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ABSTRACT

We argue that charged dust grains could significantly impact the confinement and transport of galactic cosmic rays. For sub-GeV

to ∼103 GeV cosmic rays, small-scale parallel Alfvén waves, which isotropize cosmic rays through gyro-resonant interactions,

are also gyro-resonant with charged grains. If the dust is nearly stationary, as in the bulk of the interstellar medium, Alfvén

waves are damped by dust. This will reduce the amplitude of Alfvén waves produced by the cosmic rays through the streaming

instability, thus enhancing cosmic ray transport. In well-ionized regions, the dust damping rate is larger by a factor of ∼10 than

other mechanisms that damp parallel Alfvén waves at the scales relevant for ∼GeV cosmic rays, suggesting that dust could

play a key role in regulating cosmic ray transport. In astrophysical situations in which the dust moves through the gas with

super-Alfvénic velocities, Alfvén waves are rendered unstable, which could directly scatter cosmic rays. This interaction has the

potential to create a strong feedback mechanism where dust, driven through the gas by radiation pressure, then strongly enhances

the confinement of cosmic rays, increasing their capacity to drive outflows. This mechanism may act in the circumgalactic

medium around star-forming galaxies and active galactic nuclei.
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1 IN T RO D U C T I O N

The mechanisms that enable and constrain the propagation and

generation of cosmic rays (CRs) in galaxies remain only partially

understood (Bell 2013; Amato & Blasi 2018). While it is well

accepted that, in order to explain their observed isotropy, CRs

must scatter from small-scale irregularities of the magnetic field,

the origin and properties of these irregularities is uncertain. Key

globally averaged quantities, such as the average CR escape time,

can be constrained by local observations of the CR spectrum and

composition (e.g. Strong & Moskalenko 1998; Ahn et al. 2010;

Adriani et al. 2011; Evoli et al. 2017). In order to better understand

these observations, it is desirable to improve our theoretical grasp of

the physics governing particle transport across a range of energies

and under different galactic conditions.

The problem is particularly acute for the relatively low energy

∼GeV protons that dominate the CR energy density, for two

reasons. First, such CRs are arguably the most difficult to understand

theoretically: they interact with extremely small � AU scales, and –

precisely because they dominate the energy density – their transport is

likely controlled by magnetic structures that they themselves excite

(making the relevant processes highly non-linear). Secondly, and

again because they dominate the energy density, ∼GeV CRs are

thought to be important for a variety of global processes in galactic

astrophysics, such as launching large-scale outflows and modifying

the phase structure of the background gas (e.g. Pfrommer et al.

⋆ E-mail: jonathan.squire@otago.ac.nz

2017; Butsky & Quinn 2018; Ji et al. 2020; Bustard & Zweibel

2020; Su et al. 2020; Hopkins et al. 2021a, and references therein).

This makes understanding the details of CR transport and scattering,

including the dependence on local properties of the background gas

(e.g. temperature, density, magnetic field strength, and ionization

fraction), particularly relevant for the ∼GeV CR population. The

recent study of Hopkins et al. (2021b) (hereafter H+20) has high-

lighted this uncertainty: using cosmological simulations and simple

scaling models, they found that none of the popular theoretical

models of ∼GeV CR propagation could satisfactorily explain local

grammage measurements or observations of gamma-ray emission

from the haloes of other galaxies (Lacki et al. 2011; Griffin, Dai

& Thompson 2016; Lopez et al. 2018). We are thus motivated to

examine possible omissions in current theories of CR transport.

In this work, we consider the impact of charged dust on cosmic ray

transport. Although at first glance, dust–CR interactions may seem

esoteric and unlikely to be significant (indeed, their direct Coulomb

interactions are weak; Byleveld, Melrose & Cram 1993), we find a

surprisingly strong interaction that suggests dust-related effects could

dominate CR transport in a number of astrophysically important

regimes. The fundamental cause of the interaction is small-scale

parallel Alfvén waves (AWs): such waves are a necessary ingredient

in scattering CRs and thus key to their transport; but they also,

by very similar mechanisms, interact strongly with charged dust.

It further transpires that sub-AU-scale AWs, which are important

to ∼GeV CR transport, interact with a range of grain sizes and

charges that are likely prevalent in the interstellar medium (ISM) and

circumgalactic medium (CGM). We suggest two possible effects.

The most important involves the CR ‘self-confinement’ scenario,
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The interaction of dust and cosmic rays 2631

whereby CRs excite small-scale AWs through the ‘streaming in-

stability,’ which subsequently grow in time, scattering CRs and

reducing their transport (Wentzel (Kulsrud & Pearce 1969; Wentzel

1969, 1974). In this scenario, dust acts to damp the small-scale

parallel AWs excited by CRs (Cramer, Verheest & Vladimirov 2002),

reducing the effectiveness of scattering and enhancing CR transport.

We find that dust-damping rates are large enough, even given the

low mass fraction of dust in the ISM, for the effect to dominate over

all other AW-damping mechanisms in well-ionized gas. The second

possible effect involves dust that is moving through the gas with

super-Alfvénic velocities due to radiation pressure (or some other

force that affects the gas and dust differently). As studied in detail in

Hopkins & Squire (2018) (hereafter HS18), AWs are unstable in this

situation with a similar mechanism to the CR streaming instability;

these AWs may then scatter CRs and enhance their confinement.

Although the effect is more difficult to assess in detail than the

AW damping, because of significant uncertainties in wave saturation

physics and dust astrophysics, we speculate that it has the potential

to provide a rather strong feedback mechanism by enhancing the

coupling of CRs to CGM gas.

We start the paper in Section 2 with an overview of the theory

of CR transport and AWs, covered in sufficient detail to allow later

discussion of the effect of dust. Section 3, with further details in

Appendix A, covers the calculation of the damping or growth rate of

AWs in the presence of a spectrum of grain sizes. We then consider

the astrophysical implications of these results in Section 4, covering

CR self-confinement in the ISM in Section 4.2, and speculating

on dust-enhanced CR confinement in the CGM in Section 4.3. We

conclude in Section 5. A list of symbols used throughout the text

is given in Table 1.

2 C OSMIC R AY SCATTERING AND

SELF-CON F INEMENT

In this section, we outline the basic theory of Cosmic Ray (CR)

scattering, briefly reviewing the relevant physics. We also point out

some interesting features related to wave polarization that are specific

to Alfvén wave interaction with dust, exploring how this could affect

our later estimates of CR transport (this discussion, in Section 2.1,

is unimportant to the overall narrative and may be skimmed without

causing problems later in the text).

CR scattering is thought to occur primarily through their inter-

action with parallel Alfvén waves (AWs) with a wavelength that is

resonant with the distance they stream along the magnetic field in one

gyro-orbit (Jokipii 1966): kresξv ≈ ±�c, where kres is the resonant

wavenumber of the AW, ξv = v‖ is the velocity along the field line

of a particle with pitch angle ξ = v‖/v, and �c is the particle’s gyro-

frequency. Neglecting the ξ dependence of the resonant condition

and the distribution of thermal velocities, the condition for highly

relativistic protons simplifies to

k−1
res ≈ rL ≈ 3.3 × 1012cm

(

RCR

GV

)(

B

1µG

)−1

, (1)

where B is the magnetic field strength, RCR is the CR rigidity,

and equation (1) applies for RCR � 1 GV. For a given relative

power δB2(k‖)/B2 in magnetic field fluctuations at parallel scale

k‖, the scattering frequency is νc ∼ �cδB2(k‖)/B2. The scattering

brings the CRs back towards isotropy in the frame of the waves,

thus reducing the transport of CR energy. With sufficiently efficient

scattering – i.e. with sufficient power in rL-scale parallel waves – the

CRs behave like a fluid that drifts at the speed of the scatterers with

respect to the gas (Skilling 1975a; McKenzie & Voelk 1982; Thomas

Table 1. Important symbols used throughout this article. In the linear

calculations, a subscript ‘, i” indicates the quantity for grains of

species/size i. In astrophysical estimates, we use a numerical subscript

to denote order of magnitude in cgs units, Fx = F/10x; so, e.g. T4 =
T/(104 K), n0 = n/(1 cm−3), and a−5 = ad/(0.1µm).

Symbol Description and/or definition

rL CR gyro-radius

ξ = v‖/v CR pitch anglea

νc CR scattering frequency

κ‖, ṽst CR diffusivity, ‘effective’ CR streaming speed

ρ, u Gas mass density, velocity

B, vA Magnetic-field strength, Alfvén speed

T , n Gas temperature, number density

β = 8πnkBT/B2 Ratio of thermal to magnetic pressure

ρd , v Dust mass density, bulk velocity

μ0 = 〈ρd〉/〈ρ〉 Total dust-to-gas mass ratio

ad Dust-grain size

ad,min, ad,max Minimum/maximum grain size in distribution

ξμ Slope of dust mass distribution

ts(ad) Grain stopping time due to dust-gas drag

tL(ad) Grain Larmor time

Ud(ad) Grain electrostatic potential

U, U0 Normalized Ud (collisional or photoelectric)

aext Grain acceleration from radiation pressure

ws Equilibrium grain drift velocity in gas frame

Ws = ws/vA − 1 Alfvénically normalized grain drift velocity

ξtL , ξWs Scaling of tL, Ws with grain size

k (Parallel) wavenumber of instability

ωA = kvA Alfvén frequency

Ŵ Instability growth or damping rate

kad,min
, kad,max

Maximum, minimum unstable wavenumber

Note.a Most CR literature uses μ to denote pitch angle. We use ξ to

avoid confusion with the dust-to-gas mass ratio, and in keeping with

plasma physics conventions.

& Pfrommer 2019). With less scattering, however, CRs are not

efficiently isotropized, leading to significantly more energy transport.

Thus, understanding the power in rL-scale parallel fluctuations is

crucial to understanding CR transport. In the ISM, the rL scale is

tiny (� AU) for the ∼GeV CRs that dominate the energy density,

and although interstellar turbulence is expected to put significant

power into perpendicular Alfvénic fluctuations on such scales,

perpendicular fluctuations scatter CRs very inefficiently and likely

cannot account for the observed isotropy of CRs (Chandran 2000;

Yan & Lazarian 2002; H+20). This suggests that other sources of

small-scale parallel AWs are needed. Note that CRs can, in principle,

scatter from non-Alfvénic fluctuations also, but such fluctuations are

strongly damped at rL scales and there remains debate as to whether

they can play a significant role (Yan & Lazarian 2004, 2008; H+20).

Given this apparent inability of turbulence to provide sufficient

CR scattering, the most commonly accepted source of rL-scale

fluctuations is the CRs themselves. In the standard ‘self-confinement’

picture of CR transport (Kulsrud & Pearce 1969; Wentzel 1969;

Skilling 1971), streaming CRs generate parallel AWs due to the

‘streaming instability’ whenever their bulk drift velocity exceeds the

local Alfvén speed of the background plasma. The waves, with wave-

lengths that automatically match the CR gyro-radii, then efficiently

scatter particles, bringing the CR bulk drift speed back towards the

Alfvén speed. If undamped, it is expected that such AWs would

grow to large amplitudes, causing efficient scattering of CRs and

bringing their drift back to nearly exactly the Alfvén speed (Skilling

MNRAS 502, 2630–2644 (2021)
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2632 J. Squire et al.

1975a, b). In contrast, if there exists an efficient mechanism to damp

parallel AWs, the CR-AW system is expected to come to a local

equilibrium where the growth rate of AWs due to the CR streaming

is balanced by damping, implying that the CR energy density can

be transported at speeds significantly faster than the Alfvén speed.

