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ABSTRACT

Recently, Squire & Hopkins showed that charged dust grains moving through magnetized gas

under the influence of a uniform external force (such as radiation pressure or gravity) are

subject to a spectrum of instabilities. Qualitatively distinct instability families are associated

with different Alfvén or magnetosonic waves and drift or gyro motion. We present a suite

of simulations exploring these instabilities, for grains in a homogeneous medium subject to

an external acceleration. We vary parameters such as the ratio of Lorentz-to-drag forces on

dust, plasma β, size scale, and acceleration. All regimes studied drive turbulent motions and

dust-to-gas fluctuations in the saturated state, rapidly amplify magnetic fields into equipartition

with velocity fluctuations, and produce instabilities that persist indefinitely (despite random

grain motions). Different parameters produce diverse morphologies and qualitatively different

features in dust, but the saturated gas state can be broadly characterized as anisotropic

magnetosonic or Alfvénic turbulence. Quasi-linear theory can qualitatively predict the gas

turbulent properties. Turbulence grows from small to large scales, and larger scale modes

usually drive more vigorous gas turbulence, but dust velocity and density fluctuations are

more complicated. In many regimes, dust forms structures (clumps, filaments, sheets) that

reach extreme overdensities (up to ≫109 times mean), and exhibit substantial substructure

even in nearly incompressible gas. These can be even more prominent at lower dust-to-gas

ratios. In other regimes, dust self-excites scattering via magnetic fluctuations that isotropize

and amplify dust velocities, producing fast, diffusive dust motions.

Key words: accretion, accretion discs – instabilities – turbulence – planets and satellites: for-

mation – ISM: kinematics and dynamics – galaxies: formation.

1 IN T RO D U C T I O N

Almost all astrophysical, planetary, and atmospheric fluids are

laden with grains of dust, which play a central role in many

astrophysical processes including in planet and star formation; in

the attenuation and extinction of observed light; in cool star, brown

dwarf, and planetary evolution; in atmospheric dynamics; in astro-

chemistry; in feedback and outflow launching from star-forming

regions, cool stars, and active galactic nuclei (AGNs); and in

interstellar cooling and heating (see Dorschner 2003; Draine 2003;

Apai & Lauretta 2010, for reviews). The dynamical interactions

between dust and gas therefore are of fundamental importance in

astrophysics.

Recently, Squire & Hopkins (2018b) showed that dust–gas

mixtures are unstable to a broad class of instabilities, which they

referred to as ‘resonant drag instabilities’ (RDIs). The Squire &

⋆ E-mail: phopkins@caltech.edu

Hopkins (2018b) instabilities manifest whenever a fluid, gas, or

plasma system contains dust streaming with non-zero drift velocity

ws ≡ vd − ug relative to the gas (where vd and ug are the dust and gas

velocities, respectively). Although a broad range of wavelengths are

unstable, the resonances which produce the most rapidly growing

instabilities occur when the natural frequency of a linear gas

mode [e.g. a sound wave, magnetohydrodynamic (MHD) wave, or

epicyclic oscillation] matches the natural frequency of a dust mode

(e.g. advection, with frequency ws · k, or gyro oscillations). Every

such pair of modes produces an instability, with a unique growth

rate, resonance, and linear mode structure. Since dust–gas drift may

be caused by many external forces, such as radiative absorption

or scattering by dust or gas, gravity in quasi-hydrostatic systems,

centrifugal or coriolis forces in rotating systems, or large-scale

hydrodynamic or pressure forces, these instabilities will develop

in a range of astrophysical environments.

In a series of papers, Hopkins & Squire (2018a,b) and Squire &

Hopkins (2018a) analytically explored various examples of these in-

stabilities in some astrophysical systems. Hopkins & Squire (2018a,
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2124 P. F. Hopkins, J. Squire and D. Seligman

Table 1. The default initial conditions for the simulations studied in this paper. Each simulation (by default) adopts an isothermal gas equation of state,

Epstein drag, constant grain charge, and follows a single population of grains, with resolution 2 × 1283 elements (equal number gas and dust), and total

dust-to-gas mass ratio μ ≡ ρ0
d/ρ0

g = 0.01. These choices are varied below. Columns show: (1) Simulation name (used throughout). (2) |w0
s |/c0

s : The initial

equilibrium drift velocity, in units of the sound speed. (2) τ ≡ t0
s /t0

L: Ratio of Lorentz to drag forces (stopping time to gyro time). (3) |B̂0 · â|: Angle between

initial magnetic field and direction of differential acceleration/force between dust and gas, a ≡ aext, dust − aext, gas. (4) Lbox/c
0
s t0

s : Box size in dimensionless

units. (5) β ≡ P 0
gas/P

0
B = 2 (c0

s /v
0
A)2: Initial ratio of gas thermal to magnetic pressure. (6) Notes: we provide an example physical regime where these

parameters are plausible for typical interstellar grains (from Paper I). We also quote an equivalent set of dimensionless parameters: the ‘acceleration parameter’

ã ≡ |a| ρ̄ i
grain ǫgrain/((c0

s )2 ρ0
g ), ‘charge parameter’ φ̃ ≡ 3 Z0

grain e/(4π c ǫ2
grain (ρ0

g )1/2), and ‘size parameter’ α̃ ≡ ρ̄ i
grain ǫgrain/ρ

0
g Lbox.

Name
|w0

s |
c0

s
(ã) τ (φ̃) |B̂0 · â| Lbox

c0
s t0

s
(α̃) β Notes

Example 0.89 (25) 29 (50) 0.05 0.34 (5) 2 Case study in Seligman, Hopkins & Squire (2019)

AGB 3 (8.4) 1e-3 (2.8e-3) 1/
√

2 0.01, 3.1, 920, 3e5 2 AGB wind, r ∼ 100 R⊙, Ṁ ∼ 10−6 M⊙ yr−1

(S/M/L/XL) (270, 0.9, 0.003, 1e-5) Lbox ∼ (5 km, 2000 km, 1 R⊙, 300 R⊙)

H II-near 4 (20) 2.3 (24) 1/
√

2 0.0088, 2.6, 1000 20 H II region, r = 0.1 pc, n = 104 cm−3

(S/M/L) (390, 1.3, 0.0034) Lbox ∼ (0.2 au, 50 au, 0.1 pc)

H II-far 0.15 (0.45) 3.5 (16) 1/
√

2 0.0032, 1.0, 330 20 H II region, r = 1 pc, n = 102 cm−3

(S/M/L) (500, 1.7, 0.005) Lbox ∼ (0.7 au, 200 au, 0.3 pc)

WIM 0.05 (0.12) 100 (160) 1/
√

2 4.8e-4, 0.21, 100 2 WIM, n ∼ 1 cm−3, T ∼ 104 K

(S/M/L) (3400, 7.6, 0.017) Lbox ∼ (1 au, 500 au, 1 pc)

Corona 20 (480) 3200 (1700) 1/
√

2 3.3e-4, 0.067, 20 0.002 Solar corona, r ∼ R⊙
(S/M/L) (4.8e4, 240, 0.8) Lbox ∼ (10 km, 2000 km, 1 R⊙)

CGM 9.5 (100) 1.4e5 (3e7) 1/
√

2 0.29 (25) 2000 CGM at 100 kpc from QSO; Lbox ∼ 1 kpc

hereafter Paper I) focused on the case of instabilities involving

charged dust in magnetized gas, relevant in the warm interstellar

medium (ISM), circum and intergalactic medium (CGM/IGM),

H II regions, supernovae (SNe) ejecta and remnants, the Solar and

stellar coronae, cool star winds, AGN outflows and obscuring

torii, and giant molecular clouds (GMCs). They showed that a

variety of instabilities appear with different properties and growth

rate scalings, even in the case of a homogeneous gas obeying

ideal MHD (a good approximation in most of these regimes),

with a single group of grains interacting via drag and Lorentz

forces. However, their analysis was restricted to analytic, linear

perturbation theory. Moseley, Squire & Hopkins (2019) presented

simulations of the un-magnetized and un-charged instabilities in

the non-linear regime. Seligman et al. (2019) presented a case

study of one example in the magnetized regime, and found that the

introduction of a magnetic field produced novel dust behaviours and

outcomes in both the linear and non-linear regimes of the instability.

That first study necessarily neglected much of the large parameter

space.

In this paper, we present a large survey of ∼40 simulations1

that explore the non-linear regime of these instabilities in a rep-

resentative range of the astrophysically relevant parameter space

for charged dust in magnetized gas. These idealized experiments

inform our understanding of the mechanisms responsible for the

growth and saturation of the instabilities, the non-linear structure

of the dust and gas, and the potential theoretical and observational

ramifications. They are complex because the instabilities depend on

six dimensionless parameters, and as shown in Paper I, at any given

wavenumber k, the linear dispersion relation typically features ∼3–

7 unstable modes (each of which has growth rates that depend on

the mode angle k̂, at a given |k|). This inherent complexity further

1Animations and additional visualizations of the simulations here are

available at http://www.tapir.caltech.edu/∼phopkins/Site/animations/dust-a

nd-gas-in-astrophysic.

underscores the necessity for numerical simulations that explore

different non-linear regimes. We show that a diverse variety of

behaviours arise, depending both on the physical parameters of

the system and the spatial scales studied, all of which may have

important astrophysical consequences.

This paper is organized as follows. Section 2 presents our method-

ology, and Section 3 discusses the parameter space surveyed (see

also Table 1 and Fig. 1). Section 4 presents several results from the

simulations [e.g. morphologies, saturated fluctuation amplitudes,

and probability distribution functions (PDFs)]. Section 5 discusses

these results in more detail and compares them to theoretical ex-

pectations, attempting to identify classes of saturation mechanisms.

We summarize and conclude in Section 7.

2 M E T H O D S A N D S I M U L AT I O N S E T-U P

2.1 Numerical methods and equations solved

The numerical methods adopted here have been described in detail

in Moseley et al. (2019) and Seligman et al. (2019), and we briefly

summarize them here. Our simulations were run with the code

GIZMO (Hopkins 2015),2 using the Lagrangian ‘meshless finite

volume’ (MFV) method for MHD, which has been extensively

tested on problems involving multifluid MHD instabilities, MRI,

shock capturing, and more (Hopkins 2016b, 2017; Hopkins &

Raives 2016; Su et al. 2017). Grains are integrated using the

‘superparticle’ method (see e.g. Carballido, Stone & Turner 2008;

Johansen, Youdin & Mac Low 2009; Bai & Stone 2010b; Pan et al.

2011), whereby the motion of each dust ‘particle’ in the simulation

follows equation (1) below, but each represents an ensemble of dust

grains with similar size, mass, and charge (denoted ǫgrain, mgrain,

qgrain, respectively). The numerical methods used for the integration

2A public version of the code, including all methods used in this paper, is

available at http://www.tapir.caltech.edu/∼phopkins/Site/GIZMO.html.
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Simulating MHD drag instabilities 2125

Figure 1. The simulations studied in this work are shown with stars (see

Table 1), in an illustration of two important parameters of the MHD RDI

(adapted from Paper I). Axes show dust drift speed normalized by the

fastest wave speed (ws/vf,0 ≡ |ws|/(c2
s + v2

A)1/2), and the ratio of Lorentz

force to drag force (or drag/stopping time to gyro time, τ ≡ 〈ts〉/〈tL〉).
Different shaded regions illustrate different astrophysical environments (see

Paper I, section 9), including the warm ionized and warm neutral medium

(WIM/WNM), giant molecular clouds (GMCs) and near/far vicinity of

O stars in H II regions (H II), supernovae in various phases of evolution

(SNe), stellar coronal dust (Corona), cool/giant/AGB star photospheres and

outflows (AGB), dusty ‘torii’ around AGNs, the circum and/or intergalactic

medium around AGN/starburst systems or quiescent galaxies (CGM), and

protostellar/planetary discs and planetary atmospheres (which extend off

the plotted range). Lines/arrows illustrate where different forms of the RDIs

should appear: the fast (acoustic) RDI is unstable for ws/vf, 0 � 1, gyro-

resonant RDIs can be dominant at τ � 1, and cosmic ray-like RDIs can

dominate at very large τ .

are described and tested in Hopkins & Lee (2016) and Lee, Hopkins

& Squire (2017). The backreaction is accounted for as in Moseley

et al. (2019, see appendix B) and the Lorentz forces is evolved using

a Boris integrator.

Each individual grain (dust superparticle) in the code obeys

dvd

dt
= −

ws

ts
−

ws × B̂

tL
+ aext, dust, (1)

where aext, dust is a constant external acceleration, ts is the drag

coefficient or ‘stopping time’, and tL the gyro or Larmor time.

The gas obeys the ideal MHD equations – the standard advection

equation, ∂ρg/∂t = −∇ · (ρg ug), for the gas density ρg, and the

standard induction equation, ∂B/∂t = ∇ × (ug × B), for the

magnetic field B – with the addition of a backreaction force from the

grains in the momentum equation. In particular, whenever drag or

Lorentz forces exert a force mgrain dvd/dt on a grain within a given

gas cell, an equal-but-opposite force is applied to the gas. This is

treated as a usual momentum flux within GIZMO, which numerically

guarantees exact force balance and total momentum conservation.

The gas momentum equation reads

ρg

(

∂

∂t
+ ug · ∇

)

ug = −∇P −
B × (∇ × B)

4π
+ ρg aext, gas

−
∫

d3vd fd(x, vd) agas−dust(vd, ...), (2)

where fd(x, vd) is the phase-space density distribution of dust (i.e.

differential mass of grains per element d3x d3vd) and aext, gas is an

external gas acceleration that we set to zero in the simulations here.

The gas obeys an exactly polytropic equation of state with thermal

pressure P and sound speed cs:

P = P0

(

ρg

ρ0
g

)γ

, (3)

c2
s ≡

∂P

∂ρg

. (4)

In our default simulations we assume Epstein drag, which can be

approximated to very high accuracy with the expression (valid for

both sub and supersonic drift)

ts ≡
√

πγ

8

ρ̄ i
grain ǫgrain

ρg cs

(

1 +
9πγ

128

|ws|2

c2
s

)−1/2

, (5)

where ρ̄ i
grain and ǫgrain are the internal grain density and radius,

respectively. The Larmor time is

tL ≡
mgrain c

|qgrain B|
=

4π ρ̄ i
grain ǫ3

grain c

3 e |Zgrain B|
, (6)

where mgrain and qgrain = Zgrain e are the grain mass and charge,

respectively.

