different from the stage 1, the spreading of the rumor at this stage is impacted by the spreading of the anti-rumor,
i.e., the debunking information. In stage 2, the rumor Spreaders and Debunkers are both ‘‘contagious’’ to the Ignorant
group. A Debunker can also infect a Spreader, i.e., transit a Spreader to a Debunker by showing them the anti-rumor.
Another group of people is called Stifler, who did not spread anything but know about the rumor. If someone know about
the rumor, they either only know the rumor, or are already debunked. Thus, in stage 2, we divide the Stiflers into two
subgroups: Stiflers_r and Stiflers_d. Specifically, the Stiflers_r refer to people who know about the rumor but did not
spread it, or spread it a long time ago and have already lost their influence. Similarly, Stiflers_d mean people who know
about the anti-rumor but do not have influence on the others at the focal time point.

See Fig. 4, which indicates the nine sub-processes of the second stage of our RSD model. Consider a closed and
homogeneous population consisting of N individuals in a social network. In this stage, the entire population is divided
into five groups: Ignorants (S1), Spreaders (S2), Debunkers (S3), Stiflers_r (S4), and Stiflers_d (S5). The Contact Eqs. (3)–(11)
illustrate this multi-infective propagation process of the RSD model as follows:

S1 + S2
�1�! 2S2, (3)

S2
�2�! S4, (4)

S1 + S2
�3�! S4 + S2, (5)

S1 + S3
�4�! S5 + S3, (6)

6
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Fig. 4. Transition diagram of Stage 2.

S1 + S3
�5�! 2S3, (7)

S3
�6�! S5, (8)

S2 + S3
�7�! 2S3, (9)

S4 + S3
�8�! 2S3, (10)

S4 + S3
�9�! S5 + S3. (11)

These Contact Equations describe all possible dynamics that could happen during stage 2. Each equation can be explained
as follows:

• Eq. (3): When an Ignorant see the rumor, the Ignorant becomes a Spreader with a rumor spreading rate �1.
• Eq. (4): As time goes by, the rumor Spreaders lose their influence. The rumor that they spread is no longer noticed

by others because of the information overload on social media. Thus, a Spreader becomes a Stifler_r with a rumor
fading rate �2.

• Eq. (5): When an Ignorant see the rumor, the Ignorant may choose not to spread it and become a Stifler_r with a
rumor impression rate �3.

• Eq. (6): When an Ignorant see the anti-rumor, the Ignorant becomes a Stifler_d with a debunking impression rate
�4.

• Eq. (7): When an Ignorant see the anti-rumor, the Ignorant becomes a Debunker with a anti-rumor spreading rate
�5.

• Eq. (8): As time goes by, the rumor Debunkers lose their influence, and a Debunker becomes a Stifler_d with a
anti-rumor fading rate �6.

• Eq. (9): When a Spreader see the anti-rumor, the Spreader becomes a Debunker with a transformation rate �7.
• Eq. (10): When a Stifler_r contacts a Debunker, the Stifler_r becomes a Debunker with a transformation rate �8.
• Eq. (11): When a Stifler_r contacts a Debunker, the Stifler_r becomes a Stifler_d with a transformation rate �9.

Following the classical rumor spreading model [30], our model starts with a homogeneous network. We assume that
for a specific rumor, the population size is fixed, which is the whole population on the social media. Further more, the
‘‘infectious duration’’ and ‘‘infectious probability’’ of the population is homogeneous. These assumptions hold as we are
studying the rumor spreading on social media in a macro level.

