

Innovative Applications of O.R.

Interplay of rumor propagation and clarification on social media during crisis events - A game-theoretic approach

Puneet Agarwal, Ridwan Al Aziz, Jun Zhuang^{1,*}

Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY 14260-2050, USA

ARTICLE INFO

Article history:

Received 24 September 2020

Accepted 29 June 2021

Available online xxx

Keywords:

Game theory

Social media

Rumor propagation

Rumor control

Emergency communication

ABSTRACT

For a rapid dissemination of information during crisis events, official agencies and disaster relief organizations have been utilizing social media platforms, which are susceptible to rumor propagation. To minimize the impact of rumors with limited time and resources, the agencies and social media companies not only need to wisely choose the cases to clarify amongst the numerous cases, but they should also make an informed decision on the timing of clarification. Reacting fast can be misjudged as an obvious best policy as partial/imprecise information may fail to contain the impact of the rumors. On the other hand, investment in terms of time, effort, and money to clarify with more complete information also allows the rumors to spread with their full force during the learning phase, thereby making the process of decision-making very challenging. The objective of this paper is to determine the optimal strategies for the official agencies and social media companies by developing two novel sequential game-theoretic models, namely "Rumor Selection for Clarification" and "Learning for Rumor Clarification", that can help decide which rumor to clarify and when to clarify, respectively. Results from this study indicate that posting verified information on social media reduces the uncertainties involved in rumor transmission, thereby enabling social media users to make informed decisions on whether to support or oppose the rumor being circulated. This verification needs to be obtained within reasonable limits of time and cost to keep the learning process worthwhile.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Rumor is defined as an "informally improvised news" (Shibutani, 1966) that can affect individuals and their communities in the time of crisis situations (Prasad, 1935). According to Zhao, Resnick, & Mei (2015), there are two salient characteristics of a rumor: (i) it generally occurs in situations where its truth value appears to be uncertain and ambiguous to the public, and (ii) it may or may not be always false, that is, it may contain truthful information which is yet to be verified by the authentic sources.

Since World War II, psychology of rumors and how to contain them have attracted significant attention from the research com-

munity (Festinger et al., 1948; Knapp, 1944). Books, newspapers, magazines, and interviews were the sources of rumor data collection for the early studies. In the current era of online social media, any piece of information can be diffused by online users without censorship (Kwon, Cha, Jung, Chen, & Wang, 2013). The harmful impacts of false rumors on any organization or individuals have received attention in both research and society; and it is often argued that rumors are generally generated and propagated in situations that are important, uncertain, threatening, uncontrollable, and produce anxiety (DiFonzo, 2008; DiFonzo & Bordia, 2007). For example, rumors may often be generated in wars or crises because these are life or death situations, and are certainly threatening, uncontrollable, and anxiety-producing. Accurate and complete information may be completely unavailable or available beyond the limits of a reasonable time frame for clarification, which in turn, is the perfect condition for rumor generation and transmission (Rubin, 2017).

Social media has been infamously dubbed as a "rumor mill" for diffusing false rumors and misinformation during crisis situations, which has the potential to promote large scale panic and financial loss (Oh, Kwon, & Rao, 2010). Spread of misinformation on online platforms was ranked first by the World Economic Fo-

* Corresponding author.

E-mail addresses: puneetag@buffalo.edu (P. Agarwal), ridwanal@buffalo.edu (R. Al Aziz), jzhuang@buffalo.edu (J. Zhuang).

¹ All authors contributed equally and the author names are listed alphabetically by last name. Jun Zhuang is the corresponding author. This research was supported by the National Science Foundation under Award No. 1762807. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We thank the editor and two anonymous reviewers for helpful comments.

35 rum among the top future global risks (Howel, 2013). For example, false rumors such as: "Mandatory evacuations are underway in
 36 the City of Houston" (Bennet, 2017), "Immigration status has to be
 37 checked before you are allowed to enter a shelter" (Bennet, 2017),
 38 and "Residents could not return to the coastal city until all critical
 39 services were restored" (Alfonso, 2017) during Hurricane Harvey,
 40 caused great confusion, panic, and anger among people in the
 41 affected areas. In lieu of these events that continue to occur frequently,
 42 rumor control and management on social media requires more attention from both researchers and practitioners.
 43

44 During large-scale crises, the mainstream media often cover incidents that are initially reported by local spectators (Oh, Agrawal, & Rao, 2011). For example, according to Twitter, within the first 60 seconds after the 2011 Virginia Earthquake, there were 40,000 tweets related to that incident (Indvik, 2011). As a result, rumors or misinformation could have been propagated widely by the time social debunking and verification information was available (Ozturk, Li, & Sakamoto, 2015). Therefore, in such situations, social media users assess the veracity of information by themselves before taking an action to spread, ignore or debunk the piece of information being circulated (Ozturk et al., 2015). On the other side, people like to spread rumors because of importance, social responsibility (Luttrell, 2015), awareness of adverse consequences or personal norms (Zhao, Yin, & Song, 2016). Research shows that due to truth-biased characters, people are prone to believe the false rumors and propagate them as true information (Rubin, 2017; Wang & Zhuang, 2017; 2018; Zubiaga, Liakata, Procter, Hoi, & Tolmie, 2016). Social media platforms are also being increasingly abused by bots that mislead, exploit, and manipulate users by spreading rumors, misinformation, disinformation, spam, and malware (Ferrara, Varol, Davis, Menczer, & Flammini, 2016). The bots are able to inflate the popularity of a post, irrespective of its accuracy, thus exerting significant influence on users during critical events such as elections, disasters, and pandemic. In the recent years, it has been found that the behavior of bots is becoming increasingly human-like that makes their detection more difficult (Hwang, Pearce, & Nanis, 2012).

45 Official agencies and disaster relief organizations often use online social media as informational support tools to disseminate critical information to social media users about activities such as evacuation routes, aid distribution, and sheltering, during crisis events (Yan & Pedraza-Martinez, 2019). In case of rumor dispersion on social media platforms, major government, news, non-governmental (NGO), social media companies, and emergency management agencies make statements and post to social media platforms in order to clarify the rumor and provide the public with accurate content. For example, following the false rumors during Hurricanes Harvey and Irma, the U.S. Federal Emergency Management Agency (FEMA) created "Rumor Control" pages (Federal Emergency Management Agency, 2017; 2017) on their website in order to dispel the inaccuracies and provide updated and thorough communications. FEMA used their Twitter account to disseminate this web page by posting twelve different tweets over the course of one week, with all of these tweets having a direct link to the Rumor Control page. In a recent event of coronavirus outbreak in Wuhan, Hubei province, China, it was reported that in early January 2020, the Wuhan police had arrested eight people accused of spreading false information about a mysterious pneumonia that caused serious complications. When the spread of coronavirus made national headlines, the journalists reporting on the outbreak were detained or threatened to be arrested. The steps taken by the Chinese government to contain the spread of misinformation without sufficient information about the outbreak have received strong criticism from the international community that deemed it as a major "cover up" (Ashley Collman, 2020). This particular incident corroborates the necessity of using verified infor-

101 mation by the official agencies for an effective rumor clarification.
 102 Hence, in order to clarify rumors, agencies must expend human re-
 103 sources and time in order to locate rumors on social media, track
 104 the rumors in order to understand their reach and impact, and for-
 105 mulate effective clarification and debunking messages.

106 Once a rumor case is identified within social media networks,
 107 the subsequent online communications associated with the rumor
 108 have to be monitored in order to take timely actions and contain
 109 its spread. Deciding the balance between how quickly to respond
 110 and how much time to invest in gathering verified information be-
 111 fore clarifying becomes more crucial in the context of social learn-
 112 ing. During emergency situations, a lot of novice users also rely
 113 on the information found online and how others are reacting to
 114 those information. Their perception towards the truth of rumor
 115 is acquired through a cognitive process of observing and some-
 116 times imitating others in the social context. Such behavioral re-
 117 sponds have received significant attention in the recent operations
 118 management literature. Among such works, Papanastasiou & Savva
 119 (2017) and Crapis, Ifrach, Maglaras, & Scarsini (2017) focused on
 120 how the optimal pricing policies are influenced by the customer
 121 reviews; while Feldman, Papanastasiou, & Segev (2019) showed
 122 that the social learning may contribute in decreasing the qual-
 123 ity of new experience goods. Hu, Milner, & Wu (2016) consid-
 124 ered the effects of social influence on optimal inventory deci-
 125 sions and Gao & Su (2017) considered whether offering the op-
 126 tion between buying online and picking up in store is benefi-
 127 cial to the retailers. Papanastasiou (2020) deployed a sequential
 128 model to study the problem of dynamically choosing whether to
 129 conduct a $\ddot{\alpha}$ fact-check $\ddot{\alpha}$ of an article whose veracity is not known
 130 beforehand.

131 Over the last few years, the problem of determining the veracity
 132 of the information that an individual user posts with respect to the
 133 detected case of rumor has attracted many studies (Chen, Zheng, &
 134 Ceran, 2016; Hamidian & Diab, 2015; Lee, Qiu, & Whinston, 2018;
 135 Qazvinian, Rosengren, Radev, & Mei, 2011; Zeng, Starbird, & Spiro,
 136 Zhang, Gupta, Kauten, Deokar, & Qin, 2019; Zubiaga, Kochkina,
 137 Liakata, Procter, & Lukasik, 2016). Numerous studies also have
 138 characterized the emergence and propagation of rumors in social
 139 media platforms. Liao & Shi (2013) explored the dynamics of rumor
 140 transmission in China's largest microblogging system, Sina Weibo,
 141 and identified four major categories that describe how users inter-
 142 vene in rumor discussions: providing information, expressing emo-
 143 tions, sharing opinions, and analyzing and interpreting situations.
 144 Zubiaga et al. (2016) analyzed a dataset of 330 rumor threads as-
 145 sociated with 9 newsworthy events to understand the role of dif-
 146 ferent types of users in rumor propagation and clarification pro-
 147 cess throughout the life cycle of a rumor. Cheng, Liu, Shen, & Yuan
 148 (2013) found that the diffusion of rumors in online social networks
 149 is a function of the strength of ties between users, where the pos-
 150 sibility of a rumor spreading is more likely across strong ties in a
 151 network. Studies conducted by Oh, Agrawal, & Rao (2013) on ru-
 152 mor mongering show that the effect of source ambiguity (the lack
 153 of an official source) on rumorizing is much more significant than
 154 that of content ambiguity (lack of persuasive statements in Twi-
 155 ter posts), and anxiety. Vosoughi, Roy, & Aral (2018) analyzed the
 156 diffusion dynamics of true and false rumors and found that false
 157 rumors propagated significantly faster and deeper as compared
 158 to true rumors in all categories of information; namely political
 159 news, terrorism, natural disasters, science, urban legends, enter-
 160 tainment, and financial information. Roozenbeek & Van Der Linden
 161 (2019) developed a fake news game to evaluate its effectiveness
 162 on educating the public in fighting and managing the risks posed
 163 by fake news. In this experiment, the participants were trained to
 164 recognize fake news tactics by assuming different characters in or-
 165 der to provide a broad level resistance to the transmission of fake
 166 news.

As evident from the review of current works in the domain of rumor propagation and clarification, a wide range of studies are focused on analyzing the propagation dynamics of rumors on social media coupled with the behaviors of users with respect to these rumors. As a result, a significant surfeit of research exists that takes into account the strategic interactions between official agencies and social media users in the process of rumor propagation and clarification. In the past, numerous studies have used game-theoretic approaches to model the interactions between an official agency and a private entity in different application domains. [Cheung & Zhuang \(2012\)](#) analyzed the strategic interactions between the government and the oil spill companies by formulating game-theoretic models with different attributes such as one-company/two-company, with/without competition. [Agarwal, Hunt, Srinivasan, & Zhuang \(2020\)](#) developed centralized and decentralized game-theoretic models to study the strategic behaviors of fire inspection agencies and building owners in the process of fire safety code inspection and compliance. [Bier & Haphuriwat \(2011\)](#); [Bier, Haphuriwat, Menoyo, Zimmerman, & Culpen \(2008\)](#); [Shan & Zhuang \(2014\)](#) developed game-theoretic models to analyze the retaliation efforts of defenders (official agencies) and attack strategies of smugglers (individual/groups of people) in the context of nuclear smuggling. Strategic interactions between the hackers and defenders in the context of cyber security problems have also successfully attracted the attention of game theory enthusiasts ([Rao et al., 2016](#); [Ten, Manimaran, & Liu, 2010](#)). Game theory and the concept of Nash equilibrium have also been utilized for identifying the equilibrium strategies for attacker (for example, terrorist organizations) and defender (for example, government defense agencies) in the context of disaster management. In this application domain, [Zhuang & Bier \(2007\)](#) developed simultaneous and sequential game models that provided critical insights to government agencies for allocating defensive investment between terrorism and natural disasters.

To the best of our knowledge, no previous research has studied the strategic interactions between official agencies and social media users during rumor propagation and clarification process. This paper fills this gap by modeling the strategic behaviors of the players during rumor transmission using two novel game-theoretic models. The objective of this study is to analyze the impact of rumor clarification and verification strategies of the agencies and social media companies on decisions of the social media users during rumor propagation. The first model "Rumor Selection for Clarification" serves as a decision support tool for the emergency agencies to take a crucial decision on selection of rumor cases for clarification, and subsequently convey correct information to the population by effective utilization of available resources. The second model "Learning for Rumor Clarification" helps to determine the optimal strategy for the agencies and social media companies by addressing the trade-offs between reacting fast with partial/imprecise information and reacting later with verified information.

The remaining sections of the paper are organized as follows: [Section 2](#) provides an overview on rumor clarification and verification processes in real life situations. [Section 3](#) presents Model 1 by introducing its notations, assumptions and problem definitions, provides the analytic and numerical results of the model, and finally delivers prescriptive insights that are derived from the model results. [Section 4](#) introduces Model 2 by its notations, assumptions and objective functions, provides the analytic and numerical results of the model, and presents prescriptive insights that are derived from the model results. [Section 5](#) presents the validation of the propositions based on Twitter data from seven real life rumor cases and [Section 6](#) provides the summary of the paper and proposes future research directions. The appendix provides proofs for the propositions.

2. Background on rumor clarification and verification

233

2.1. Rumor clarification

234

Acknowledging the destructive effect of rumors during crisis events, official agencies and social media companies have used rumor clarification as one of the major strategies for restraining rumors in social media ([Wen et al., 2014](#)). For example, during the 2016 Louisiana Floods, the American Red Cross published a blog named "Top Questions About Louisiana Flood Relief" to disseminate critical information about resources and raise situational awareness ([American Red Cross, 2016](#)). This blog was widely used by the digital volunteers and online supporters of the Red Cross to spread correct information among the public. The Red Cross Social Engagement team also created a secret Facebook group to channel important updates, flag urgent issues, and collaborate with other teams. Situational updates through informational videos have been an integral tool to combat misinformation for the Red Cross team ([U.S. Department of Homeland Security, 2018](#)). During the 2017 Hurricane Harvey, FEMA requested support from Virtual Operation Support Team (VOST) in three mission areas: (i) tracking and delivery of large donations, (ii) tracking the recruitment of volunteers and their locations, and (iii) tracking donation scams that redirected funds allocated for the victims to funds unrelated to Hurricane Harvey ([U.S. Department of Homeland Security, 2018](#)).

For clarification of rumors on social media, a host of different practices can be used by the official agencies as prescribed by the official report released by the U.S. Department of Homeland Security ([U.S. Department of Homeland Security, 2018](#)). In addition to online social media, platforms such as local television, radio, and news media can be leveraged to propagate necessary information and debunk false information. As seen from the above case studies, official organizations such as FEMA and the Red Cross can seek support from VOSTs or other digital volunteers on different areas such as tracking and monitoring social media platforms, identifying false rumors and investigating their potential sources, and collaborating with the official agencies for controlling the spread of rumors. Seeking such assistance also requires training of volunteers and responders on how to pinpoint false rumors and misinformation, and what practices should be used to respond to harmful information. Agencies can also identify and leverage trusted crowd sources or influencers to disseminate rumor correction information. Using these practices usually demand significant effort and time, thereby limiting the number of rumors that can be effectively contained and clarified in time ([Wang et al., 2019](#)).