2.2 Initial conditions

We initialize a periodic, cubic box of side length Lbox with uniform

gas density ρ0
g ≡ Mgas, box/L

3
box and dust density ρ0

d ≡ μρ0
g (dust-

to-gas ratio μ), gas velocity u0
g = 0, and dust drift w0

s = |a| t0
s (1 +

μ)−1 (1 + τ 2)−1 [â − τ (â × B̂0) + τ 2 (â · B̂0) B̂0] (see Paper I, sec-

tion 3.1). Here,

X0 ≡ 〈X(ρ0
g , w0

s , ..., t = 0)〉 (7)

is the initial homogeneous value of some variable X, a ≡ aext, dust −
aext, gas is the difference between dust and gas accelerations,

and τ ≡ t0
s /t0

L parametrizes the grains’ magnetization. The ho-

mogenous, steady-state equilibrium solution preserves this quasi-

equilibrium while the whole box uniformly accelerates3 with

ug(x, t) = 〈ug(t)〉 = aext, gas t + a μ t/(1 + μ).

We can make the coupled dust–gas equations dimensionless by

working in units of the equilibrium sound speed c0
s , gas density

ρ0
g , and ‘weighted grain size’ ρ̄ i

grain ǫgrain/ρ
0
g . Then, for a given

equation of state, the dynamics of the problem (at infinite numerical

resolution) are entirely determined by six dimensionless parameters:

(1) the acceleration ã ≡ |a| ρ̄ i
grain ǫgrain/((c0

s )2 ρ0
g ), (2) the box size or

grain ‘size parameter’ α̃ ≡ ρ̄ i
grain ǫgrain/ρ

0
g Lbox, (3) the grain ‘charge

parameter’ φ̃ ≡ 3 Z0
grain e/(4π c ǫ2

grain (ρ0
g )1/2), (4) the dust-to-gas

ratio μ ≡ ρ0
d/ρ

0
g , (5) the plasma β ≡ P0/(|B0|2/8π ), and (6) the

angle | cos θBa| ≡ |B̂0 · â| between the initial field direction B̂0 and

â. Note that in our linear theory perturbation analysis we chose

to work with a different, but mathematically equivalent, set of

3As shown explicitly in Hopkins & Squire (2018b, see section 2.1 and

appendix B therein) and Paper I, the dynamics of this local (un-stratified)

problem are manifestly identical in the stationary and free-falling or

uniformly accelerating frames moving with the homogeneous solution, or

(by extension) if we add an equal-and-opposite mean acceleration on the gas

such that the mean acceleration of the entire system vanishes. The problem

is trivially invariant to any uniform velocity boost. We therefore will perform

all our analysis in the co-moving (free-falling) frame. We have also verified

(for numerical testing) that our results are identical up to machine error (as

they should be given our Lagrangian code) if we instead add an explicit

uniform acceleration and/or boost to gas and dust to ensure the homogenous

ug(t) = 0 in the lab frame.

MNRAS 496, 2123–2154 (2020)
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2126 P. F. Hopkins, J. Squire and D. Seligman

dimensionless variables: (1) |w0
s |/c0

s , (2) Lbox/c
0
s t0

s , (3) τ , (4) μ,

(5) β, and (6) θBa.

Our default simulations adopt Ngas = 1283 gas resolution ele-

ments and an equal number of dust elements, μ = 0.01 (the ISM

mean), and an isothermal (γ = 1) equation of state (appropriate

for most ISM/CGM/H II region conditions of interest). But we vary

all of this below. For simplicity, we assume throughout that grains

are all of the same size and charge, and that the grain charge qgrain

is fixed during the simulation (as appropriate for large grains in

isothermal gas) with grain Larmor time tL ≡ mgrain c/|qgrain B|. The

‘non-default’ simulations discussed in Section 4.2 relax some of

these restrictions, exploring different equations of states, dust-to-

gas ratios, resolutions, and allowing qgrain to vary with local gas

parameters.

For convenience, throughout we adopt the Cartesian (xyz) axis

convention with ẑ ∝ B0, x̂ ∝ a⊥ (i.e. the x − z plane is defined

to contain a, so a = a⊥ + a‖ = a⊥x̂ + a‖ẑ), and ŷ ∝ B0 × a (the

mutually perpendicular direction). In our 3D visualizations, the

width/depth/height dimensions correspond to x/y/z.

3 PARAMETER SPAC E EXPLORED

Because the possible parameter space is enormous (the six dimen-

sions above, plus the choice of equation of state, drag law, and

charge law), we do not attempt to survey it systematically, but

instead choose several unique parameter combinations motivated

by values one might expect in different astrophysical systems. For

more information, see section 9 of Paper I, which discusses each

of these physical regimes extensively (Fig. 1 is adapted from this).

The baseline parameters for our ‘default’ simulation set are given

in Table 1 and illustrated in Fig. 1. We give a brief description of

each system in the following paragraphs.

The parameters H II-near and H II-far (from fig. 7 in Paper I)

correspond to plausible parameters in a massive H II region at two

different radii from the star(s). Specifically, H II-near corresponds

to parameters expected for H II regions with ∼ 0.1µm grains at

a distance r ∼ 0.1 pc from an OV star or group or stars with

luminosity ∼ 106 L⊙ (providing the radiation pressure on the

grains), local gas density ∼ 104 cm−3, temperature ∼ 104 K, plasma

β ∼ 10, ts calculated including both Epstein and Coulomb drag

terms, and the grain charge calculated including photoelectric and

collisional charging in that radiative environment (and accounting

for saturation of the grain charge). H II-far takes the same system,

and re-calculates all properties assuming a distance r ∼ 1 pc from

the star (assuming the gas density falls ∝r−2 and β is constant). The

important difference, for our purposes, is that the equilibrium drift

velocity ws is supersonic in H II-near (where the radiation field is

stronger), and subsonic in H II-far.

Likewise AGB is chosen to represent grains near the base

(at r ∼ 100 R⊙) of a dust-driven wind from a cool giant star,

with a steady-state wind mass-loss rate Ṁw ∼ 10−6 M⊙ yr−1, wind

velocity vw ∼ 10 km s−1, temperature T ∼ 2000 K, β ∼ 1, stel-

lar luminosity ∼ 103 L⊙ providing the grain acceleration, and

∼ 0.1µm grains with a similar calculation of the charge and drag

parameters. The distinguishing feature of this case is that the high

gas densities (∼ 1012 cm−3) mean drag (collisional) grain coupling

strongly dominates over Lorentz forces, so τ ≪ 1.4

4As shown in Paper I, at low τ ≪ 1, the gyro RDIs are formally present, but

are generally stabilized, except at either very large k or very specific angles

WIM represents a random patch of the diffuse warm ISM, with

β ∼ 1, T ∼ 104 K, gas density ∼ 1 cm−3. We assume that the

radiation energy density accelerating grains is comparable to the

thermal energy density. Here τ ≫ 1 because the gas is diffuse, and

the drift is highly subsonic.

Corona has parameters similar to those expected near the base of

the solar Corona: r ∼ R⊙, L ∼ L⊙ (with both gravity and radiation

contributing to the drift), n ∼ 108 cm−3, β ∼ 0.001, T ∼ 106 K,

for ∼ 0.1µm grains. Here β ≪ 1 makes this regime distinct; this

also means the drift is supersonic but sub-Alfvénic, and τ ≫ 1.

CGM represents parameters that could be present in the CGM

at r ∼ 100 kpc from a bright quasar with L ∼ 1013 L⊙, and n ∼
10−2 cm−3, T ∼ 106 K, β ∼ 1000. The low density means τ ∼ 103–

107 is large, while the high luminosity provides a super-Alfvénic

equilibrium drift, producing a distinct mode structure.

Example is not chosen to match a particular system, but the

case is examined in Seligman et al. (2019), including a resolution

study. It lies between H II-near and WIM, so we include it here for

comparison.

For each of these parameter sets, Fig. 2 shows the linear growth

rates of the instabilities as a function of wavelength. For a given

k = |k|, these are calculated by choosing a mode angle k̂, which

is either parallel to the drift or magnetic field, or satisfies one of

the various resonant conditions at which a natural dust oscillation

frequency matches one of the gas (e.g. dust advection and Alfvén

waves). For each class of resonance, we plot the maximum growth

rate for each k̂. More information, including how to calculate the

resonant angles, is given in Paper I.

Although all scales are unstable, different modes have growth

rates that depend on the scale differently. In the physical systems

explored above, the dynamic range between the largest global scales

(where our local box treatment would be inappropriate) and the

smallest scales where the instability operates is so large that it

is impossible to resolve in a single box. Therefore, we construct

a series of boxes for most cases here,5 each of which resolves a

different range of wavelengths.

The parameters presented above are plausible, but will vary

within and between different astrophysical regimes. Parameters that

depend on highly uncertain grain chemistry or physical structure,

such as τ (which depends on the grain charge), are particularly

uncertain. Other quantities held fixed in our study – e.g. the gas

equation of state, or the dust-to-gas ratio – might vary between

regimes. For this reason we consider a number of variations in gas

and dust physics compared to the ‘default’ simulations. These are

noted in Table 2 and discussed in detail in Section 4.2.

The simulations presented here are scale free, and can represent

any system that has the same dimensionless parameters. They are

not strictly tied to the one specific physical system described above,

but rather provide a well-motivated starting point for our study. For

example, as discussed in Paper I, at different stages in the evolution

of a supernova remnant (SNR), the SNR will pass through extended

periods with parameters broadly similar to the AGB, Corona, and

H II-near regimes above (although details will differ). Similarly,

many regions of GMCs and the obscuring dusty torus around AGN

will feature parameters resembling the AGB case. Some further

where they become degenerate with the MHD-wave RDIs. For this reason

we do not plot them in Fig. 1 for the AGB case.
5We only consider a single box size in Example, as the results resemble

H II-far, and CGM, as the mode structure does not change over a large range

of wavelengths.
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Simulating MHD drag instabilities 2127

Figure 2. Maximal growth rates predicted by linear theory for different modes in the simulations. Each panel corresponds to one simulation set from Table 1

and Fig. 1 (fixed τ , μ, β, |B̂0 · â|, |w0
s |/c0

s , γ , etc.), with shaded regions showing the range of wavelengths covered by each simulation box (S/M/L) with

different Lbox/c
0
s t0

s . We plot predicted linear growth rates versus wavenumber k = |k| = 2π /λ. Different lines correspond to different mode directions k̂:

parallel to the drift (k̂ = ŵs ), parallel to the magnetic field (k̂ = B̂), and directions which satisfy the conditions for different RDIs (the Alfvén-wave, slow and

fast magnetosonic-wave RDIs, and the Alfvén-gyro and slow/fast-gyro RDIs). For the RDIs, we plot the maximum growth rate marginalized over mode angles

(k̂) which satisfies the resonant condition at each k. Note the fast-wave RDI can only exist if |w0
s |/c0

s > 1, and the gyro RDIs only exist above some k and τ

(slow and fast-gyro RDIs have degenerate solutions so are plotted as one line)4 – see Paper I for details. Generically, all wavelengths are unstable, and smaller

scale modes grow faster, although which modes dominate is scale-and-parameter dependent.

intuition can be gained from Fig. 1 (although note that there are

other important parameters that cannot be easily shown on a two-

dimensional plot)

We broadly classify the behaviour of the saturated simulations

into two regimes. The first is the ‘clumped’ regime, where the dust

becomes strongly concentrated; this occurs, for example, in H II-

near (Fig. 4), H II-far (Fig. 5), Example (Fig. 16), and AGB (Fig. 6).

The second is the ‘disperse’ regime, where the dust is expelled from

certain regions at high velocity but remains relatively homogeneous;

this occurs in (some scales in) WIM (Fig. 7), CGM (Fig. 13), and

Corona (Fig. 8).

4 R ESULTS

4.1 Default simulation set

We evolve each box well into its non-linear growth phase. As a

first example, Fig. 3 shows visualizations6 of the dust and gas in

6The gas + dust visualization is constructed by interpolating the continuous

gas properties on to the x/y/z axis surfaces, and taking all dust ‘superparticles’

that lie within a thin slice of width equal to roughly the median interparticle

separation and projecting them on to the surface. The dust-density visual-

ization is constructed by first calculating the dust density in the vicinity of

the large H II-near simulation box, at a time well into the non-linear

phase of the evolution. Large fluctuations and coherent structure are

visible in all gas quantities and in the dust.

Figs 4–8 show the morphologies of gas and dust in the default

H II-near, H II-far, AGB, WIM, and Corona sets, respectively. We

show gas and dust properties during two different simulation times,

corresponding to the early non-linear and saturated phases of

evolution. For each parameter set, we show the boxes of different

sizes in parallel columns. Sequential simulations from left to

rightare ∼300 × larger in size scale; an entire box at the left is

approximately ∼1/2 of a pixel/element in the box to its immediate

right. We only show the gas quantities that exhibit the most obvious

morphological structure. Figs 11–13 and 19 show the same for the

Example, CGM, and H II-near sets. Parallel columns now compare

physical variations (e.g. changing the equation of state of the gas, or

dust charge scaling). These physical variations are discussed further

in Section 11.

each dust particle element using a kernel density estimator as in Moseley

et al. (2019), then plotting each dust particle in the projected 3D space,

colour coded by the density (with a constant transparency). The range on

the colour bars is scaled to include some fraction (typically > 90 per cent)

of the plotted elements, in order to show contrast, but there are always some

elements with higher/lower values.
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2128 P. F. Hopkins, J. Squire and D. Seligman

Table 2. Dispersion in various gas and dust quantities in the simulations, during the saturated state. We measure the rms dispersion δX in quantity X, averaged

over the last several snapshots in time for each run. We show gas velocity δu
x, y, z
g in each direction (see Fig. 3 for axis convention), dust velocity δvd,

magnetic field δB, gas density δln ρg, and dust density δln ρd. The dispersions shown are mass weighted for ug and vd (so that the kinetic energy of gas is just

(1/2) Mgas |δug|2, and likewise for dust), while dispersions for B and ρg, ρd are volume weighted. Usually the mass and volume weights give similar values;

where they differ substantially, the value in parenthesis gives the other (for more details, see Figs 21–29). For each parameter set, we list the ‘default’ boxes

S/M/L/XL as defined in Table 1, as well as the variants discussed in 4.2. For Example, we show variations in β, γ , and μ from Figs 11 and 16. For H II-near L,

we compare variations in the dust charge (‘L:τ = 10’; qgrain increased by a factor ∼4), as well as different charging models, including un-saturated collisional

charging (‘L:CC’, qgrain∝T with γ = 5/3) and photoelectric charging (‘L:PE’; qgrain∝T/ρ1/2, γ = 1), from Fig. 12. We also compare variations in the angle,

B0 · a = cos θBa with θBa = (70◦, 20◦) (‘L:70◦’, ‘L:20◦’, respectively) from Fig. 15, and different dust-to-gas ratios μ from Fig. 18. For WIM, we compare

variations of S/M/L with 5× lower a and ws (‘LoV’) from Fig. 14. For CGM, we show runs with lower τ (τ ≈ 4500 implying qgrain is ∼30× lower; labelled

‘τ low’), and runs with un-saturated photoelectric (PE) charging and γ = 5/3 (for both the default and low τ cases), from Fig. 13.