Thus, in the self-confinement paradigm, an understanding of parallel

AW damping is crucial to understanding CR transport: more efficient

damping leads to faster CR transport. Current understanding suggests

that ion-neutral viscosity (Kulsrud & Pearce 1969), damping from

the interaction of parallel Alfvén waves with turbulence (Farmer &

Goldreich 2004; Zweibel 2017), and non-linear Landau damping

(Lee & Völk 1973; Cesarsky & Kulsrud 1981; Völk & Cesarsky

1982), are the most important physical processes. In predominantly

neutral gas (e.g. cold clouds, the warm neutral medium), ion-neutral

damping is highly dominant and leads to rapid transport of CRs.

However, as the ionization fraction increases, ion-neutral damping

rates quickly drop to zero. Through galaxy-scale simulations and

simple analytic arguments, H+20 argued that it is transport through

well-ionized gas that dominates the global confinement properties,

while fast damping rates (fast transport) in predominantly neutral

regions make little difference (see also Farber et al. 2018). Further,

H+20 found that current self-confinement transport models predict

too much CR confinement in ionized gas to match observations.

We are thus left with two possible roles for dust in regulating

CR transport. In the first – ‘external confinement’ – drifting dust

may directly excite small-scale parallel AWs due to instability. Such

waves, if they can reach large amplitudes, will scatter CRs directly,

thus increasing their confinement. In the second – ‘self-confinement’

– near-stationary dust will act to damp small-scale AWs excited by

the CRs themselves, thus decreasing their confinement.

2.1 Polarization

An interesting feature of dust–AW interaction, which may have

consequences for both external confinement and self-confinement

of CRs, is the dependence on wave polarization. Specifically, CRs

with a given sign of v‖ interact only with one AW polarization: right-

handed waves propagating parallel (or left-handed waves propagating

antiparallel) to the magnetic field scatter only v‖ > 0 positively

charged CRs, while the opposite is true for v‖ < 0 CRs. The CR

streaming instability excites nearly linearly polarized AWs because

the populations of v‖ < 0 and v‖ > 0 particles are nearly the same

(Kulsrud & Pearce 1969; Bai et al. 2019); however, only waves that

propagate in the CR-drift direction are unstable. For similar reasons,

AW damping or instability due to dust is also dependent on wave

polarization, in contrast to the other wave damping mechanisms (e.g.

turbulence damping) mentioned above. In particular (see Section 3

below), for waves propagating along the magnetic field direction,

negatively (positively) charged stationary dust damps only right-

handed (left-handed) waves; vice-versa for waves propagating in

the antifield direction. Similarly, dust drifting super-Alfvénically in

the magnetic field direction excites left-handed waves if negatively

charged, or right-hand waves if positively charged, and in both cases

only waves propagating in the same direction as the dust are unstable.

In this section, we consider how damping or growth of just one

polarization of AW would affect CR self-confinement and scattering.

We wish to understand how to appropriately compare AW damping

or growth rates from dust with those due to other mechanisms.

First consider the self-confinement scenario, with dust providing

the dominant damping mechanism for nearly linearly polarized AWs

excited by the CR streaming instability. As noted above, dust (if

negatively charged) will damp only the right-handed (forward propa-

gating) waves, thus leaving left-handed waves to grow freely to larger

amplitudes. There will thus be efficient scattering of v‖ < 0 particles,

which will tend to make the CR distribution function independent of

ξ for v‖ < 0; but, the v‖ > 0 part of the CR distribution function,

which only interacts with the strongly damped waves, remains nearly

unaffected. However, because the overall drift velocity of the CRs

arises from the difference in the total population of v‖ < 0 and v‖ >

0 particles, flattening of the v‖ < 0 part of the distribution in ξ makes

only a minor difference to the CR drift and energy transport, or to

the streaming instability growth rate (the effect is nicely illustrated

in Bai et al. 2019, fig. 9). Further, it seems likely that isotropization

of particles across ξ = 0 (often called the ‘90◦ barrier’) requires

variation in |B|, so would not be efficient in the presence of only one

wave polarization (Felice & Kulsrud 2001; Bai et al. 2019; Holcomb

& Spitkovsky 2019). Overall, this suggests that the effective transport

will be approximately determined by the level of the lowest amplitude

waves (right-handed in the discussion above), with little dependence

on a possibly large-amplitude population of the other polarization.

Thus, damping just one wave polarization through interaction with

dust should have a similar effect on CR self-confinement to damping

both polarizations, implying it is reasonable to compare dust AW

damping rates directly to those from other sources that do not dis-

tinguish between polarizations (e.g. turbulence damping). Of course,

there exist a variety of complexities in the above argument that make

it highly uncertain; however, it seems likely that such questions

may only be answered definitively with detailed simulations of the

streaming instability, which are only recently becoming possible (Bai

et al. 2019; Dubois et al. 2019; Haggerty & Caprioli 2019; Holcomb

& Spitkovsky 2019; Weidl, Winske & Niemann 2019).

From the above argument, we also see that Alfvén waves that

are excited directly by drifting dust (‘external confinement’) may be

rather inefficient at confining CRs. Before the instability saturates,

and neglecting other sources of AWs including those excited by CRs,

only one polarization of AW will be present. Such a spectrum of AWs

will not significantly perturb the magnetic field strength and will only

scatter CRs with one sign of ξ . Such a process can only limit the

energy transport of CRs by a maximum factor of ∼2. This effect

was seen and diagnosed in detail in the CR streaming-instability

simulations of Holcomb & Spitkovsky (2019), where they noted

that CRs with an initial drift velocity that is too large (approaching

c) are inefficiently self-confined, because the wave scattering only

isotropizes particles with one sign of ξ . However, the non-linear

saturation of the dust instability presents significant uncertainties;

if the saturation is quasi-turbulent in nature, as suggested by the

simulations of Seligman, Hopkins & Squire (2019), Hopkins et al.

(2020c) (albeit in a different regimes), it seems implausible that only

one wave polarization would be present in the saturated state. In

that case, fluctuations induced by the dust could more efficiently

isotropize CRs. There are clearly additional uncertainties, such as

how different spatial regions behave when there is a large-scale gradi-

ent of CRs, and detailed simulations of both the saturation of the dust

instability and the CR scattering are needed for better understanding

of the system. Overall, however, it seems reasonable to surmise that

CR confinement from small-scale AWs excited by dust could be less

efficient than suggested by estimates of δB2(k‖)/B2 alone.

3 TH E I N T E R AC T I O N O F H I G H LY C H A R G E D

DUST WITH ALFV ÉN WAVES

The goal of this section is to compute the damping or growth rate

of parallel shear-Alfvén waves in the presence of a wide spectrum

of grain sizes. Our method involves first computing the dispersion

MNRAS 502, 2630–2644 (2021)
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The interaction of dust and cosmic rays 2633

relation of Alfvén waves in the presence of a discrete set of grain sizes

in the relevant low dust-to-gas mass ratio limit (see also Tripathi &

Sharma 1996; Cramer et al. 2002). A surprisingly simple expression

for the continuum system is obtained by taking the limit as the total

number of grain species approaches infinity, while keeping the total

mass density of dust constant. Importantly, this expression scales

with the total dust density, is effectively independent of the dust drag

time, and converges rapidly to the continuum limit, implying that

large damping and growth rates occur even with a continuum of grain

sizes (unlike, e.g. the low dust-to-gas-ratio streaming instability;

Krapp et al. 2019). A simple extension of the calculation shows

that an (isothermal) dust pressure response does not change the

damping or growth rate, suggesting that a dust velocity dispersion –

driven, e.g. by gas turbulence (Yan et al. 2004) – will not strongly

affect the shear-Alfvénic modes of interest (although a true kinetic

treatment is needed to formally probe this physics; see Appendix A3).

Mathematical details of the calculation are given in Appendix A.

3.1 Dust model and definitions

We model dust as a charged, pressure-less fluid that interacts with

the gas through drag and Lorentz forces. The gas is modelled with

the ideal MHD equations, which is also a reasonable model for a

collision-less plasma for the scales and modes being considered here

(Schekochihin et al. 2009). Our equations do, however, assume that

the total charge contained in the dust species is small compared to

that of the background gas (Shukla & Mamun 2002). For a set of Nd

dust species, labelled i, the equations are

∂ρ

∂t
+ ∇ · (uρ) = 0, (2)

∂ρd,i

∂t
+ ∇ · (vi ρd,i) = 0, (3)

∂u

∂t
+ u · ∇u = g −

1

ρ
∇
(

p +
B2

8π

)

−
B · ∇ B

4πρ
,

+
Nd
∑

i=1

ρd,i

ρ

(

vi − u

ts,i
−

vi − u

tL,i

× b̂

)

(4)

∂vi

∂t
+ vi · ∇vi = g + aext

i +
(

u − vi

ts,i
−

u − vi

tL,i

× b̂

)

, (5)

∂ B

∂t
+ u · ∇ B = B · ∇u − B∇ · u. (6)

Here ρ, u, p, and B are respectively the gas density, velocity, pressure,

and the magnetic field, while b̂ is the magnetic field unit vector (B =
B b̂) and g is an external gravitational force on both gas and dust.

We also define the Alfvén speed vA = B/
√

4πρ. The continuum

mass density and bulk velocity of dust species i are ρd, i and vi

respectively, and aext
i is an external force that can act differently on

each dust species (e.g. due to radiation pressure). The physics of a

particular dust species is determined by its microscopic parameters:

the grain radius ad, i, mass md, i, solid density ρ̄d,i = 3md,i/(4πa3
d,i),

charge qd, i = Zd, ie, and electrostatic potential Ud, i ≈ qd, i/ad, i. These

parameters determine the stopping time ts, i, which is also a function

of gas parameters (see Section 4.1.1), and the Larmor time

tL,i =
md,ic

qd,iB
, (7)

which can be either positive or negative depending on the sign of

qd, i. We use 〈 · 〉 to denote an equilibrium (background) quantity,

and define the dust-to-gas mass ratio μi = 〈ρd, i/ρ〉, and the total

dust-to-gas-mass ratio μ0 =
∑

iμi.

As shown in HS18, in the presence of an external force on the dust

(aext
i �= 0), a formal quasi-equilibrium is set up in which both dust

and gas accelerate at the same rate, but with some velocity offset,

denoted ws. Moving into the frame in which the gas is stationary

allows one to study instabilities about the equilibrium 〈vi〉 = ws,i ,

〈u〉 = 0, with the free-energy source for the instabilities arising from

the net drift of each species of dust. For arbitrary ts, i/tL, i, and when the

angle between aext
i and the background magnetic field B0 is arbitrary,

the expression for ws, i is rather complex, arising from the balance

between magnetic and drag forces on grains. However, as shown by

HS18 (see their equation 2), in the limit |tL, i| ≪ ts, i, ws, i tends to align

more and more closely with B0, albeit with a magnitude that is re-

duced by the projection factor (aext
i · B0)/(|aext

i ||B0|). Intuitively, this

corresponds to the fact that well magnetized particles are only free

to move along the magnetic field direction. Because most regimes

of interest for the study of CR propagation satisfy |tL, i| ≪ ts, i (see

HS18 fig. 6), we thus assume that ws, i lies parallel to B0, simplifying

the analysis enormously. The general case where aext
i and B0 are not

parallel is thus effectively contained within our analysis by including

some order-unity projection factor � ≡ (aext
i · B0)/(|aext

i ||B0|), but

without having to account for a complex, 3D equilibrium where dust

drifts at an arbitrary angle to the magnetic field. So long as |tL, i| ≪
ts, i, this is a good approximation on time-scales longer than ∼ts, i

(the time taken for the system to reach equilibrium).