2.2. Rumor verification

276

Clarifying rumor with insufficient or unverified information contributes to the rapid spread of rumors. While a lack of verification resources is a very common reason attributed to insufficient information, a lack of authority to release information or ambiguity in the responsibilities are also pervasive factors behind insufficiency. Not clarifying the rumor by covering all aspects can leave room for speculation and lead to serious detrimental effects. The 2017 Orville Dam Evacuation rumor is a case where insufficient information failed to contain the large scale panic among people. The National Weather Service (NWS) Sacramento station distributed a tweet that showed an image of the rainfall flooded area encompassing Sacramento County along with the Orville Dam. Around 6 p.m. (local time), @LNU_fire_photo doctored that image by incorporating evacuation information, as shown in [Fig. 1](#) and distributed in Twitter. People seeing the image believed they are under an evacuation order. At 6:30 p.m., @JDLazo tried to clarify the rumor, but the clarification attempt with insufficient information could not convince the mass people and calls began flooding Sacramento

Fig. 1. Unsuccessful rumor verification attempt on Twitter due to insufficient information during Oroville Dam crisis.

295 County 9-1-1 dispatch. At 8:50 p.m., staff from Sacramento County
 296 Emergency Operations Center (EOC) shot a Facebook Live Video
 297 (sac, 2017) to correct misinformation with verified information and
 298 uploaded it. Almost immediately, news media including television
 299 and iHeartRadio took the initiative to quote the live feeds in their
 300 broadcasts and the videos were circulated. The radio stations also
 301 joined by broadcasting the audio portion of the live video and television
 302 stations utilized their anchors to quote information from the
 303 Sacramento County EOC. After the broadcasts, the call volume in
 304 County's 9-1-1 dispatch center returned to normal.

305 For verifying the rumored information, a host of different practices can be used as prescribed by the official report released by
 306 the U.S. Department of Homeland Security (U.S. Department of
 307 Homeland Security, 2018). Verifications can be obtained by checking on the primary and supporting sources. The author of the social media content can be contacted to get more information. Eye
 311 witnesses and first responders can be contacted to get verified information on the disseminated content on social media. The legitimacy of information disseminated on social media platforms can
 314 be cross-checked using websites such as Factcheck.org (Factcheck,
 315 2020) or Snopes.com (Snopes, 2020). These websites initially communicate with the source of the claim for explanation and supporting information. They also try to communicate with the individuals and organizations who possess relevant expertise in the subject of interest. News articles, scientific and medical journal articles, books, interview transcripts and statistical sources on the topic are often looked into for completeness of the information.
 322 Verification can also be performed by conducting reverse image searches using Google. Google's Search by Image (Google Images,
 324 2020) is a feature that uses reverse image search and allows users to search for related images just by uploading an image or image URL. Geofence and/or Twitter searches for geolocations can also be used to mine and filter the real information from false information.

328 3. Model 1: Rumor selection for clarification

329 During crisis events, multiple rumor cases propagate that may
 330 vary with respect to different factors such as the impact on the

public, extent of diffusion in social networks, and efforts required to control their propagation. In such time-sensitive situations, the official agencies and social media companies must make critical decisions in order to minimize the spread of rumors, thereby preventing widespread panic and confusion among the misinformed users. Due to the limitation of resources, the official agencies and social media companies must strategically choose the specific rumor case(s) for clarification, while considering the potential trade-offs between the cost of clarification of rumor and impact of rumor on the affected community.

341 Model 1 identifies the strategic interactions between two clusters of users, namely User A (she) and User B (he), in the context 342 of rumor selection for clarification. A decision maker is defined as 343 User A if she has authority, responsibility, and resources to clarify 344 and/or verify a rumor. Agencies such as FEMA, Red Cross, and 345 Department of Defense, social media companies, news organizations, 346 and fact-checking websites such as FactCheck.org, Snopes, and Politifact 347 fall under the category of user type A. On the other hand, 348 User B is defined as a social media account that is not necessarily 349 responsible for rumor clarification and/or verification. User B may 350 engage in the process of rumor clarification and/or verification by 351 supporting, opposing or showing neutral participation. The objective 352 of this model is to study the impact of the User A's rumor clarification 353 strategies on the User B's decision to support, oppose, or 354 show neutral participation for a specific rumor. This is achieved by 355 modeling the scenario of rumor selection using a sequential game 356 model. This model is regarded as a first approximation to the problem 357 of rumor selection for clarification by considering a case of 358 two rumors.

359 3.1. Notations, assumptions and description of model

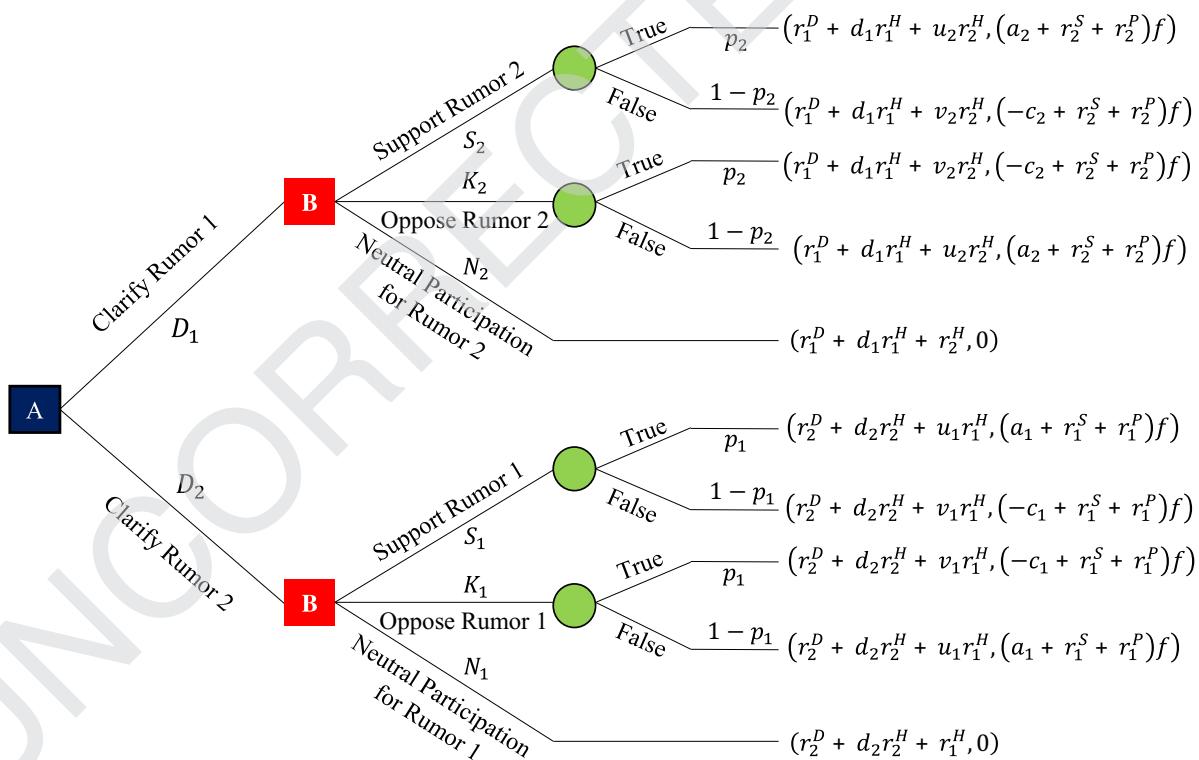
360 Notations for Model 1 are introduced and defined in Table 1, 361 that include two decision variables, eleven parameters, and two 362 functions.

363 In the sequential game that is illustrated in Fig. 2, User A is assumed 364 to minimize her expected loss, L_{1A} , while User B is assumed 365 to maximize his expected utility, U_{1B} . User A is assumed to be the 366

Table 1

Notations used in Model 1.

Decision Options of User A	
D_i	Clarify rumor i , where $i = 1, 2$
Decision Options of User B	
K_j	Oppose rumor j , where $j = 1, 2$
S_j	Support rumor j , where $j = 1, 2$
N_j	Neutral participation with respect to rumor j , where $j = 1, 2$
Decision Variables	
x_i	Whether User A decides to clarify rumor i , where $i = 1, 2$; $x_i \in \{0, 1\}$ and $\sum_i x_i = 1$
y_{ik}	Whether User B decides to choose option k given that User A clarifies rumor i , where $k \in \{K_j, S_j, N_j\}$; $i = 1, 2$; $i \neq j$; $y_{ik} \in \{0, 1\}$ and $\sum_k y_{ik} = 1$, $\forall i = 1, 2$
Parameters	
r_i^D	Cost of clarification of rumor i , where $i = 1, 2$
r_i^H	Impact of rumor i , where $i = 1, 2$
d_i	Clarification index for rumor i , where $d_i \in [0, 1]$, $i = 1, 2$
u_i	Index for spreading true information by User B, where $u_i \in [0, 1]$, $i = 1, 2$
v_i	Index for spreading false information by User B, where $v_i > 1$, $i = 1, 2$
p_i	Probability of rumor i being true, where $i = 1, 2$
f	Number of followers of User B
a_i	Benefit of spreading true information to each follower regarding rumor i , where $i = 1, 2$
c_i	Cost of spreading false information to each follower regarding rumor i , where $i = 1, 2$
r_i^S	Engagement rate obtained by User B due to importance of the event, where $i = 1, 2$
r_i^P	Engagement rate obtained by User B due to popularity of the rumor spreader, where $i = 1, 2$
Functions	
$L_{1A}(x_i, y_{ik})$	Expected loss of User A
$U_{1B}(x_i, y_{ik})$	Expected utility of User B

**Fig. 2.** Sequence of moves of players in a rumor selection for clarification game (a case of 2 rumors).

367 first mover who chooses her strategy first regarding the selection
 368 of rumor to clarify. In this model, each player has a different set
 369 of objectives: User A seeks to minimize the cost of rumor clarifi-
 370 cation and the impact of rumor transmission, while User B desires
 371 to maximize his influence and credibility ratings in the social net-
 372 works. The veracity of a rumor i is modeled using a chance event
 373 with probability p_i that rumor i is true. The value of p_i is assumed
 374 to be independent of the strategies taken by the players and their
 375 corresponding subjective assessments.

Given a case of two rumors, User A can choose to clarify rumor 1 (D_1) or rumor 2 (D_2). On the other hand, User B can choose to support (S_j), oppose (K_j) or engage in neutral participation (N_j) by posting comments and questions regarding rumor j . When User A chooses to clarify a particular rumor, it is assumed that there is no incentive for User B to make a move regarding that rumor, while he can still choose to support, oppose or engage in neutral participation with respect to the other rumor. If User B supports a true rumor or opposes a false rumor, he earns a benefit $a_i f$ for

spreading true information to his followers. While if he chooses to support a false rumor or oppose a true rumor, he bears a cost c_{if} for spreading false information to his followers. No benefit or cost is associated with the User B's decision of neutral participation. The engagement rate obtained by User B while supporting or opposing a rumor also depends on the importance of the event (r_i^S) and the popularity of the rumor spreader (r_i^P). For User A, there is a cost of clarification r_i^D for rumor i . The impact of the rumor r_i^H that User A seeks to minimize depends on the strategy of User B. If User B supports a false rumor or opposes a true rumor, the impact of rumor increases by a factor v_i , while if he supports a true rumor, or opposes a false rumor, the impact of rumor decreases by a factor u_i . The impact of rumor that User A clarifies is dependent on the corresponding quality of rumor clarification, d_i . For example, if User A chooses to clarify rumor 1, the expected impact of rumor will be $d_1 r_1^H$, where d_1 is the quality of clarification for rumor 1. In Model 1, the objective of User A is to minimize her expected loss L_{1A} by choosing x_i to clarify rumor i . The objective of User B is to maximize his expected utility U_{1B} by choosing y_{ik} to support, oppose or engage in neutral participation regarding rumor j , given that User A chooses to clarify rumor i . Therefore, the optimization functions of both players in Model 1 can be written as shown below:

$$\begin{aligned} \min_{x_i} L_{1A}(x_i, y_{ik}) &= x_1 \left((p_2 u_2 + (1 - p_2) v_2 - 1) r_2^H y_{1S_2} \right. \\ &\quad \left. + (p_2 v_2 + (1 - p_2) u_2 - 1) r_2^H y_{1K_2} + r_1^D + d_1 r_1^H + r_2^H \right) \\ &\quad + (1 - x_1) \left((p_1 u_1 + (1 - p_1) v_1 - 1) r_1^H y_{2S_1} \right. \\ &\quad \left. + (p_1 v_1 + (1 - p_1) u_1 - 1) r_1^H y_{2K_1} + r_2^D + d_2 r_2^H + r_1^H \right) \\ \max_{y_{ik}} U_{1B}(x_i, y_{ik}) &= x_1 \left(y_{1S_2} f(a_2 p_2 - c_2 (1 - p_2) + r_2^S + r_2^P) \right. \\ &\quad \left. + y_{1K_2} f(-c_2 p_2 + a_2 (1 - p_2) + r_2^S + r_2^P) \right) \\ &\quad + (1 - x_1) \left(y_{2S_1} f(a_1 p_1 - c_1 (1 - p_1) + r_1^S + r_1^P) \right. \\ &\quad \left. + y_{2K_1} f(-c_1 p_1 + a_1 (1 - p_1) + r_1^S + r_1^P) \right) \end{aligned} \quad (1)$$

408 3.2. Best response of user B

409 Since User B is assumed to be the second mover in Model 1, 410 we first derive the best response of User B, \hat{y}_n , which is defined as 411 follows:

$$\hat{y}_n \equiv \underset{y_{ik} \in \{0,1\}}{\operatorname{argmax}} U_{1B}(x_i, y_{ik}), \text{ where } n = 1, 2 \quad (2)$$

412 The best response function of User B enables us to obtain his 413 optimal strategy to maximize his expected utility, U_{1B} , with respect 414 to the option chosen by the User A (either to clarify rumor 1 or 415 rumor 2).

416 **Proposition 1.** The best response function of User B, \hat{y}_n , is given by:

$$\hat{y}_n = \begin{cases} S_j & \text{if } p_j \geq \max \left(\frac{c_j - (r_j^S + r_j^P)}{c_j + a_j}, \frac{1}{2} \right), \forall j = 1, 2 \\ K_j & \text{if } p_j \leq \min \left(\frac{a_j + (r_j^S + r_j^P)}{c_j + a_j}, \frac{1}{2} \right), \forall j = 1, 2 \\ N_j & \text{if } p_j \in \left(\frac{a_j + (r_j^S + r_j^P)}{c_j + a_j}, \frac{c_j - (r_j^S + r_j^P)}{c_j + a_j} \right), \forall j = 1, 2 \end{cases} \quad (3)$$

418 **Remark.** Proposition 1 identifies the boundary conditions for 419 different decision options of User B. The best response of User B 420 as a function of $p_1, p_2, a_1, a_2, c_1, c_2, r_1^S, r_2^S, r_1^P$, and r_2^P are shown 421 graphically in Fig. 3. For numerical illustrations, the baseline

values of the parameters used in this model are assumed as follows: $p_1 = 0.6, p_2 = 0.4, a_1 = 0.9, a_2 = 0.7, c_1 = 2.3, c_2 = 2.0, r_1^S = 0.3, r_2^S = 0.2, r_1^P = 4.2, r_2^P = 4.3, f = 250, r_1^D = 7.0, r_2^D = 6.0, r_1^H = 5.0, r_2^H = 4.0, d_1 = 0.75, d_2 = 0.5, u_1 = 0.8, u_2 = 0.3, v_1 = 1.5$, and $v_2 = 1.1$. The average number of favorites/likes, retweets/shares, and positive comments/replies received by User B by sharing true information on social media can be used to estimate the values of a_i and u_i . Similarly, the values of r_i^S and r_i^P can be quantified based on the average number of favorites/likes, retweets/shares, and positive comments/replies that User B gets due to the importance of event and popularity of rumor spreader, respectively. On the other hand, the values of c_i and v_i can be determined from the average number of negative comments/replies that User B receives by sharing false information on social media. A higher value of the number of negative comments/replies for each user sharing false information will result in a higher c_i and lower v_i . The value of parameter f can be obtained from the user profiles in social media platforms. The values of probabilities p_i for rumor cases being true or false can be derived from the historical database of rumors that have similar profiles in terms of diffusion, impact, and type of content spread. Costs of clarification r_i^D depend on the type of resources that are utilized by User A, which in turn, is

directly dependent on the profile of the specific rumor case being considered for clarification. The impact of rumors r_i^H can be determined by following their spread in both online and offline social environments. In addition to this, surveys related to the potential direct and/or indirect damage caused by a rumor can prove to be an effective tool in quantifying the impact created by that specific rumor. The values of parameters d_i can be determined using the number of users sharing false/true information before and after the clarification is made by User A.