Let S1(t), S2(t), S3(t), S4(t), and S5(t) denote the percentages of the population that are Ignorants, Spreaders, Debunkers,
Stiflers_r and Stiflers_d at time t , respectively. They satisfy the normalization condition: S1(t)+S2(t)+S3(t)+S4(t)+S5(t) =
1. According to the Contact Eqs. (3)–(11), we take the derivatives of each group population with respect to time t , and
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the mean-field equations of the RSD system can be described as the following ODEs:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

dS1(t)
dt

= ��1kS1(t)S2(t) � �3kS1(t)S2(t) � �4kS1(t)S3(t) � �5kS1(t)S3(t),

dS2(t)
dt

= �1kS1(t)S2(t) � �2S2(t) � �7kS2(t)S3(t),

dS3(t)
dt

= �5kS1(t)S3(t) � �6S3(t)+ �7kS2(t)S3(t)+ �8kS4(t)S3(t),

dS4(t)
dt

= �2S2(t)+ �3kS1(t)S2(t) � �8kS4(t)S3(t) � �9kS4(t)S3(t),

dS5(t)
dt

= �4kS1(t)S3(t)+ �6S3(t)+ �9kS4(t)S3(t),

(12)

where k denotes the average degree of the network. In Section 4, we use Runge–Kutta methods [36] to solve the
differential equation system (12), and analyze the impacts of different modeling parameters (e.g., transition rates) on
the rumor spreading–debunking process.

4. Data, case analyses, and results

4.1. Data

Hurricane Harvey of 2017 is tied with Hurricane Katrina of 2005 as the costliest tropical cyclone on record, inflicting
$125 billion in damage, primarily from catastrophic rainfall-triggered flooding in the Houston metropolitan area and
Southeast Texas. Harvey caused at least 107 confirmed deaths, displaced more than 30,000 people, and prompted more
than 17,000 rescues [37].

We collected a real world data set during Hurricane Harvey in August, 2017 from Twitter.com. We focused on a popular
rumor that is very important for the safety of the victims. After the hurricane happened, a rumor saying ‘‘Immigration
status has to be checked before you are allowed to enter a shelter’’ started circulating through the social media. The
rumor emerged because pictures were taken showing that U.S. Customs and Border Protection (CBP) Officers appeared
in one of the shelter of Houston. This is a false rumor, because CBP officers were not checking the identity documents of
the victims. However, if a victim who had illegal identity or did not bring the identity documents with himself saw this
rumor, he might be afraid of getting caught and not choose to seek the shelter for protection. It could be dangerous for
victims not coming to the shelters, and this rumor could cause severe loss of life and property. In this case, the official
debunking started the debunking intervention timely, about one day after the rumor started getting popular.

To cover all related tweets, we collect all tweets that contain the keywords ‘‘shelter’’ and ‘‘immigration’’ since August,
2017. It is 2035 related Tweets collected during this event. Two independent coders manually coded all Tweets with label
‘‘Spreader’’, ‘‘Debunker’’, and ‘‘others’’. The ‘‘others’’ refers to some commentary Tweets or Tweets that are trying to seek
confirmation about this rumor. Besides the time stamp and content, we collect the re-tweet counts of each original tweet.

The main variables in the model are the percentages of Spreaders and Debunkers that exist in each time step, which
are S2(t) and S3(t) in the RSD system (12). These variables are measured as the sum of all individuals who post or re-tweet
an original rumor/anti-rumor within each time interval. One hour is set as the unit of time in this paper.

As the exact time stamp of each re-tweet was not observable, we assume that after an original tweet was posted, the
re-tweet delayed time probability distribution follows a beta distribution with shape parameters ↵ = 2,� = 5. The shape
of the re-tweet time distribution is consistent with the beta distribution with ↵ = 2,� = 5 [38]. The curve first increases
drastically and then decreases smoothly. We also assume that the re-tweeting behavior of the focal rumor will cease in
one day because of information overload. For example, if the number of re-tweet of an original tweet is 100, we assume
that starting from the posted time point, the re-tweet rate of this tweet increases drastically in the first few hours, and
then decreases smoothly. We also assume that the tweet is re-posted 100 times within 24 h after the tweet was posted.
Based on the assumptions discussed above, we measure the percentages of Spreaders (S2(t)) and Debunkers (S3(t)) that
exist in each time step. Therefore, our data has provided the variation trend of the Spreaders and Debunkers. We will
use this variation trend of Spreaders and Debunkers to derive the values of other parameters in the model, simulate the
whole spreading process of the rumor case, and further estimate the scope of influence and more effective debunking
strategies of the rumor.