Name
δug, x

c0
s

δug, y

c0
s

δug, z

c0
s

δvd, x

c0
s

δvd, y

c0
s

δvd, z

c0
s

δBx

(4πP0)1/2

δBy

(4πP0)1/2
δBz

(4πP0)1/2 δ ln

[

ρg

ρ0
g

]

δ ln

[

ρd

ρ0
d

]

Example:

Default 0.075 0.025 0.017 0.086 0.063 0.32 0.075 0.025 6.4e-3 0.013 1.2

β = 1 0.067 0.015 6.6e-3 0.095 0.086 0.20 0.067 0.013 3.1e-3 3.7e-3 1.7 (1.4)

γ = 5/3 0.088 0.039 0.020 0.12 0.11 0.33 0.089 0.037 0.013 8.2e-3 1.2 (1.3)

μ = 1e-3 4.3e-3 1.8e-3 6.7e-3 2.6e-3 3.2e-3 0.035 5.1e-3 1.8e-3 4.1e-3 4.9e-3 2.7

μ = 0.1 0.18 0.15 0.11 0.32 0.30 0.41 0.17 0.12 0.056 0.055 0.89

AGB:

S 0.052 0.050 0.014 6.9e-4 9.4e-4 7.6e-4 8.6e-3 9.4e-3 0.049 0.052 0.75

M 0.031 0.010 0.038 0.10 6.8e-3 0.11 0.066 4.2e-3 0.071 0.074 0.90

L 1.0 0.50 1.2 1.7 0.50 1.9 1.2 0.51 1.2 0.85 0.88

XL 19 4.3 18 20 3.2 20 11 2.6 12 1.1 1.1

H II-near:

S 0.060 0.057 0.013 3.5e-3 3.6e-3 3.7e-3 5.1e-3 4.7e-3 0.023 0.080 1.2

M 0.15 0.13 0.20 0.76 0.80 0.65 0.15 0.11 0.14 0.058 1.4

L 3.3 1.8 3.6 13 15 (31) 12 3.7 1.9 3.5 1.2 1.5 (2)

L:τ = 10 4.7 (5.5) 1.6 (2.1) 4.8 (5.7) 9.9 (8.0) 3.0 (3.3) 10 (8.6) 4.1 1.9 4.0 1.3 (1.2) 2.0 (2.4)

L:CC 2.9 (13) 2.6 (12) 2.7 (12) 29 (200) 30 (200) 26 (170) 2.5 1.6 2.6 1.6 (0.9) 1.8 (2.5)

L:PE 6.9 (60) 7.0 (61) 6.3 (51) 80 (1200) 81 (1200) 63 (940) 4.3 4.0 5.0 2.0 (1.1) 2.2 (2.2)

L:70◦ 7.2 (8.5) 2.1 (2.4) 4.7 (5.7) 15 (11) 3.4 (3.1) 8.5 (7.4) 4.8 2.2 3.0 1.2 2.2

L:20◦ 2.8 (3.1) 1.5 (1.9) 7.1 (7.7) 4.4 (4.2) 2.7 (2.9) 10.7 (9.5) 3.0 1.7 6.8 1.3 1.9 (2.5)

L:μ = 1e-3 1.1 0.36 1.2 3.0 (2.3) 1.2 3.2 (2.5) 0.88 0.28 0.95 0.56 2.4 (3.2)

L:μ = 0.1 14 (17) 3.4 (5.6) 14 (17) 15 (24) 7.4 (24) 15 (22) 12 3.5 12 1.7 1.7

H II-far:

S 1.8e-3 1.8e-3 2.0e-3 4.7e-5 1.4e-5 2.1e-5 1.4e-3 1.4e-3 1.4e-3 4.3e-4 0.63

M 2.9e-3 2.7e-3 4.5e-3 1.5e-3 1.6e-3 3.5e-3 2.4e-3 1.9e-3 2.3e-3 7.4e-4 1.3 (2.5)

L 0.55 0.20 0.58 1.1 0.90 1.0 0.43 0.19 0.44 0.28 1.5 (2.2)

WIM:

S∗ 9.8e-4 9.8e-4 1.1e-3 6.4e-4 6.4e-4 9.4e-6 9.7e-4 9.7e-4 1.1e-3 7.2e-4 0.49

S:LoV 9.8e-4 9.8e-4 1.1e-3 7.0e-4 7.0e-4 4.3e-6 9.7e-4 9.7e-4 8.6e-4 7.2e-4 0.42

M 9.9e-4 9.8e-4 1.1e-3 1.4e-3 1.4e-3 1.2e-4 9.7e-4 9.7e-4 9.4e-4 7.2e-4 0.36

M:LoV 1.0e-3 1.0e-3 1.1e-3 6.0e-4 6.0e-4 2.0e-4 9.7e-4 9.7e-4 8.5e-4 7.3e-4 0.25

L 0.032 0.021 0.088 5.3 5.3 0.085 3.6e-3 3.6e-3 3.9e-3 3.5e-3 0.37

L:LoV 1.5e-3 1.3e-3 2.3e-3 1.1e-3 7.3e-3 1.2e-3 1.1e-3 1.1e-3 8.0e-4 8.0e-4 0.25

Corona:

S∗ 0.011 0.011 0.013 0.012 0.012 3.5e-5 0.011 0.011 0.013 0.060 0.63

M 0.012 0.012 0.014 0.62 0.63 0.010 0.011 0.011 0.022 0.060 0.86

L 0.27 0.24 0.086 24 24 3.1 0.076 0.069 0.15 0.066 0.57

L:τ = 100 0.14 0.05 0.21 0.17 0.13 0.21 0.023 0.023 0.013 0.085 0.6 (0.8)

CGM:

Default 0.83 0.82 0.63 23 23 22 0.040 0.040 0.042 0.34 0.28

C = 1.07 γ = 5/3 + PE 2.5 2.5 2.0 63 63 63 0.14 0.14 0.13 0.56 0.25

C = 1.06 τ low 0.031 0.031 0.036 2.0 2.0 1.9 0.024 0.021 0.019 0.021 0.27

τ low + PE 0.047 0.046 0.057 2.9 2.9 2.9 0.035 0.032 0.023 0.025 0.27

Fig. 9 shows the magnitude of fluctuations in dust velocity versus

time for each simulation. All dust fluctuations are plotted in units

of the expected linear theory growth time-scales, which allows us

to compare all of the simulations on the same time axis. Since

there is no single growth time in a simulation (see Fig. 2), we

consider the maximum growth rate of modes at the box scale.7 In

7Specifically we find the minimum ‘box scale growth time’ tgrow(Lbox) ≡
1/ℑ(ωmax) where ωmax corresponds to the mode with |k| = 2π /Lbox that has

the largest positive value of ℑ(ω) (marginalizing over direction k̂).

most cases, modes near the resolution scale (Lbox/N) grow ∼10×
faster than those at the box scale,8 and so the initial rapid growth

is dominated by these small-scale modes. However, these modes

generally saturate at a lower amplitude, so the later growth is

then dominated by the box-scale modes, at rates in agreement with

linear theory. This is surprising given the ambiguity of defining the

8This estimate is not always accurate and depends on details of the dispersion

relation. For example, in some cases, a different mode starts to dominate at

some mid-range scale.
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Simulating MHD drag instabilities 2129

Figure 3. Images of our largest H II-near box (box L), from Table 1 and Fig. 2, after the instabilities reach saturation. Top: Surface projection of slices through

each axis of the box, at the time labelled (time in units of the initial grain stopping time t0
s ). Colours show gas quantities at the surface: ρg, B, ug (see colour bar).

Black points show dust grains on the surface. Surfaces are oriented so B̂0 is the vertical axis (ẑ), â is oriented in the x̂–ẑ direction (front or width–height plane),

and the mutually perpendicular direction (ŷ ∝ B̂0 × â) is depth. Bottom Left: 3D isometric plot of all grain particles (coloured by the local dust density), at the

same time. Bottom middle and right: Surface plot of the vector B and ug: lines show the field or flow lines of the projected component on the surface (i.e. Bx,

By in the xy plane) while colours show the magnitude of the normal component (Bz in the xy plane). The instabilities drive dramatic clumping/density structure

in the dust and strong saturated Alfvénic turbulence in the gas. This occurs quickly relative to other time-scales: the time plotted is just ≈ 0.9 Lbox/vf, 0 (where

v2
f, 0 ≡ (c0

s )2 + (v0
A)2 is the fastest gas wavespeed), i.e. less than one sound or Alfvén box-crossing time.

total growth rate, and the fact that small-scale modes have already

become non-linear. All of the boxes eventually reach saturation,

with the fluctuations in all properties in a statistical steady state.

The cases in Fig. 9 that continue off the plot have been evolved to

longer times to ensure that they are approximately saturated.9

In Table 2, we provide the magnitude of the time-averaged

saturated fluctuations10 in each component of ug, vd, B, ρg, ρd.

9We have verified that all simulation quantities within a given simulation

saturate on a similar time-scale, as shown in Fig. 9. Explicit demonstrations

of this, as well as plots of the full PDFs of the salient quantities versus time,

for representative simulations, are shown in both Moseley et al. (2019) and

Seligman et al. (2019).
10We define the fluctuation δX in quantity X as the rms (1σ ) deviation, i.e.

δX ≡ 〈(X − 〈X〉)2〉1/2, where 〈U〉 ≡ (
∫

U ̟ d3x)/(
∫

̟ d3x) and ̟ (x) is

a weight. For ug, vd, and B, it is most physical to relate the fluctuations to

the energy in each component. So, for ug we use the gas-mass-weighted

average (̟ = ρg, such that the total kinetic energy of fluctuations is

(1/2) Mbox
gas |δug |2), for vd we likewise use the dust-mass-weighted average

(̟ = ρd, so dust kinetic energy is (μ/2) Mbox
gas |δvd |2), and for B we use

the volume average (̟ = 1, so magnetic energy is Vbox |δB|2/8π ). For

ρg, ρd, and ρd/ρg we quote the volume-averaged fluctuations (̟ = 1).

Fig. 10 plots these statistically averaged quantities against one

another in various forms, and against some expectations from quasi-

linear theory for the saturated state. This is discussed further in

Section 5.

Figs 11–15, 19, and 20, consider further comparisons of different

physics and parameter variations, as discussed below.

Figs 21–27 examine various statistics of each run in more detail,

plotting the PDFs of fluctuations of different quantities in the

saturated state.11

The differences between mass and volume weighting are discussed further

below. These are all defined in the centre-of-mass (i.e. co-moving or free-

accelerating) frame.
11Given our Lagrangian numerical method, at our default simulation

resolution, dust underdensities ρd/ρ0
d ≪ 10−6 cannot be resolved, but these

are much smaller than any plotted in Figs 21–27 and much smaller than

the typical fluctuations in Table 2. There is no formal upper limit to

the maximum resolved concentration, but the dust becomes increasingly

overresolved relative to the gas at very large ρd/ρg ≫ 106 – however this is

precisely the regime where we expect other physics to dominate, discussed

below.
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2130 P. F. Hopkins, J. Squire and D. Seligman

Figure 4. Images of H II-near, one of the default simulation ‘sets’ from Table 1 and Fig. 2. Columns show the three different box sizes S/M/L (increasing left

to right). Top and second row: Gas + dust surface maps (top), and 3D dust maps (second), as Fig. 3, at time labelled (during early non-linear evolution). Third

and bottom row: Same, but at a later time (in saturated state). Each box (moving left to right) is ∼300× larger than the previous (so an entire box at the left

is approximately ∼1/2 of a pixel/element in the box to its immediate right). Dust and turbulence clearly exhibit structure on all scales. Smaller scale modes

drive weaker and less compressible gas turbulence, as predicted (Section 5). Slightly different physical parameters (compare Fig. 5), or different scales with

the same parameters (boxes here) can produce wildly different morphologies (and resonant angles), even with different dimensionality of dust structures (e.g.

point-like clumps, 1D filaments, 2D sheets). This owes to complicated wavelength dependence of the dominant modes (Fig. 2). The morphologies present in

the L simulation (right-hand panels) provide an example of the ‘clumped’ saturation mode (see Section 5.3).
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Simulating MHD drag instabilities 2131

Figure 5. As Fig. 4, for H II-far. Despite the drift being subsonic (no ‘fast mode’ or acoustic resonances are possible), dramatic fluctuations still evolve on

broadly similar time-scales. The dust exhibits strong clumping even in cases (S/M) where the gas is nearly incompressible. Different scales again exhibit

distinct structure: L is dominated by the drift-aligned quasi-sound and pressure free modes (direction ŵs − (ŵs · B̂)B̂); M by the slow and Alfvén MHD-wave

modes (direction B̂ − (ŵs · B̂)ŵs), S by the slow-gyro modes (see Fig. 2).
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2132 P. F. Hopkins, J. Squire and D. Seligman

Figure 6. As Fig. 4, for AGB (M/L/XL shown; S is morphologically similar to H II-near S). Because this initial condition features weak Lorentz forces on

dust (τ ≪ 1), the mode structure is simpler (dominated by the fast-MHD resonance at all k) and does not vary as dramatically with scale. Note here and in all

similar figures, the colour bar for dust density only shows a fraction of the full dynamic range (empty regions reach lower densities, and small patches/clusters

reach higher densities).
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Simulating MHD drag instabilities 2133

Figure 7. As Fig. 4, for WIM. In box S the strong slow-gyro resonance produces rapid growth of dust ‘columns’ parallel to the field, which collect in a

‘granular’ nature in the direction perpendicular to B. Box L features a slow-growing, almost-laminar mixing of large scale modes via the Alfvén resonance,

with the dust confined along B (moving the B fields nearly incompressibe in the xy plane). Box M features the weakest growth and saturated turbulence.
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2134 P. F. Hopkins, J. Squire and D. Seligman

Figure 8. As Fig. 4, for Corona. The strong magnetization means almost all grain motion is tightly bound to field lines. This produces the B̂-aligned ‘granular’

structure in box S, and sheets of dust perpendicular to B̂ in M/L. Boxes M/L non-linearly transition to the ‘disperse’ mode (see Section 5.4), where the dust is

driven to large isotropic velocity dispersions in the plane perpendicular to B̂ (representing large gyro orbits).
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Simulating MHD drag instabilities 2135

Figure 9. Instability growth versus time. We plot the (volume-weighted) gas velocity dispersion (|δug|, in units of sound speed c0
s ) as a function of time

(t) for boxes in Table 1 (lines with points; as labelled). Times t are normalized by the analytic linear growth time of the fastest growing mode at the largest

(box) scales: 〈t0
grow[Lbox]〉 ≡ 1/MAX(ω[k = 2π/Lbox]), calculated from the initial conditions at |k| = kmin = 2π /Lbox (see Fig. 2). The smallest modes in

the box (∼100× larger k) typically have ∼10× larger growth rates (tgrow[kmax] ∼ 0.1 tgrow[Lbox]): these are generally the fastest growing resolved modes and

produce the initial rapid growth but saturate at smaller amplitude, so large-scale modes take over and grow at approximately the predicted rate (even though the

box is often non-linear already), until global saturation. Magenta dotted line illustrates the predicted qualitative behaviour for this sequence. There are some

exceptions, e.g. CGM where small-scale modes grow so violently non-linear that there is no obviously ‘large-scale’ mode domain. None the less, noting that

〈t0
grow[Lbox]〉 varies by factors � 106 in the examples plotted, and that there is no unique growth rate for a given box (or even at a given k), we see surprisingly

robust agreement with the linear predictions for both initial (∼kmax-dominated) and late-time (∼kmin-dominated) growth rates.