As evident in Fig. 3(a) and 3(b), when the probability of a rumor being true is low, User B chooses to oppose the rumor. At sufficiently high values of this probability, he shifts his strategy to supporting the rumor. In Fig. 3(c) and 3(d), it is observed that when the benefit of spreading true information for a rumor is low, User B engages in neutral participation, while a higher benefit motivates him to either support or oppose the rumor based on the probability of that rumor being true. Fig. 3(e) and 3(f) show that when the cost of spreading false information for a rumor ranges from low to moderate, User B is likely to support or oppose that rumor based on its probability being true. A higher value of cost shifts his strategy to neutral participation in order to maximize his expected utility. In Fig. 3(g) to 3(j), it is observed that a higher engagement rate due to the importance of event or popularity of the spreader motivates User B to change his strategy from neutral participation to either supporting or opposing the rumor based on the probability of rumor being true.

471 3.3. Equilibrium solutions

Definition 1. A pair of User A's and User B's strategies (x^*, y^*) is 472 called a subgame-perfect Nash equilibrium (SPNE) if and only if: 473

$$x^* = \underset{x \in \{0,1\}}{\operatorname{argmin}} L_{1A}(x, \hat{y}_n), \text{ where } n \in \{1, 2\} \quad (4)$$

$$y^* = \hat{y}_n(x^*) = \underset{y_n \in \{0,1\}}{\operatorname{argmax}} U_{1B}(x^*, y_n), \text{ where } n \in \{1, 2\} \quad (5)$$

The SPNE solutions are obtained using backward induction 475 technique (Agarwal et al., 2020; Ho & Su, 2013). 476

Proposition 2. The SPNE solutions of the selection of rumor model 477 along with the optimal expected loss/utility of each player are provided 478 in Table 2, where $P_m, m = 1, 2, \dots, 6$ are the optimal conditions 479

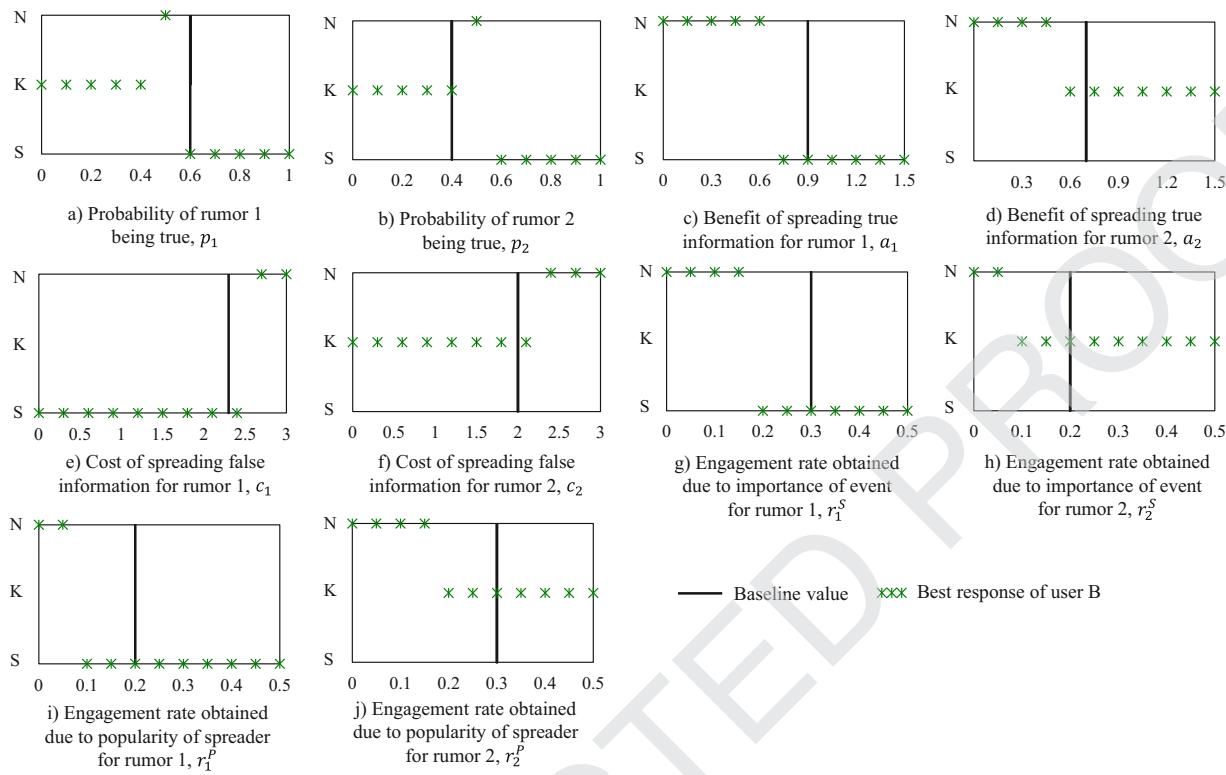


Fig. 3. Best response of User B as a one-way function of the parameters used in the rumor selection for clarification model.

Table 2
Equilibrium solutions of the selection of rumor model.

Case No.	Conditions	$(x^*; y^*)$	L_{1A}^*	U_{1B}^*
1	P_1	$(D_1; S_2)$	$r_1^P + d_1 r_1^H + (p_2 u_2 + (1 - p_2) v_2) r_2^H$	$(p_2 a_2 - (1 - p_2) c_2 + r_2^S + r_2^P) f$
2	P_2	$(D_1; K_2)$	$r_1^P + d_1 r_1^H + (p_2 v_2 + (1 - p_2) u_2) r_2^H$	$(-p_2 c_2 + (1 - p_2) a_2 + r_2^S + r_2^P) f$
3	P_3	$(D_1; N_2)$	$r_1^P + d_1 r_1^H + r_2^H$	0
4	P_4	$(D_2; S_1)$	$r_2^P + d_2 r_2^H + (p_1 u_1 + (1 - p_1) v_1) r_1^H$	$(p_1 a_1 - (1 - p_1) c_1 + r_1^S + r_1^P) f$
5	P_5	$(D_2; K_1)$	$r_2^P + d_2 r_2^H + (p_1 v_1 + (1 - p_1) u_1) r_1^H$	$(-p_1 c_1 + (1 - p_1) a_1 + r_1^S + r_1^P) f$
6	P_6	$(D_2; N_1)$	$r_2^P + d_2 r_2^H + r_1^H$	0

480 defined in Appendix A.2. L_{1A}^* and U_{1B}^* are the optimal expected loss
481 and utility for User A and User B, respectively.

482 **Remark.** Proposition 2 shows six possible SPNE strategies for User
483 A and User B. User A chooses to clarify rumor 1 ($x^* = D_1$) at equi-
484 librium in cases 1, 2, and 3, while she chooses to clarify rumor 2
485 ($x^* = D_2$) in cases 4, 5, and 6. User B supports the rumor ($y^* = S_j$)
486 at equilibrium in cases 1 and 4, opposes in cases 2 and 5 ($y^* = K_j$),
487 and engages in neutral participation ($y^* = N_j$) in cases 3 and 6.

488 3.4. Sensitivity analyses of equilibrium solutions

489 In this section, we study how the equilibrium solutions are sen-
490 sitive to the changes in the parameters used in the rumor selection
491 for clarification model. In order to present a consistent comparison
492 between the objective functions of the players in sensitivity anal-
493 ysis, we convert the expected loss function of User A into an ex-
494 pected utility function, U_{1A} .

495 Fig. 4 (a) and 4(c) show the sensitivity in the equilibrium stra-
496 tegies of the players relative to parameters a_1 and c_1 . It is observed
497 that User B exhibits contrasting behaviors with respect to a_1 and
498 c_1 . At low values of a_1 and high values of c_1 , he engages in neu-
499 tral participation, while a high value of a_1 and a low value of c_1
500 increases his expected utility, which in turn, motivates him to op-
501 pose the rumor. In Fig. 4(b) and 4(d), it is observed that a high a_2

502 and a low c_2 encourages User B to oppose rumor 2, given that the
503 baseline value of p_1 is higher than that of p_2 . This particular strat-
504 egy of User B provides an opportunity to User A to shift her focus
505 entirely on rumor 1 for clarification.

506 Fig. 4 (e) and 4(g) show that User B demonstrates similar equi-
507 librium behaviors with respect to parameters r_1^S and r_1^P . At low val-
508 ues of r_1^S and r_1^P , he engages in neutral participation, while higher
509 values of r_1^S and r_1^P increases his expected utility, thus motivating
510 him to shift his strategy to opposing the rumor. In Fig. 4(f) and
511 4(h), it is observed that at low values of r_2^S and r_2^P , User B focuses
512 his attention on rumor 1 by supporting it. With increase in the
513 values of r_2^S and r_2^P , he shifts his focus to rumor 2 and chooses to
514 oppose it. This transition in the strategy of User B allows User A to
515 focus on rumor 1 for clarification.

516 Fig. 4 (i) and 4(j) illustrates how sensitive the equilibrium
517 strategies of the players are with respect to parameters p_1 and
518 p_2 . It is observed that at initial low values of p_i for rumor i , User
519 B chooses to oppose the rumor fearing the risk of high damage
520 caused by supporting a false rumor. At moderate values of p_i , User
521 B engages in neutral participation while a sufficiently high value
522 of p_i motivates him to support the rumor in order to increase his
523 social influence and credibility rating. In addition to this, it is also
524 observed that User B changes his equilibrium decision to support
525 or oppose the other rumor in strategic regions that provide him

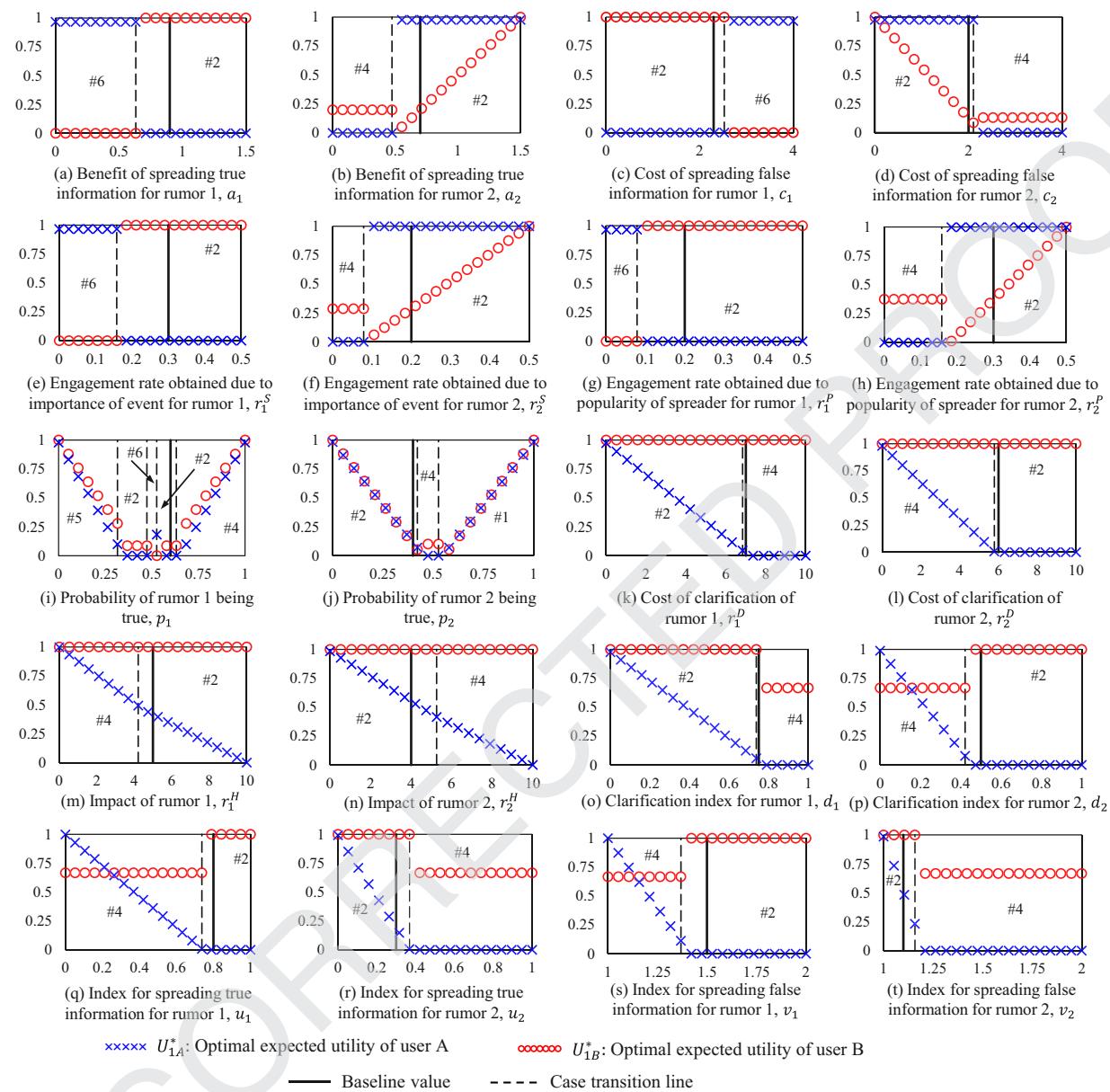


Fig. 4. Sensitivity analysis of the optimal strategies of the players and their expected utilities as one-way functions of the parameters used in the selection of rumor model.

better probabilistic opportunities. For example, in Fig. 4(i), when p_1 crosses 0.4, the baseline value of p_2 , he shifts his strategy to opposing rumor 2.

Fig. 4 (k) and 4(m) show the equilibrium behaviors of players with respect to parameters r_1^D and r_1^H . It is observed that a low r_1^D and a high r_1^H motivates User A to clarify rumor 1 while a high r_1^D and a low r_1^H motivates her to clarify rumor 2. A similar pattern in the behaviors of User A is observed with respect to parameters r_2^D and r_2^H .

In Fig. 4(o), 4(r), and 4(t), similar strategic profiles are observed for User A. At low values of d_1 , u_2 , and v_2 , User A chooses to clarify rumor 1. A low value of d_1 means that the quality of clarification for rumor 1 is comparatively better than that of rumor 2. Additionally, at low values of u_2 and v_2 , User B chooses to focus his attention on rumor 2 by opposing it which decreases the expected impact of rumor 2. This provides an opportunity to User A to focus on rumor 1 for clarification. At high values of d_1 , u_2 , and v_2 , User A shifts his attention to rumor 2 because of the decrease in the quality of clarification for rumor 1 and the change in the strategy

of User B to support rumor 1 that decreases its corresponding impact, given that the baseline value of p_1 is higher than that of p_2 . An opposite pattern in the equilibrium behaviors of the players is observed with respect to parameters d_2 , u_1 , and v_1 .

3.5. Analytical implications

When the impact of a rumor is high, the cost of spreading false information for the rumor is also high, which in turn poses a high risk for User B for being criticized if they choose to support the rumor. This possibility guides User B to engage in neutral participation due to which User A's costs associated with the control of rumor propagation decreases. User B is also motivated to engage in the process of supporting or opposing a rumor based on the engagement rates that he obtains due to the importance of event and popularity of rumor spreader. User A's strategy of selecting a rumor for clarification depends on whether User B is spreading false or true information to his followers and the quality of clarifications provided by User A to the social network. To deter User B

562 from spreading false information, User A should post verified information on social media platforms that can reduce the extent of 563 uncertainties involved in the process of rumor diffusion, thereby 564 enabling User B to take informed decisions. With a decrease in 565 the extent of uncertainties involved in rumor spreading and clar- 566 ification, the expected utilities of both players increase (as shown 567 in Fig. 4(i) and 4(j)). This phenomenon bolsters the need of posting 568 verified information on social media platforms for minimizing 569 the transmission of false rumors. With this motivation, we develop 570 Model 2 that incorporates the response of User A for providing ver- 571 ified information leading to a subsequent reduction of the impact 572 of false rumor transmission on social media platforms. 573

574 4. Model 2: Learning for rumor clarification

575 During rumor propagation, User A can react fast to minimize 576 the spread of rumor with the available information on hand. But 577 if the available information is unverified/unproven and does not 578 clarify all aspects of the rumor, it can leave room for specula- 579 tion and lead to serious detrimental effects such as widespread 580 panic and confusion among people. In some cases, investment in 581 terms of effort, time and money to completely learn and verify 582 the details of rumor for effective clarification may also allow the 583 rumor to spread with its full force during the learning phase. In 584 this model, we determine the equilibrium clarification strategy for 585 User A so that she can minimize the spread of rumors during cri- 586 sis events by addressing the trade-offs between reacting fast with 587 partial/unverified information and reacting at a later stage with 588 verified information. Model 2 identifies the strategic interactions 589 between User A and User B during the learning phase for rumor 590 clarification. The objective of this model is to study the impact of 591 the User A's rumor verification strategies on User B's decision to 592 support, oppose, or show neutral participation for a specific rumor. 593 This is achieved by modeling the scenario of rumor verification us- 594 ing a sequential game model.