3.2 Damping and growth of parallel Alfvénic modes

Our analysis proceeds in the standard way by linearizing equations

(2) to (6) about the quasi-equilibrium described above: 〈u〉 = 0, 〈ρ〉
= ρ0, 〈vi〉 = ws,i ẑ, 〈ρd, i〉 = μiρ, 〈B〉 = B0 = B0 ẑ, where ws, i can

be zero (stationary dust). We then insert the Fourier ansatz for the

evolution of each linearized quantity – δf (x, t) ≡ f (x, t) − 〈f 〉 =
δf exp(ik · x − iωt) for f = u, ρ, etc. – to convert equations 2 to

(6) into an eigenvalue equation for the frequency ω. ℑ(ω) < 0 (ℑ(ω)

> 0) implies that a particular mode is damped (growing). A further

significant simplification comes from specializing to purely parallel

modes k = k ẑ (kx = ky = 0). The justification for this simplification

is that CRs interact strongly only with purely parallel modes (Kulsrud

& Pearce 1969; Chandran 2000), so even if an oblique mode were to

grow (or be damped) more rapidly, there will be little effect on CR

scattering. In addition, parallel modes are usually the fastest growing

in the |tL| ≪ ts regime (see HS18).
With these simplifications, it transpires that one can obtain

accurate, simple forms for the dispersion relation ω(k) for modes
with frequencies near the Alfvén frequency ωA = kvA. Specifically,
one inserts the ansatz ω = kvA + μ(ω(1)/μ) (such that ω(1) is the
perturbed frequency), and expands the characteristic equation in the
small parameter μ ≪ 1 with ω(1)/μ finite, taking μi = μ̄iμ (i.e. all
individual dust densities μi scale with μ). Solving the polynomial
equation for ω(1) that appears at lowest order in μ and taking its
imaginary part leads to the result

ℑ(ω(1)) = ωA

Nd
∑

i=1

μi ω̃
(1)
i

= ωA

Nd
∑

i=1

μiW
2
s,i t̄s,i

W2
s,i t̄

2
s,i

(

2λ̄2
i Ws,i + λ̄2

i − 1
)

− 1
(

λ̄2
i − 1

)2
W4

s,i t̄
4
s,i + 2

(

λ̄2
i + 1

)

W2
s,i t̄

2
s,i + 1

.

(8)

Here, Ws,i ≡ ws,i/vA − 1 is the relative Alfvén Mach number of

the streaming dust and t̄s,i = ωAts,i is the normalized stopping time.

λ̄i = k−1/λres,i is the mode’s inverse wavenumber normalized by

the resonance wavelength λres,i ≡ vAtL,iWs,i , which is the inverse
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2634 J. Squire et al.

wavenumber of the Alfvén wave mode that matches the streaming

gyro-orbit frequency of the dust; i.e. the wavelength for which

ωA = kws,i − t−1
L,i . As expected, the contribution of each grain

species (ω̃
(1)
i in equation 8) is negative (damping) if Ws,i < 0 and

positive (unstable) if Ws > 0.

To take the continuum limit of equation (8), we note that ω̃
(1)
i

becomes increasingly sharply peaked around the resonance (λ̄i = 1)

at increasing t̄s,i ≫ 1. This implies that each species contributes

to the total damping or growth rate only around the resonant

wavenumber λ̄i = 1. As shown in Appendix A, this allows for the

straightforward derivation of a simple expression for continuum

damping or growth rate,

Ŵdust(k) = sgn(Ws) ωAμ0

π

2

dμ̄(ad )

d ln ad

Ws(ad )2

|ξtL + ξWs
|

∣

∣

∣

∣

k−1=vAtL(ad )Ws (ad )

.

(9)

Here, we have changed from labelling each dust species by its

discrete index i, to making Ws and tL functions of physical grain

size ad, defining

ξtL ≡
d ln |tL|
d ln ad

, ξWs
≡

d ln |Ws |
d ln ad

. (10)

The fractional mass across a given range of sizes is parametrized

by dμ̄/d ln ad , which satisfies
∫

d ln ad (dμ̄/d ln ad ) = 1 across the

full range of grain sizes present (i.e. dμ̄/d ln ad is the fractional

contribution to dust density from grains of size ad).1 Evaluating

equation (9) as a function of k involves first inverting the resonance

condition, vAtL(ad )Ws(ad ) = k−1, to find ad(k), then inserting this

into the main expression (9). More detail about the derivation of

equations (8) and (9) and how they relate to the Resonant Drag

Instability theory of Squire & Hopkins (2018) and HS18 is given in

Appendix A. We also confirm the validity of equation (9) in Fig. A1,

by comparing to numerical solutions of the full dispersion relation

for a discrete set of dust grains.

3.2.1 Polarization

Our derivation of equation (8) from the frequency alone has hidden

the relevance of the mode polarization inside the sign of tL, which

controls the sign of k (or λ̄i) and thus the mode propagation direction

and polarization. Physically, only modes that resonate with the dust

can interact with it, which, for negatively charged dust and waves

propagating in the magnetic field direction, implies that only right-

hand polarized waves are damped for Ws < 0, while only left-

hand polarized waves are unstable for Ws > 0. The opposite is

true for positively charged dust and/or for wave propagation in the

antimagnetic field direction. The handedness of the damped/unstable

waves (determined by the dust charge) does not feature prominently

in the discussion below, because the streaming speed of CRs (∼vA)

is generally much smaller than the speed of individual particles (∼c),

implying there are nearly equal numbers of forward and backward

propagating particles. However, the fact that only one polarization is

damped or unstable does suggest some interesting implications on

CR transport, as discussed in Section 2.1.

4 A STRO P HYSICAL CONSEQUENCES

In this section, we consider how the dust-induced damping or growth

of parallel Alfvén waves (AWs) could impact CR confinement in

1For the standard MRN size distribution, dnd∝a−3.5dad (Mathis, Rumpl &

Nordsieck 1977), dμ̄/d ln ad ∝ a0.5
d .

galaxies. We suggest two possible effects, which have opposite

consequences for CR propagation. The first – discussed in Section 4.2

– involves the additional AW damping caused by dust reducing the

efficiency of CR self-confinement, thus enhancing the CR transport.

The second – discussed in Section 4.3 – considers how dust with

super-Alfvénic drift speeds in the circumgalactic medium (CGM)

could excite parallel AWs that directly scatter CRs, thus enhancing

the CR confinement (reducing the transport). We start with a brief

review of the dust properties that will be necessary for our discussion,

focusing on expressions and/or physical processes that are relevant to

ad � 1µm grains in well-ionized gas with a temperature T � 104 K.

This focus is motivated by the fact that in colder, predominantly

neutral gas, CRs are thought to diffuse rapidly anyway due to strong

ion-neutral damping, which will generally dominate the effects we

discuss here for reasonable dust-to-gas mass ratios.

In addition to quantities defined above, throughout this section it

will be convenient to use subscripts to denote orders of magnitude

in cgs units with Fx = F/10x for some quantity F; thus T4 is the gas

temperature in units of 104 K, n0 is the gas number density in units

of cm−3, B−6 is the magnetic field strength in units of μG, a−5 is the

grain radius ad in units of 0.1µm, and ρ̄d;0 is the grain solid density

in units of g cm−3. We also define the plasma ‘beta,’ which is the

ratio of thermal pressure to magnetic pressure β = 8πP/B2.

4.1 Physical properties of astrophysical dust

The key dust properties of interest for computing the damping/growth

rate of Alfvén waves from equation (9) are: (i) the dust drag law ts(ad),

which, in addition to the external force on the grains, determines

Ws(ad ); (ii) the dust charge, which determines tL(ad) from equation

(7); and (iii) the mass distribution of grain sizes dμ̄/d ln a. Let us

discuss each of these in turn, summarizing relevant information from

previous literature.

4.1.1 Drag law

The two relevant expressions for grains in the conditions of interest

here are Epstein drag, which is collisional drag when the particle size

is smaller than the gas mean free path, and Coulomb drag, which

arises when charged grains interact with the background plasma

(Draine & Salpeter 1979b). The stopping time for grain species i in

the Epstein regime is approximately

t
Ep

s,i =
√

π

8

ρ̄d,iad,i

ρ vth

(

1 +
9π

128

|vi − u|2

v2
th

)−1/2

≈ 6.8 × 1012s
a−5ρ̄d;0

n0T
1/2

4

, (11)

where vth is the gas thermal velocity, while in the Coulomb regime

it follows

tCoul
s,i ≈

√

π

2

ρ̄d,iad,i

fionρ vth ln �d

(

kBT

zieUd

)2
(

1 +
√

2

9π

|vi − u|3

v3
th

)

,

≈ 1.1 × 1011s
a−5ρ̄d;0

fionn0T
1/2

4 U
2
, (12)

where fion is the ionization fraction, ln �d is the Coulomb logarithm

for the dust (ln �d ≈ 20 for the conditions and grains of interest;

see HS18; Draine & Salpeter 1979b), zi is the mean gas ion charge,

and −2.5U = Ud/(kBT /e) ≈ e2Zd/(adkBT ) is the normalized grain

potential (see Section 4.1.2 below). In the second lines of equations

(11) and (12) we have assumed subsonic grain drift |vi − u| ≪ vth,
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The interaction of dust and cosmic rays 2635

taken the mean molecular weight to be 0.6 (a typical choice for

warm ionized gas), and taken zi ≈ 1. The correct drag law is

approximately whichever of equations (11) and (12) is smaller. For

maximally collisionally charged (U ≈ 1) grains moving subsonically

in well-ionized gas, this is Coulomb drag, otherwise Epstein drag

dominates.

4.1.2 Grain charge

Grain charging processes are very complicated and uncertain, being

strongly influenced by a range of environmental effects and grain

microphysics. Further, in many systems there is expected to be a

wide distribution of different grain charges for a given grain size.

Here we use several different simple analytic fits to approximate the

average charge expected in different regimes, as discussed in, e.g.

Draine & Salpeter (1979b), Draine & Sutin (1987), Weingartner &

Draine (2001c), Weingartner (2004), Tielens (2005).

The simplest relevant process is collisional charging, which

satisfies approximately

Ud ≈
eZd

ad

≈ −
e

ad

1

1 + 0.037

√

e2

akBT

− 2.5
kBT

e
≈ −2.5

kBT

e
,

(13)

where the latter approximation is valid for the conditions of interest

(T � 104 K). This motivates defining −2.5U = Ud/(kBT /e), with

U ≈ 1 for collisionally charged grains. For reference, the grain

potential is Ud ≈ −2.15T4U V. When Zd becomes too negative,

the total charge becomes limited by electron field emission to

Zd ≈ −7000a2
−5, which translates to

U ≈ U 0 min

{

1, 47
a−5

T4

}

, (14)

where we retain a dimensionless U 0 ≈ 1 factor, so as to understand

the charge dependence of analytic expressions that we later derive. At

higher gas temperatures (T� 105 K for silicate grains, T� 105.5 K for

graphite), secondary electron emission can cause grains to become

positively charged. This process can be important, especially for

smaller grains where it can lead to larger |Ud| than the standard

collisional expression (14); but, we do not consider it in detail because

of the complex, material-dependent expressions (see figs 1 and 2 of

Draine & Salpeter 1979b).

In the presence of a radiation field, photoelectric charging can

dominate, which also causes grains to gain net positive charge.