4.2. A real world rumor case study: Emerging stage

Although our proposed model described by ODE system (1) applies to all rumor cases, the parameters in the model,
such as the rumor spreading rate (�1) and rumor fading rate (�2), are distinct for different rumor cases. Our real life data
is used to derive the case-specific parameters of this model. In this section, we will derive the case-specific parameters
of the rumor emerging stage.

We design a RSD work-flow to determine the case-specific parameters (see Fig. 5). Firstly, a set of initial parameters
are input into the system (1). By solving the ODE system using the initial parameters, we obtain the simulated variation
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Fig. 5. Numerical implementation work-flow.

Fig. 6. Curve fitting of the real data.

trend of S2(t). Secondly, we calculate the error term |S2(t) � Sreal2 (t)|. Finally, by iteratively updating the parameters, we
minimize the error term, and obtain the optimal set of parameters that best fits this rumor case.

The emerging stages is defined as the time period before the first official debunking information was released, which
is August 25 at 7pm. The first rumor appeared as early as August 23 at 8 am. However, it has only one re-tweet and the
rumor did not emerge again until August 25. Therefore, we use the analysis below to mathematically identify the starting
time of this rumor case.

We assume that at the very beginning, only one spreader started this rumor. Hence, when t = 0, S1(0) = N�1
N ,

S2(0) = 1
N , S3(0) = 0, where N is the number of all active Twitter account in US. At the early stage of the rumor

spreading, the number of Spreaders and the total number of Stiflers are small relative to the entire population N . Thus,
the percentage of Ignorants is approximately invariant, i.e., S1 ⇡ 1. By taking the integral of the second equation in (1),
S2(t) ⇡ 1

N e
(�1k��2)(t+t0), and t0 hours before August 23 at 8 am is the real starting time of this rumor case. The number

of Spreaders is approximately e(�1k��2)(t+t0). Note that when �1k < �2, namely �1k
�2

< 1, the number of Spreaders is less
than 1, and then the rumor ends; when �1k > �2, namely �1k

�2
> 1, the number of Spreaders is gradually blooming, and

then the rumor is uncontrollable. The result is consistent with Proposition 2. We used Matlab as a tool to apply the curve
fitting of the real data to minimize |S2(t) � Sreal2 (t)| (See Fig. 6). The dot is the data point of number of Spreaders in each
time point, and the line is the fitted function curve, which is e(�1k��2)(t+t0) ⇡ e0.3076(t�46). Hence, we obtain the estimated
parameter �1k � �2 = 0.3076, and t0 = �46. Hence, 46 h after August 23 at 8 am is the real starting time of this rumor
case, which is August 25 at 6 am. This results indicated that the rumor had been circulating for 13 h before the first official
debunking information released. The result shows a good match with the real data with a goodness of fit R-square = 0.98.

For the Immigration Rumor, we define the entire population as non-robot daily active Twitter users in US (N =
27, 744, 000). N is derived from the

N = a ⇤ p ⇤ r,

9
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Fig. 7. Comparison of the number of spreaders between simulated and real data.

where a is the number of total active monthly users in US (a = 68, 000, 000),2 p is the percentage of daily users
(p = 48%),3 and r is the percentage of non-robot (r = 85%) users on Twitter.4 Because of the information overload
in current network, we assume that the influence of one tweet would fade after 24 h. Hence, the fading rate

�2 =
1

�t
= 1

24
= 0.04.

As �1k � �2 = 0.3076, the spreading rate �1k = 0.34. Finally, the impression rate �3 is derived from

�3k = total impressions in one hour
N

= f ⇤ p ⇤ r
N ⇤ �t

= 1 511 626 ⇥ 48% ⇥ 85%
27 744 000 ⇥ 24

= 0.0009,

where f = 1, 511, 626 is the sum of the total followers of all rumor Spreaders in our data set. These people are the whole
population that are possible to see the rumor.