595 4.1. Notations, assumptions and description of model

596 Notations for Model 2 are introduced and defined in Table 3, 597 that include three decision variables, fourteen parameters, and 598 three functions.

599 In this model, User A is assumed to minimize her expected loss, 600 L_{2A} , while the User B is assumed to maximize his expected utility, 601 U_{2B} . The sequence of moves of players is illustrated in Fig. 5. The 602 objectives of players in Model 2 are same as that of Model 1.

603 In this model, User A can either choose to clarify (D) or dis- 604 regard (ND) rumor immediately, or she can choose to enter into a 605 learning phase (L) in order to get verified information for rumor 606 clarification. Given that User A chooses to clarify rumor immedi- 607 ately, User B can then decide to disseminate (Q) this information 608 to his social network or may engage in neutral participation (N). 609 The strategy of information dissemination by User B provides him 610 with a benefit af , while no benefit or cost is associated with his 611 decision of neutral participation. The engagement rate obtained by 612 User B while supporting or opposing a rumor depends on the im- 613 portance of the event (r^S) and the popularity of the rumor spreader 614 (r^P). The effectiveness of clarification provided by User A is mod- 615 eled using clarification index, d . A higher value of d signifies that 616 the clarifications provided by User A are not sufficient to prevent 617 User B from spreading false information to his followers, thus in- 618 creasing the impact of rumor. The impact of rumor that User A 619 seeks to minimize is dependent on the strategy of User B. When 620 User B chooses to disseminate the clarified information posted by 621 User A, the impact of rumor decreases by a factor du , while in case 622 of neutral participation shown by User B, its impact decreases by 623 a factor d .

When User A decides to disregard the rumor, User B can decide amongst three options: oppose (K), support (S), or engage in neutral participation (N). If User B supports a true rumor or opposes a false rumor, he earns benefit af for spreading true information to his followers. While if he chooses to support a false rumor or oppose a true rumor, he bears a cost cf for spreading false information to his followers. No benefit or cost is associated with the User B's decision of neutral participation. When User B supports a true rumor or opposes a false rumor, the impact of rumor decreases by a factor u . Whereas, if he chooses to support a false rumor or oppose a true rumor, the impact of rumor increases by a factor v .

In the learning phase, the probability p_v models the uncertainties that exist while obtaining verified information for rumor clarification. In addition to the costs associated with rumor clarification and the impact of rumor, there exists a time-dependent cost $r^Lg(t)$ for User A to get verified information, where $g(t)$ is function of her learning period t . If User A manages to obtain verified information, she will choose to clarify the rumor using this information. In this case, User B can decide to disseminate the information to his social network or may engage in neutral participation. The effectiveness of verified information in reducing the impact of rumor is modeled using verification index, l . A higher value of l denotes that the verification provided by User A is not sufficient to convince User B, due to which User B will continue to spread false information to his followers, thus increasing the impact of rumor. Finally, if User A does not get verified information, she can choose to clarify or disregard the rumor.

In Model 2, the objective of User A is to minimize her expected loss L_{2A} by choosing x_i and $z_{j|q}$ to clarify rumor, with/without entering into the learning phase. The objective of User B is to maximize his expected utility U_{2B} by choosing y_k to disseminate, support, oppose or engage in neutral participation. Therefore, the optimization functions of both players in Model 2 can be written as shown below:

$$\begin{aligned} & \min_{x_i, z_{j|q}} L_{2A}(x_i, z_{j|q}, y_k) \\ &= x_D \left((1 - y_Q + uy_Q)dr^H + r^D \right) + x_L \left(p_v z_{D|V} \left((1 - y_Q + uy_Q)dr^H \right. \right. \\ & \quad \left. \left. + r^D + r^Lg(t) \right) + (1 - p_v) \left(z_{D|NV} \left((1 - y_Q + uy_Q)dr^H \right. \right. \right. \\ & \quad \left. \left. + r^D + r^Lg(t) \right) + z_{ND|NV} \left(y_K \left(p_v + (1 - p)u - 1 \right) r^H \right. \right. \\ & \quad \left. \left. + y_S \left(p_u + (1 - p)v - 1 \right) r^H + r^Lg(t) \right) \right) \\ & \quad + x_{ND} \left(y_K \left(p_v + (1 - p)u - 1 \right) r^H + y_S \left(p_u + (1 - p)v - 1 \right) r^H \right) \end{aligned} \quad (6)$$

$$\begin{aligned} & \max_{y_k} U_{2B}(x_i, z_{j|q}, y_k) \\ &= x_D y_Q f(a + r^S + r^P) + x_L f \left(p_v \left(z_{D|V} y_Q (a + r^S + r^P) \right. \right. \\ & \quad \left. \left. + (1 - p_v) \left(z_{D|NV} y_Q (a + r^S + r^P) + z_{ND|NV} \left(y_K \left((1 - p)a - pc \right. \right. \right. \right. \\ & \quad \left. \left. \left. + r^S + r^P \right) + y_S \left(pa - (1 - p)c + r^S + r^P \right) \right) \right) \right) \\ & \quad + x_{ND} f \left(y_K \left((1 - p)a - pc + r^S + r^P \right) \right. \\ & \quad \left. + y_S \left(pa - (1 - p)c + r^S + r^P \right) \right) \end{aligned} \quad (7)$$

660 4.2. Best response of user B

661 Since User B is assumed to be the second mover in Model 2, 662 we first derive the best response of User B, \hat{y}_n , which is defined as 662

Table 3
Notations used in Model 2.

Decision Options of User A	
D	Clarify
ND	Disregard
$L_{D,ND}$	Learn and clarify irrespective of getting verification
$L_{D,ND}$	Learn and clarify when verified (V) and disregard when unverified (NV)
Decision Options of User B	
Q	Disseminate
K	Oppose
S	Support
N	Do Nothing
Decision Variables	
x_i	Whether User A decides to choose option i , where $i \in \{D, ND, L\}$; $x_i \in \{0, 1\}$ and $\sum_i x_i = 1$
$z_{j q}$	Whether User A decides to choose option j given q while learning, where $j \in \{D, ND\}$; $q \in \{V, NV\}$ and $z_{j q} \in \{0, 1\}$
y_k	Whether User B decides to choose option k , where $k \in \{Q, K, S, N\}$ and $y_k \in \{0, 1\}$
Parameters	
r^D	Cost of rumor clarification
r^L	Learning cost per unit time period of User A
r^H	Impact of rumor
d	Clarification index where $d \in [0, 1]$
l	Verification index where $l \in [0, 1]$
p_v	Probability that User A will get verified information about the rumor
p	Probability of rumor being true
u	Index for spreading true information by User B where $u \in [0, 1]$
v	Index for spreading false information by User B where $v \geq 1$
f	Number of followers of User B
a	Benefit of spreading true information to each follower
c	Cost of spreading false information to each follower
r^S	Engagement rate obtained by User B due to importance of the event
r^P	Engagement rate obtained by User B due to popularity of the rumor spreader
Functions	
$L_{2A}(x_i, z_{j q}, y_k)$	Expected loss of User A
$U_{2B}(x_i, z_{j q}, y_k)$	Expected utility of User B
$g(t)$	Function of learning period t for User A

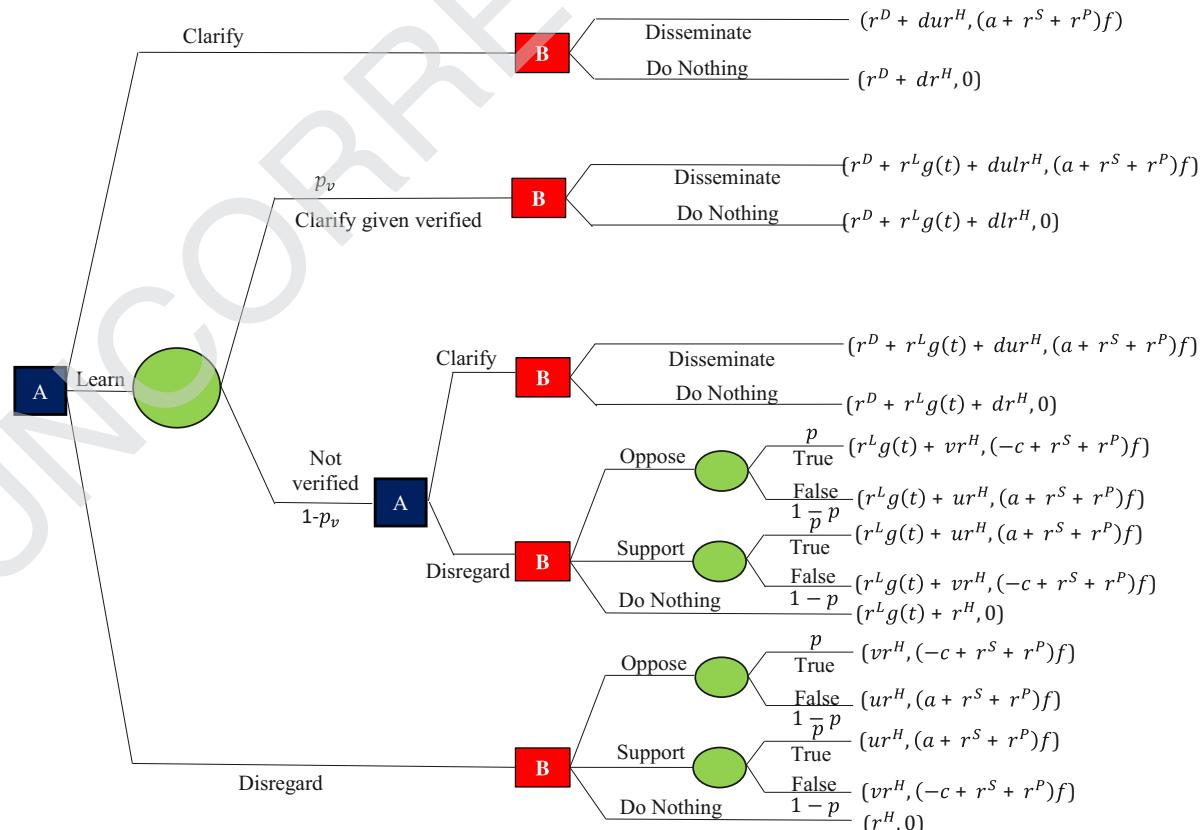


Fig. 5. Sequence of moves of players in learning for rumor clarification game.

Table 4

Equilibrium solutions of learning for rumor clarification model.

Case No.	Conditions R_i	(x^*, y^*) $(D; Q)$	L_{2A}^* $r^D + dur^H$	U_{2B}^* $(a + r^S + r^P)f$
2	R_2	$(L_{D,D}; Q, Q)$	$(p_v(l-1) + 1)dur^H + r^D + r^Lg(t)$ $p_v(dulr^H + r^D) + (1 - p_v)$	$(a + r^S + r^P)f$ $p_vfa + (1 - p_v)f$
3	R_3	$(L_{D,ND}; Q, K)$	$(pv + (1 - p)u - 1)r^H + r^Lg(t)$	$((1 - p)a - pc) + r^S + r^P$
4	R_4	$(L_{D,ND}; Q, S)$	$p_v(dulr^H + r^D) + (1 - p_v)$ $(pu + (1 - p)v - 1)r^H + r^Lg(t)$	$p_vfa + (1 - p_v)f$ $(pa - (1 - p)c) + r^S + r^P$
5	R_5	$(L_{D,ND}; Q, N)$	$p_v(dulr^H + r^D) + (1 - p_v)r^H + r^Lg(t)$	$p_vf(a + r^S + r^P)$
6	R_6	$(ND; K)$	$(pv + (1 - p)u)r^H$	$((1 - p)a - pc) + r^S + r^P$
7	R_7	$(ND; S)$	$(pu + (1 - p)v)r^H$	$((pa - (1 - p)c) + r^S + r^P)f$
8	R_8	$(ND; N)$	r^H	0

663 follows:

$$\hat{y}_n \equiv \underset{y_k \in \{0,1\}}{\operatorname{argmax}} U_{2B}(x_i, z_{j|q}, y_k), \text{ where } n = 1, 2, 3, 4, 5 \quad (8)$$

664 **Proposition 3.** The best response function of User B, \hat{y}_n , is given by:665 For $n = 1, 2, and 3, the strategy } Q is strictly dominant over } N, therefore,$

$$\hat{y}_n \equiv Q \quad (9)$$

667 For $n = 4$ and 5,

$$\hat{y}_n \equiv \begin{cases} S & \text{if } p \geq \max\left(\frac{c - (r^S + r^P)}{c + a}, \frac{1}{2}\right) \\ K & \text{if } p \leq \min\left(\frac{a + (r^S + r^P)}{c + a}, \frac{1}{2}\right) \\ N & \text{if } p \in \left(\frac{a + (r^S + r^P)}{c + a}, \frac{c - (r^S + r^P)}{c + a}\right) \end{cases} \quad (10)$$

668 **Remark.** Proposition 3 identifies the boundary conditions for different response strategies of User B. When User A chooses to clarify the rumor ($n = 1, 2$, and 3), User B's strategy is to disseminate this information to his social network, irrespective of the variations in model parameters. On the other hand, when User A decides to disregard the rumor ($n = 4$ and 5), User B can then choose amongst three options, that is, support, oppose or engage in neutral participation. The boundary conditions for these response strategies of User B is similar to the ones explained in Proposition 1.

678 4.3. Equilibrium solutions

679 **Proposition 4.** The SPNE solutions of the learning for rumor clarification model along with the optimal expected loss/utility of each player 680 are provided in Table 4, where R_m , $m = 1, 2, \dots, 8$ are the optimal 681 conditions defined in Appendix A.4. L_{2A}^* and U_{2B}^* are the optimal 682 expected loss and utility for Users A and B, respectively.684 **Remark.** In Proposition 4, eight possible SPNE strategies for Users 685 A and B are shown. User A chooses to clarify rumor instantaneously 686 at equilibrium ($x^* = D$) in case 1, she chooses to disregard rumor 687 instantaneously ($x^* = ND$) in cases 6, 7, and 8, and 688 she chooses to enter into the learning phase to obtain verified 689 information ($x^* = L$) in cases 2, 3, 4, and 5. If User A's equilibrium 690 strategy is to clarify immediately, User B chooses to disseminate 691 the information posted by User A ($y^* = Q$). When User A disregards 692 the rumor immediately at equilibrium, User B can choose to 693 oppose ($y^* = K$), support ($y^* = S$), or engage in neutral participation 694 ($y^* = N$). In the learning phase, User A can choose to clarify at 695 equilibrium irrespective of getting verified information ($x^* = L_{D,D}$), 696 in which case User B chooses to disseminate the information provided 697 by User A ($y^* = Q, Q$). The other equilibrium strategy of 698 User A in learning phase is to clarify when verification is obtained 699 and disregard when the rumored information remains unproven663 $(x^* = L_{D,ND})$. In these cases, there are three possible combinations 664 of equilibrium strategies for User B, that is, $(y^* = Q, K)$, $(y^* = Q, S)$, 665 and $(y^* = Q, N)$.