The process depends primarily on the gas/radiation through the

parameter, ψ = G0T1/2/n, where G0 = uuv
rad/(5.3 × 10−14erg cm−3)

and uuv
rad is the energy density in the radiation field between ∼6 and

13.6 eV. The charge is approximately Zd ≈ 36(ψ /1000)a−5 up to a

maximum potential U ∼ 7V or Zd ≈ 500a−5 (see Weingartner &

Draine 2001c; Tielens 2005; Draine 2010 and fig. 4 of Weingartner

2004). This gives

U ≈ −U 0T
−1

4 min

{

0.24

(

ψ

1000

)

, 3.3

}

. (15)

Overall, we see that in most regimes, U may be assumed independent

of ad in order to compute the Ws and tL derivatives required to

evaluate damping/growth of Alfvén waves (equation 9), while for

small grains in hot gas without a strong radiation field, U ∝ ad .

For simplicity, we will neglect the quantization of grain charge in

analytic estimates, although this does become significant for the

smallest grains (see e.g. fig. 25.3 of Draine 2010).

4.1.3 Mass distribution

Grain mass distributions probably vary significantly between regions,

depending on the complex interplay between grain growth, grain

shattering through collisions, and grain sputtering from the gas

(Peters et al. 2017). The standard MRN distribution of Mathis et al.

(1977) postulates that dμ̄/d ln ad ∝ a0.5
d with ad, min ≈ 5 nm (a−5 =

0.05) and ad, max ≈ 0.25µm (a−5 = 2.5), and a total dust-to-gas

mass ratio of around 1 per cent (μ0 = 0.01). The MRN distribution

likely has significant inaccuracies even in the ISM, missing a sizeable

population of small grains with ad < 5 nm (e.g. Weingartner & Draine

2001a; Zubko, Dwek & Arendt 2004; Draine & Fraisse 2009). Far

less is known about the CGM or hotter regions. Grain destruction due

to ion-field emission is expected to be significant only for very small

grains in very hot gas, and not strongly affect our results here (e.g.

in T ∼ 106 K gas; Draine & Salpeter 1979b suggest the ion-field-

emission-limited grain size is a � 1 nm). Thermal sputtering rates

become larger than grain growth due to accretion of metals from

the gas for T � 105 K, and significant compared to gas dynamical

times for T � 106 K (Draine & Salpeter 1979a,b), suggesting that

the dust-to-gas mass ratio may be lower in hotter gas. However, dust

is clearly observed in the CGM of galaxies (Ménard et al. 2010;

Peek, Ménard & Corrales 2015) and thus appears to survive in gas

up to T ∼ 107 K, although this may also be related to the presence

of multiphase gas (i.e. dust existing primarily in clumps of colder

gas; Tumlinson, Peeples & Werk 2017). While its size distribution

remains very uncertain, the presence of smaller grains (down to at

least ad ∼ 0.01µm) is indicated by observations (Hirashita & Lin

2020).

Given these very significant uncertainties, the use of a complex

dust-size distribution model would be of dubious value,2 and

for simplicity we will use a power-law grain mass distribution

dμ̄/d ln ad ∝ a
ξμ

d between ad, min ≈ 1 nm and ad, max ≈ 0.25µm in all

estimates, with ξμ = 0.5 (MRN) as the fiducial choice. Since wave

growth/damping rates around a particular wavelength scale linearly

with the density of dust that is resonant with that wavelength, one

can simply adjust the total dust-to-gas mass ratio μ0 to account for

uncertainty in the mass distribution.

4.2 Enhanced cosmic ray transport in the warm ionized ISM

Here we ask the question of whether dust damping, as derived in

Section 3, can compete with turbulent processes and non-linear

Landau damping to damp parallel waves and enable the fast transport

of CRs (see Section 2). This simply involves directly computing the

damping rate from equation (9) to compare with these previously

studied processes. We compare our expressions graphically, for a

range of reasonable warm-ISM parameters, in Fig. 1.

4.2.1 Dust-induced damping

In the bulk of the ISM, radiation-pressure forces are relatively

weak and grain drift is expected to be significantly sub-Alfvénic

(Weingartner & Draine 2001b; see fig. 6 of HS18). It is thus

reasonable to set ws = 0, or Ws = −1 in evaluating equation

(9), which also implies that ts does not directly enter the analysis

2Further, the mass distribution of grains is important for wave damp-

ing/growth only in so far as it determines the mass density of grains with

a given tL, Ws , and ts. This implies that the mass distribution gets mixed with

the charge distribution, which has its own significant uncertainties.

MNRAS 502, 2630–2644 (2021)
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2636 J. Squire et al.

Figure 1. Comparison of parallel AW damping due to dust (blue lines; equation 18), turbulent damping (yellow region; equation 25), non-linear Laudau

damping (red bar; equation 27), and ion-neutral damping (green line; equation 28) as a function of scale. The top axis shows the rigidity of CRs that are resonant

with AWs at k−1 for the conditions of interest. The left-hand panel illustrates cooler, denser conditions, with T = 104 K, n = 1 cm−3, and β = 10, while the

right-hand panel illustrates hotter, more diffuse conditions T = 105 K, n = 0.01 cm−3, and β = 1. For the dust, the total dust-to-gas mass ratio is μ0 = 0.01,

and grains range between ad, min = 0.01µm, ad, min = 0.25µm with a mass distribution dμ̄/d ln a ∝ a0.5. We consider collisional charging (equation 14), and

the different lines show the effect of changing grain charge with U0 = 1 (solid line), U0 = 0.3 (dashed line), U0 = 3 (dot-dashed line). Lines terminate at the

small and large scales given by equation (20). For the turbulent damping, the shaded region shows the range for lturb in the range 100 to 300 pc with MA ≈
1. For non-linear Landau damping, we indicate the damping rate for the energetically dominant ∼GeV CRs, which, because it is non-linear, depends on the

CR properties and transport model. For basic comparison, we use lCR = 300 pc and eCR and in the range 0.1 to 10 eV cm−3 (eCR ≈ 0.3 eV cm−3 is measured

around the solar circle). Although our focus is on CR transport in well-ionized gas, we also show ion-neutral damping rates with fion = 0.9 and fion = 0.99 in

the left-hand panel (green dashed lines) in order to allow for a basic comparison.

(although we must ensure tsωA ≫ 1 for the modes of interest for

equation (9) to be valid). For concreteness, we start by considering

grain charging in the absence of a radiation field (equation 14), which

gives the Larmor time (equation 7)

tL ≈ −1.7 × 109s
a2

−5ρ̄d;0

UT4B−6

. (16)

Dust will damp CR-induced AWs so long as the scales that are

resonant with CRs are also resonant with grains present in the ISM.

The former resonant-CR scale, k−1
res ≈ rL, is given by equation (1),

while the dust-resonant wavenumber k−1 = vA|tL| is

k−1(ad ) = 3.3 × 1012cm

⎧

⎨

⎩

(

ad

8.2nm

)2 ρ̄d;0

n
1/2
0

T4U0

k � kefe

(

ad

31nm

) ρ̄d;0

n
1/2
0

U0

k � kefe

, (17)

where we have normalized the grain size to illustrate the connection to

scales relevant for RCR ≈ 1GV protons (see equation 1). Here k−1
efe ≈

(2.2 × 1011cm) T4ρ̄d;0/(n
1/2
0 U 0) is the resonant scale at which the

grain charging changes from the collisional regime (large scales; a−5

� T4/47) to the electron-field-emission-limited regime (small scales;

a−5 � T4/47) (see equation 14). We also see from equation (10) that

ξtL ≈ 2 for a−5 � T4/47 (larger scales), and ξtL ≈ 1 for a−5 � T4/47

(smaller scales), showing that the damping rate is somewhat larger

in the electron-field-emission-limited regime.3 It is straightforward

to verify that tsωA ≫ 1 for all grains (Coulomb drag dominates;

equation 12).

The growth rate is computed by inverting equation (17) for ad and

using the normalized power-law grain mass distribution dμ̄/d ln ad =

3This occurs because the Larmor time increases more slowly with grain size,

meaning there are more grains that are resonant with a particular wavelength

of wave.

ξμa
ξμ

d /(a
ξμ

d,max − a
ξμ

d,min). equation (9) then gives

Ŵdust

ωA

≈
π

4

μ0

�
ξμ

ad

⎧

⎪

⎨

⎪

⎩

(

k−1

4.9×1014cm

)ξμ/2 (
n

1/2

0 T4U 0

ρ̄d;0

)ξμ/2

kad,max
� k � kefe

2
(

k−1

1.0×1013cm

)ξμ
(

n
1/2

0 U 0

ρ̄d;0

)ξμ

kad,min
� k � kefe

≈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

7.6 × 10−4
(

μ0

0.01

)

(

k−1

3.3×1012cm

)1/4
n

1/8

0 T
1/4

4 U
1/4

0

ρ̄
1/4

d;0

kad,max
� k � kefe

3.0 × 10−3
(

μ0

0.01

)

(

k−1

3.3×1012cm

)1/2
n

1/4

0 U
1/2

0

ρ̄
1/2

d;0

kad,min
� k � kefe

≈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

6.5 × 10−4
(

μ0

0.01

)

(

RCR

GV

)1/4
T

1/8

4 (β/10)1/8U
1/4

0

ρ̄
1/4

d;0

kad,max
� k � kefe

2.2 × 10−3
(

μ0

0.01

)

(

RCR

GV

)1/2
(β/10)1/4U

1/2

0

T
1/4

4 ρ̄
1/2

d;0

kad,min
� k � kefe

,

(18)

where �
ξµ
ad = [(ad,max/0.1µm)ξµ − (ad,min/0.1µm)ξµ ]/ξµ ≈ 3.0 for

grains in the range ad, min ≈ 1 nm to ad, max ≈ 0.25µm with ξμ

= 0.5, which is used to simplify the expressions from the second

line. equation (1) is used to convert between scale and CR rigidity

for the third line (assuming relativistic CRs, RCR � 1GV). The

wavenumber cutoffs, kad,max
and kad,min

, are the wavenumbers resonant

with the largest and smallest grains, respectively. Renormalizing ad

in equation (17), we find

k−1
ad,min

≈ 1.0 × 1011cm
ρ̄d;0

n
1/2
0 U 0

(ad,min

1nm

)

, (19)

k−1
ad,max

≈ 3.1 × 1015cm
ρ̄d;0

T4n
1/2
0 U 0

(

ad,max

0.25µm

)2

, (20)

assuming that ad = ad, min grains are in the field-emission-limited

regime, and ad = ad, max grains are in the collisional regime. We see

that the resonant scales of grains, where there is strong damping,

MNRAS 502, 2630–2644 (2021)
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The interaction of dust and cosmic rays 2637

covers a similar range to that of ∼GeV CRs across a wide range of

parameters relevant to the well-ionized ISM. Note that equation (18)

is discontinuous across k ≈ kefe (larger at small scales), because ξtL

changes.

In many regions of the ISM, while radiation pressures may not

be sufficiently large to drive grains to super-Alfvénic velocities, the

radiation field can none the less be strong enough for photoelectric

charging to dominate over collisional charging (e.g. Weingartner &

Draine 2001b; Draine 2010). In this case grains become positively

charged (equation 15) to several volts depending on the strength

of the radiation field. Aside from the polarization of the damped

waves, which makes no difference to the CR transport within our

approximations (see Section 2.1), the calculation of the wave-

damping rate is nearly identical except that there is no electron-

field-emission limited regime. Taking U = −U 0/T4 (corresponding

to Ud ≈ 2.2V U 0), with U 0 encapsulating our ignorance about the

radiation field, the same calculation as above gives the dust-resonant

wavenumber

k−1(ad ) = 3.3 × 1012cm
( ad

8.2nm

)2 ρ̄d;0

n
1/2
0 U 0

, (21)

with damping rate

Ŵdust

ωA

≈ 7.6 × 10−4
( μ0

0.01

)

(

k−1

3.3 × 1012cm

)1/4
n

1/8
0 U

1/4

0

ρ̄
1/4
d;0

≈ 6.5 × 10−4
( μ0

0.01

)

(

RCR

GV

)1/4
(β/10)1/8U

1/4

0

T
1/8

4 ρ̄
1/4
d;0

, (22)

between the minimum and maximum scales,

k−1
ad,min

≈ 4.9 × 1010cm
ρ̄d;0

n
1/2
0 U 0

(ad,min

1nm

)2

, (23)

k−1
ad,max

≈ 3.1 × 1015cm
ρ̄d;0

n
1/2
0 U 0

(

ad,max

0.25µm

)2

, (24)

which is nearly identical to the collisionally charged result above.