We then substitute the estimated case-specific parameter to the ODE system (1), �1k = 0.34,�2 = 0.04,�3k =
0.0009,N = 27, 744, 000, S1(0) = N�1

N , S2(0) = 1
N , S3(0) = 0. We use the Runge–Kutta method to derive the solution

of the system. Comparing to the number of Spreaders in our data set, we can see that simulated trend of number of
Spreaders matches well with the real trend (See Fig. 7).

Validated by the real life data, our model could be used to predict the future trend of this rumor. Using the estimated
parameter sets, we could simulate and calculate S1(t), S2(t), and S3(t) at any point of time t . In this section, we conduct
two simulations of the focal rumor. Firstly, we estimate the rumor spreading expansion trend if no debunking intervention
is taken. As shown in Fig. 8(a), without debunking intervention, the rumor will keep spreading until the whole population
were affected by the rumor.

Secondly, we estimate the total number of people that are influenced by the rumor. As decision makers could not
observe the number of Stiflers (i.e., the amount of people who already know about the rumor), the model could be used
to estimate the current scope of the rumor (See Fig. 8(b)). In our rumor case, by the time when the first anti-rumor
appears, the scope of the rumor is approximately 340,000 Twitter accounts.

Therefore, using the stage 1 of our model, decision makers could draw two conclusions when they notice the rumor.
First, if they do not take any debunking action, the rumor will keep spreading until all Twitter users are aware of the
rumor. Second, by the time when they find out the rumor, it is estimated that 340,000 people on the Twitter are aware
of the rumor. Measures could be taken accordingly to intervene this rumor case.

4.3. A real world rumor case study: Debunking stage

At the Debunking Stage, the rumor will keep spreading through the social media. At the same time, the anti-rumor
starts circulating. The spreading of anti-rumor will interplay with the rumor spreading process, transferring Ignorants,
Spreaders, and Stiflers_r into Debunkers and Stiflers_d. Fig. 9 shows how the number of Spreaders and Debunkers vary
over time during the Hurricane Harvey immigration rumor.

Similarly to Section 4.2, we first estimate the rumor-specific parameters �i, i = 1, 2, . . . , 9, of the immigration rumor.
Secondly, we implemented the derived set of parameters to solve the differential equations. Finally, we compared the
simulated solution of the ODE system (12) with the real data to validate our model.

2 https://www.statista.com/statistics/232818/active-us-twitter-user-growth/
3 https://www.omnicoreagency.com/twitter-statistics/
4 https://www.cnbc.com/2017/03/10/nearly-48-million-twitter-accounts-could-be-bots-says-study.html
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Fig. 8. Simulations of the immigration rumor at Stage 1.

Fig. 9. Timeline of number of Spreaders and Debunkers in the Hurricane Harvey immigration rumor Aug. 21, 2017–Sep. 13, 2017.

We denote the starting time of the Debunking stage as t0. The number of existing Spreaders i and Stiflers_r j at time
t0 has been derived from the stage 1. Since the first official Debunker appears at time t0, we have S1(t0) = N�i�j�1

N ,
S2(t0) = i

N , S3(t0) = 1
N , S4(t0) =

j
N , and S5(t0) = 0.

By the results of Stage 1, at time t0, the number of Spreaders i = 50, and the number of Stiflers j = 340, 000. Then we
use the RSD work-flow to determine the optimal sets of the parameters. For the initial parameters, we assume that the
popularity of the anti-rumor spreading show the same pattern as that of rumor spreading. Therefore, the spreading rate,
fading rate, and the impression rate of the rumor and anti-rumor spreading are comparative, i.e., �5k = �1k = �7k =
�8k = 0.34, �6 = �2 = 0.04, �4k = �3k = �9k = 0.0009. Method of bisection are used to get updated �i that minimizing
|S2(t) � Sreal2 (t)| + |S3(t) � Sreal3 (t)|. The optimal sets of �i are �1k = 0.02; �2 = 0.02, �3k = 0.0009, �4k = 0.0009,
�5k = 0.15, �6 = 0.04, �7k = 0.2, �8k = 0.4, �9k = 0.0009. The comparison of simulated curve with the derived
parameters matches well with our real data (see Fig. 10).