4.4. Sensitivity analyses of equilibrium solutions

666 In this section, we study how the equilibrium solutions are sensitive 667 to the changes in the parameters of learning for rumor clarification 668 model. For a consistent comparison between the objective 669 functions of the players in sensitivity analysis, we convert the 670 expected loss function of User A into an expected utility function, 671 U_{2A} . For numerical illustrations, the baseline values of the parameters 672 used in this model are assumed as follows: $p = 0.6$, $p_b = 0.8$, $a = 0.8$, $c = 2.3$, $r_s = 0.3$, $r_p = 2$, $f = 250$, $r^D = 4.0$, $r^H = 5.0$, $r^L = 0.2$, $d = 0.5$, $l = 0.3$, $t = 2$, $u = 0.8$, and $v = 1.5$.673 Fig. 6 (a) and 6(b) show the sensitivity in the equilibrium 674 strategies of the players relative to parameters a and c . In these 675 figures, it is observed that the behavior of User B with respect to a 676 is in complete contrast to that of c . At higher a and lower c , User 677 B chooses to support the rumor, given that User A disregards the 678 rumor when no verification is obtained. This equilibrium strategy 679 of the User B arises due to the baseline value of p being 0.6.680 Fig. 6 (c) and 6(d) show that User B demonstrates similar 681 equilibrium behaviors with respect to parameters r^S and r^P . At low 682 values of r^S and r^P , he engages in neutral participation, while higher 683 values of r^S and r^P increases his expected utility, thus motivating 684 him to shift his strategy to supporting the rumor.685 Fig. 6 (e) illustrates the sensitivity in the equilibrium strategies 686 of the players relative to parameter p . At low or high p , the extent 687 of uncertainties involved regarding the nature of rumor being true 688 or false is low, thereby encouraging User A to react faster without 689 entering into learning process. Moderate values of p result into 690 greater uncertainties about the nature of rumor, which in turn 691 motivates User A to obtain verified information via learning process.692 In Fig. 6(k), the strategies of the players are analysed with 693 respect to l , an index that quantifies the effectiveness of learning 694 process on the impact of rumor. At low values of l , User A is highly 695 likely to enter into the learning phase to obtain verified information, 696 while a high l switches her strategy to completely disregard 697 the rumor. The strategy of User A to enter into the learning phase 698 is also dependent on parameters p_v and r^L , as shown in Fig. 6(f) 699 and 6(i), respectively. It is observed that the equilibrium behaviors 700 of the players with respect to r^L are similar to that of l , while with 701 respect to p_v , the results are in complete contrast with that of l .702 Fig. 6 (g) and 6(h) show the equilibrium behaviors of players 703 with respect to parameters r^D and r^H . It is observed that a low r^D 704 and a high r^H motivate User A to clarify the rumor by entering into 705 learning phase to obtain verified information, while a high r^D and 706 a low r^H change her strategy to react faster without going into the 707 process of learning.708 In Fig. 6(j), the equilibrium behaviors of the players are 709 analyzed with respect to variations in d . This index quantifies the ef- 710

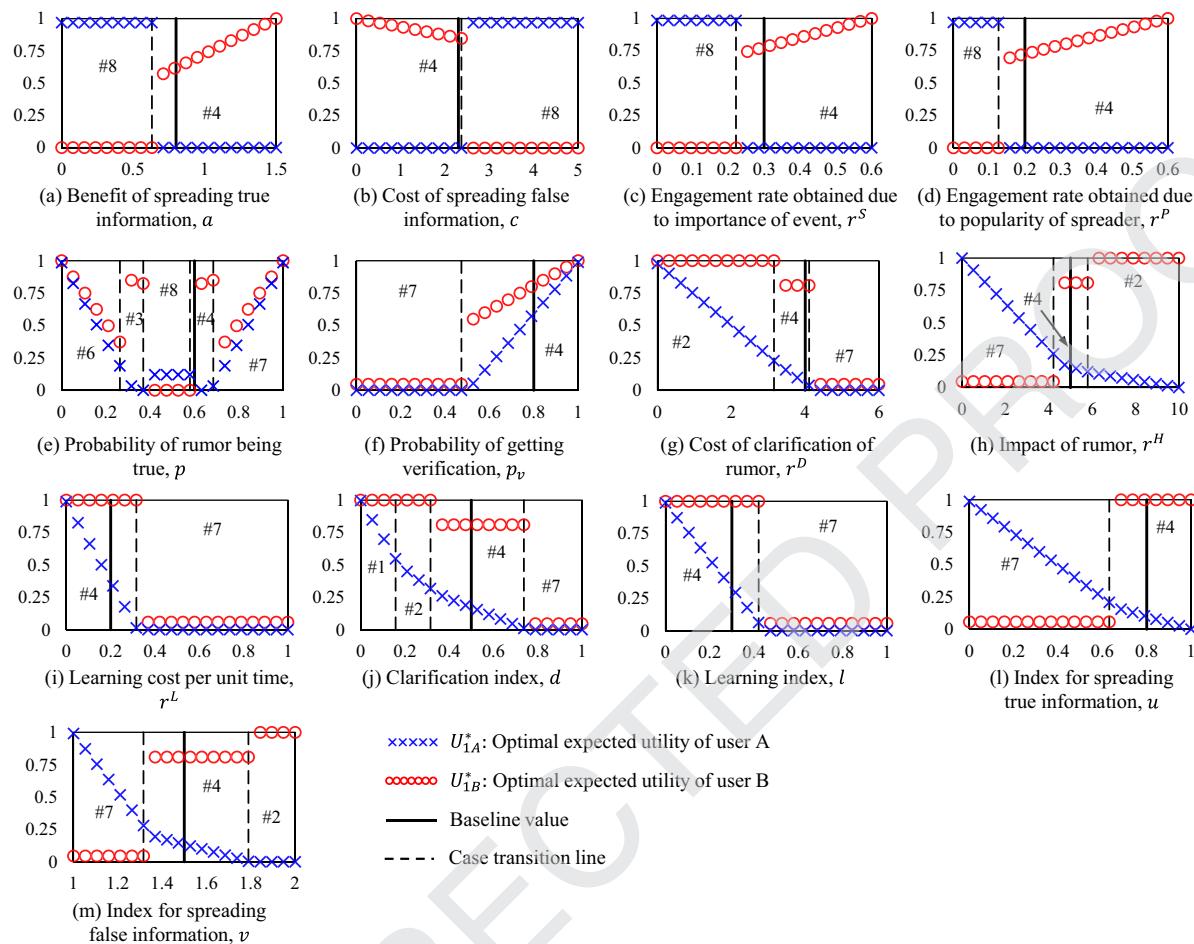


Fig. 6. Sensitivity analysis of the optimal strategies of the players and their expected utilities as one-way functions of the parameters used in the learning for rumor clarification model.

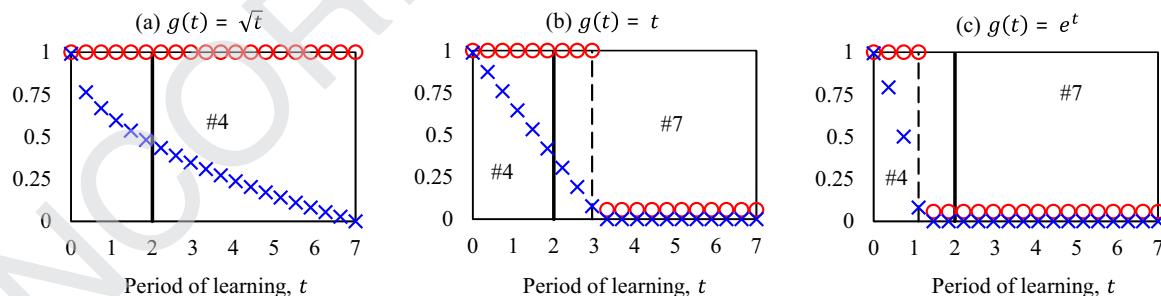


Fig. 7. Sensitivity analysis of the optimal strategies of the players and their expected utilities with respect to different functional forms of learning period t .

effectiveness of clarification on reducing the impact of rumor. It is observed that at low values of d , User A chooses to clarify the rumor instantaneously; at moderate values of d , she enters into a learning phase to get verified information for clarification; and at high values of d , she completely disregards the rumor.

Fig. 6 (l) and 6(m) shows the changes in the equilibrium strategies of players with respect to variations in u and v . A high value of u and v increases the impact of rumor, thereby acting as factors of motivation for User A to enter into learning process for obtaining verified information.

In Fig. 7, the equilibrium behaviors of the players are analyzed with respect to variations in the functional forms of $g(t)$, where the rate of change of t is decreasing, constant, and increasing in Fig. 7(a), 7(b), and 7(c), respectively. In Fig. 7(b) where $g(t) = t$, it

is observed that at low values of t , User A enters into the learning phase to obtain verified information, while a high value of t switches her strategy to completely disregard the rumor. On moving from $g(t) = \sqrt{t}$ to $g(t) = e^t$, the value of t at which the strategy of User A shows transition also decreases. This shows that if the time to get verification grows exponentially, User A is highly unlikely to spend time in the learning process.

Fig. 8 shows that at low values of u , User A chooses to clarify or disregard rumor instantaneously since a low value of u corresponds to a lower expected impact of the rumor. At higher values of u , the impact of rumor as a result of User B's behavior increases, thus motivating User A to obtain verified information by entering into the learning phase. At low and high values of p , the uncertainty regarding the rumor being true or false is low due to which

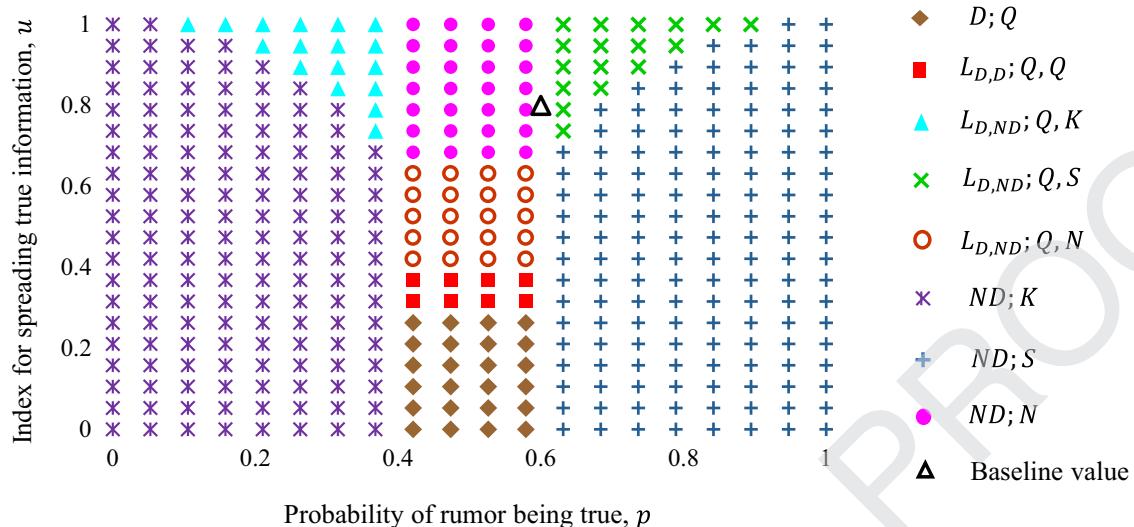


Fig. 8. Sensitivity analysis of the optimal strategies of the players as two-way functions of p and u .

778 User A chooses to react fast without engaging in learning. On the
 779 other hand, for moderate values of p , User A is motivated to spend
 780 time in the learning process for obtaining verified information.

781 4.5. Analytical implications

782 When the impact of rumor is high, the results show that User A
 783 should engage herself in the learning process to get detailed veri-
 784 fied information about the rumor that is being spread on social
 785 media platforms. This strategy minimizes the risk of significant
 786 rumor transmission as a result of a faster reaction with unveri-
 787 fied/unproven information. When User A clarifies the rumor with
 788 verification obtained from different sources, User B becomes much
 789 more confident in disseminating the information posted by User
 790 A. However, this engagement of User A in the learning process is
 791 constrained on two factors, that is, the cost of learning and pe-
 792 riod of learning. If the cost and period of learning are beyond the
 793 reasonable limits, the reduction obtained on the impact of rumor
 794 using verified information may not be significant enough to mo-
 795 tivate User A to engage in the learning process. The rate of in-
 796 crease/decrease of the time taken to get verified information also
 797 influences the decision of User A to participate in the learning pro-
 798 cess. Our results also show that entering into the learning phase
 799 also helps User A deal with the uncertainties regarding the nature
 800 of rumor being true or false.

801 5. Validation of the strategies of social media user

802 In this section, we analyze the strategies of social media users
 803 using data collected from Twitter across seven different rumor
 804 cases, as shown in Table 5. The criteria for choosing and collect-
 805 ing these datasets were based upon their large-scale news cover-
 806 age and the availability of the data on Twitter. The false rumor
 807 from the Boston Marathon bombing was broadcast across the
 808 online environment, and was identified through news outlets and so-
 809 cial media platforms (Sager, 2013). For the Hurricane Harvey and
 810 Hurricane Irma rumors, the cases were identified on FEMA's Ru-
 811 mor Control pages (Federal Emergency Management Agency, 2017).
 812 News from the 2018 Hawaiian incoming missile and Tsunami
 813 warning false alerts were broadcasted online, on the radio, and
 814 on television. A brief description about these cases are provided
 815 in Appendix A.5.

Twitter's Search API (Twitter Search API, 2020) was used for
 817 collecting all of the tweets in this research. Twitter's Standard
 818 Search API returns tweets from the previous seven days based on
 819 user-specified search criteria. Data used in this study only contains
 820 a sample of tweets that were returned by the API based on our
 821 search queries since the API does not provide an exhaustive list
 822 of tweets. To resolve this issue and collect more comprehensive
 823 datasets, the tweets were collected over a 28-day window for ev-
 824 ery case, with collection performed every three days by using the
 825 same search criteria every time. In total between the seven cases,
 826 we collected 48,314 tweets. The queries used for all cases were a
 827 combination of case insensitive keywords and hashtags (e.g., im-
 828 migration and #harvey; hawaii and #missile). The queries were
 829 selected following an extensive Twitter Advanced Search (Twitter
 830 Advanced Search, 2020) to find the pertinent keywords and hash-
 831 tags that identified tweets related to the rumors being studied in
 832 this paper.

Utilizing latent content analysis (Hunt, Wang, & Zhuang, 2020;
 833 Wang & Zhuang, 2017) and following the rules suggested by
 834 Krippendorff (2013) and Landis & Koch (1977), the text of each
 835 tweet was coded to identify the stance of the user with respect
 836 to the specific rumor case. Three researchers ("coder 1," "coder
 837 2," and "coder3") participated in the coding process for all of the
 838 tweets. The coders were required to become familiar with all seven
 839 cases of rumor in this study before coding began. Coders 1 and
 840 2 independently coded all of the tweets into the following three
 841 mutually exclusive classes: support, oppose, and neutral participa-
 842 tion. After coders 1 and 2 completed the datasets, coder 3 then
 843 cross-validated all of the tweets in which 1 and 2 disagreed on
 844 the class. In this study, we analyze the tweets related to classes,
 845 support and oppose, since these rumor cases were clarified as be-
 846 ing true or false by the official agencies. This clarification act as a
 847 complete information regarding the values of the probabilities for
 848 rumor cases being true.

Table 6 shows the description of rumor clarifications provided
 850 by different official accounts for each rumor case. The criteria used
 851 to select the first clarifying post were - (a) it must be posted by
 852 an official account of a verified user, and (b) it must be the most
 853 shared post (in terms of the number of retweets and likes) among
 854 the posts that were made on the first day of clarification. As shown
 855 in this table, a majority of these clarifications are provided by the
 856 news agencies while in cases such as Hurricane Harvey Hiring and
 857

Table 5

Summary statistics, collection dates, and total tweets collected for the seven rumor cases.

Rumor Case	Rumor Type	# Likes per Unique Tweet	# Retweets per Unique Tweet	Collection Began	Collection Ended	Collected Tweets
Hurricane Irma Fuel Demand	True	33	20	September 01, 2017	September 28, 2017	432
Hurricane Harvey Hiring	True	5	6	August 25, 2017	September 21, 2017	435
Hurricane Irma Immigration	False	26	16	September 09, 2017	October 06, 2017	594
Boston Marathon Bombing Donation	False	1	11	April 18, 2013	May 15, 2013	650
Tsunami Warning False Alert	False	3	2	February 04, 2018	March 03, 2018	7,478
Hawaii Missile False Alert	False	17	7	January 14, 2018	February 10, 2018	6,691
Hurricane Harvey Immigration	False	210	102	August 28, 2017	September 24, 2017	2,034
Total Collected Tweets						18,314

Table 6

Description of clarification provided by the official accounts for each rumor case.