4.2 Different equations of state, drag laws, and grain charge

scalings

In this subsection, we discuss the effects of additional physical

variations in the simulations. We discuss the physical applicability

of different drag laws in different regimes (expanding the discussion

from Paper I), and explore different choices. We outline three

idealized, physically motivated regimes of the grain charge scaling,

and compare the effects of each of these in the simulations.

We justify our usage of an isothermal equation of state for the

majority of our simulations, and discuss astrophysical situations

where different equations of state are appropriate. We also inves-

tigate how changes to the magnetic field, drift geometries, and

additional grain parameters alters the non-linear evolution of the

instabilities.

4.2.1 Drag law

The scalings and physical applicability of different drag laws are

discussed in detail in Paper I. There it is shown that for any regime

where the MHD RDIs are important, the drag is dominated by either

Epstein or Coulomb drag (e.g. Stokes drag, important only when the

grain is larger than the gas mean free path and Reynolds numbers

are less than unity, is never relevant for the physical grain sizes in

magnetized media considered here). Our default simulations adopt

the Epstein drag scalings, which, for fixed grain properties, give

t−1
s ∝ ρg cs (1 + aE w2

s /c
2
s )1/2 (Epstein) (8)

(aE = 9π γ/128). Likewise, Coulomb drag gives

t−1
s ∝ ρg cs (1 + aC w3

s /c
3
s ) f (T , U ) (Coulomb), (9)

where aC = (2γ 3/9π )3 and f (T , U ) = fion (zi U/T )2 ln � is a func-

tion of the temperature T, ionization fraction fion, grain electrostatic

potential U, gas ion charge zi, and a Coulomb logarithm ln �.

It is difficult to evaluate Coulomb drag without specifying the

physical system (to calculate fion, T, �, etc.), whereas Epstein

drag is determined by scale free hydrodynamic quantities. Epstein

drag dominates at high ws/cs, scaling as ∼ws/cs, while Coulomb

drag becomes weaker, scaling as (ws/cs)
−3. Therefore, Epstein

drag always dominates in supersonic cases (where ws/cs � 1

or |δvd|/cs � 1). Moreover, Epstein drag often dominates in subsonic

cases if the ionization fraction is small or if the grains reach charge

saturation (see Paper I). We therefore expect Epstein drag to be

a good approximation in many cases. Even in subsonic regimes

where Coulomb drag may dominate, if the temperature and grain

potential U are fixed (as they are in our default runs), then Epstein

and Coulomb drag scale identically (as t−1
s ∝ ρ). Because the

normalization of ts is arbitrary (it simply goes into the dimensionless

parameter cs ts/Lbox), our predictions therefore apply equally well

MNRAS 496, 2123–2154 (2020)
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2136 P. F. Hopkins, J. Squire and D. Seligman

Figure 10. Correlations between the saturated fluctuations in gas and dust quantities. For each box (points as Fig. 9), we plot the fluctuations from Table 2,

and compare simple analytic scalings (dotted lines). Small points denote the physics/parameter variations within each box from Table 2. Top left: Gas velocity

dispersions versus those predicted from quasi-linear theory (equating eddy turnover and linear growth times at the box scale). We neglect anisotropy and just

take |δug|; here ω(Lbox) = 1/t0
grow[Lbox] as defined in Fig. 9. While imperfect (e.g. this systematically underpredicts the turbulence in the ‘S’ boxes) the scaling

is order-of-magnitude plausible, with a couple notable outliers (CGM τ low and WIM S/M), all of which are in the ‘disperse’ mode described in Section 5. Top

middle: Magnetic fluctuations versus expectation if magnetic tension balances the force from gas on dust. this provides an order-of-magnitude plausible scaling

but also with significant scatter and additional outliers. Top right: Kinetic and magnetic ‘energy’ of fluctuations (considering only the fluctuating terms). These

agree to within a factor of ∼3 over most of the dynamic range. Bottom left: Gas density versus velocity fluctuations. A scaling analogous to isothermal pure gas

turbulence, δ ln (ρg/ρ
0
g ) =

√

ln [1 + (b |δug|/cs)2] provides a reasonable fit, with the range b ≈ 0.2–1. Bottom centre: Dust versus gas velocity fluctuations.

There is a clear correlation, but with very large (∼±1 dex) scatter. Usually δvd > δug, with the notable exceptions of H II-far/near S and AGB S. Bottom right:

Dust versus gas density fluctuations. There is essentially no correlation, except to require δρd > δρg. We see δρd can be large even when the gas is nearly

incompressible (δρg < 10−3). See text for more discussion of each case (Section 5).

to either drag law in this subsonic regime, provided one re-scales

the simulations dimensionless parameters appropriately.

4.2.2 Grain charge

Scalings of grain charge remain uncertain and depend on a variety of

environmental and local factors (see Paper I and, e.g. Draine & Sutin

1987; Weingartner & Draine 2001a,b; Tielens 2005). However, if

we assume that external environmental properties are fixed (e.g.

an UV radiation field) and grain material properties are fixed (e.g.

compositions, sizes), then three regimes emerge, which we define

as

Zgrain ∝

⎧

⎨

⎩

constant (a)

T (b)

T 1/2 ρ−1
g (c).

(10)

(a) ‘Fixed charge’: if the grain charge is saturated (maxi-

mal/minimal), or the charge-aggregation/equilibration times are

long compared to the time-scales we evolve, then the charge is

approximately fixed. (b) ‘Collisional charging’: if the charging is

dominated by collisional processes, is sufficiently fast, and is un-

saturated, it depends solely on the temperature as Zgrain∝T. (c) ‘Pho-

toelectric charging’: if the charging is dominated by photoelectric

processes (and again is also un-saturated and sufficiently rapid),

then Zgrain ∝ T 1/2 ρ−1
g . Our default simulations assume regime (a),

i.e. fixed charge, which is common for large grains in well-ionized

environments.12 In an isothermal gas, our default case, regime (b),

collisional charging, is identical (because Zgrain depends only on T

for specified grain properties). Regime (c), photoelectric charging, is

only different in the isothermal case if the gas is highly compressible

so that fluctuations in ρ are large.

In order to explore the non-linear effects of regime (c), we re-

run H II-near L, but adopt the photoelectric scaling t−1
L ∝ Zgrain ∝

T 1/2 ρ−1
g with the same initial homogeneous value of Zgrain such

that the constants in Table 1 are identical (i.e. only the scaling is

changed). We also compare a run with t−1
L ∝ T corresponding to

collisional charging, adopting γ = 5/3 so that T will actually vary.

These H II-near L comparisons are shown in Fig. 12. It is evident that

the photoelectric charging law produces dust structures with distinct

topologies. The dust is more coherent, and the gas is dragged along

into regions with higher dust densities and higher velocities.

12We assume throughout that we have large grains with |〈Zgrain〉| ≫ 1, so

charge can be treated as a continuous, smooth quantity.
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Simulating MHD drag instabilities 2137

Figure 11. Dust and gas in our Example runs, as Fig. 4, but comparing physics variations instead of box sizes. We compare the ‘Default’ (left) run (with

parameters in Table 1 and γ = 1), to one with γ = 5/3 (centre), and one with β = 1 (right), all with otherwise equal parameters. Because the turbulence is

only weakly compressible in the default (γ = 1) case, γ = 5/3 has little effect. Shifting β shifts the resonant mode angle, and gives slightly lower growth rates

(hence the slightly later times plotted), but the behaviour is qualitatively similar.

MNRAS 496, 2123–2154 (2020)
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2138 P. F. Hopkins, J. Squire and D. Seligman

Figure 12. Comparing variations of the dust charge and charge law in the saturated turbulence of our H II-near L box (see bottom panels of Fig. 4 and Table 2).

We compare (1) increasing the grain charge by an arbitrary factor ∼4 (γ = 1, τ ≈ 10, constant/saturated charge; left); (2) assuming adiabatic gas (so the

temperature can change) and un-saturated collisional charging (γ = 5/3; qgrain∝T; middle); (3) isothermal gas assuming un-saturated photoelectric charging

dominates (qgrain∝T1/2/ρ; right). The linear and early non-linear stages are very similar. Increasing charge leads to denser, more compact dust structures. In

the late/saturated state, the run with the ‘photoelectric’ charging law produces more coherent dust structures with a distinct topology, and gas more obviously

‘dragged along’ to higher densities and velocities where the dust is overdense. All these runs produce stronger dust clumping in the saturated state, and develop

fully non-linear structure more rapidly, than the default H II-near L simulation.

Given the (significant) physical uncertainties in predicting grain

charge, we also explore the effects of re-scaling the assumed charge

from our default assumptions. The results of this is shown in the

left column of Fig. 12 for H II-near, the right column of Fig. 13

for CGM, and the right column of Fig. 14 for Corona. We find

that increasing the charge (holding all else equal) produces faster

growing, more violent instabilities.

4.2.3 Gas equation of state

Our default simulations adopt an isothermal equation of state (γ =
1). This is a good approximation to many astrophysical cases

of interest (e.g. the WIM, H II regions, the Solar corona), where

cooling is efficient. Moreover, the majority of our runs are only

weakly compressible, so changing γ (with all other parameters

fixed) only has a weak effect. In Fig. 11, we present a comparison

of Example with γ = 5/3 (with the initial pressure and all other

parameters identical to the ‘default’ run). It is apparent that changing

the equation of state in the weakly compressible limit has very

little effect on the non-linear evolution of the instability. This near

independence of the instabilities from changes to the equation of

state also suggests that different charge scalings or drag scalings

(i.e. a different dependence on T, ρ, etc., discussed above) will

produce similar results to our default assumption (constant charge

+ Epstein drag), because gas properties do not vary dramatically

regardless of γ . On smaller scales than examined here, different

equation of states are more appropriate because the growth time

of the instabilities may become short compared to the cooling

time.

The few of our runs that are more strongly compressible in the

gas all have |δvd|/cs ≫ 1 (as they must, since compressibility

requires |δug|/cs ≫ 1 and typically |δug| � |δvd|). This implies

that Epstein drag should better approximate dust drag forces (see

Section 4.2.1). It is difficult to identify any parameter regime where

Coulomb drag both dominates over Epstein drag, and has the

potential to significantly alter our findings (due to its temperature or

charge dependence in a non-isothermal EOS). Of our compressible

simulations, we note that most represent parameters motivated by

the very regions we expect to have γ ≈ 1 on the scales of interest.

The only case where one might expect γ �= 1 among this set

is run CGM, representative of the CGM around a bright source

(where cooling is inefficient so γ ≈ 5/3 is more appropriate).

We therefore re-run this simulation with γ = 5/3 and Epstein

drag (see Fig. 13). In this case the physically realistic charge

scaling is not obvious, although it is probably saturated (see Paper

I). For the sake of exploring different regimes we assume un-

saturated photoelectric charging, so t−1
L ∝ Z ∝ T 1/2/ρ ∝ ρ(γ−3)/2.

The resulting differences with the default parameters are quite small

(cf. left-hand and middle panels in Fig. 13)
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
6
/2

/2
1
2
3
/5

8
2
4
6
3
7
 b

y
 g

u
e
s
t o

n
 2

9
 J

u
ly

 2
0
2
1



Simulating MHD drag instabilities 2139

Figure 13. Comparison of CGM runs with different physics choices in the early non-linear state (as in top panels of Figs 5–8). Left-hand panels show

our ‘default’ case (γ = 1, constant/saturated charge); middle panels show a simulation with an adiabatic EOS and the charge following the un-saturated,

photoelectric-charging-dominated expectation (γ = 5/3, qgrain∝T1/2/ρg); and right-hand panels show a case with lower grain charge (qgrain and τ 30× lower).

We have also run the low-τ case with the photoelectric charge scaling, but its visual morphology is very similar (not shown). The qualitative behaviour in each

case is similar, though the ‘sheets’ arising initially from the parallel mode are more evident in the low-τ cases since the dust (with weaker Lorentz forces) is

accelerated less strongly to large δvd. In each case the dust saturates in the ‘disperse’ mode with nearly isotropic δvd (and δug), and |δvd| ∼ |w0
s |.

4.2.4 Other parameter variations: magnetic field orientation and

strength, drift geometry and speed, and dust-to-gas ratios

Aside from these variations in drag law, gas properties, and grain

charge, we consider variations of other parameters compared to the

default simulations in Figs 11–19.

We examine how changes to the magnetic and drift geometries

and magnitudes affect the evolution. We decrease β by a factor of

2 (from β = 2 to β = 1) in Example, keeping all other parameters

fixed. This has only minor effects on the qualitative saturation

behaviour, but it does shift the resonant angles, effectively rotating

the box (see the right column of Fig. 11). We compare WIM S/M/L

with very low drift velocity |ws|/cs ∼ 0.01 (5× lower than our default

case). This makes the growth rates of some modes prohibitively

long, requiring too long an evolution to capture; none the less, we

see many similar qualitative features emerge as in the default case,

but with weaker saturated amplitudes (see Fig. 14). In Fig. 15, we

re-run H II-near L varying the angle between B and a. This does not

qualitatively change the behaviour, but does shift the angle of the

streams of dust in the saturated state (which tend to align with a), and

produces slightly faster growth rates as a becomes more orthogonal

to B (this is predicted by linear theory, but is not obvious, as ws

actually becomes smaller).