The model of the second stage will help us to understand the Debunking process more clearly. Besides the variation
trend of the Spreaders and Debunkers, we could further estimate the variation trend of the Ignorants, Stiflers_r, and
Stiflers_d. As shown in Fig. 11, most of the active Twitter users during that period of time would be aware of the correct
news, namely that the immigration status will not be checked in the shelter. However, the number of Stiflers_r are 33,362,
which means the number of people who know about the rumor but are still unaware of the correct news is around 33,362.
In this case, the rumor debunking is timely and efficient. The proportion of uncleared Twitter users are small relative to
the number of all impacted people.

In the next section, we will use sensitivity analysis as a tool to explore how different parameters and Debunking
measures will impact the debunking effectiveness in this case.
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Fig. 10. Comparison of simulated vs. real Spreaders and Debunkers.

Fig. 11. Estimated variation trend of the Five State of Twitter users.

4.4. Sensitivity analysis

Sensitivity analysis is applied to identify the criticality of the modeling parameters and the effectiveness of debunking
strategies in the rumor debunking process. This could help us to propose better rumor debunking strategies and diminish
the impact of misinformation in the further cases.

Firstly, we compare the estimated final scope of the rumor under the situations with and without Debunkers in this
case, and how the rumor final scope vary over the rumor popularity (�1). As shown in Fig. 12, the final scope of the
rumor is similar under the conditions with and without Debunkers when the rumor is not very popular (�1 < 0.05). As
the popularity of the rumor case increases, the difference of the uncleared Twitter users between the conditions with and
without the Debunker first increases exponentially and then becomes stabilized. This difference becomes over 107 when
�1 > 0.06, which means the debunking intervene play a crucial role for the popular rumors.

Secondly, we compare how the number of Spreaders and the final scope of the rumor vary over different numbers of
initial Debunkers at time t0. As shown in Fig. 13(a), as the number of the Debunkers increases, the number of Spreaders
decreases faster. The number of Stiflers_r, which can measures the rumor final scope, decreases from 32,500 to 29,000
when 18 initial Debunkers were added (see Fig. 13(b)). However, adding 180 more Debunkers only decreases the final
scope by approximately 5000, which may not be worth for the investigated human resources. We define the equilibrium
point of rumor spreading as the time point when the number of Spreaders is less than 1. At this time-point, the rumor
stops spreading. We compare how the equilibrium points vary as different numbers of Debunkers appearing at time t0.
From Fig. 13(a) and (b), we observe that the more initial Debunkers are at t0, the earlier this rumor ends. Hence, we
are interested to study the end time of the rumor case. This is also a very important variables, as government officials
or companies all want to get rid of the influence of the misinformation as soon as possible. The end time is defined as
the point of time that the system reaches equilibrium point, and the number of spreaders become less than 1. Fig. 13(c)
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Fig. 12. Final scale of rumor with & without Debunkers.

Fig. 13. Sensitivity analysis when varying number of Debunkers at time t0.

shows that the equilibrium point is decreasing, with diminishing marginal returns while adding more Debunkers. This
result is consistent with the results in Fig. 13(a) and (b). Government officials or companies could determine their invested
debunking human resources to achieve their desired debunking results according to this result. Clearly, the optimal
number of Debunkers in Fig. 13(c) is 20, and the sub-optimal number is 170.

Thirdly, we investigate how the end time varies over the number of initial Spreaders. From Fig. 14, the duration of the
rumor increases concavely as the number of initial spreader increases.