Rumor Case	Official Account	Account Description	Clarification Posted On	Retweets for Clarification Post	Likes for Clarification Post	First Tweet Posted On
Hurricane Irma Fuel Demand	Reuters	News Agency	September 06, 2017	109	82	September 05, 2017
Hurricane Harvey Hiring	WCraigFugate	Former FEMA Administrator	August 30, 2017	115	71	August 28, 2017
Hurricane Harvey Immigration	washingtonpost	News Agency	August 25, 2017	561	1496	August 22, 2017
Hurricane Irma Immigration	NPR	News Agency	September 06, 2017	303	618	September 05, 2017
Hawaii Missile False Alert	ABCWorldNews	News Agency	January 13, 2018	50	64	January 13, 2018
Tsunami False Alert	NBCNews	News Agency	February 06, 2018	637	677	February 06, 2018
Boston Marathon Bombing Donation	darrenrovell	News Reporter	April 15, 2013	1957	158	April 15, 2013

858 Boston Marathon Bombing Donation, the clarification message is
 859 posted by individuals associated with the official agencies. It is ob-
 860 served that the official agencies usually take one to three days to
 861 verify and provide clarifications. In highly sensitive cases such as
 862 Hawaii Missile and Tsunami False Alerts, the clarification is pro-
 863 vided within the same day of the first rumored post to prevent
 864 widespread panic and confusion.

865 **Propositions 1 and 3** claim that when the probability of a rumor
 866 being true is low, User B chooses to oppose the rumor, while
 867 at high values of this probability, the best response strategy of User
 868 B is to support the rumor. These propositions are further validated
 869 using real life rumor cases during crisis events, as shown in seg-
 870 ment *Overall Response* of Fig. 9. In this segment, it is observed that
 871 for true rumors, most of the users chose to support these rumors.
 872 Whereas, in case of false rumors, majority of the users responded
 873 by opposing the rumor. The importance of verifying rumors and
 874 providing clarified information as prescribed by the model results
 875 are further validated by segments *Before Clarification* and *After Clar-*
 876 *ification* of Fig. 9. For false rumors, the percentage of users show-
 877 ing opposition increases up to 44.4% after the first clarifying post is
 878 made by an official account. In case of true rumors, the increase in
 879 the percentage of users showing support is found to be up to 6.7%.
 880 This shows that the influence of a clarification post is relatively
 881 more impactful for false rumors as compared to true rumors.

882 6. Conclusions and future research directions

883 In times of crises, millions of people turn to social media for
 884 breaking news updates, evacuation planning, situational awareness,
 885 safety protocols, among many other emergency needs. Although
 886 there are many significant benefits associated with social media
 887 platforms, there are also certain characteristics which can lead to a
 888 dangerous social environment. Unfortunately, due to the unmoder-

ated nature of social media platforms, rumors often spread, reaching
 889 and influencing people around the world. In order to clarify
 890 rumors, official agencies and social media companies must expend
 891 human resources and time in order to locate rumors on social me-
 892 dia, track the rumors in order to understand their reach and im-
 893 pact, and formulate rumor clarification messages.

894 In a rumor propagation and clarification process, the players
 895 make different strategic decisions by taking into account the trade-
 896 offs between the cost involved while spreading/clarifying, and the
 897 impact of rumor in terms of social reach and losses. Given the
 898 dearth of existing game-theoretic works on rumor propagation and
 899 clarification, we develop two novel game-theoretic models to study
 900 the strategic interactions that take place between Users A and B in
 901 a rumor transmission process. In these models, we determine the
 902 SPNE strategies of the players and identify the equilibrium con-
 903 ditions that motivate/demotivate the players to engage in a rumor
 904 transmission and clarification process. We also perform the numer-
 905 ical sensitivity analyses of the equilibrium strategies of the players
 906 and their expected utilities as functions of the parameters used in
 907 the models. Results of the sensitivity analyses help us to identify
 908 the relative threshold at which the strategies taken by the play-
 909 ers undergo transition. The results from the models indicate that
 910 posting verified information on social media reduces the uncer-
 911 tainties involved in rumor transmission, thereby enabling User B
 912 to take informed decisions on whether to support or oppose the
 913 rumor being circulated. This verification should be obtained within
 914 reasonable limits of time and cost in order to motivate User A to
 915 engage in the learning process. The prescriptive insights obtained
 916 from this paper will be useful to inform decision makers about the
 917 behaviors of Users A and B in a rumor transmission and clarifi-
 918 cation process under different strategic conditions, which in turn will
 919 improve the rumor information dissemination and control prac-
 920 tices during crisis events.

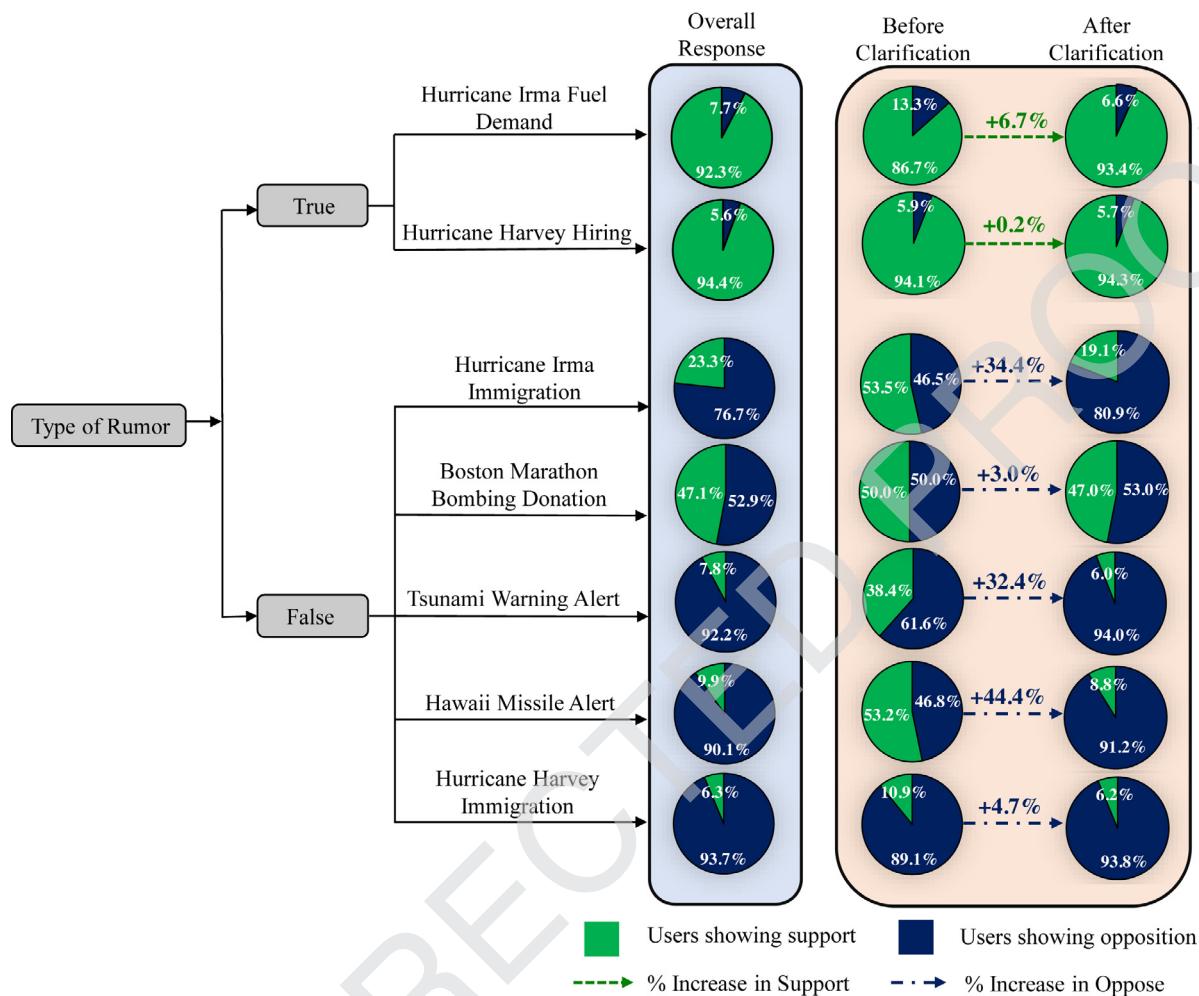


Fig. 9. Validation of the strategies of social media users based on real life rumor cases.

922 Social media companies are implementing policies in their
 923 fight against rumors, misinformation, and disinformation by tak-
 924 ing down inauthentic behavior, labeling misleading information,
 925 working closely with civil society groups, and engaging with re-
 926 searchers and governments. Before 2020 U.S. elections, LinkedIn,
 927 Pinterest, Reddit, Verizon Media, and the Wikimedia Foundation
 928 joined Google, Facebook, Twitter, and Microsoft to coordinate with
 929 the U.S. intelligence community to identify disinformation cam-
 930 paigns (Ben Nimmo, 2020; Isaac & Conger, 2020). Twitter uses a
 931 framework to label and remove manipulated or synthetic media
 932 and misleading information intended to undermine public trust
 933 on democratic policies and events such as elections (Dawn.com,
 934 2020). In September 2020, Twitter built a U.S. Election hub that
 935 provided credible and verified news and voting resources to the
 936 social media users for making informed decisions during elections
 937 (Gadde & Beykpour, 2020). Model 1 will help the social media
 938 companies to select the cases/posts to label/remove based on the
 939 users' behaviors, the impact of the cases on users, the importance
 940 of event, and the popularity of rumor spreader. Model 2 will help
 941 the agencies and social media companies to make decisions re-
 942 garding engaging in the learning process to provide verified and
 943 credible information during rumor clarification.

944 In this paper, it is assumed that the players have complete
 945 knowledge of their opponent's objectives, payoffs, beliefs, and pos-
 946 sible actions. However, in real life, different types of social media
 947 users may have different set of objectives and beliefs while partic-
 948 ipating in rumor clarification and verification processes. In future,

949 this can be addressed by using Adversarial Risk Analysis framework
 950 (Rios Insua, Ríos, & Banks, 2009) where probabilistic measures are
 951 used to define and assess the players' possible actions based on
 952 the uncertainties about the players' decision problem.

953 In the models that are developed in this paper, the players are
 954 assumed to be risk neutral. To build a more robust model, the play-
 955 ers could be allowed to have risk preferences. For example, an of-
 956 ficial agency or a social media user with a large network of fol-
 957 lowers is likely to have a risk averse profile since any controversial
 958 post/statement made by him/her on social media can draw a lot
 959 of criticism and a subsequent fall in social influence. Whereas, a
 960 user account with a small network of users will be more willing to
 961 take risks while supporting or opposing a rumor. One of the ways
 962 of incorporating these risk preferences into the expected utility
 963 functions of the players is by considering a power utility function
 964 of the form: $U(x) = x^\beta$, where $0 < \beta < 1$, $\beta = 1$, and $\beta > 1$ covers
 965 risk-averse, risk-neutral, and risk-seeking behaviors of the players
 966 (Payyappalli, Zhuang, & Jose, 2017).

967 In this paper, we model the decisions of User A to clarify/verify
 968 a rumor using binary variables. But in the real world, User A may
 969 select levels of effort to clarify two or more rumors simultane-
 970 ously and to verify a particular rumor. In that case, the level of
 971 effort used by User A might influence the decisions of User B to
 972 oppose/support a given rumor. A high level of effort might also
 973 increase User B's trust on User A's ability to clarify and verify a
 974 rumor being circulated on social media. In real-life situations, User
 975 A may receive multiple rumor cases pertaining to a disaster event

976 with a possibility of rumor spreading by multiple user accounts.
 977 These models can be more realistic by incorporating N rumor cases
 978 and the interaction of User A with N user accounts. In this pa-
 979 per, we assume that the probability of a rumor being true is in-
 980 dependent of the strategies of the players and their corresponding
 981 subjective assessments. However, in reality, each player is likely to
 982 have a different set of beliefs regarding the value of the probability
 983 that can be considered as a future research direction.

984 In this study, User B is assumed to maximize his influence and
 985 credibility ratings in the social networks. While in practical sce-
 986 narios, an unscrupulous User B may have no concerns about ve-
 987 racity and may engage due to different objectives such as mon-
 988 etizing by running advertisements, trying to seed polarization or
 989 misinformation on purpose, etc. The variability in User B's objec-
 990 tives can be modeled by identifying different user types (for ex-
 991 ample - trolls, reputed personalities) that are active in social me-
 992 dia platforms. Future research can also extend the current study
 993 to a multi-stage game model to consider continued review by the
 994 players as content becomes more viral and information is gradually
 995 revealed. Similarly, the models could also consider repeated game
 996 interactions between the players where the present course of ac-
 997 tions of User A affects its reputation and ability to influence User
 998 B in the future.

999 The efforts taken by User A to clarify a particular rumor is
 1000 also dependent on the strength of connections between different
 1001 users in a social network. The stronger the strength of connec-
 1002 tions between the users, it is likely that the spread of rumor will
 1003 be faster due to which User A needs to invest more time and re-
 1004 sources in clarifying and verifying the rumor effectively. In future,
 1005 the strength of ties between the users in a given social network
 1006 can be considered to study its impact on the propagation patters of
 1007 rumors, behaviors of users, and clarification and verification stra-
 1008 tegies of official agencies and social media companies. In addition,
 1009 future research could also consider unsupervised techniques such
 1010 as sentiment analysis to separate the data into different clusters.
 1011 Research and developments in this domain could remove the need
 1012 for labeling the data if unsupervised machine learning approaches
 1013 could automatically identify and create the different classes.

1014 Appendix A

1015 A1. Proof of Proposition 1

1016 Expected utility of the social media user while supporting the
 1017 *j*th rumor,

$$1017 U_{1B}(y_n = S_j) = (p_j a_j - (1 - p_j) c_j + r_j^S + r_j^P) f \quad (12)$$

1018 Expected utility of the social media user while opposing the *j*th
 1019 rumor,

$$1019 U_{1B}(y_n = K_j) = (-p_j c_j + (1 - p_j) a_j + r_j^S + r_j^P) f \quad (13)$$

1020 Expected utility of the social media user while doing nothing re-
 1021 garding the *j*th rumor,

$$1020 U_{1B}(y_n = N_j) = 0 \quad (14)$$

1022 For $\hat{y}_n = S_j$, the following condition must hold:

$$1022 U_{1B}(y_n = S_j) \geq U_{1B}(y_n = K_j), \text{ and} \quad (15)$$

1023

$$1023 U_{1B}(y_n = S_j) \geq U_{1B}(y_n = N_j) \quad (16)$$

1024 On solving inequalities (15) and (16), we get the following condi-
 1025 tion:

$$1025 p_j \geq \max\left(\frac{c_j - (r_j^S + r_j^P)}{c_j + a_j}, \frac{1}{2}\right) \quad (17)$$

1026 For $\hat{y}_n = K_j$, the following condition must hold:

$$1026 U_{1B}(y_n = K_j) \geq U_{1B}(y_n = S_j), \text{ and} \quad (18)$$

$$1027 U_{1B}(y_n = K_j) \geq U_{1B}(y_n = N_j) \quad (19)$$

1028 On solving inequalities (18) and (19), we get the following condi-
 1029 tion:

$$1029 p_j \leq \min\left(\frac{a_j + (r_j^S + r_j^P)}{c_j + a_j}, \frac{1}{2}\right) \quad (20)$$

1030 For $\hat{y}_n = N_j$, the following condition must hold:

$$1031 U_{1B}(y_n = N_j) \geq U_{1B}(y_n = K_j), \text{ and} \quad (21)$$

$$1031 U_{1B}(y_n = N_j) \geq U_{1B}(y_n = S_j) \quad (22)$$

1032 On solving inequalities (21) and (22), we get the following condi-
 1033 tion:

$$1033 p_j \in \left(\frac{a_j + (r_j^S + r_j^P)}{c_j + a_j}, \frac{c_j - (r_j^S + r_j^P)}{c_j + a_j}\right) \quad (23)$$

1034 A2. Proof of Proposition 2

1035 We substitute the best response function of the social me-
 1036 dia user defined in Eq. (3) into the expected loss function of the
 1037 agency defined in Eq. to obtain the following expressions for L_{1A}
 1038 in terms of \hat{y}_n :

$$1038 L_{1A}(x = D_1, \hat{y}_n = S_2) = r_1^D + d_1 r_1^H + (p_2 u_2 + (1 - p_2) v_2) r_2^H,$$

1039 (24)

$$1039 \text{subject to } C_1 \equiv p_2 \geq \max\left(\frac{c_2 - (r_2^S + r_2^P)}{c_2 + a_2}, \frac{1}{2}\right)$$

$$1039 L_{1A}(x = D_1, \hat{y}_n = K_2) = r_1^D + d_1 r_1^H + (p_2 v_2 + (1 - p_2) u_2) r_2^H,$$