We also investigate how changes to the dust properties affect

the evolution. As shown in Seligman et al. (2019), removing dust

charge in our Example box gives a linear growth rate approximately

2–3 orders of magnitude lower. We show the result of simulating

this at similar times to our charged cases in Fig. 19, to show that no

instability has grown. This also makes it clear that our numerical

scheme does not introduce any artificial dust clumping. Finally, we

simulate Example and H II-near with lower and higher dust-to-gas

ratios (μ = 0.001 and μ = 0.1), which are shown in Figs 16 and 18).

The lower μ cases are the most interesting: as expected, the growth

rate decreases by a factor ∼3 (see Fig. 17) and the gas density and

turbulent velocity fluctuations decrease since the forcing from the

dust on the gas is weaker. Surprisingly however, lowering μ appears

to enhance the strength of the saturated dust density fluctuations.

This may occur because the weaker gas turbulence is less efficient

at disrupting dense dust structures.

4.3 Additional numerical tests

In addition to the generic code validation tests described in Sec-

tion 2, previous papers have tested the numerical methods here (Car-

ballido et al. 2008; Johansen et al. 2009; Bai & Stone 2010b; Pan

et al. 2011; Hopkins 2016b, 2017; Hopkins & Lee 2016; Hopkins

& Raives 2016; Lee et al. 2017; Su et al. 2017; Moseley et al. 2019;

Seligman et al. 2019). For example, Hopkins & Lee (2016) show

that the ‘finite-sampling’ effects in superparticle methods, which

introduce some shot noise in the particle densities and divergence

between particle trajectories and gas (at the integration error level)

in the perfectly coupled limit (see Price & Federrath 2010; Ayliffe

et al. 2012; Genel et al. 2013; Tricco, Price & Laibe 2017), introduce
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2140 P. F. Hopkins, J. Squire and D. Seligman

Figure 14. Left and middle: As in the bottom panels of Fig. 7, showing the WIM-S:LoV (left) and WIM-L:LoV (middle) variations at the WIM parameters in

the saturated state. These variations have lower accelerations ã by a factor of 5 and, correspondingly, lower drift velocity, |w0
s |/c0

s = 0.01. The same qualitative

features are evident. The linear growth rate and granular structure in box S are nearly identical in both cases. Box L exhibits similar features, with large-scale,

almost laminar mixing modes, but their saturated amplitude in the gas is weaker by a factor ∼25 at the same time. Note that box M has ∼5× lower growth rate

and very weak turbulence, so is not shown. Right: As in Fig. 8, showing box Corona-L:τ = 100, which is the same as Corona-L but with ∼30× lower qgrain

and τ . The τ and box size are similar to box WIM-L, and although the drift is supersonic it is significantly sub-Alfvénic. This causes the emergent morphology

to qualitatively resemble WIM-L more than Corona-L. However, note the much denser ‘nodes’ of dust that appear.

∼ 0.01 − 0.05 dex scatter in the dust density in a supersonically

turbulent medium (δug/cs ≫ 1). In both Hopkins & Lee (2016) and

Moseley et al. (2019), we show in a variety of tests that even the

‘worst-case’ scatter of this nature is completely negligible for our

predictions,13 and that in subsonically turbulent (or laminar) media

this drops to ≪ 0.01 dex scatter. In either case this is much smaller

than the saturated dispersions in ρd here.

As in Moseley et al. (2019) and Seligman et al. (2019), we have

re-run variants of several of our standard simulations with varied

numerical choices, including: (1) a different hydrodynamic solver

13We note that Tricco et al. (2017) contains an error in their comparison

of ‘one-fluid’ dust treatments (which cannot represent multivalued dust

velocity distribution functions, essential for this study; Cadiou, Dubois &

Pichon 2019; Lebreuilly, Commerçon & Laibe 2019) to the ‘tracer particle’

(μ = 0) method used in Hopkins & Lee (2016). The discussion in Tricco

et al. (2017) incorrectly compares to simulations in Hopkins & Lee (2016)

which adopted different dust parameters (α̃), a different dust drag law, and

did not use the same weighting for the PDFs/dispersions measured. If one

correctly compares the simulations from Hopkins & Lee (2016) which have

similar α̃ = 0.001 − 0.01 to the cases studied in Tricco et al. (2017), and

weights the PDFs identically, then the agreement is reasonably good, and

in fact the simulations in Hopkins & Lee (2016) predict slightly smaller

fluctuations in the dust-to-gas ratio ρd/ρg than those in Tricco et al. (2017),

the opposite of their conclusion.

(for Example, WIM L, H II-far S/M/L), we use the ‘meshless finite

mass’ (MFM) method from Hopkins (2015); (2) a different scheme

for calculating gradients and reconstruction of the magnetic field

at cell faces (for Example, Corona S), specifically the ‘constrained

gradient’ MHD scheme in Hopkins (2016b); (3) using a naive (non-

manifestly energy-conserving) explicit leapfrog integrator instead

of the Boris integrator for the Lorentz forces on grains (in Example,

H II-near S/M/L, Corona S/M/L, WIM M/L, CGM); and (4) using

different initial conditions, namely glass-like instead of lattice

initial particle configurations (for Example). Choices (2), and (4)

have no significant effect on any results we explore. We find that

choice (1), the MFM method, moderately suppresses the initial

maximum growth rates of the modes in the box, owing to its

slightly less accurate integration of highly subsonic flows near the

grid scale (effectively, the fastest growing resolved modes in the

simulation correspond to those at ∼4–6 times the grid scale, instead

of ∼2−3 times the grid scale). Choice (3) has negligible effects

on boxes Example and H II-near S/M/L, where the dust is strongly

clumped and τ is not extremely large. However, for boxes Corona,

WIM, and CGM, where τ ≥ 100 is larger and the systems often

end up in the ‘disperse’ mode, we find that it becomes important

to use an integrator (like our default Boris scheme) that manifestly

conserves Lorentz orbits. Otherwise, the dust tends to drift and spiral

outwards and gain energy artificially, an effect that is well-known

in standard particle-in-cell codes.
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Simulating MHD drag instabilities 2141

Figure 15. As in bottom panels of Fig. 4, comparing variations of the acceleration direction in the H II-near L box in the saturated state. We take our default

run (shown in the middle panels) and, keeping all other parameters fixed, vary the direction of the external net acceleration between dust and gas (a) so θBa =
(70◦, 45◦, 20◦) at (left, middle, right). The case with a closer to parallel B0 (right) produces slightly lower initial growth rates, so grows more slowly, even

though the equilibrium drift velocity |ws|/cs is slightly larger. However, it saturates with slightly stronger fluctuations. The case with a closer to perpendicular

B grows slightly faster (despite smaller |ws|/cs). The qualitative structure is none the less broadly similar in each case.

We have also run a number of resolution tests. Our default runs

here use 2 × 1283 elements (1283 each in gas and dust). All of

our runs here have also been run at lower resolution (2 × 323 and

2 × 643), and one at higher (2 × 2563). Fig. 20 compares the

saturated state in this resolution series. The qualitative behaviour is

similar across this range of resolutions. However, without some sort

of physical isotropic viscosity, or non-fluid effects (e.g. the ion gyro

radii), these instabilities are linearly unstable at all wavelengths,

with growth rates that increase with k. Thus, increasing resolution

and keeping all else fixed will always resolve new, faster growing

modes at smaller scales, so it is not possible to undertake a formal

convergence analysis. A more formal resolution study, as well as a

number of additional numerical validation tests and more extensive

discussion, are presented in Moseley et al. (2019).14 For example,

fig. B3 in Moseley et al. (2019) compares the PDFs of the same

properties studied here (e.g. dust-to-gas ratio) as a function of the

relative number of dust and gas elements (varying Ndust/Ngas by

a factor of 64) – as expected, the resulting PDFs are essentially

14Note that in Moseley et al. (2019), where we studied the pure acoustic RDI,

we noted that the high-k modes (with |ws| ≫ cs) were difficult to resolve

in some cases because the growth rates become sharply peaked around a

narrow resonant angle of width δθ ∝ μ2/3 k−1/3 |ws |−1. As shown in Paper

I, the MHD modes have a much more complex but also broader resonant

structure, especially at the lower ws and higher τ values studied here. This

contributes to making our results significantly less sensitive to resolution.

identical up e.g. Poisson sampling in the tails of the distribution.

We have verified this with our runs here as well. As shown in

Hopkins & Lee (2016), Lee et al. (2017), and Moseley et al. (2019),

these PDFs are also robust to the details of kernel density estimators

for dust or gas.

The saturated amplitudes of the velocity and density fluctuations

are relatively insensitive to resolution in run Example. This suggests

that most of the power is dominated by the well-resolved largest

modes in the box, rather than the fastest growing but smallest

scale modes. This is consistent with our power spectrum analysis in

Seligman et al. (2019), where we showed explicitly in run Example

that most of the power in the saturated state was in modes a factor

∼2 around the box scale. This may not be true in some other runs,

e.g. H II-far L, where the dust clumps on small scales.

4.4 Distribution functions

Figs 21–27 examine the PDFs of fluctuations for the seven simu-

lations considered in this paper. We see that the large diversity of

behaviour in morphology, saturated amplitude, and anisotropy is

mirrored in the diverse array of PDF shapes. The PDFs are often

highly non-Gaussian; this comes (broadly speaking) in two ‘forms’.

First, some PDFs exhibit substantial substructure, e.g. AGB-

M or H II-far in δug or δB, which have multiple bumps (sharp

inflection points/changes in curvature) or even second peaks. This is

directly related to coherent, large-scale morphological structures in

MNRAS 496, 2123–2154 (2020)
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2142 P. F. Hopkins, J. Squire and D. Seligman

Figure 16. Like Fig. 11, comparing our Example run with three different dust-to-gas ratios μ = 0.001 (left), 0.01 (our default; middle), 0.1 (right). The broad

form of the instabilities is similar in each case, and the growth time-scale scales as ∼μ1/2, as expected from linear theory. At early times the wavenumber

(number of ‘sheets’) corresponding to the most visually obvious mode is lower for lower μ: this corresponds to the fastest-growing wavelength where the

‘aligned’ mode dominates in Fig. 17, so again is predicted by linear theory. The saturated gas turbulence is stronger with increasing μ, as expected because

the forcing from dust is stronger). However, the low-μ case exhibits extremely small, dense sheets and filaments that do not turn into less dense or ‘fuzzy’

patches at late times, as occurs in the high-μ case. In fact most, in each run, of the dust mass resides at approximately the same dust-to-gas ratio (i.e. the typical

‘overdensity’ is systematically larger at lower μ), and the highest dust-to-gas ratios appear in the lowest μ box.

MNRAS 496, 2123–2154 (2020)
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Simulating MHD drag instabilities 2143

Figure 17. Linear growth rates, as in Fig. 2, for the variants of Example with varied dust-to-gas ratio μ in Fig. 16 (as labelled). The growth rate normalization

scales approximately as ∼μ1/2, explaining the relative time-scales in Fig. 16. The wavenumber of the ‘sheets’ that dominate the early non-linear phase

corresponds to the fastest growing (highest) wavenumbers k where the aligned modes (with k̂ = B̂ or k̂ = ŵs ; red and dotted black lines) have growth rates

comparable to or greater than the other modes. The MHD-wave (Alfvén and slow) RDIs generate the ‘corrugation’ of the sheets – the oscillations with k̂ nearly

perpendicular to the ‘aligned’ modes of the sheets.

Figure 18. Like Fig. 16 (bottom panels), comparing variants of the H II-near L run with three different dust-to-gas ratios μ = 0.001 (left), 0.01 (default;

middle), 0.1 (right) in the saturated state. The conclusions are similar to Fig. 16: the growth times and wavenumbers scale with predictions of linear theory as

μ1/3 → 1/2 and the gas turbulence is stronger at high-μ, but the low-μ case retains extremely dense filaments or clumps that do not get ‘broken up’ or ‘spread

out’ at later times. The dust reaches extremely high overdensities in the low-μ case.

Figs 4–7. Each such ‘peak’ corresponds to ‘patches’ (subvolumes of

the parent box) which have either much larger or smaller dust density

within them, and have essentially de-coupled from one another,

evolving non-linearly almost independently.

Second, most of the ‘smooth’ PDFs have non-Gaussian tails,

which are most commonly exponential or ‘stretched exponential’

in form: i.e.

P (q) ∝ exp (−|q/q0|γ ) (11)

for some q and γ . For example, the δB PDFs in almost all cases have

this form, as do the δug PDFs in Corona and WIM S/M and H II-

far S/M. PDFs with exponential or stretched-exponential tails are

common in certain types of gas turbulence, velocity distributions

of granular gases, and passive scalar concentrations in subsonic

incompressible turbulence (Ruiz-Chavarria, Baudet & Ciliberto

1996; Yakhot 1997; Ben-Naim & Krapivsky 2000; Antal, Droz

& Lipowski 2002; Ernst & Brito 2002; Kohlstedt et al. 2005;

Aranson & Tsimring 2006; Monchaux, Bourgoin & Cartellier 2010;

Hopkins 2013b; Colbrook et al. 2017). This generically arises

from a competition between driving and dissipation. Consider the

distribution of velocities in a statistically homogeneous system

(so P (ug, x) = P (ug)), where the velocities are driven by an

uncorrelated stochastic process with the specific energy injection

rate ∼ u̇0 (v/v∗)ξ (the effective ‘diffusion coefficient’ in velocity

MNRAS 496, 2123–2154 (2020)
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2144 P. F. Hopkins, J. Squire and D. Seligman

Figure 19. Visualizations for a variation of the Example run, removing all

grain charge (Lorentz forces on grains). As shown in Seligman et al. (2019),

the linear growth rate becomes multiple orders of magnitude smaller in this

limit. We see here that at similar times to those when the default Example

run has gone strongly non-linear (Fig. 16), no structure has developed.

Figure 20. Comparison of the Example run at different resolution levels:

2 × 643 (left), 2 × 1283 (our ‘default’ case; centre), and 2 × 2563 (right). The

instabilities develop slightly more quickly at increasing resolution, owing to

the fact that the growth rates increase almost monotonically with k (Fig. 2).