Finally, we discuss the impact of the Debunking starting time on the rumor spreading process. We simulate four
different intervention time: t0 = 6, t0 = 12, t0 = 24, t0 = 36, where t0 is the number of hours after the rumor
starts circulating. As shown in Fig. 15, if the rumor spreading process is debunked within 6 h, the rumor will completely
end within 180 h; if officials delayed debunking intervention by only 6 h, the end time will be delayed by 100 h when
debunking time t0 = 12. Therefore, it is important for officials to take action as soon as possible to reduce the loss and
influence of the rumor.

5. Discussion

In this paper, we use an epidemiological method to study the spreading–debunking process of a rumor. We divide the
whole life-cycle of a rumor into two stages. The first stage is emerging stage, which refers to the time period between
the rumor starting point and the official debunking point. In the second stage, with the release of official debunking
information, people start to spread the anti-rumor in the social network. The spreading of rumors and anti-rumors is a
dynamic and reciprocal process.

In the first stage, we study the rumor spreading pattern before Debunkers appear. Before the appearance of the first
debunker and/or verification information, the system consists of Spreaders, Ignorants and Stiflers. We analytically study
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Fig. 14. Rumor duration varies over number of initial spreaders.

Fig. 15. The impact of Debunk starting time on the Rumor Spreading process.

the properties of the rumor, including its final scope and maximal scale, and how it will vary over the spreading rate and
fading rate. In the real world case study, we validate our model with the real data. The spreading trend and current scope
of the Rumor (how many people have already heard about the rumor) is estimated through the model.

For the second stage, we built a novel model to explore the interplay mechanism between rumor spreading and
debunking processes. We solve the system and compared them with the real data. The real data matches well with our
predicted solution. From these results, we could understand how many people are influenced by the rumor, and are still
not aware of the real information.

Moreover, four sets of sensitivity analysis are applied. We conclude that the debunking intervention is not necessary
when the rumor is not very popular with �1 < 0.05. However, when �1 > 0.06, the debunking intervention is critical and
could make a significant influence on the final scope of the rumor. Secondly, we conclude that the end time decreases
with diminishing marginal returns while adding more Debunkers. Government officials or companies could determine
their invested debunking human resources to achieve their desired debunking results according to our result. Thirdly, the
duration of the rumor increases concavely as the number of initial spreader increases. Finally, we discussed the impact
of the Debunking starting time on the rumor spreading process. The result shows that it is important for officials to take
action as soon as possible to reduce the loss and influence of the rumor.
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Appendix

Proof of Proposition 1. Dividing Eq. (1) by Eq. (3), we can get
dS1(t)
dS3(t)

= �S1(t)(�1 + �3)k
�2 + �3kS1(t)

,

which leads to

�dS3(t) =
�2 + �3kS1(t)
S1(t)(�1 + �3)k

dS1(t),

or, equivalently,

�S3(t) =
1

(�2 + �3)k
(�3kS1(t)+ �2 ln S1(t)).

Therefore, S1(t) and S3(t) satisfy the implicit solution equation

�3kS1(t)+ �2 ln S1(t)+ (�1 + �3)kS3(t) = c,

where c is a constant determined by the initial condition. We assume that there is only one spreader who starts the rumor
at the initial stage of the rumor. S1(0) = N�1

N ⇡ 1, S2(0) = 1
N ⇡ 0, S3(0) = 0. Substitute the values to the implicit solution,

we have c = �3k.
We define the end point of the rumor as the point when the number of spreaders is less than 1. Hence, S2(1) ⇡ 0. As

S1(t)+ S2(t)+ S3(t) = 1, S1(1) = 1 � S3(1).
Therefore, at the end point when t ! 1,

�3k(1 � S3(1))+ �2 ln(1 � S3(1))+ (�1 + �3)kS3(1) = �3k,

which implies that

ln(1 � S3(1)) = ��1k
�2

S3(1),

namely,

S3(1) = 1 � e� �1k
�2

S3(1)
.