1040 (25)

$$1040 \text{subject to } C_2 \equiv p_2 \leq \min\left(\frac{a_2 + (r_2^S + r_2^P)}{c_2 + a_2}, \frac{1}{2}\right)$$

$$1040 L_{1A}(x = D_1, \hat{y}_n = N_2) = r_1^D + d_1 r_1^H + r_2^H,$$

1041 (26)

$$1041 \text{subject to } C_3 \equiv p_2 \in \left(\frac{a_2 + (r_2^S + r_2^P)}{c_2 + a_2}, \frac{c_2 - (r_2^S + r_2^P)}{c_2 + a_2}\right)$$

$$1041 L_{1A}(x = D_2, \hat{y}_n = S_1) = r_2^D + d_2 r_2^H + (p_1 u_1 + (1 - p_1) v_1) r_1^H,$$

1042 (27)

$$1042 \text{subject to } C_4 \equiv p_1 \geq \max\left(\frac{c_1 - (r_1^S + r_1^P)}{c_1 + a_1}, \frac{1}{2}\right)$$

$$1042 L_{1A}(x = D_2, \hat{y}_n = K_1) = r_2^D + d_2 r_2^H + (p_1 v_1 + (1 - p_1) u_1) r_1^H,$$

1043 (28)

$$1043 \text{subject to } C_5 \equiv p_1 \leq \min\left(\frac{a_1 + (r_1^S + r_1^P)}{c_1 + a_1}, \frac{1}{2}\right)$$

$$1043 L_{1A}(x = D_2, \hat{y}_n = N_1) = r_2^D + d_2 r_2^H + r_1^H,$$

1044 (29)

$$1044 \text{subject to } C_6 \equiv p_1 \in \left(\frac{a_1 + (r_1^S + r_1^P)}{c_1 + a_1}, \frac{c_1 - (r_1^S + r_1^P)}{c_1 + a_1}\right)$$

1044 For $(x^*, y^*) = (D_1, S_2)$, the following condition must hold:

$$P_1 \equiv \left\{ \begin{array}{l} \left\{ (L_{1A}(x = D_1, \hat{y}_n = S_2) \leq L_{1A}(x = D_2, \hat{y}_n = S_1)) \cap (C_1 \cap C_4) \right\} \\ \cup \left\{ (L_{1A}(x = D_1, \hat{y}_n = S_2) \leq L_{1A}(x = D_2, \hat{y}_n = K_1)) \cap (C_1 \cap C_5) \right\} \\ \cup \left\{ (L_{1A}(x = D_1, \hat{y}_n = S_2) \leq L_{1A}(x = D_2, \hat{y}_n = N_1)) \cap (C_1 \cap C_6) \right\} \end{array} \right\} \quad (30)$$

1045 For $(x^*, y^*) = (D_1, K_2)$, the following condition must hold:

$$P_2 \equiv \left\{ \begin{array}{l} \left\{ (L_{1A}(x = D_1, \hat{y}_n = K_2) \leq L_{1A}(x = D_2, \hat{y}_n = S_1)) \cap (C_2 \cap C_4) \right\} \\ \cup \left\{ (L_{1A}(x = D_1, \hat{y}_n = K_2) \leq L_{1A}(x = D_2, \hat{y}_n = K_1)) \cap (C_2 \cap C_5) \right\} \\ \cup \left\{ (L_{1A}(x = D_1, \hat{y}_n = K_2) \leq L_{1A}(x = D_2, \hat{y}_n = N_1)) \cap (C_2 \cap C_6) \right\} \end{array} \right\} \quad (31)$$

1046 For $(x^*, y^*) = (D_1, N_2)$, the following condition must hold:

$$P_3 \equiv \left\{ \begin{array}{l} \left\{ (L_{1A}(x = D_1, \hat{y}_n = N_2) \leq L_{1A}(x = D_2, \hat{y}_n = S_1)) \cap (C_3 \cap C_4) \right\} \\ \cup \left\{ (L_{1A}(x = D_1, \hat{y}_n = N_2) \leq L_{1A}(x = D_2, \hat{y}_n = K_1)) \cap (C_3 \cap C_5) \right\} \\ \cup \left\{ (L_{1A}(x = D_1, \hat{y}_n = N_2) \leq L_{1A}(x = D_2, \hat{y}_n = N_1)) \cap (C_3 \cap C_6) \right\} \end{array} \right\} \quad (32)$$

1047 For $(x^*, y^*) = (D_2, S_1)$, the following condition must hold:

$$P_4 \equiv \left\{ \begin{array}{l} \left\{ (L_{1A}(x = D_2, \hat{y}_n = S_1) \leq L_{1A}(x = D_1, \hat{y}_n = S_2)) \cap (C_4 \cap C_1) \right\} \\ \cup \left\{ (L_{1A}(x = D_2, \hat{y}_n = S_1) \leq L_{1A}(x = D_1, \hat{y}_n = K_2)) \cap (C_4 \cap C_2) \right\} \\ \cup \left\{ (L_{1A}(x = D_2, \hat{y}_n = S_1) \leq L_{1A}(x = D_1, \hat{y}_n = N_2)) \cap (C_4 \cap C_3) \right\} \end{array} \right\} \quad (33)$$

1048 For $(x^*, y^*) = (D_2, K_1)$, the following condition must hold:

$$P_5 \equiv \left\{ \begin{array}{l} \left\{ (L_{1A}(x = D_2, \hat{y}_n = K_1) \leq L_{1A}(x = D_1, \hat{y}_n = S_2)) \cap (C_5 \cap C_1) \right\} \\ \cup \left\{ (L_{1A}(x = D_2, \hat{y}_n = K_1) \leq L_{1A}(x = D_1, \hat{y}_n = K_2)) \cap (C_5 \cap C_2) \right\} \\ \cup \left\{ (L_{1A}(x = D_2, \hat{y}_n = K_1) \leq L_{1A}(x = D_1, \hat{y}_n = N_2)) \cap (C_5 \cap C_3) \right\} \end{array} \right\} \quad (34)$$

1049 For $(x^*, y^*) = (D_2, N_1)$, the following condition must hold:

$$P_6 \equiv \left\{ \begin{array}{l} \left\{ (L_{1A}(x = D_2, \hat{y}_n = N_1) \leq L_{1A}(x = D_1, \hat{y}_n = S_2)) \cap (C_6 \cap C_1) \right\} \\ \cup \left\{ (L_{1A}(x = D_2, \hat{y}_n = N_1) \leq L_{1A}(x = D_1, \hat{y}_n = K_2)) \cap (C_6 \cap C_2) \right\} \\ \cup \left\{ (L_{1A}(x = D_2, \hat{y}_n = N_1) \leq L_{1A}(x = D_1, \hat{y}_n = N_2)) \cap (C_6 \cap C_3) \right\} \end{array} \right\} \quad (35)$$

1050 From Eqs. (24)–(29), it is observed that $C_1 \cap C_2$, $C_1 \cap C_3$, $C_2 \cap C_3$, $C_4 \cap C_5$, $C_4 \cap C_6$, and $C_5 \cap C_6$ yield empty set, due to which they are not taken into consideration while determining the optimal conditions 1051 for the SPNE solutions in the selection of rumor model.

A3. Proof of Proposition 3

1054

Expected utility of the social media user while disseminating the 1055 clarified information,

$$U_{2B}(y_n = Q) = (a + r^S + r^P)f \quad (36)$$

Expected utility of the social media user while supporting the rumor, 1057

1058

$$U_{2B}(y_n = S) = (pa - (1 - p)c + r^S + r^P)f \quad (37)$$

Expected utility of the social media user while opposing the rumor, 1059

1060

$$U_{2B}(y_n = K) = (-pc + (1 - p)a + r^S + r^P)f \quad (38)$$

Expected utility of the social media user while doing nothing regarding the rumor, 1061

1062

$$U_{2B}(y_n = N) = 0 \quad (39)$$

For $\hat{y}_n = S$, the following condition must hold: 1063

1064

$$U_{2B}(y_n = S) \geq U_{2B}(y_n = K), \text{ and} \quad (40)$$

1064

$$U_{2B}(y_n = S) \geq U_{2B}(y_n = N) \quad (41)$$

1065

On solving inequalities (40) and (41), we get the following condition: 1066

1067

$$p \geq \max \left(\frac{c - (r^S + r^P)}{c + a}, \frac{1}{2} \right) \quad (42)$$

For $\hat{y}_n = K$, the following condition must hold: 1067

1068

$$U_{2B}(y_n = K) \geq U_{2B}(y_n = S), \text{ and} \quad (43)$$

1068

$$U_{2B}(y_n = K) \geq U_{2B}(y_n = N) \quad (44)$$

1069

On solving inequalities (43) and (44), we get the following condition: 1070

1071

$$p \leq \min \left(\frac{a + (r^S + r^P)}{c + a}, \frac{1}{2} \right) \quad (45)$$

For $\hat{y}_n = N$, the following condition must hold: 1071

1072

$$U_{2B}(y_n = N) \geq U_{2B}(y_n = S), \text{ and} \quad (46)$$

1072

$$U_{2B}(y_n = N) \geq U_{2B}(y_n = K) \quad (47)$$

1073

On solving inequalities (46) and (47), we get the following condition: 1074

1075

$$p \in \left(\frac{a + (r^S + r^P)}{c + a}, \frac{c - (r^S + r^P)}{c + a} \right) \quad (48)$$

A4. Proof of Proposition 4

1075

We substitute the best response function of the social media user defined in Eqs. (9) and (10) into the expected loss function of the agency defined in Eq. (6) to obtain the following expressions for L_{2A} in terms of \hat{y}_n : 1076

1077

$$L_{2A}(x = D, \hat{y}_n = Q) = r^D + dur^H \quad (49)$$

1080

$$L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) = p_v(dulr^H - dur^H) + dur^H + r^D + r^L t \quad (50)$$

1081

$$L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, K) = p_v(dulr^H + r^D + r^L t) + (1 - p_v)(pvr^H - pur^H + ur^H - r^H + r^L t),$$

$$\text{subject to } F_1 \equiv p \leq \min\left(\frac{a}{c+a}, \frac{1}{2}\right) \quad (51)$$

$$\begin{aligned} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, S) &= p_v(dulr^H + r^D + r^L t) \\ &+ (1 - p_v)(pur^H - pvr^H + vr^H - r^H + r^L t), \\ \text{subject to } F_2 \equiv p &\geq \max\left(\frac{c}{c+a}, \frac{1}{2}\right) \end{aligned} \quad (52)$$

1082 For $(x^*, y^*) = (L_{D,ND}; Q, K)$, the following condition must hold: 1089

$$\begin{aligned} R_3 &\equiv \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, K) \leq L_{2A}(x = D, \hat{y}_n = Q) \end{array} \right\} \cap F_1 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, K) \leq L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \end{array} \right\} \cap F_1 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, K) \leq L_{2A}(x = ND, \hat{y}_n = K) \end{array} \right\} \cap F_1 \right\} \end{aligned} \quad (59)$$

1083 For $(x^*, y^*) = (L_{D,ND}; Q, S)$, the following condition must hold: 1090

$$\begin{aligned} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, N) &= p_v(dulr^H + r^D) + r^L t, \\ \text{subject to } F_3 \equiv p &\in \left(\frac{a}{c+a}, \frac{c}{c+a}\right) \end{aligned} \quad (53)$$

$$\begin{aligned} R_4 &\equiv \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, S) \leq L_{2A}(x = D, \hat{y}_n = Q) \end{array} \right\} \cap F_2 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, S) \leq L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \end{array} \right\} \cap F_2 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, S) \leq L_{2A}(x = ND, \hat{y}_n = S) \end{array} \right\} \cap F_2 \right\} \end{aligned} \quad (60)$$

1084 For $(x^*, y^*) = (L_{D,ND}; Q, N)$, the following condition must hold: 1091

$$\begin{aligned} R_5 &\equiv \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, N) \leq L_{2A}(x = D, \hat{y}_n = Q) \end{array} \right\} \cap F_3 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, N) \leq L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \end{array} \right\} \cap F_3 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, N) \leq L_{2A}(x = ND, \hat{y}_n = N) \end{array} \right\} \cap F_3 \right\} \end{aligned} \quad (61)$$

1085 For $(x^*, y^*) = (ND; K)$, the following condition must hold: 1092

$$\begin{aligned} L_{2A}(x = ND, \hat{y}_n = S) &= pur^H - pvr^H + vr^H, \\ \text{subject to } F_5 \equiv p &\geq \max\left(\frac{c}{c+a}, \frac{1}{2}\right) \end{aligned} \quad (55)$$

$$\begin{aligned} R_6 &\equiv \left\{ \left\{ \begin{array}{l} L_{2A}(x = ND, \hat{y}_n = K) \leq L_{2A}(x = D, \hat{y}_n = Q) \end{array} \right\} \cap F_1 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = ND, \hat{y}_n = K) \leq L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \end{array} \right\} \cap F_1 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = ND, \hat{y}_n = K) \leq L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, K) \end{array} \right\} \cap F_1 \right\} \end{aligned} \quad (62)$$

1086 For $(x^*, y^*) = (ND; S)$, the following condition must hold: 1093

$$\begin{aligned} R_7 &\equiv \left\{ \left\{ \begin{array}{l} L_{2A}(x = ND, \hat{y}_n = S) \leq L_{2A}(x = D, \hat{y}_n = Q) \end{array} \right\} \cap F_2 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = ND, \hat{y}_n = S) \leq L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \end{array} \right\} \cap F_2 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = ND, \hat{y}_n = S) \leq L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, S) \end{array} \right\} \cap F_2 \right\} \end{aligned} \quad (63)$$

1087 For $(x^*, y^*) = (D; Q)$, the following condition must hold: 1094

$$\begin{aligned} R_2 &\equiv \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = D, \hat{y}_n = Q) \end{array} \right\} \right. \\ &\cap \left. \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, K) \end{array} \right\} \cap F_1 \right\} \right\} \end{aligned}$$

$$\begin{aligned} &\cup \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, S) \end{array} \right\} \cap F_2 \right\} \\ &\cup \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, N) \end{array} \right\} \cap F_3 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = ND, \hat{y}_n = K) \end{array} \right\} \cap F_1 \right\} \\ &\cup \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = ND, \hat{y}_n = S) \end{array} \right\} \cap F_2 \right\} \\ &\cup \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = ND, \hat{y}_n = N) \end{array} \right\} \cap F_3 \right\} \end{aligned} \quad (64)$$

1088 For $(x^*, y^*) = (L_{D,D}; Q, Q)$, the following condition must hold: 1095

$$\begin{aligned} R_2 &\equiv \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = D, \hat{y}_n = Q) \end{array} \right\} \right. \\ &\cap \left. \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, K) \end{array} \right\} \cap F_1 \right\} \right\} \\ &\cup \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, S) \end{array} \right\} \cap F_2 \right\} \\ &\cup \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = L_{D,ND}, \hat{y}_n = Q, N) \end{array} \right\} \cap F_3 \right\} \\ &\cap \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = ND, \hat{y}_n = K) \end{array} \right\} \cap F_1 \right\} \\ &\cup \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = ND, \hat{y}_n = S) \end{array} \right\} \cap F_2 \right\} \\ &\cup \left\{ \left\{ \begin{array}{l} L_{2A}(x = L_{D,D}, \hat{y}_n = Q, Q) \leq L_{2A}(x = ND, \hat{y}_n = N) \end{array} \right\} \cap F_3 \right\} \end{aligned} \quad (58)$$

1089 A5. Brief descriptions of rumor cases considered 1096

Table A.5

A brief description of rumor cases considered in this study.