As expected, we can also see more detailed, finer, and sometimes denser

structure in the dust at higher resolution (the gas remains relatively smooth).

However, the qualitative form of the instabilities and the saturated amplitude

of the gas turbulence remains similar.

space), and damped15 with rate t−1
damp (v/v∗)ψ . In steady state, if

these driving and damping processes dominate, the PDF obeys

u̇0 (v/v∗)ξ ∂2P (v)/∂v2 ∼ −t−1
damp (v/v∗)ψ P (v) (12)

15Note this damping corresponds to any process damping the fluctuations,

not necessarily the dust drag.

for each component, the solutions of which obey P(v) ∝
exp (−|v/v∗|γ ) at large v with16

γ = 1 + (ψ − ξ )/2, v∗ ∼
√

u̇0 t0. (13)

So, for the simple case of white noise (Brownian) driving and

constant damping, or any case where driving and damping depend

on v in the same manner (ψ ≈ ξ ), the tails are exponential. The

characteristic width of the PDF is simply given by v2
∗ ∼ u̇0 t0; i.e.

the energy injected in a damping/dissipation time.

While it is easy to qualitatively understand the range of PDF

tails in this manner, such arguments fall far short of a predictive

model. In other words, it is not possible (given the arguments here

alone) to predict the PDFs and structure functions purely from

the various simulation parameters. For example, it is not a priori

obvious what the relevant driving and damping rates should be in

the saturated regime. If turbulence dominates both the non-linear

forcing and the damping (e.g. eddies shearing apart growing modes,

as we argue sets the saturation amplitude of some modes below) then

both injection and damping times might scale with eddy turnover

times, as in e.g. the standard theory of supersonic turbulent density

fluctuations (Vazquez-Semadeni 1994; Hopkins 2013a,b; Squire &

Hopkins 2017). But driving could also arise directly from mode

growth, or from non-linear parasitic modes, while damping could

also stem from drag (acting on dust velocity fluctuations) or sound

waves (for gas pressure fluctuations) – the dominant terms do not

have to be the same for each type of fluctuation.

Some of the PDFs exhibit strong asymmetries, with a much

stronger ‘tail’ in one direction (e.g. ug and vd in AGB L/XL, ρd

in H II-far M/L or CGM). In cases like AGB or H II-far where the

tails extend to both larger ug in the direction of acceleration a and

larger ρd, this relates to the fact that regions with non-linearly larger

local ρd/ρg experience faster local growth of the instabilities, and

more efficient acceleration of the coupled dust–gas mixture (because

the gas acceleration scales as ∼ μ a). Cases with a large tail in

ρd towards smaller ρd (CGM, WIM) likely arise because dust is

locally expelled from small pockets that are local vorticity maxima.

This is essentially the generic mechanism studied in Hopkins

(2016a) and is well-known in terrestrial particulate ‘preferential

concentration’ studies (Squires & Eaton 1991; Fessler, Kulick &

Eaton 1994; Rouson & Eaton 2001; Gualtieri, Picano & Casciola

2009; Monchaux et al. 2010). Essentially, grains are centrifugally

‘flung out’ of high-vorticity regions, and concentration is a side

effect as grains collect in-between. Finally, there are examples that

are highly non-Gaussian but do not neatly fit into any of the classes

above (e.g. vd in CGM or WIM L).

We also compare the volume-weighted (PV, the probability that a

given random volume has some value) and mass-weighted (dust

weighted by dust mass, gas by gas mass; PM) statistics. If the

density variations are small, these must be similar. Indeed for the

gas velocity and magnetic field (ug and B) the two statistics rarely

differ dramatically, as the gas density fluctuations are small. The

few cases (e.g. H II-near L) where some differences appear are those

with the most dramatic gas density fluctuations, and they still do

not differ qualitatively. Even for the dust, where ρd varies strongly,

the differences are rarely dramatic in vd (an exception is H II-near

L, where dust in the high-ρd filaments is coherently moving relative

to the low-ρd ‘background’, giving rise to larger dispersions when

volume-weighted).

16For ψ − ξ < −2, the solutions become peaked functions P(v) which

asymptote to constant P > 0 as v → ∞.
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Simulating MHD drag instabilities 2145

Figure 21. PDFs of gas and dust velocities, and magnetic field fluctuations, in each direction xyz (labelled), as well as the dust and gas densities. This is for the

Example run, averaging over the last 10 snapshots (in saturation). For each PDF, solid lines show the volume-weighted PDF (PV), while dotted lines show the

mass-weighted PDF (PM). PDFs are normalized to the same peak amplitude for convenience. Substantial structure is evident, related to coherent large-scale

morphological structures in Fig. 11. The PDF tails often exhibit highly non-Gaussian statistics.

Figure 22. PDFs for AGB S/M/L/XL from top-to-bottom, as Fig. 21. All

cases exhibit complicated structure in ug, vd, B. Anisotropy is obvious:

statistics here are similar in the direction of acceleration (x̂ − ẑ) and

fluctuations are weaker in the perpendicular (ŷ) direction, except for the

smallest box, which reverses this. The velocity and density PDFs typically

exhibit exponential tails (P ∝ exp (−|v/v∗|)), discussed in the text. Dust

density fluctuations are much larger than gas, except on the largest scales.

Most of the dust mass lies in regions with above-average dust density, while

most of the volume has lower-than-average dust density.

In the density PDFs, volume and mass weighting makes more dif-

ference. Some of this is by definition: because ρ = dMass/dVolume,

PM ∝ ρ PV (14)

if both are measured in differentially small regions. So PM(ρ) will

always be biased to higher ρ than PV(ρ). Let us define the mass

and volume-weighted averages 〈(·)〉M and 〈(·)〉V respectively, the

volume-weighted variance S in the log-density field χ ≡ ln ρ, and

the usual ‘clumping factor’ C:

S ≡ SV ≡ 〈ln[ρ/ρ0]2〉V − 〈ln[ρ/ρ0]〉2
V = (δ ln[ρ/ρ0])2 (15)

Figure 23. PDFs for H II-near S/M/L from top-to-bottom, as Fig. 22. Sub-

structure and anisotropy are common again. Some PDFs are close to Gaus-

sian. Others (e.g. B in box L) are almost pure exponential. The ρd PDFs are

highly skew, with large fluctuations so mass versus volume weighting makes

a large difference. The ‘clumping factor’ C = 〈ρ2
d 〉/〈ρd 〉2 ∼ (3, 6, 100) in

boxes (S, M, L). In box L, vd exhibits a narrow ‘core’ with a broad or ‘wide’

stretched-exponential distribution superposed (the PDF has ‘fat tails’). These

are all suggestive of strong intermittency (see Section 4.4).

SM ≡ 〈ln[ρ/ρ0]2〉M − 〈ln[ρ/ρ0]〉2
M (16)

ρ0 ≡ 〈ρ〉V (17)

C ≡ 〈ρ2〉V
〈ρ〉2

V

(18)

where ρ0 = 〈ρ〉V follows from our definitions. If PV(ρ) is ex-

actly lognormal, then mass-conservation implies: (1) the volume-

weighted mean/median/mode of χ is 〈ln (ρ/ρ0)〉V = −SV/2, (2) PM

is also lognormal with SM = SV and mass-weighted 〈ln (ρ/ρ0)〉M =
+SV/2, (3) C = exp (SV).

One way that we can quantify the deviations from lognormal in

these PDFs is via the extent to which SM �= SV or C �= exp (SV) (this

is commonly used as a diagnostic in supersonic turbulence studies).

This can be read off from the values of SV = (δln [ρ/ρ0])2 and C in

Table 2. In several cases (e.g. AGB) the results are consistent with

lognormality (C ≈ exp (SV)). But in some very strongly clumped

MNRAS 496, 2123–2154 (2020)
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2146 P. F. Hopkins, J. Squire and D. Seligman

Figure 24. PDFs for H II-far S/M/L from top-to-bottom, as Fig. 22.

Again note substructure and ‘fat tails’ in the PDFs (especially in box L,

related to the large-scale coherent filaments in Fig. 5); nearly exponential

PDFs for ug in boxes S, M; and large skew tails to high ρd. While

the gas is very weakly compressible here, the dust exhibits enormous

and non-Gaussian density fluctuations: consider box M, where |δug |/cs ∼
|δvd |/cs ∼ |δB|/

√
4π P0 ∼ |δ ln ρg | ∼ 0.01, but the dust δln ρd ∼ 1.3 (2.5)

weighted by volume (mass). Moreover since the dust PDF is highly non-

Gaussian, ∼ 0.1 per cent of the dust mass lies at densities ρd � 107 〈ρd 〉
(>13σ ), and the clumping factor C ∼ 1500, in box M.

Figure 25. PDFs for Corona S/M/L (top/second/third), as Fig. 22 (bottom

shows run L:τ = 100). The ‘default’ runs all exhibit weak ρg, and nearly

pure exponential ug fluctuations, with large vd fluctuations in the plane

perpendicular to B̂ but small along B̂. The asymmetry in δBz in box L stems

from the large energetic cost of such fluctuations at low-β. The low-τ =
100 run exhibits qualitatively different behaviour: the fluctuations in vd are

∼100× smaller (and δug, δB are ∼10× smaller), however while the ‘core’

of the ρd PDF has similar width it exhibits a ‘tail’ (dominated by the caustics

in the folded dust ‘sheets’ in Fig. 14) to orders-of-magnitude larger ρd.

Figure 26. PDFs for WIM S/M/L from top-to-bottom, as Fig. 22.

Anisotropy is similar to Corona, and gas is very weakly compressible. ρd

fluctuations are primarily to low-ρd (dust expelled from some regions), so

e.g. the clumping factor C ∼ (1.2, 1.02, 1.1) (biased to high ρd) is small. In

box L, note the vd PDFs, symmetric perpendicular to B, with progressively

broader flat-topped PDFs ‘superposed’ to produce large tails.

Figure 27. PDFs for CGM, as Fig. 22, in our ‘Default’ run (top), run

with γ = 5/3 and photoelectric grain charge scaling (middle), and low-

charge (‘τ low’ i.e. τ ∼ 5000; bottom) run. Lower τ (weaker Lorentz forces)

produces weaker dust velocity dispersions, sourcing weaker gas motions.

The photoelectric grain charging produces stronger dust acceleration.

Fluctuations in all cases are close to isotropic. While ug and B PDFs are sub-

Gaussian (exponential in B), the PDFs for vd are super-Gaussian (flat-topped

with rapid falloffs).

cases we have, for the dust, SM > SV and C ≫ exp (SV) (e.g. H II-near

and H II-far M,L have SV ∼ 2 and SM ∼ 4–6). Specifically, given

the measured δ ln (ρd/〈ρd〉) = S
1/2
V (for the dust), and assuming

lognormality (C = exp (SV)) would predict C ∼ 5−10 in these

cases. In contrast the measured C is C ∼ 100−300 in H II-near L

and H II-far L, and C ∼ 1500 in H II-far M. Conversely, the PDFs

with tails towards low ρd have smaller C than would be predicted

from δln (ρd/〈ρd〉); e.g. the CGM and WIM runs have C ∼ 1.0−1.1.

This owes directly to the large, asymmetric tails in ρd visible in

Figs 21–27.

Another, perhaps simpler, way of emphasizing this is to note that

the most extreme cases (e.g. H II-far M, or H II-near L and Example

MNRAS 496, 2123–2154 (2020)
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Simulating MHD drag instabilities 2147

with lower μ = 0.001) have extreme tails, where � 0.1 per cent of

the dust mass lies at densities � 107 times larger than the mean

(reaching as high as ∼109–1012). This corresponds to values �

15 standard deviations from the volume-weighted median of the

density PDF.

5 D ISCUSSION

From the analysis in Section 4, we can identify a number of

important conclusions about both the linear and early non-linear

phases, as well as the saturated and late non-linear phases.

5.1 Linear and early growth phases

(i) In all cases, the instabilities grow and produce strongly non-

linear properties in the dust (see Figs 4–13). This is not surprising,

since all cases here are linearly unstable (Fig. 2). However, it

does show that non-linear growth can occur even when the growth

time-scale is shorter than the dust ‘stopping time’ or Larmor time

(i.e. ℑ(ω ts) > 1 or ℑ(ω ts) > τ , in Fig. 2). This implies that the

instabilities grow faster than the time-scale for the system to reach

a ‘new’ equilibria, which is not a trivial conclusion.

(ii) Generally, the instabilities exhibit the most rapid initial

growth at the smallest scales. All wavelengths here are linearly

unstable, with growth rates generally increasing at smaller wave-

lengths (Fig. 2), because we do not include explicit dissipation (e.g.

viscosity).17 Thus, within each parameter set, the smaller boxes

evolve more rapidly in fixed physical units (e.g. t0
s ). Moreover

within each box, in most cases we see small-scale modes saturate

first, with the scale of structures increasing until box-scale modes

saturate (compare e.g. early and later times in Figs 4, 5, and 11).

(iii) The simulations broadly reproduce the expected growth rates

from linear theory in the early linear growth phase, as depicted in

Fig. 9. We demonstrate and discuss this in more detail for a few

representative acoustic RDIs in Moseley et al. (2019, fig. 2 therein)

and our Example case in Seligman et al. (2019, figs 4 and 5).

For modes that are unstable on all scales (e.g. the Alfvén MHD-

wave RDI), the early growth rate appears to match the linear theory

prediction for wavenumbers k ∼ (1 − 3)/�x0 (where �x0 = Lbox/N1D

is the initial inter-element grid spacing; again see also Moseley et al.

2019, Fig. 2). This suggests that the growth rate can be recovered

even if the full wavelengths are resolved by just ∼2−6 interparticle

spacings.18 At later times, the box-scale modes take over as the

strongest growing modes, until saturation.

(iv) The presence of magnetic fields and grain charge, along

with associated Lorentz forces, play a critical role in the linear

development of the instability. For several cases studied here, if we

artificially remove the dust charge (Lorentz forces), or magnetic

fields, the instabilities become stable or orders-of-magnitude more

slowly growing. Fig. 19 shows that no structure develops at late

times in the Example run with zero grain charge. Moreover,

increasing the grain charge (qgrain and τ ) produces faster growing

instabilities with more violent saturated dust behaviour, in both the

17In fact (see Paper I) some of instabilities (e.g. the Alfvén wave and gyro

resonances) have growth rates that can continue to rise with decreasing

wavelength even below the field-parallel viscous scale, potentially down to

the ion gyro radii or even further.
18For rigorous demonstration of this in idealized test problems, as well as

formal convergence studies, see Moseley et al. (2019), appendices A and B.