Let R = S3(1), Eq. (2) is satisfied.
Clearly, R = 0 is a trivial solution of Eq. (2). Now in the rest part, we prove the existence of the non-trivial solution R,

0 < R < 1, under the condition that �1k
�2

> 1. Set f (x) = x�1+e� �1k
�2

x, 0 < x < 1. Then f 0(x) = 1� �1k
�2

e� �1k
�2

x, and f 0(x0) = 0

for x0 = �2
�1k

ln �1k
�2

, where x0 2 (0, 1) since �1k
�2

> 1. Moreover, f (1) = e� �1k
�2 > 0, and f (x0) = �2

�1k

⇣
ln �1k

�2
� �2

�1k
+ 1

⌘
,

where f (x0) < 0 since ln x < x � 1 for x 2 (0, 1). By the Intermediate Value Theorem, equation f (x) = 0 has a non-trivial
solution R such that 0 < x0 < R < 1, which shows that for �1k

�2
> 1 there exists the claimed non-trivial solution R,

0 < R < 1. ⇤

Proof of Proposition 2. Without loss of generality, we only need to prove that R increases as �1 increases. Taking the
partial derivative of R with respect �1 on the both sides of Eq. (2), we have

@R
@�1

= e� �1k
�2

R
✓

k
�2

R+ �1k
�2

@R
@�1

◆
,

which yields that
✓
1 � �1k

�2
e� �1k

�2
R
◆

@R
@�1

= k
�2

Re� �1k
�2

R
.
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Further, we have

@R
@�1

=
k
�2
Re� �1k

�2
R

1 � �1k
�2

e� �1k
�2

R
.

Let u = �1k
�2

. In the following, it suffices to show that 1 � ue�uR > 0. Note that R is the nontrivial solution of Eq. (2) and
also is a function of �1. Thus, point R (more formally, point (R, 0)) is the point on the horizontal axis corresponding to the
intersection (not the origin) of line y = x and curve y = 1� e�ux. Since 1� e�uR > 1� ue�uR, curve y = 1� e�uR is above
curve y = 1 � ue�uR; curve y = 1 � ue�uR cross the horizontal axis at x = ln u

u . Then we can show that 1 � ue�uR > 0,
if we prove that on the horizontal axis point x = ln u

u is on the left side of x = R, in other words, 1 � e�u(ln u)/u > ln u
u ,

i.e. 1 � 1
u � ln u

u > 0. In fact, define a function f (u) = 1 � 1
u � ln u

u . Since f 0(u) = ln u
u2 > 0 and f (1) = 0, we obtain f (u) > 0

for any u > 1. ⇤

Proof of Proposition 4. Dividing Eq. (2) by Eq. (1), we have
dS2(t)
dS1(t)

= �2

(�1 + �3)kS1(t)
� �1

�1 + �3
, (13)

namely,

dS2(t) =
✓

�2

(�1 + �3)kS1(t)
� �1

�1 + �3

◆
dS1(t).

Then, we take the integral on both sides of the above equation to obtain that

S2(t) =
�2

(�1 + �3)k
ln S1(t) � �1

�1 + �3
S1(t)+ C, (14)

where the constant C is determined by the initial conditions:

S1(0) =
N � 1
N

⇡ 1, S2(0) =
1
N

⇡ 0 and S3(0) = 0,

following from the fact that there is only one spreader who starts the rumor at the initial stage of the rumor. Hence, we
substitute the initial conditions into (14) to get

C = �1

�1 + �3
.

From (14), we derive that S2(t) has the explicit expression with respect to S1(t) as

S2(t) =
�2

(�1 + �3)k
ln S1(t) � �1

�1 + �3
S1(t)+

�1

�1 + �3
. (15)

From (13), letting dS2/dS1 = 0 implies that

S1 =
�2

�1k
,

at which we get the maximum scale of the spreaders as:

Smax =
�2

(�1 + �3)k

✓
ln

�2

�1k
� 1

◆
+ �1

(�1 + �3)
. ⇤
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