Case	Brief Description
Hurricane Irma Fuel Demand	As evacuations were taking place in the State of Florida after Hurricane Irma, a rumor was spread on September 8th, 2017, stating that there was a high demand for fuel in Florida. This rumor was found to be true and the Florida Emergency Operations Center confirmed that demand in some areas has increased five times above normal levels.
Hurricane Harvey Hiring	After Hurricane Harvey, there was a post on Twitter and Facebook on August 12th, 2017, that claimed the Federal Emergency Management Agency (FEMA) is hiring field inspectors and paying \$4,000 to \$5,000 weekly. This rumor was confirmed to be true.
Hurricane Harvey Immigration	During Hurricane Harvey, a false rumor spread on social media claiming that the City of Houston would conduct routine checks of immigration status at evacuation sites and relief centers such as shelters and food banks. This rumor was debunked on social media with various tweets from the City of Houston and U.S. Immigration and Customs Enforcement (ICE). The rumor was also addressed on FEMA's rumor control page on Hurricane Harvey.
Hurricane Irma Immigration	On September 6th, 2017, a Sheriff from Polk County posted a tweet which read "If you go to a shelter for #Irma, be advised: sworn LEOs will be at every shelter, checking IDs. Sex offenders/predators will not be allowed." This tweet caused anger and panic among citizens and undocumented immigrants as they inferred that he was checking IDs to primarily scare undocumented immigrants from seeking safety in Polk County shelters.
Hawaii Missile False Alert	On January 13th, 2018, Hawaii's Emergency Management Agency sent out an emergency alert to cell phones, televisions, and radio stations stating that a ballistic missile was headed towards the islands. A second alert that was sent 38 minutes later notified the public that this was a false alert, and there was no incoming missile.
Tsunami False Alert	Emergency alarms began to wail on Hawaii's Oahu and Maui islands on February 6th, 2018, with warning of a potential tsunami. The alert turned out to be a false alarm, as confirmed by various authorities including the Honolulu Weather Center and the state Emergency Management System.
Boston Marathon Bombing Donation	Following the 2013 Boston Marathon bombing, a fake Twitter account named @BostonMarathon was responsible for spreading a false rumor. The account posted a tweet which read "For every retweet we receive we will donate \$1.00 to the #BostonMarathon victims."

1097

References

1098 Agarwal, P., Hunt, K., Srinivasan, S., & Zhuang, J. (2020). Fire code inspection
1099 and compliance: a game-theoretic model between fire inspection agencies and
1100 building owners. *Decision Analysis*, 17(3), 208–226.

1101 Alfonso, F. (2017). Corpus Christi debunks a second Hurricane Harvey rumor.
1102 Retrieved August, 2020 from <https://www.houstonchronicle.com/news/houston-weather/hurricaneharvey/article/hurricane-harvey-rumor-fake-false-facebook-corpus-11982732.php>.

1103 American Red Cross (2016). 7 Top Questions about Louisiana Flood Relief. Retrieved
1104 August, 2020 from <https://www.redcross.org/about-us/news-and-events/news/7-Top-Questions-about-Louisiana-Flood-Relief.html>.

1105 Ashley Collman (2020). Wuhan Coronavirus Outbreak. Retrieved August, 2020
1106 from <https://www.businessinsider.com/china-information-crackdown-on-wuhan-coronavirus-2020-1>.

1107 Ben Nimmo, C. S. E. L. R., Camille FranAois(2020). Facebook Takes Down Small, re-
1108 cently created network linked to internet research agency. Retrieved December
1109 2020 from <https://graphika.com/reports/ira-again-unlucky-thirteen/>.

1110 Bennet, N. (2017). 7 false rumors about Harvey. Retrieved August, 2020 from
1111 <https://www.khou.com/article/news/local/7-false-rumors-about-harvey/285-468792969>.

1112 Bier, V. M., & Haphuriwat, N. (2011). Analytical method to identify the number of
1113 containers to inspect at US ports to deter terrorist attacks. *Annals of Operations
1114 Research*, 187(1), 137–158.

1115 Bier, V. M., Haphuriwat, N., Menoyo, J., Zimmerman, R., & Culpen, A. M. (2008).
1116 Optimal resource allocation for defense of targets based on differing measures
1117 of attractiveness. *Risk Analysis*, 28(3), 763–770.

1118 Chen, H., Zheng, Z., & Cen, Y. (2016). De-biasing the reporting bias in social media
1119 analytics. *Production and Operations Management*, 25(5), 849–865.

1120 Cheng, J.-J., Liu, Y., Shen, B., & Yuan, W.-G. (2013). An epidemic model of rumor
1121 diffusion in online social networks. *The European Physical Journal B*, 86(1), 29.

1122 Cheung, M., & Zhuang, J. (2012). Regulation games between government and com-
1123 peting companies: Oil spills and other disasters. *Decision Analysis*, 9(2), 156–
1124 164.

1125 Crapis, D., Ifrach, B., Maglaras, C., & Scarsini, M. (2017). Monopoly pricing in the
1126 presence of social learning. *Management Science*, 63(11), 3586–3608.

1127 Dawn.com (2020). In a first, Twitter flags BJP leader's post as manipulated
1128 media. Retrieved December 2020 from <https://www.dawn.com/news/1593615/in-a-first-twitter-flags-bjp-leaders-post-as-manipulated-media>.

1129 DiFonzo, N. (2008). *The watercooler effect: A psychologist explores the extraordinary
1130 power of rumors*. Penguin.

1131 DiFonzo, N., & Bordia, P. (2007). *Rumor psychology: social and organizational ap-
1132 proaches*: vol. 750. American Psychological Association Washington, DC.

1133 Factcheck. Retrieved August, 2020 from <https://www.factcheck.org/>.

1134 Federal Emergency Management Agency (2017). Harvey Rumor Control. Retrieved
1135 August, 2019 from <https://www.fema.gov/disaster/4332/updates/rumor-control>.

1136 Federal Emergency Management Agency (2017). Hurricane Irma Rumor Con-
1137 trol. Retrieved August, 2019 from <https://www.fema.gov/hurricane-irma-rumor-control>.

1138 Feldman, P., Papanastasiou, Y., & Segev, E. (2019). Social learning and the design of
1139 new experience goods. *Management Science*, 65(4), 1502–1519.

1140 Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social
1141 bots. *Communications of the ACM*, 59(7), 96–104.

1142 Festinger, L., Cartwright, D., Barber, K., Fleischl, J., Gottsdanker, J., Keysen, A., & Leav-
1143 itt, G. (1948). A study of a rumor: Its origin and spread. *Human Relations*, 1(4),
1144 464–486.

1145 Gadde, V., & Beykpour, K. (2020). Additional steps we're taking ahead of the
1146 2020 US Election. Retrieved December 2020 from <https://blog.twitter.com/en-us/topics/company/2020/2020-election-changes.html>.

1147 Gao, F., & Su, X. (2017). Omnichannel retail operations with buy-online-and-pick-
1148 up-in-store. *Management Science*, 63(8), 2478–2492.

1149 Google Images. Retrieved August, 2020 from <https://images.google.com/>.

1150 Hamidian, S., & Diab, M. T. (2015). Rumor detection and classification for Twitter
1151 data. In *Proceedings of the Fifth International Conference on Social Media Tech-
1152 nologies, Communication, and Informatics (SOTICS)* (pp. 71–77).

1153 Ho, T.-H., & Su, X. (2013). A dynamic level-k model in sequential games. *Management
1154 Science*, 59(2), 452–469.

1155 Howel, L. (2013). Digital wildfires in a hyperconnected world. *Global Risks Report*,
1156 *World Economic Forum*, 3, 15–94.

1157 Hu, M., Milner, J., & Wu, J. (2016). Liking and following and the newsvendor: Opera-
1158 tions and marketing policies under social influence. *Management Science*, 62(3),
1159 867–879.

1160 Hunt, K., Wang, B., & Zhuang, J. (2020). Misinformation debunking and cross-
1161 platform information sharing through Twitter during Hurricanes Harvey and
1162 Irma: a case study on shelters and ID checks. *Natural Hazards*, 103(1), 861–883.

1163 Hwang, T., Pearce, I., & Nanis, M. (2012). Socialbots: Voices from the fronts. *Interac-
1164 tions*, 19(2), 38–45.

1165 Indvik, L. (2011). East coasters turn to Twitter during Virginia earthquake. Retrieved
1166 August, 2020 from <https://mashable.com/2011/08/23/virginia-earthquake/>.

1167 Isaac, M., & Conger, K. (2020). Google, Facebook and Others Broaden Group to Se-
1168 cure U.S. Election. Retrieved December 2020 from <https://www.nytimes.com/2020/08/12/technology/google-facebook-coalition-us-election.html>.

1169 Knapp, R. H. (1944). A psychology of rumor. *Public Opinion Quarterly*, 8(1), 22–37.

1170 Krippendorff, K. (2013). *Content Analysis: An Introduction to its Methodology*. Sage.

1171 Kwon, S., Cha, M., Jung, K., Chen, W., & Wang, Y. (2013). Prominent features of rumor
1172 propagation in online social media. In *Proceeding of the IEEE 13th International
1173 Conference on Data Mining* (pp. 1103–1108). IEEE.

1174 Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for cat-
1175 egorical data. *Biometrics*, 33(1), 159–174.

1176 Lee, S.-Y., Qiu, L., & Whinston, A. (2018). Sentiment manipulation in online plat-
1177 forms: An analysis of movie tweets. *Production and Operations Management*,
1178 27(3), 393–416.

1179 Liao, Q., & Shi, L. (2013). She gets a sports car from our donation: Rumor transmis-
1180 sion in a chinese microblogging community. In *Proceedings of the Conference on
1181 Computer Supported Cooperative Work* (pp. 587–598). ACM.

1182 Luttrell, A. (2015). The psychology of rumors: 6 reasons why rumors
1183 spread. Retrieved August, 2020 from <http://socialpsychonline.com/2015/09/psychology-why-rumors-spread/>.

1184

1194 Oh, O., Agrawal, M., & Rao, H. R. (2011). Information control and terrorism: Tracking
1195 the Mumbai terrorist attack through Twitter. *Information Systems Frontiers*,
1196 13(1), 33–43.

1197 Oh, O., Agrawal, M., & Rao, H. R. (2013). Community intelligence and social media
1198 services: A rumor theoretic analysis of tweets during social crises.. *MIS Quarterly*,
1199 37(2).

1200 Oh, O., Kwon, K. H., & Rao, H. R. (2010). An exploration of social media in extreme
1201 events: Rumor theory and Twitter during the Haiti Earthquake 2010.. In *Proceedings of the
1202 ICIS*: vol. 231 (pp. 7332–7336).

1203 Ozturk, P., Li, H., & Sakamoto, Y. (2015). Combating rumor spread on social media:
1204 The effectiveness of refutation and warning. In *Proceedings of the 48th Hawaii
1205 International Conference on System Sciences* (pp. 2406–2414). IEEE.

1206 Papanastasiou, Y. (2020). Fake news propagation and detection: a sequential model.
1207 *Management Science*, 66(5), 1826–1846.

1208 Papanastasiou, Y., & Savva, N. (2017). Dynamic pricing in the presence of social
1209 learning and strategic consumers. *Management Science*, 63(4), 919–939.

1210 Payyappalli, V. M., Zhuang, J., & Jose, V. R. R. (2017). Deterrence and risk prefer-
1211 ences in sequential attacker-defender games with continuous efforts. *Risk Analysis*,
1212 37(11), 2229–2245.

1213 Prasad, J. (1935). The psychology of rumour: A study relating to the great Indian
1214 earthquake of 1934. *British Journal of Psychology. General Section*, 26(1), 1–15.

1215 Qazvinian, V., Rosengren, E., Radev, D. R., & Mei, Q. (2011). Rumor has it: Identifying
1216 misinformation in microblogs. In *Proceedings of the Conference on Empirical
1217 Methods in Natural Language Processing* (pp. 1589–1599). Association for Com-
1218 putational Linguistics.

1219 Rao, N. S., Poole, S. W., Ma, C. Y., He, F., Zhuang, J., & Yau, D. K. (2016). Defense of cy-
1220 ber infrastructures against cyber-physical attacks using game-theoretic models.
1221 *Risk Analysis*, 36(4), 694–710.

1222 Rios Insua, D., Rios, J., & Banks, D. (2009). Adversarial risk analysis. *Journal of the
1223 American Statistical Association*, 104(486), 841–854.

1224 Roodzenbeek, J., & Van Der Linden, S. (2019). The fake news game: actively inoculat-
1225 ing against the risk of misinformation. *Journal of Risk Research*, 22(5), 570–580.

1226 Rubin, V. L. (2017). Deception detection and rumor debunking for social media. In
1227 *The SAGE Handbook of Social Media Research Methods* (p. 342). SAGE.

1228 (2017). Sacramento County update on Oroville. Retrieved August, 2020 from <https://www.facebook.com/SacramentoOES/videos/1352512824812204/>.

1229 Sager, J. (2013). 10 Boston Marathon Bombing rumors that need to be stopped
1230 immediately. Retrieved August, 2019 from https://thestir.cafemom.com/crime/154242/10_boston_marathon_bombing_rumors.

1231 Shan, X., & Zhuang, J. (2014). Modeling credible retaliation threats in deterring the
1232 smuggling of nuclear weapons using partial inspection - a three-stage game.
1233 *Decision Analysis*, 11(1), 43–62.

1234 Shibutani, T. (1966). *Improvised news: A sociological study of rumor*. Ardent Media,
1235 Snopes, Retrieved August, 2020 from <https://www.snopes.com/>.

1236 Ten, C.-W., Manimaran, G., & Liu, C.-C. (2010). Cybersecurity for critical infrastruc-
1237 tures: Attack and defense modeling. *IEEE Transactions on Systems, Man, and
1238 Cybernetics-Part A: Systems and Humans*, 40(4), 853–865.

1239 Twitter Advanced Search. Retrieved August, 2020 from <https://twitter.com/search-advanced?lang=en>.

1240 Twitter Search API. Retrieved August, 2020 from <https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets>.

1241 U.S. Department of Homeland Security (2018). Countering False Information on
1242 Social Media in Disasters and Emergencies. Retrieved August, 2020 from
1243 https://www.dhs.gov/sites/default/files/publications/SMWG_Countering-False-Info-Social-Media-Disasters-Emergencies_Mar2018-508.pdf.

1244 Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online.
1245 *Science*, 359(6380), 1146–1151.

1246 Wang, B., & Zhuang, J. (2017). Crisis information distribution on tWitter: A content
1247 analysis of tweets during Hurricane Sandy. *Natural Hazards*, 89(1), 161–181.

1248 Wang, B., & Zhuang, J. (2018). Rumor response, debunking response, and decision
1249 makings of misinformed Twitter users during disasters. *Natural Hazards*, 93(3),
1250 1145–1162.

1251 Wang, J., Xie, Z., Li, Q., Tan, J., Xing, R., Chen, Y., & Wu, F. (2019). Effect of digitalized
1252 rumor clarification on stock markets. *Emerging Markets Finance and Trade*, 55(2),
1253 450–474.

1254 Wen, S., Jiang, J., Xiang, Y., Yu, S., Zhou, W., & Jia, W. (2014). To shut them up or to
1255 clarify: Restraining the spread of rumors in online social networks. *IEEE Trans-
1256 actions on Parallel and Distributed Systems*, 25(12), 3306–3316.

1257 Yan, L., & Pedraza-Martinez, A. J. (2019). Social media for disaster management: Op-
1258 erational value of the social conversation. *Production and Operations Manage-
1259 ment*, 28(10), 2514–2532.

1260 Zeng, L., Starbird, K., & Spiro, E. S. (2016). # unconfirmed: Classifying rumor stance
1261 in crisis-related social media messages. *Proceedings of the Tenth International
1262 AAAI Conference on Web and Social Media*.

1263 Zhang, C., Gupta, A., Kauten, C., Deokar, A. V., & Qin, X. (2019). Detecting fake news
1264 for reducing misinformation risks using analytics approaches. *European Journal
1265 of Operational Research*, 279(3), 1036–1052.

1266 Zhao, L., Yin, J., & Song, Y. (2016). An exploration of rumor combating behavior on
1267 social media in the context of social crises. *Computers in Human Behavior*, 58,
1268 25–36.

1269 Zhao, Z., Resnick, P., & Mei, Q. (2015). Enquiring minds: Early detection of rumors
1270 in social media from enquiry posts. In *Proceedings of the 24th International Con-
1271 ference on World Wide Web* (pp. 1395–1405).

1272 Zhuang, J., & Bier, V. M. (2007). Balancing terrorism and natural disasters - Defen-
1273 sive strategy with endogenous attacker effort. *Operations Research*, 55(5), 976–
1274 991.

1275 Zubiaga, A., Kochkina, E., Liakata, M., Procter, R., & Lukasik, M. (2016). Stance clas-
1276 sification in rumours as a sequential task exploiting the tree structure of social
1277 media conversations. In *Proceedings of the COLING 26th International Conference
1278 on Computational Linguistics: Technical Papers* (pp. 2438–2448).

1279 Zubiaga, A., Liakata, M., Procter, R., Hoi, G. W. S., & Tolmie, P. (2016). Analysing how
1280 people orient to and spread rumours in social media by looking at conversa-
1281 tional threads. *PloS One*, 11(3).

1282