This is also consistent with the results using different codes and numerical

methods, e.g. Johansen & Youdin (2007).

‘clumped’ and ‘dispersed’ regimes (see Figs 12 and 13). This is

despite the fact that Lorentz forces decrease the ‘equilibrium’ dust

drift velocities, and magnetic fields increase the pressure support of

the gas, which would naively appear to be ‘stabilizing’ effects. But

these terms also introduce a variety of new dust and gas modes

(e.g. Alfvén and slow waves, dust gyro motion) which in turn

dramatically increase the number of accessible ‘resonances’ for

the instabilities (as well as introducing new energy sources for the

instabilities).

(v) The ‘resonances’ where linear growth rates are maximized

are sufficiently vigorous that they can often be identified well into

the non-linear evolution. These maximal resonances occur where

the ‘natural frequency’ of advection ws · k or gyro motion t−1
L in the

dust matches the ‘natural frequency’ of an Alfvén or magnetosonic

wave in the gas. Even in the non-linear phases of evolution, these

resonances manifest as particular angles or wavelengths of the

structures that form, as can be seen in Figs 16 and 17.

These results are all, to some extent, predicted from the linear

theory in Paper I, but we both verify the linear theory results and

confirm that these conclusions persist even well into non-linear

evolution.

5.2 Saturation and late non-linear phases: generic conclusions

As noted above, the saturated states exhibit some qualitatively

different behaviours, but there are some generic conclusions that

apply to all of our runs. We discuss these first, before exploring the

physics that is distinct in different saturated states.

(i) All of the systems saturate in a turbulent quasi-steady state.

This is evident in Fig. 9, where the velocity dispersion has clearly

reached saturation, although in some cases certain fluctuations

continue to grow very slowly. The finite velocity dispersion of the

dust grains in the saturated state does not shut down fluctuations,

even in the cases that reach a nearly isotropic grain velocity

distribution function (e.g. Fig. 27). In other words, the turbulence

reaches a saturated steady state, rather than the instability quenching

itself.

(ii) The predicted structure here is qualitatively completely dif-

ferent from that formed in ‘passive’ dust experiments, in which

the dust moves as a tracer particle in externally driven turbulence

(neglecting the forces from dust on gas, i.e. the momentum-

conserving ‘backreaction’ terms). In other words, ‘passive’ dust

cannot generate these instabilities or structures – indeed, the RDIs

do not exist with ‘passive’ dust. Some of the most noticeable

differences are found in the large-scale dust morphology; there is a

much stronger prevalence of filaments and sheets here, compared to

no strong anisotropy present in ‘passive dust’ simulations. Also in

‘passive dust’ simulations, the PDFs of dust density do not have the

same shape or qualitative scalings as those presented here (compare

Hopkins & Lee 2016; Lee et al. 2017, or the discussion in Moseley

et al. 2019). In most cases we study, the dust density fluctuations

are vastly larger in our simulations (with ‘active’ dust which can

drive the RDIs) as compared to an analogous ‘passive-dust’ case.

For example, with α̃ ∼ 0.001, similar to some of our most strongly

unstable and dust-clumped cases in H II-near, H II-far, and AGB L,

Lee et al. 2017 typically found δln (ρd/ρg) ∼ 0.01 for ‘passive’

grains (orders-of-magnitude smaller than our result here). Perhaps

most importantly, the scaling of the strength of dust clustering with

α̃ (Lbox) or φ̃ (τ ) in ‘passive dust’ studies is, in many cases, almost

opposite those here (e.g. Lee et al. 2017 found fluctuations in dust-

to-gas ratio with ‘passive’ dust were only strong at α̃ ≫ 1).

MNRAS 496, 2123–2154 (2020)
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2148 P. F. Hopkins, J. Squire and D. Seligman

Figure 28. PDFs for the runs in Fig. 16, where we vary the dust-to-gas

ratio μ = 0.001 (top), μ = 0.01 (default; middle), μ = 0.1 (bottom) for

run Example. The PDFs for gas fluctuations and dust velocity become

broader, more Gaussian, and more isotropic at higher μ, consistent with

greater mixing and more uniform driving. But (per Fig. 16), the dust density

fluctuations are larger at lower μ.

(iii) Details of the gas equation-of-state, the functional form

of the drag law (Coulomb+Epstein or just Epstein), or the grain

charge scaling (dependence on local temperature and density) do

not qualitatively alter our conclusions, although they certainly have

quantitative effects (Table 2, and Figs 11, 12, and 13.). Larger dust

charge generally produces more violent saturation (Figs 12 and

13). The non-linear behaviour of the instabilities does not depend

sensitively on particular alignments or anti-alignments between

acceleration and magnetic field directions (except in so far as the

resonant angles change; e.g. Fig. 15), and in fact, cases where the

two are more strongly anti-aligned can even grow faster, despite

weaker grain drift. Likewise, modest variation in parameters like

the equilibrium grain drift velocity (relative dust–gas acceleration)

or magnetic β do not qualitatively alter the behaviour or character of

saturation (Figs 11 and 14). Lowering the dust-to-gas ratio produces

slower initial growth and weaker gas turbulence, as expected.

However, surprisingly, it can produce non-linear clustering in the

dust that is as strong, or even stronger, than higher μ cases (Figs 16,

18, 28, and 29).

(iv) Most systems are driven towards approximate equipartition

between gas velocity and magnetic field fluctuations. This agree-

ment – i.e.

〈ρg〉 δu2
g/2 ∼ δB2/8π (19)

is at the order-of-magnitude level, as shown in Fig. 10.19 This result

is independent of the initial β (from β0 ∼ 0.001 to 1000). In some

cases this involves strong amplification of B fields (e.g. from β ∼
1 to ∼0.01 in AGB-XL). Because of this, while the instabilities

19There are a few notable exceptions with 〈ρg〉 δu2
g/2 ≫ δB2/8π . Two are

WIM-L and Corona-L:τ = 100, although the variant WIM-L:LoV (‘low drift

velocity’) and ‘default’ (higher-τ ) Corona-L have 〈ρg〉 δu2
g/2 ≈ δB2/8π to

within ∼ 10 per cent. In both of these exceptions, the gas moves nearly

incompressibly and two-dimensionally, so the B fields are moved in the xy

plane but not compressed, generating negligible B fluctuations (see Fig. 7).

Our default (high-τ ) CGM boxes also exhibit low δB, though here it may

be because the fluctuations are dominated by small-k, random gas motions

which do not cause an effective coherent dynamo.

Figure 29. As Fig. 28, comparing different dust-to-gas ratios μ = 0.001

(top), μ = 0.01 (default; middle), μ = 0.1 (bottom) for run H II-near L (in

Fig. 18). Conclusions are similar to Fig. 28. Note the extreme fluctuations

in the low-μ case: most of the volume has ρd < 0.01 〈ρd 〉 (i.e. is highly

dust-depleted), while most of the dust mass resides in structures with ρd �

400 〈ρd 〉 (highly dust-enriched), and � 0.1 per cent of the dust mass is at

ρd � 109 〈ρd 〉 with the highest value here reaching ∼ 1012 〈ρd 〉.

can drive highly supersonic turbulence in some cases, it is usually

trans-Alfvénic.

(v) All of the instabilities examined saturate with sustained gas

turbulence. To rough order-of-magnitude, saturation often occurs

when the eddy turnover time-scale on the box scale becomes

shorter than the box-scale linear growth time-scale i.e. |δug|/Lbox

∼ ℑ(ω[Lbox]). However, as discussed below, for both very small

boxes and some magnetically dominated boxes, other criteria (e.g.

equipartition between magnetic tension and driving by dust) may

instead set the saturation amplitude (see Fig. 10). In any of these

cases, the strength of the saturated gas turbulence increases with

dust-to-gas ratio and box size/wavelength (see Fig. 10, Table 2).

This can be understood physically, since the forcing of the dust

on to the gas becomes stronger relative to pressure and magnetic

forces. Provided some gas velocity fluctuations, the gas density

fluctuations roughly follow the usual relation for pure isothermal

MHD turbulence,

[δ ln (ρg/〈ρg〉)]2 = ln [1 + (b |δug|/cs)
2], (20)

but with substantial variation in the ‘compressibility’ b ∼ 0.2 − 1

(see Fig. 10). B can be related to ug as described above. Anisotropy

in the gas properties can usually be understood as a direct reflection

of the anisotropy in the fastest-growing linear modes at the box

scale (see below).

(vi) The dust saturation is ubiquitously more complex than the

gas saturation. In some cases, the dust exhibits extremely strong

‘clumping’ or clustering, with a wide range of distinct morpholo-

gies and topologies (e.g. differently connected sheets, filaments,

or clumps). In the most extreme cases simulated here, the dust

overdensities reach magnitudes of ∼109−12 times the mean, as seen

in Figs 21–29! In other cases, the dust is ‘dispersed’ throughout the

box, with nearly isotropic, large, velocity dispersions. Qualitatively,

the anisotropy of vd and relation between vd and ug reflect those

of the fastest-growing linear modes at the box scale (see below).

Generically, on ‘intermediate’ and ‘large’ scales k � 1/(μcs ts), we

expect and see |δvd|� |δug|, while on ‘small’ scales k � 1/(μcs ts),
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Simulating MHD drag instabilities 2149

|δvd| � |δug| (see Fig. 10).20 On the very largest scales, the dust

density fluctuations δρd are comparable to gas density fluctuations

δρg. But, while δρg decreases with scale, δρd does not, because

there is no internal pressure resisting compressions. In fact, some of

the most extreme dust-density fluctuations appear when the gas is

nearly incompressible, and they actually become stronger at lower

dust-to-gas ratios (Figs 28–29).

(vii) The statistics of both dust and gas fluctuations are often

highly non-Gaussian (Figs 21–29), with exponential or ‘stretched

exponential’ tails and, in some cases, coherent substructure. This

is generally associated with strong intermittency and stochastic

driving in dissipative systems (Section 4.4). These strong deviations

from Gaussianity mean, for example, that the mass-weighted

dust density fluctuations can deviate substantially from volume-

weighted fluctuations, and in some cases a significant fraction of the

dust mass (> 0.1 per cent) can reside at values � 15−20 standard

deviations from the median.

5.3 Saturation: ‘clumped’ states

Although it is clear here that the saturated states are diverse and

occupy a continuum of properties, we attempt to classify them

into two very broad ‘regimes’, based on their morphology and

resemblance to intuition from linear theory. First, we note that

despite their obvious differences, boxes Example, AGB, H II-near,

and H II-far have several qualitative properties in common. These

runs all have β � 1, and τ � 100, a value that is not too large. They

all share a defining feature, that the dust is strongly ‘clumped’ and

remains highly anisotropic even in saturation. Prominent clumps,

plumes, filaments, and sheets appear, even when the gas is only

weakly compressible.

In these, the ‘medium’ and ‘large’ boxes (Example, AGB

M/L/XL, H II-near M/L, H II-far M/L) saturate with significant

anisotropy or bias in δug along the direction of the acceleration

a (as opposed to e.g. ws or B). The components in the perpendicular

direction are not negligible and the strength of the anisotropy varies,

owing to mixing from the Lorentz forces. These runs also generally

have

|δB|/|B| ∼ |δug|/vA (21)

(kinetic/magnetic energies similar) with anisotropies oriented in the

same plane(s). Moreover

|δvd | ∼ |δug|, (22)

with δvd typically slightly larger, but not by more than a factor of

a few. In the largest boxes, δρd/ρd ∼ δρg/ρg, (Fig. 10), and the

PDFs become increasingly Gaussian/lognormal (Figs 22 and 23)

especially at high-μ (Fig. 18). In the intermediate-size-scale (M)

boxes δρd/ρd > δρg/ρg.

These behaviours can all, remarkably, be predicted (at least

qualitatively) by the linear properties of the fastest-growing modes

at the box scale. These predictions are discussed in detail in Hopkins

& Squire (2018b, fig. 2) and Paper I (sections 4–5), and we briefly

summarize them here. If the relevant modes at the box scale are

20This follows from the linear RDI behaviour and can be understood from

a local-balance-type argument from the equations for ‘forcing’ the dust via

gas. Dimensionally, a linear perturbation δvd should have ω δvd ∼ δug/t0
where t0 ≈ ts if drag dominates, or t0 ≈ tL if Lorentz forces dominate, so

|δvd | ∼ |δug |/(ω t0). But generically for the MHD-wave RDI-type modes,

ω ∼ t−1
0 (μ k cs t0)ν with ν ∼ 1/3–2/3 depending on wavelength, so the

scaling switches from |δvd| � |δug| to |δvd| � |δug| around k ∼ 1/(μ cs t0).

the MHD-wave RDI modes or the aligned modes (k̂ = ŵs , also

called ‘pressure-free’ or quasi-sound/drift modes), then for modest

magnetization (β−1 and τ not too large) most of the insight can

be gained from considering the much simpler pure hydro case (see

Paper I for further discussion). At k � μ/cs ts (AGB L/XL and

H II-near L, where Lbox/cs ts � 1000), the aligned ‘pressure-free’

mode dominates, where internal pressure effects of the gas are

weak compared to the bulk force from dust on gas. In this mode

δρd/〈ρd〉 ≈ δρg/〈ρg〉 and δvd ≈ δug (i.e. dust and gas fluctuate

together; see Fig. 10), with δug ∝ k̂ (fluctuations are longitudinal)

and maximum growth rates at k̂ = ŵs . Because of the weak pressure

effects, B is driven passively by the velocity fluctuations so |δB|/|B|
∼ |δug|/vA (with δB orthogonal to δug in the B−δug plane).21 Note

that initially, ŵs is not aligned with a (for non-zero τ ), so the modes

produce the ‘sheets’ of overdensity in dust perpendicular to ŵs .

However, because the pressure effects are weak in these modes,

the non-linear forcing from a tends to overwhelm competing forces

like magnetic tension, and push the system to drift in the â direction

(giving δug∝a).

In the ‘intermediate’ boxes (Example, AGB, H II-near, and H II-

far M) the ‘mid-k’ MHD-wave modes dominate at μ � k cs ts �

μ−1. Again the linear modes have δvd ∼ δug, |δB|/|B| ∼ |δug|/vA.