Of course, it is plausible that in some regions photo-electric and

collisional charging will cancel out, in which case |U | could

be reduced substantially compared to the estimates made above;

however, it is reasonable to expect that in most regions one of the

two charging regimes should dominate over the other.

4.2.2 Other damping mechanisms

Equation (18) should be compared to the damping rate of parallel

AWs from other processes. The most important is turbulent damping,

which arises from the fact that parallel AWs excited by CRs must

propagate along inhomogenous turbulent magnetic fields. Using

the Goldreich & Sridhar (1995) phenomenology of anisotropic

magnetized turbulence, the damping rate of rL ≈ k−1 scale waves

is (Farmer & Goldreich 2004; Lazarian 2016; Zweibel 2017)

Ŵturb

ωA

≈
1

ωA

vA

r
1/2
L l

1/2
A

≈ 1.0 × 10−4 �β

(

k−1

3.3 × 1012cm

)1/2

M
1/2ζ

A

(

lturb

100pc

)−1/2

≈ 7.6 × 10−5 �β

(

RCR

GV

)1/2 (
β/10

n0T4

)1/4

M
1/2ζ

A

(

lturb

100pc

)−1/2

.

(25)

Here lturb is the outer scale of the turbulence and lA = M
−1/ζ

A lturb

is the scale at which turbulent fluctuations become sub-Alfvénic,

with MA the Alfvén Mach number at lturb and δu ∼ l−ζ the power-

law turbulent scaling exponent of l > lA motions (ζ ∼ 1/2 for

supersonic motions, or ζ ∼ 1/3 for subsonic motions). The factor

�β ≈ max(1, 0.4
√

β) arises because at lower β, direct turbulent

dissipation of perpendicular waves is expected to dominate (Farmer

& Goldreich 2004), while at larger β, linear-Landau damping

of perpendicular magnetosonic waves dominates (Zweibel 2017;

Wiener, Zweibel & Oh 2018). Although Alfvénic turbulence is

known to be quite robust across a wide range of plasma conditions,

it is worth noting that any other processes that enhance the damping

of turbulence beyond these standard estimates (e.g. Silsbee, Ivlev &

Gong 2020) would reduce small-scale fluctuations in the magnetic

field, thus decreasing Ŵturb and the importance of turbulence to CR

propagation.

Non-linear Landau damping (NLLD) is the process by which non-

linear magnetic field strength variations in the small-scale parallel

AWs are directly damped by resonant particle interactions (Lee &

Völk 1973; Cesarsky & Kulsrud 1981; Völk & Cesarsky 1982)

and pressure anisotropy (Squire, Quataert & Schekochihin 2016;

Squire, Schekochihin & Quataert 2017). As a non-linear effect,

the strength of the damping depends on the amplitude of the

waves as

ŴNLL ≈
√

π

8
vthk

δB2(k)

B2
, (26)

where the wave amplitude δB2(k)/B2 itself depends sensitively on

the CR energy density and its gradient. In order to make a basic

comparison to other mechanisms, we use convenient expressions

from H+20 (equation A4) for the damping rate of waves resonant

with ∼GeV CRs. These are derived using an approximate balance

of growth and damping, assuming that the waves are excited by CRs

with energy density eCR that varies over length scale lCR (see also

Thomas & Pfrommer 2019), giving

ŴNLL

ωA

≈
1

ωA

[

1

3

π1/2

8

(

csvA

rLlCR

)(

eCR

B2/8π

)]1/2

≈ 1.4 × 10−4

(

k−1

3.3 × 1012cm

)1/2
(β/10)3/4

n
1/2
0 T

1/2
4

×
( eCR

1eV cm−3

)1/2
(

lCR

100pc

)−1/2

. (27)

However, estimating the rigidity dependence of this damping rate

requires a rigidity-dependent model of CR transport (which manifests

in equation 27 through the rigidity dependence of eCR). While we

suggest a way to estimate this below (Section 4.2.3), leading to the

scaling ŴNLL/ωA∝(RCR)0.15, given the greater uncertainty in these

estimates, in Fig. 1 we plot only the damping rate for ∼GeV

CRs. In any case, equation (27) and the results of H+20 suggest

that NLLD is subdominant and unimportant in most situations,

being overwhelmed by turbulent damping even in the absence of

dust.

Finally, although we do not consider partially ionized gas and

ion-neutral damping in detail, it is helpful to include for comparison

purposes. For waves with frequencies below the ion-neutral collision

rate ν in, the AW damping rate is (H+20; Amato & Blasi 2018)

Ŵin

ωA

≈
νin

ωA

≈ 0.04

(

k−1

3.3 × 1012cm

)

(1 − fion)f 1/2
ion

T
1/2

4 ρ
3/2
−24

B−6

, (28)

where ρ−24 = ρ/(10−24g cm−3) (mass density of both ions and

neutrals), and the f 1/2
ion factor arises because vA is a function of

the ion density alone at small scales in a partially ionized gas

MNRAS 502, 2630–2644 (2021)
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2638 J. Squire et al.

(note that we have neglected this effect in equations (25) to (27)

because it is unimportant if 1 − fion ≪ 1). It is clear that ion-neutral

damping dominates over all others when the neutral fraction 1 − fion

is modestly large.

4.2.3 Implications for cosmic ray transport

A graphical comparison of equations (18) to (28) in two sets of

conditions relevant to the warm ISM, across a wide range of scales,

is shown in Fig. 1. A clear conclusion is that the dust damping rate of

AWs with a ∼1 per cent dust-to-gas mass ratio is significantly larger

than any other source of damping for AWs resonant with ∼GeV

CRs (top axes), except ion-neutral damping with 1 − fion � 0.03.

In other words, dust may significantly decrease CR confinement in

well-ionized regions of the ISM. The same conclusion is illustrated

across a wider range of gas conditions in Fig. 2, which shows the ratio

of dust to turbulent damping at the GeV CR gyro-scale, with solid

contours illustrating the resonant grain size (assuming collisional

charging). We see that it is generally very small grains (ad � 10 nm

for common ionized-ISM conditions) that are resonant with scales

relevant for ∼GeV CRs.
Assuming that dust damping does dominate as suggested by the

estimates above, we can balance the dust damping rate (18) to
the streaming instability growth rate to obtain an estimate for the
effective speed of CR energy transport, v̄st, in the presence of dust (see
e.g. H+20 section 3.3). For collisionally charged grains (equation
18), one finds

v̄st ≈ vA +
3

4

κ‖

lCR

≈ vA +
4crL

π

Ŵdamp

vA

B2

8π

1

eCR

≈ vA

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 + 4.1
(

RCR

1GV

)1/4
(

eCR

1eV cm−3

)−1 ( μ0

0.01

) n0T
5/8

4 U
1/4

0

(β/10)3/8 ρ̄
1/4

d;0

RCR � RCR
efe

1 + 14
(

RCR

1GV

)1/2
(

eCR

1eV cm−3

)−1 ( μ0

0.01

) n0T
1/4

4 U
1/2

0

(β/10)1/4 ρ̄
1/2

d;0

RCR � RCR
efe

,

(29)

where κ‖ = c2/3νc is the parallel CR diffusion coefficient and

RCR
efe ≈ 0.4T

3/2
4 ρ̄d;0/(U 0β

1/2)GV is the CR rigidity corresponding

to kefe. Similarly, for photoelectrically charged grains (equation 22)

one finds

v̄st ≈ vA

[

1 + 4.1

(

RCR

1GV

)1/4
( eCR

1eV cm−3

)−1

×
( μ0

0.01

) n0T
3/8

4 U
1/4

0

(β/10)3/8ρ̄
1/4
d;0

.

]

(30)

Note that equations (29) and (30) apply only to the ∼GeV CRs

that dominate the CR energy density, because of the appearance

of eCR in the expressions, and we also assume relativistic CRs to

convert scales to rigidity using equation (1). Evidently, we predict

modestly super-Alfvénic CR energy transport with faster transport at

higher temperature, lower β, or with more strongly charged grains.

It is, however, worth noting that this streaming speed likely remains

too small to fully explain the discrepancy found by H+20 between

observations and cosmological simulations with self-confined CRs

(or equivalently, the AW damping rate remains too small). Further

simulations with a dust-damping self-confinement model would be

needed to test this more thoroughly.

Finally, we can estimate the predicted rigidity dependence of

self-confined CR transport regulated by dust, ṽst ∝ (RCR)δ (or

equivalently κ‖∝(RCR)δ). Such predictions can be compared to

the measured rigidity dependence of CR grammage from, e.g. the

(a)

(b)

Figure 2. Colours illustrate the ratio Ŵdust/Ŵturb of the dust damping rate

to turbulent damping rate for scales corresponding to RCR = 1 GV CRs,

across a wide range of temperatures and densities relevant to the ionized

ISM. Collisional charging (equation 18) is assumed for Ŵdust. The top panel

keeps β = 10 constant as n and T are changed, while the bottom panel keeps

B = 1µG constant. In each panel, the solid contours show the size of the

resonant grains (equation 17) as labelled, while the light, dashed contours

show lines of constant B (top panel) or constant β (bottom panel). The step

change in colour in each panel (T4 ≈ 100.6 in the top panel; the diagonal from

T4 ≈ 10−0.3 in the bottom panel) is where the charging becomes electron field

emission limited, and the white region in the bottom panel occurs because

the resonant scale moves below a = 1 nm. Other relevant parameters are the

same as Fig. 1, with U0 = 1 and lturb = 100 pc.

B/C ratio, which suggests δ in the range 0.3 to 0.8 (with various

uncertainties related to sources and propagation; Maurin, Putze &

Derome 2010; Amato 2014; Blasi 2017; Aguilar et al. 2018). To

estimate δ, we follow the kinetic treatment of Skilling (1971), which,

by balancing the damping rate of AWs to the growth rate of the

streaming instability, arrives at the the following equation governing

the distribution f(p) of CRs of momentum p:

(

∂

∂t
+ w · ∇

)

f =
1

3
p

∂f

∂p
∇ · w −

1

p3
∇ ·

(

cŴdamp(p)B

4π3evA

b̂

)

,

(31)

where w = u + vA b̂ is the velocity of the AW frame, in which

equation (31) is valid. The wave-damping rate Ŵdamp has an effective

MNRAS 502, 2630–2644 (2021)
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The interaction of dust and cosmic rays 2639

momentum dependence4 because it is in general a function of k,

and k and p are related by the CR resonance condition equation (1).

We see that the final ‘damping’ term on the right-hand side, which

necessarily describes any deviation from transport at exactly ṽst = vA

within these approximations, does not have the form of an advection

or diffusion operator at all, and in fact does not even contain the CR

distribution f (its rather bizarre behaviour is discussed in Skilling

1971). None the less, as a very simple, approximate estimate for the

scaling of an effective transport speed ṽst with CR momentum, we

can compare this damping term to an advection term, which would

have the form ṽst b̂ · ∇f . Noting that f ∼ p−α with α ≈ 4.7, while

Ŵdamp scales as Ŵdamp ∼ kb ∼ p−b, we can estimate δ by matching

the p scaling of ṽst b̂ · ∇f to that of p−3Ŵdamp, giving δ ≈ α − 3

− b = 1.7 − b. From equation (18), we see b = 1 − ξμ/2 ≈ 0.75,

giving δ ≈ 0.7 + ξμ/2 ≈ 0.95. Although this estimate is a little higher

than observationally favoured values, it is worth noting that the other

AW damping mechanisms except non-linear-Landau damping5 all

predict larger δ (e.g. δ ≈ 1.2 for turbulence damping). A flatter

(or even inverted) mass distribution of small grains, as favoured by

more detailed models of dust (see Section 4.1.3), would decrease

δ further.

4.2.4 Uncertainties

The most significant uncertainties in the above conclusions relate to

the fact that a reasonable population of small grains (ad � 10 nm) is

required to damp waves relevant to ∼GeV CRs. If the total dust-to-

gas mass ratio were significantly lower than 0.1 → 0.3 per cent in

more diffuse ISM regions (see e.g. Peters et al. 2017), or if the grain

size distribution were significantly depleted for ad � 10 nm, dust

damping could be unimportant compared to other sources. However,

it is worth noticing that most complex dust models that are calibrated

to observations (e.g. Weingartner & Draine 2001a; Zubko et al.

2004; Draine & Fraisse 2009) involve a grain distribution with an

excess of the smallest grains compared to a power-law distribution,

which suggests that using ξμ = 0.5 could underestimate the dust

damping, as well as overestimating the dependence of transport

on CR rigidity (δ). Further uncertainty concerns the charging of

small grains, which will be affected by charge quantization (Draine

2010) as well as the environmental factors discussed above (e.g. the

radiation environment); a more accurate treatment could convolve a

charge distribution with the mass distribution before computing the

damping rate to account for quantization. Finally, we reiterate that

only one wave polarization is damped by dust (see Section 3.2.1), so

that in practice, dust tends to make CR-induced AWs more circularly

polarized. As discussed in Section 2.1, this likely enhances CR

transport by a similar degree to what would occur if both polarizations

were damped; however, simulations and more accurate theory are

clearly needed to assess this physics in more detail.

4Skilling (1971) neglects the k dependence of Ŵdamp in his calculation.

Including it yields slightly different (unimportant) numerical factors in the

final term of equation (31).
5The scaling of NLLD can be worked through in the same way, with the caveat

that Ŵdamp depends directly on the CR spectrum in Skilling’s argument. This

leads to a damping term that scales as ∼ p−3/2∇ · [A(b̂ · ∇f )1/2 b̂] (where A

represents terms that depend on gas quantities), which gives δ = 0.85. This

also implies that ŴNLL from equation (27) scales as ŴNLL ∼ k0.85 for this

model of CR transport. For comparison, this is slightly flatter than the other

mechanisms plotted in Fig. 1. This calculation is effectively the same as that

of Blasi (2019), who also finds δ = 0.85 for NLLD-mediated transport.

4.3 Enhanced cosmic ray scattering through dust-excited

Alfvén waves

In this section, we discuss the possibility that dust drifting with |ws|>
vA generates small-scale parallel Alfvén waves, which subsequently

scatter and confine cosmic rays. Much of this physics remains highly

uncertain; both the astrophysics of dust in the relevant conditions (e.g.

charging and grain abundances in hotter gas) and the non-linear wave

physics (e.g. saturation of the dust instability and CR scattering; see

Section 2.1) are not well constrained. We thus provide only a cursory

examination of the relevant physics compared to Section 4.2 on dust

damping. None the less, in some situations – particularly when grains

are driven to significantly super-Alfvénic velocities by radiation

pressure – it is reasonable to suggest that dust-induced scattering rates

could dominate over all other CR scattering mechanisms, causing

scattering levels near the ‘Bohm limit,’ where the CR’s mean-

free path approaches their gyro-radius. Here, motivated by HS18,

we consider the interesting example of the circumgalactic medium

(CGM) around a quasar or highly luminous galaxy, which could

cause an interesting non-linear correlation between the luminosity

and the confinement of CRs. Other possible applications include

near supernovae6 and regions of the ISM with higher-than-average

radiation fields (see e.g. fig. 6 and section 9 of HS18), although the

dust instabilities may become more complicated in some cases where

grains are not so strongly magnetized (if the ratio |tL|/ts approaches

one, see Section 3.1).

As shown in Section 3, positively charged dust drifting at speeds

exceeding vA will generate parallel Alfvén waves. If their growth

rate exceeds the damping rate from background turbulence,7 such

waves will presumably continue to grow until they saturate through

some other means. The most obvious candidate is by exciting some

type of turbulence, which scatters dust particles sufficiently to shut

off the instability’s drive. The simulations of Hopkins et al. (2020c)

suggest that a simple saturation criterion is when a characteristic

turnover time at the scale of interest is equal to the instability growth

rate, which leads to an estimate of the power in small scale parallel

fluctuations δB2/B2 ∼ (Ŵ/ωA)2, where Ŵ/ωA is the growth rate of

the dust instability normalized by the Alfvén frequency at the chosen

scale. This implies the CR diffusivity

κ‖ ≈
c2

3νc

∼ 3.3 × 1026cm2s−1

(

RCR

GV

)(

B

1µG

)−1 (
Ŵ/ωA

0.01

)−2

.

(32)

It is worth noting that this estimate δB2/B2 ∼ (Ŵ/ωA)2 likely

significantly underestimates the saturation level of small-scale AWs,

because the instability grows with circularly polarized modes that

do not perturb the field strength, so will not necessarily breakup

into turbulent fluctuations in the usual way. On the other hand,

it is also likely the case that pure circularly polarized modes are

very inefficient at isotropizing CRs (see Section 2.1), so equation

(32) could be a reasonable estimate of effective scatterers (i.e.

turbulent fluctuations of both polarizations) even if one polariza-

tion reaches higher amplitude. Unfortunately, the extremely small

scales of interest were not directly probed by the simulations of

Hopkins et al. (2020c) (the ‘CGM’ simulation approaches similar

6Of course, CR fluxes are also particularly extreme near supernovae, and the

relevant processes remain highly uncertain (Bykov et al. 2018; Micelotta,

Matsuura & Sarangi 2018; Holcomb & Spitkovsky 2019).
7Non-linear Landau damping will presumably not operate on the dust-excited

AWs, since they do not involve a variation in |B|.
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2640 J. Squire et al.

conditions). Further simulations or more detailed analytic theory are

clearly needed, but we proceed anyway for lack of a more accurate

estimate.

We now focus on conditions relevant to the CGM around a quasar

for concreteness, although similar considerations could apply to

any high-luminosity galaxy. We first note that significant amounts

of dust is observed in the CGM (Ménard et al. 2010; Peek et al.

2015), presumably driven there by radiation pressure (e.g. Ishibashi

& Fabian 2015; Hirashita & Inoue 2019). Considering conditions

appropriate to distances r ∼ r100100 kpc from a quasar of luminosity

L ∼ L131013L⊙, we take the gas to be hot (T ∼ 105 → 107 K), at very

low density (n ∼ 10−6 → 10−3 cm−3), and with weak magnetic fields

(β ∼ 100 → 104).8 The first stage of estimating the AW growth-rate

from equation (9) is to estimate the Larmor time and relative drift

velocity of grains. Estimates of ψ indicate that grains will be strongly

photoelectrically charged (equation 14), suggesting U ≈ 3/T4 (Ud

∼ 7V) and that Epstein drag dominates (particularly given that

we find trans-sonic to supersonic drift velocities; c.f. equations

11 and 12). We estimate the radiative force on the grains as

mdaext ∼ Qabsπa2
dL/(4πr2c), where Qabs is the absorption efficiency

of the grains, which, for a radiative flux peaked around wavelength

λrad, is Qabs ∼ ad/λrad for ad � λrad or Qabs ∼ 1 for larger grains

(Weingartner & Draine 2001c). Assuming, for simplicity, that the

relative dust-gas drift is supersonic (ws ≫ cs) to solve ws = aexttEp
s

for ws, we find

ws

vA

≈ Ws ≈ 330 a
1/2

−5

L
1/2
13

r100

B−8
−1� (33)

for dust with ad � λrad and a spectrum that peaks around Lyman-

alpha wavelengths, λrad = 122 nm (we define B−8 = B/10−8G).

The projection factor � ≡ (aext · B0)/(|aext||B0|) accounts for a

possible misalignment of the magnetic field with the radiative flux

that accelerates grains (see Section 3.1). equation (34) somewhat

overestimates ws for the smallest grains that are trans- or sub-sonic

(ws/vA � β1/2), as well as for the largest grains with ad � λrad (Qabs

saturates at Qabs ∼ 1); these effects are correctly accounted for in

Fig. 3. Equation (34) also does not allow for possible non-linear

modifications to ws as the grains are scattered by the turbulence

they induce (although this is likely a modest effect in this very short

wavelength range; Moseley, Squire & Hopkins 2019). The Larmor

time is tL ≈ (5.3 × 1010s) a2
−5ρ̄d;0/(U 0B−8) using the photoelectric

expression (15) for the grain charge. Inverting the resonant condition

k−1 = vAtLWs to link the grain size to wavelength, and assuming

ξμ = 0.5 for ad, min ≈ 1nm to ad, max ≈ 0.25μm, equation (9)

becomes

Ŵ

ωA

≈ 0.13
( μ0

100

)

(

k−1

3.3 × 1014cm

)3/5
(β/300)7/10

n
2/5
−4 T

7/10
6

×
(

L13

r2
100

)7/10 (
U 0

ρ̄d;0

)3/5

�7/5, (34)

8A potential complication and uncertainty is that the observed dust may not be

cospatial with the hot gas in the CGM, which is known to be multiphase and

clumpy (Tumlinson et al. 2017). In such a case, although our estimates could

still apply to waves in the cooler, denser gas (suggesting high CR scattering

rates therein), isolated clumpy regions with high scattering rates are likely to

be ineffective at confining CRs (since the CRs fill the space between clumps;

H+20). On the other hand, most dust grains drift supersonically through the

gas (equation 33), so will presumably blow through different gas phases, even

if initially present only in a cooler phase. Clearly, the relevance of multiphase

gas represents yet another significant uncertainty for this mechanism.

Figure 3. The growth rate of unstable AWs in the presence of drifting dust

(lines) compared to turbulent damping rates (orange shaded region), for

conditions relevant to the CGM around a luminous quasar (T = 106 K, n

= 10−4 cm−3, β = 300). We take μ0 = 0.01 with photoelectrically charged

grains and an MRN grain spectrum between ad, min = 1 nm and ad, max =
0.25µm. The blue, green, and red lines, respectively, show growth rates with

an L ≈ 1013L⊙, L ≈ 5 × 1013L⊙, and L ≈ 3 × 1012L⊙ source, all at r

∼ 100 kpc. As in Fig. 1, solid, dot-dashed, and dashed lines respectively

show U = 1, U = 3, and U = 0.3, to illustrate the effect of changing the

grain charge, and the lines terminate on the left at the scale where ad, min =
1 nm grains are resonant (equation 35). We take � = 1 since its scaling is

degenerate with L or r. For turbulent damping, we use the expression (25),

with the range indicating the a range of outer-scales from lturb ∼ 10 kpc to

lturb ∼ 100 kpc with MA ∼ 5.

where we have normalized k−1 to the scale resonant with ∼GeV

particles at B = 10−8 G. equation (34) applies on scales k < kad,min

where resonant grains exist, with

k−1
ad,min

≈ 1.5 × 1013cm
(ad,min

1nm

)5/2(β/300)1/2

n−4T
1/2

6

L
1/2
13

r100

ρ̄d;0

U 0

�. (35)

We see that growth rates are rather large at the relevant scales for

∼GeV CRs, and, at modestly larger scales relevant to � 50 GeV

particles, the scattering level might be expected reach Bohm diffusion

levels (this occurs when δB/B ∼ 1 from Ŵ ∼ ωA, although our

solution for Ŵ breaks down here also). However, as also occurred

for dust damping in the ISM (Section 4.2), it is the smaller grains

that grow AWs at ∼GeV scales, and if the grain spectrum were cut

off at small scales, or grains were less charged than expected, the

spectrum of unstable AWs may not extend to sufficiently small scales

to efficiently scatter ∼GeV particles.

We illustrate the AW growth rate for the fiducial conditions (T =
106 K, n = 10−4 cm−3, β = 300) with μ0 = 0.01 in Fig. 3 (although μ0

= 0.01 may be an overestimate, the growth rate simply scales linearly

with μ0). We use the full Epstein-drag expression to compute ws,

without assuming ws � cs or ad � λrad as in equation (33), which

implies that the curves are slightly below the estimate (34) across

most scales. Overall, we see significant dust-induced AW growth

rates that are large compared to the effect of turbulence (shaded

region), which provides a basic measure of the expected growth rate

of the CR streaming instability in such regions. A caveat is that in

order to scatter ∼GeV particles, there must be a population of quite

small grains. Comparing the estimate of CR diffusivity in equation

(32) with the estimate of κ‖ � 1030 cm2 s−1 in quiescent milky-way-

like galaxies (based on γ -ray observations and simulations; see Lacki

MNRAS 502, 2630–2644 (2021)
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The interaction of dust and cosmic rays 2641

et al. 2011; Chan et al. 2019; H+20), we see that reasonable quasar

luminosities will cause very effective CR confinement, with a strong

(∼L1.4) dependence on luminosity up to the Bohm limit (at which

point κ‖ ∼ 3 × 1024cm2s−1B−1
−8 (RCR/1GV)).

Such a strong increase in confinement may in turn have conse-

quences for CR-driven winds or outflows. A crude measure of the

impact is to compare the force per unit mass on the gas due to the

dust (i.e. radiation pressure) to that due to the CRs. The former

is ρdws/ts ≈ 6.7 × 10−38gcm−2s−2 (μ0/0.01)L13n−4/(r2
100ρ̄d;0) as-

suming a supersonic dust-gas drift as above (ws/ts is approximately

independent of ad for ad � λrad); the latter is ∇PCR = eCR/(3lCR) ≈
1.7 × 10−38gcm−2s−2 (eCR/0.01eV cm−3)(lCR/100 kpc)−1. We see

that even for relatively conservative values for eCR and lCR – i.e.

values similar to those obtained with κ‖ � 1030cm2s−1 in H+20 – the

CR force is not vastly smaller than the radiation-pressure force. Thus,

even a modest increase in CR confinement caused by dust-induced

scattering would likely cause the force from CRs to overwhelm that

due to radiation pressure, since eCR or 1/lCR need only increase by a

factor of several for this to happen. In other words, this indirect effect

of radiation pressure as a feedback mechanism for galaxies – driving

small-scale waves that enhance CR confinement to the point where

they drive outflows – may be more efficient than the direct driving of

outflows through radiation pressure and dust drag (Murray, Quataert

& Thompson 2005). Under appropriate conditions, this could provide

a strong feedback mechanism controlled by the luminosity of the

quasar or galaxy.

5 C O N C L U S I O N

This paper has considered the influence of astrophysical dust grains

on the confinement of galactic cosmic rays (CRs). The cause of

the interaction between these two seemingly unrelated components

of the galactic ecosystem is the small-scale parallel Alfvén wave.

Parallel Alfvén waves at sub-AU scales act to scatter and confine

∼GeV CRs through gyro-resonant interactions and the streaming

instability. They also interact strongly – also through gyro-resonant

interactions – with small charged dust grains, which act to damp the

waves if the dust is nearly stationary with respect to the gas, or cause

instability if the dust streams super-Alfvénically. This interaction

implies a link between grain size (which determines the dust gyro-

frequency through the dust mass and charge) and the CR rigidity:

smaller grains, which are gyro-resonant with smaller wavelength

AWs, interact with lower rigidity CRs.

The two possibilities (wave damping or instability from the dust)

could have opposite effects on the astrophysics of cosmic rays. In the

case of nearly stationary dust, for which the magnitude of the wave

damping can be estimated with reasonable fidelity in well-ionized

regions of the ISM, dust could significantly enhance CR transport

(decrease confinement). Using reasonable assumptions about dust

mass distributions and charging, we find damping rates from dust

up to an order of magnitude larger than wave damping from the

background turbulence (Farmer & Goldreich 2004; Zweibel 2017)

or non-linear damping (Cesarsky & Kulsrud 1981). Because wave

damping directly determines transport levels for self-confined CRs,

this suggests that CR diffusion coefficients could be significantly

larger than what would be expected without dust. The influence of

dust may thus go some way towards explaining recent findings that

standard models of CR self-confinement are too efficient to explain

gamma-ray and in-situ CR grammage observations (H+20; Chan

et al. 2019; Hopkins et al. 2020d).

In the opposite case of dust-driven instability, the scattering of CRs

by waves produced by dust has the potential to significantly reduce

CR transport (enhance confinement), although our estimates are far

less reliable in this case due to significant astrophysical uncertainties.

The situation could occur in the circumgalactic medium around a

luminous galaxy, where radiation pressure would cause dust to stream

outwards with super-Alfvénic relative velocities, exciting small-scale

Alfvén waves that scatter CRs. Simple estimates suggest that the

outwards force on the gas produced by the enhanced coupling to

CRs through this interaction could be much stronger than the direct

force from the dust/radiation pressure itself (Murray et al. 2005).

In either of the above scenarios, the relative mass density of dust

plays a key role in determining CR transport, which thus implies

a dependence of CR confinement on metallicity. In the first case of

wave damping through dust, as most relevant to the ionized ISM away

from high-luminousity sources, we predict more efficient CR escape

in high-metallicity environments, because AWs are more rapidly

damped at higher dust densities. The second scenario, more relevant

to haloes around highly luminous galaxies, predicts the opposite,

with stronger confinement at high metallicity. In this context, it is

worth mentioning the particularly weak CR confinement in the SMC

and LMC, as inferred from γ -ray observations (Lacki et al. 2011).

Since the SMC and LMC have a low metallicity compared to the

Milky Way, this does not fit with the first scenario of increased

dust-induced damping, although given the wide array of other

morphological and historical differences, the lower CR confinement

is likely unrelated to the detailed CR transport physics (Chan et al.

2019). A metallicity dependence to CR transport could be a key

ingredient in understanding the efficacy of CR feedback at high

redshift.
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Giguère C.-A., 2021b, MNRAS, 501, 4184 (H+20)

Ishibashi W., Fabian A. C., 2015, MNRAS, 451, 93

Ji S. et al., 2020, MNRAS, 496, 4221

Jokipii J. R., 1966, ApJ, 146, 480

Krapp L., Benı́tez-Llambay P., Gressel O., Pessah M. E., 2019, ApJ, 878, L30

Kulsrud R., Pearce W. P., 1969, ApJ, 156, 445

Lacki B. C., Thompson T. A., Quataert E., Loeb A., Waxman E., 2011, ApJ,

734, 107

Lazarian A., 2016, ApJ, 833, 131

Lazarian A., Yan H., 2002, ApJ, 566, L105

Lee M. A., Völk H. J., 1973, Astrophys. Space. Sci., 24, 31

Lee H., Hopkins P. F., Squire J., 2017, MNRAS, 469, 3532

Lopez L. A. et al., 2018, ApJ, 867, 44

Mathis J. S., Rumpl W., Nordsieck K. H., 1977, ApJ, 217, 425

Maurin D., Putze A., Derome L., 2010, A&A, 516, A67

McKenzie J. F., Voelk H. J., 1982, A&A, 116, 191

Ménard B., Scranton R., Fukugita M., Richards G., 2010, MNRAS, 405,

1025

Micelotta E. R., Matsuura M., Sarangi A., 2018, Space Sci. Rev., 214, 53

Moseley E. R., Squire J., Hopkins P. F., 2019, MNRAS, 489, 325

Murray N., Quataert E., Thompson T. A., 2005, ApJ, 618, 569

Peek J. E. G., Ménard B., Corrales L., 2015, ApJ, 813, 7

Peters T. et al., 2017, MNRAS, 467, 4322

Pfrommer C., Pakmor R., Simpson C. M., Springel V., 2017, ApJ, 847, L13

Schekochihin A. A. et al., 2009, ApJ Supp., 182, 310

Seligman D., Hopkins P. F., Squire J., 2019, MNRAS, 485, 3991

Shukla P. K., Mamun A. A., 2002, Introduction to Dusty Plasma Physics.

IOP Publishing, Bristol and Philadelphia

Silsbee K., Ivlev A. V., Gong M., 2020, preprint (arXiv:2011.13879)

Skilling J., 1971, ApJ, 170, 265

Skilling J., 1975a, MNRAS, 172, 557

Skilling J., 1975b, MNRAS, 173, 245

Squire J., Hopkins P. F., 2018, ApJ, 856, L15

Squire J., Quataert E., Schekochihin A. A., 2016, ApJ, 830, L25

Squire J., Schekochihin A. A., Quataert E., 2017, New J. Phys., 19, 055005

Strong A. W., Moskalenko I. V., 1998, ApJ, 509, 212

Su K.-Y. et al., 2020, MNRAS, 491, 1190

Thomas T., Pfrommer C., 2019, MNRAS, 485, 2977

Tielens A. G. G. M., 2005, The Physics and Chemistry of the Interstellar

Medium. Cambridge Univ. Press, Cambridge

Tripathi K. D., Sharma S. K., 1996, Phys. Plasmas, 3, 4380

Tumlinson J., Peeples M. S., Werk J. K., 2017, A&A, 55, 389

Völk H. J., Cesarsky C. J., 1982, Z. Naturforsch., 37, 809

Weidl M. S., Winske D., Niemann C., 2019, ApJ, 873, 57

Weingartner J. C., 2004, in Witt A. N., Clayton G. C., Draine B. T., eds,

ASP Conf. Ser. Vol. 309, Astrophysics of Dust. Astron. Soc. Pac., San

Francisco, p. 453

Weingartner J. C., Draine B. T., 1974, ARA&A, 12, 71

Weingartner J. C., Draine B. T., 2001a, ApJ, 548, 296

Weingartner J. C., Draine B. T., 2001b, ApJ, 553, 581

Weingartner J. C., Draine B. T., 2001c, ApJS, 134, 263

Wentzel D. G., 1969, ApJ, 156, 303

Wiener J., Zweibel E. G., Oh S. P., 2018, MNRAS, 473, 3095

Yan H., Lazarian A., 2002, Phys. Rev. Lett., 89, 281102

Yan H., Lazarian A., 2004, ApJ, 614, 757

Yan H., Lazarian A., 2008, ApJ, 673, 942

Yan H., Lazarian A., Draine B. T., 2004, ApJ, 616, 895

Zubko V., Dwek E., Arendt R. G., 2004, ApJS, 152, 211

Zweibel E. G., 2017, Phys. Plasmas, 24, 055402

APPENDI X A : G ROWTH AND DA MPI NG W ITH

A SPECTRU M O F G RAI N SI ZES

In this appendix, we detail the derivations of equations (8) and (9),

explore some of the properties of these, and discuss some limits on

their validity. We first discuss some technical features of the discrete

growth rate calculation in Section A1, then how to take the continuum

limit in Section A2. The possible influence of a dust velocity

dispersion induced by turbulence is considered in Appendix A3.

Although the general procedure – computing a discrete growth rate

first, then taking the limit Nd → ∞ – may seem more complex than

starting directly from equations for the continuum limit of equations

(3) to (6), the method seems to have some important advantages. First,

in similar calculations of dust interacting with an ion-electron plasma

only through electromagnetic fields (i.e. without drag), but taking

the limit Nd → ∞ before computing a dispersion relation, Tripathi

& Sharma (1996), Cramer et al. (2002) find expressions for the

growth rate that can be evaluated analytically only for specific power-

law dust-density distributions. Secondly, our calculation provides

useful physical intuition on its limits at finite dust stopping time

ts, explaining why the result is effectively independent of ts in the

regimes of interest.

A1 Discrete distribution

As discussed in Section 3.2, the growth rate of a discrete collection of

grains can be straightforwardly obtained by computing the dispersion

relation from the linearization of equations (3) to (6). Assuming that

the solution of the resulting polynomial is of the form ω = kvA +
ω(1), where ω(1) ∼ O(μ), then expanding in μ ≪ 1, assuming all

individual dust densities μi scale with μ, leads to

μ

(

−ω(1) +
Nd
∑

i=1

μiωAWs,i

t2
L,i(1 + iωAts,iWs,i) − t2

s,iWs,i

t2
s,i + t2

L,i(1 + iωAts,iWs,i)2

)

×
Nd
∏

i=1

Ws,i(1 + iωAts,iWs,i) + O(μ2) = 0. (A1)

Solution of the first term in the product gives equation (8), af-

ter normalizing the wavenumber of the mode to the resonant

wavenumber using ωA = k vA = (tLWs,i λ̄i)
−1, where λ̄iλres,i = k−1

and λres,i ≡ vAtL,iWs,i .

MNRAS 502, 2630–2644 (2021)
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The interaction of dust and cosmic rays 2643

Equation (A1) is valid when μi is sufficiently small such that

the effect of the dust gyro-motion can be considered a small

perturbation to the Alfvén wave. At larger μi, the structure of the

linear system is modified because the matrix becomes defective (non-

diagonalizable), causing the growth rate to scale with ∼μ
1/2
i rather

than the assumed ∼μi, and thus invalidating the expression (A1). As

discussed in Squire & Hopkins (2018) (see discussion below their

equation 12), mathematically this implies that the growth rate of

the mode must be less than that of the ‘resonant drag instability’

between the dust gyro-motion and the Alfvén wave, which has the

growth rate,

ℑ(ω) ≈
1

2
μ

1/2
i |tL,i |−1|Ws,i |1/2 =

1

2
μ

1/2
i |Ws,i |3/2ωA|k=λ−1

res,i
(A2)

at resonance (k = λ−1
res,i) for a single grain population i (HS18). In

other words, equation (A2), rather than equation (8), is the correct

expression at larger μi. Equations (A1) and (8) are thus valid

if ω̃
(1)
i |λ̄i=1 � μ

−1/2
i W

3/2
s,i , or – expanding ω̃

(1)
i in t̄s,i ≫ 1 to find

ω̃
(1)
i |λ̄i=1 ≈ W

3
s,i t̄s,i/2 + O(t̄−1

s,i ) – for

|Ws,i |3/2 t̄s,i � μ
−1/2
i . (A3)

This condition compares well against full numerical solutions to the

dispersion relation.

A2 Continuum limit

For t̄s,i ≫ 1, the contribution to growth or damping from a single

grain species (the function ω̃
(1)
i in the sum of equation 8), becomes

very sharply peaked around λ̄i = 1. For illustration, we plot ω̃
(1)
i (λ̄i)

in the top panel of Fig. A1, showing (i) how its peak value (at

λ̄i = 1) scales linearly with t̄s,i [ω̃
(1)
i (1) ≈ W

3
s,i t̄s,i/2 + O(t̄−1

s,i )], (ii)

that ω̃
(1)
i → 0 as λ̄i → ∞, and (iii) that ω̃

(1)
i (0) ≈ −t̄−1

s,i + O(t̄−3
s,i ).

Moreover, it transpires that

∫ ∞

0

dλ̄iω̃
(1)
i =

π

2
sgn(Ws,i)W

2
s,i, (A4)

implying that at t̄s,i ≫ 1, ω̃
(1)
i is well approximated by a delta

function, with no t̄s,i dependence: ω̃
(1)
i ≈ (π/2) sgn(Ws,i)W

2
s,iδ(λ̄i −

1) = (π/2) sgn(Ws,i)W
2
s,iλres,iδ(k−1 − λres,i). Given that the total

growth rate from Nd species is simply the sum of the individual

growth rates, we can derive an expression for the continuum

damping/growth rate, γ (k), by converting the sum in equation (8)

to an integral. This is done by stipulating that the area under γ (k)

between resonances, γ (k)dλres, i = γ (k)(λres, i + 1 − λres, i) is equal to

the area under the discrete growth rate at the same resonance, which is

ℑ[ω(1)(λres,i)] dλres,i ≈ μi(π/2)ωA sgn(Ws,i)W
2
s,iλres,i , where in the

final step we have used the delta-function approximation for ω̃
(1)
i .

Replacing μi by dμ with μ0 =
∑Nd

i=1 μi =
∫

dμ, we get

γ (k) =
ℑ[ω(1)(λres,i)] dλres,i

dλres,i

= ωA

π

2
sgn(Ws)

dμ

d ln ad

(

dλres

d ln ad

)−1

W
2
s (ad )λres(ad )

= ωA

π

2
sgn(Ws)

dμ

d ln ad

(

d ln |tL|
d ln ad

+
d ln |Ws |

d ln ad

)−1

W
2
s ,

(A5)

where all functions of a (tL(ad), Ws(ad ) etc.) are converted to

functions of k by inverting k−1 = λres(ad ) = vAtLWs (note that

Figure A1. Top panel: single-grain contribution to the growth rate

ω̃
(1)
i (equation 8) for Ws,i = 1, with t̄s,i = ts,iωA in the range t̄s,i =

{104, 103, 102, 101} (blue, orange, green, and red curves, respectively). The

dashed lines show where ω̃
(1)
i < 0 (ω̃

(1)
i ≈ t̄−1

s,i for t̄s,i ≫ 1). Bottom panel:

comparison of the continuum approximation equation (9) (black dashed line)

to the full dispersion relation computed numerically from the linearization

of equations (2) to (6). The blue line shows the dispersion relation with

150 dust species, while the light-orange line shows the case with 30 dust

species, illustrating the convergence towards the continuum solution. We use

arbitrary units with ad ranging from ad = 1 to ad = 30 in logarithmically

spaced increments, vA = 1, β = 10, tL = 0.5a0.5
d , Ws = a0.5

d , ts = 30ad, a

mass distribution dμ̄/d ln ad ∝ a0.5
d , and a total dust density μ0 = 0.01. The

analytic expression for the growth rate follows from inverting the resonance

condition, vAtLWs = k−1, to give ad = 2/k, which gives γ ≈ 0.5μ0k−1/2

using equation (9).

k−1 can be negative, which allows for different mode polarizations

depending on the sign of tL and Ws).

To understand possible restrictions on equation (A5), let us note

two key points that are implicit in the derivation. First, as we approach

the true continuum limit, the condition equation (A3) must become

satisfied at some point, since we are taking the limit as μi → 0.

Secondly, although we used the delta function approximation to

ω̃
(1)
i to derive equation (A5), it is clear that the final answer will

be identical if the resonances overlap (finite t̄s): each of the nearby

resonances from different sized grains will contribute a small amount

to the region dλres, i, whose total – assuming that the peak of ω̃
(1)
i does

not vary much across the width of the contribution from a single grain

– will add up to the same as the delta function approximation. We

thus see that the effect of finite t̄s is to smooth out any sharp features

in the continuum growth rate expression equation (9) or equation

(A5) by the width of an individual resonance, which is dλ̄i ∼ t̄−1
s,i or

dk ∼
k2λres

ωAts
= k |Ws |

|tL|
ts

. (A6)

MNRAS 502, 2630–2644 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
2
/2

/2
6
3
0
/6

1
2
1
4
3
1
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 2

9
 J

u
ly

 2
0
2
1



2644 J. Squire et al.

In addition, minor (order t̄−1
s ) inaccuracies arise due to ω̃

(1)
i becoming

negative as k → ∞.

We compare the continuum approximation equation (9) to numer-

ical calculations of the full dust–gas dispersion relation in the bottom

panel of Fig. A1. Parameters ts(ad), tL(ad), and Ws(ad ) are chosen

as arbitrary functions for illustrative purposes. The comparison of

the orange and blue curves, which are the numerical calculations

with 30 and 150 dust species, respectively, illustrates the accuracy

of the continuum approximation (black dashed line) in the region

of resonances once the individual resonances overlap (blue line).

The continuum approximation predicts no growth or damping for

wavenumbers outside of the band of resonances, which we see is not

completely accurate (although growth rates are ∼10−2 lower outside

the band).

A3 Dust velocity dispersion

It is expected that even if ws = 0, the dust should have some non-

zero velocity dispersion due to the effects of turbulent gas motions

(Lazarian & Yan 2002; Lee, Hopkins & Squire 2017), likely with the

dispersion of perpendicular velocities dominating over that of parallel

velocities for most magnetized turbulence (Yan et al. 2004). Including

this formally and in detail requires recourse to a fundamentally

kinetic description of the dust; this would involve linearizing a dust

Vlasov equation for its distribution function fd (x, v, ad ), which is

beyond the scope of this work. However, in order to get a basic idea

of whether such effects are likely to be important, we can consider

adding in a dust pressure term into the dust velocity evolution

equation (5). This must have the form ∇d⊥Pd⊥,i + ∂zPd‖,i ẑ, where

∇⊥ is the gradient in the perpendicular (x and y) direction and

Pd⊥, i and Pd‖, i refer to the dust velocity dispersions perpendicular

and parallel to the field, respectively (the equilibrium off-diagonal

components of the dispersion tensor must be small if the dust velocity

distribution is symmetric around the magnetic field). While Pd⊥, i

and Pd‖, i are not determined without recourse back to the kinetic

description, a simple isothermal closure – Pd⊥,i = ρd,ic
2
d⊥0,i and

Pd‖,i = ρd,ic
2
d‖0,i , where cd⊥0, i and cd‖0, i are fixed – should at least

give an idea of whether the velocity dispersion should fundamentally

change the modes of interest. Repeating the calculation above, one

finds that it does not: the perpendicular pressure has no effect

whatsoever, because it depends only on perpendicular gradients and

we explicitly focus only on parallel modes; the parallel pressure

modifies the final part of equation (A1), changing the term in the

product to Ws,i(1 + iωAts,iWs,i) − ik2
z ts,ic

2
d‖0,i/ωA, but this has no

effect on the modes of interest either (at small μi). This illustrates

that the direct effect of dust pressure is unimportant for the Alfvénic

modes of interest, although it does not capture more complex kinetic

effects such as the broadening of the distribution of resonances due

to the range of parallel velocities. The mode’s indifference to the

perpendicular velocity distribution is straightforward to understand

physically: the dust’s gyro-time, which determines the damping

through the resonance with the Alfvén wave (λ̄i = 1), is independent

of its perpendicular velocity.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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