At mid-k, the initially fastest-growing modes approximately satisfy

k̂⊥B if |ws| ≪ cs (the Alfvén or slow RDIs) or k̂⊥ŵs if |ws| ≫ cs

(the fast RDI). This produces the perpendicular sheets and filaments

extended along ŵs , which are seen at early times. It also explains the

observed anisotropies, although these are weaker because the linear

modes have a mix of components in each direction. Perhaps most

notably, these boxes have δρd/〈ρd〉 ≫ δρg/〈ρg〉, which, as shown

in Paper I, are likely related to the linear modes, which satisfy

δρd ∼ δρg ℑ(ω ts), i.e. δρd/〈ρd〉 ≈ (ℑ(ω ts)/μ) δρg/〈ρg〉. Because

ℑ(ω ts) ∼ (k cs ts)
1/2 in this mode, the relative strength of δρd/δρg

increases at smaller scales and smaller μ, consistent with our

experiments (Figs 10, 28, 29). While this provides a reasonable

qualitative explanation for the observed trends, we do caution that

the magnitude of the saturated δρd/δρg is often significantly larger

than that predicted by linear theory.

In the smaller boxes (AGB S, H II-near S, H II-far S), the ‘high-

k’ MHD-wave modes dominate, with k � 1/(μ cs ts). The fastest-

growing mode directions are the same as the ‘mid-k’ modes (Paper

I), with a similar anisotropy (here δvd ∝ δug ∝ k̂ to leading order,

giving anisotropy in the xy plane for δug, and in z for δB). Again

|δB|/|B| ∼ |δug|/vA in the linear mode and saturated turbulence

(Table 2). As in the mid-k modes, we have δρd ∼ δρg ℑ(ω ts), but

now with ℑ(ω ts) ∼ (k cs ts)
1/3 � 1, so the ratio δρd/δρg continues

to rise with smaller μ or at smaller k (making δρd weakly dependent

on box size, with a small decrease to smaller Lbox). This occurs even

though δρg → 0 (see Fig. 10). One notable difference from the mid-

k modes, however, is that the linear perturbations feature |δvd | ∼
|δug|/ℑ(ω ts) ≪ |δug|. This feature is also seen in the saturated

turbulence (Fig. 10).

We stress that despite their common elements, there are important

differences across these clumped boxes, beyond just the magnitude

21For example, if we assume δug ∝ a ∝ (sin θBa, 0, cos θBa) in (x̂, ŷ, ẑ),

then since B̂ = ẑ, for linear perturbations δB ∝ (− cos θBa, 0, sin θBa).

So for our runs with |B0 · a| = cos θBa = 1/
√

2, this gives δug ∝
(1/

√
2, 0, 1/

√
2) and δB ∝ (−1/

√
2, 0, 1/

√
2) (i.e. the absolute magni-

tude of the anisotropy is the same in each direction for δug and δB).

For our runs with |B0 · a| = 0.05, this gives δug ∝ (0.99, 0, 0.05) and

δB ∝ (−0.05, 0, 0.99) (so the dominant direction for δug is x̂, while that

for δB is ẑ). These compare well to the results in Table 2.
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2150 P. F. Hopkins, J. Squire and D. Seligman

of the effects. The morphology, topology, and even dimensionality

(e.g. clumps, filaments, sheets) of the dust structures varies and

depends on a complicated mix of both the global parameters

(e.g. |ws|/cs, τ , β, etc.), as well as scale, owing to the complex

superposition of different modes. Box AGB, with initial τ ≪ 1,

is closest to the pure-hydrodynamic cases studied in Moseley et al.

(2019). As a result it saturates in primarily compressible, supersonic

magnetosonic turbulence, with the saturation amplitudes for ug in

boxes M/L/XL well-predicted by the eddy turnover time argument

(tested in detail therein), and δB following from δug. Box Example,

with higher τ ∼ 30, saturates in primarily incompressible MHD

turbulence (see Seligman et al. 2019). In this case, the saturation

amplitude of δB (especially its variations with μ) is more accurately

predicted by assuming force balance between forcing from dust

and magnetic tension of the dominant (box-scale) modes, with δug

following from δB, i.e.:

(B · ∇)B

4π
∼

|B| |δB|
4π Lbox

∼
ρd ws

ts
≈ ρd a (23)

(see Fig. 10 and Seligman et al. 2019).

Although it is beyond the scope of this work to study cases where

the external drift driving these instabilities initially is time variable,

it is worth noting that even if that drift were somehow ‘turned

off’ (which should allow the induced turbulence to decay), there

is no obvious mechanism to ‘disperse’ the dust-to-gas fluctuations

formed. Also, in environments with some externally driven turbu-

lence, it would be interesting to explore whether the net effect of

this turbulence is to enhance the dust-to-gas ratio fluctuations (as

occurs in the absence of RDIs; see Hopkins & Lee 2016; Lee et al.

2017) or to limit the saturation of the RDI-induced clumping.

5.4 Saturation: ‘dispersed’ or ‘granular’ states

We refer to the second regime as ‘Dispersed’ or ‘Granular’, because

the dust is generally more dispersive in these runs (boxes CGM,

WIM, Corona). It appears that the transition between the two

regimes occurs as τ becomes very large, specifically τ � 100.

In this regime, the saturated states of the instabilities begin to differ

from the description above, and the dust has more isotropic velocity

dispersion and notably smaller density fluctuations (especially at the

high-ρd end, which is suppressed relative to low-ρd; see Figs 25–

27).

Many of the saturated properties are consistent with the dominant

linear modes, as observed in the previous regime. Unlike the

‘clustered’ boxes, which are dominated by a combination of the

low-k ‘pressure free’ (and quasi-sound/drift) modes and mid/high-k

MHD-wave modes, at sufficiently high-τ the instabilities become

increasingly confined along B. Boxes CGM, WIM, and Corona are

dominated by a combination of the strong B-aligned ‘cosmic ray-

like’ instabilities (see Paper I for details), together with the related

gyro RDIs in WIM S and Corona S/M (Fig. 2). In linear theory, the

fastest-growing modes (in both cases) have

k̂ ≈ B̂, (24)

with B field fluctuations transverse (δB preferentially in the xy plane,

similar to an Alfvén wave), with22

|δB|/|B| ∼ |δug|/vA. (25)

22As discussed in Fig. 7, WIM L (the default run, with larger drift velocity)

is the one notable exception with |δB|/|B| ≪ |δug|/vA.

Like the ‘clumped’ case the gas fluctuations δρg can be related to δug

with the usual MHD turbulence scalings. However, the anisotropy

is often weak, because (1) the overall turbulence is isotropized

and (2) the linear modes have components in all directions. Also

like the ‘clumped’ case, the intermediate/large-scale boxes (CGM

M/L, Corona M/L, WIM L) have a saturation amplitude of the

gas that is reasonably well explained by equating eddy turnover

and growth time-scales (δug ∼ ℑ(ω[Lbox] Lbox)),23 while the small-

scale24 boxes (Corona S, WIM S/M) have a saturation amplitude

δug that is better explained by the same ‘high-k’ scaling as the

‘clumped’ cases above (see final paragraph of Section 5.3).

In the linear modes of these high-τ cases, the vd perturbation is

approximately a gyro orbit, i.e. preferentially equal power in the xy

direction. The scaling of δvd/δug is similar to the ‘mid-k’ and ‘high-

k’ MHD-wave cases discussed above (i.e. substantially smaller in

the high-k limit) but enhanced by a factor between ∼μ−1/2 and μ−1

(depending on wavelength in the out-of-resonance gyro or cosmic

ray like mode; see Paper I, section 4). This is directly evident in

Fig. 10, which shows that |δvd|/|δug| � 1 in many of these strongly

magnetized cases. Finally, δρd also scales qualitatively like the

mid/high-k MHD-wave modes, in that it is weakly dependent on

Lbox or k (while δρg decreases at lower Lbox). However, in both

the aligned cosmic ray-like and gyro modes, the Lorentz motion is

(to leading order) incompressible, with the dust density fluctuations

suppressed by a factor ∼μ1/2 and gas density fluctuations by a factor

∼μ (see Paper I, section 6.4). This suggests that δρd ∼ exp (δln ρd)

− 1 should be an order-of-magnitude lower compared to similar

‘clumped’ runs. This intuition provides a surprisingly good fit to

the difference between ‘clumped’ and ‘dispersed’ runs in Fig. 10.

This regime is analogously very broad, and there is no single,

transcendent behaviour that defines it. In Corona M/L and CGM,

the aligned modes initially produce rather thick ‘sheets’ in the xy

plane perpendicular to B. These form as dust particles move slowly

relative to each other along the field lines, and collapse into thin

sheets, with an increase in δρd. However, once the sheet becomes

thin, the acceleration on dust in direction â �= B̂ pushes the dust

with a component transverse to B only at one point along B. This

excites gyro motion of dust about B, but also drags the field and

‘bends’ B locally (as opposed to simply pushing the entire field line

uniformly, as in the initial state), generating a magnetic tension and

exciting Alfvén waves. That, in turn, can re-orient the gyro motion

(bending or ‘dispersing’ the sheet). How ‘isotropized’ the dust is –

and, correspondingly, how uniformly the dust is spread – depends

on how easily the field can be bent. Thus in CGM, with high-β,

the fields and corresponding vd can be fully isotropized; in contrast,

in Corona-M, the low-β and small scales mean the energy in the

dust cannot fully re-orient the fields, and the dust motion remains

primarily in the xy plane. The maximum dust velocity dispersion is

23The notable apparent exceptions in Fig. 10 are the CGM low-τ low runs.

However, Fig. 13 shows this initially grows vigorously at high-k (∼100/Lbox)

and in fact it reaches a large |δug| ∼ cs, before the ‘sheets’ breakup and

disperse the dust suppressing growth of larger scale modes, and δug actually

decays somewhat before reaching its equilibrium value. If we use the higher

k at which the largest rapidly growing modes are present, and the larger ug,

before the isotropized dust orbits lead to less coherent turbulent motions

in the gas, then these runs are plausibly consistent with the ‘eddy turnover

time’ saturation scaling.
24As discussed in Paper I, when τ ≫ 1, the dividing line between ‘small’ and

‘intermediate’ scales is not simply k � 1/(μ cs ts ), but can become a rather

complicated expression of τ , β, etc. Here, they can be effectively defined

by the presence in Fig. 2 of modes with the ‘high-k’ asymptotic scalings.
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Simulating MHD drag instabilities 2151

set by equating the ‘pumping’ of the gyro motion (acceleration a)

with damping by drag, which just gives

|vd | ∼ |a| ts ∼ |ws |, (26)

with isotropic ws.

In contrast, in Corona S, and WIM S/M, the dust is collected in

dense ‘lines’, or, more precisely, closed vertical sheets or ‘tubes’,

oriented along the B direction. The dominant modes are gyro

modes (not the aligned modes), so the ‘horizontal sheets’ discussed

above do not form.25 This produces the ‘granular’ appearance of xy

slices. Without the ‘sheets’ to bend the fields strongly at individual

points, the field lines move coherently in aligned ‘columns’ or

‘tubes’. Therefore, the turbulence is essentially two-dimensional,

and because the scales are small the gas is weakly compressible.

These features are also evident in box WIM-L, although this also

has some aligned modes, giving it a mix of properties.

It is also worth noting that in some boxes (e.g. Corona-S), the

modes do not appear to reach the grid scale, even after the simulation

has been evolved for longer than the box-scale mode growth time.

This tends to occur when there are strongly growing, dominant

gyro modes on somewhat smaller scales which can retain their

dominance, even at late times. There is some hint that these may

continue growing, along with box-scale modes, more slowly (e.g.

linearly in time). Unfortunately it is computationally prohibitive to

run these boxes to arbitrarily long times.

We emphasize that there does not appear to be a sharp ‘thresh-

old’ where behaviour changes between ‘clumped’ and ‘dispersed’

modes. Obviously, some ‘clumped’ runs feature gyro modes and

closer-to-isotropic grain velocity dispersions, while some ‘disperse’

runs here (like Corona-M) retain coherent dense grain structures

well into their non-linear evolution. Rather, there is a spectrum of

different behaviour in different regimes, and different parameters

involve a different mixture of these.

6 OTHER P HYSICS (NOT INCLUDED H ERE)

The simulations here are intentionally idealized, designed to study

the physics and non-linear behaviours of the instabilities identified

in Paper I. Of course, in different specific physical applications,

there are an infinite variety of additional physics which could

also be important, some of which may modify the instabilities

themselves. Some of these cases will be studied in future work

modelling observables in specific physical systems (e.g. AGB

outflows and dust extinction/density estimation; Steinwandel et al.,

in preparation), or analytic studies focused on the linear instabilities

in more complex systems (e.g. three-fluid radiation-MHD RDIs,

Squire et al., in preparation). Other examples (viscosity, non-ideal

MHD, stratification, differential rotation) are discussed in detail in

Hopkins & Squire (2018a,b) and Squire & Hopkins (2018a). But

we briefly review some here for context.

Small-scale transport processes (e.g. viscosity, conductivity) are

discussed in Paper I. For the physical examples which motivate our

parameter study in Table 1, we specifically chose the parameters

25We have checked that there is no apparent correlation between the presence

of these tubes and whether or not the box is large enough that the dust

‘wrapping’ time (Lbox/ws) is shorter or longer than the mode growth time,

which might artificially contribute to such structures. We have also checked

for any dependence on whether the dust gyro radii are resolved or unresolved

in the gas cells (because of our superparticle approach, dust orbits are always

resolved).

so that our smallest resolvable scales in the smallest (‘S’) boxes

correspond to the scale where viscous effects could begin to become

significant (k2 � |ω|/ν, where ν is the kinematic viscosity), so that

all resolved scales in all our boxes correspond to the ‘inertial range’

where viscous effects are weak (see section 9 in Paper I, where these

scales are estimated). But we also note, as shown explicitly in Paper

I (e.g. fig. 7 therein and Squire & Hopkins 2018a), that most of the

instabilities here are undamped below the viscous scale (down to at

least the ion gyro-radii), like e.g. the cosmic ray resonant and non-

resonant instabilities (Wentzel 1968; Bell 2004). We also choose

motivating parameters where non-ideal MHD effects should be

negligible (these terms generally require an ionization fraction fion

≪ 10−8 to be significant for the modes studied here; see section 8.3

in Paper I), but note that even in overwhelmingly neutral gas (e.g.

protoplanetary discs), ambipolar diffusion and the Hall effect do

not actually damp many of the instabilities studied here (but instead

modify them into additional branches; see e.g. Squire & Hopkins

2018a, figs 7–8). Other small-scale effects such as the current carried

by dust grains (section 8.3 in Paper I), finite inter-grain separation

effects, or degeneracy pressure are completely negligible in any

regime motivating our study here, or any regime where ideal MHD

could actually apply (e.g. the dust current is subdominant by a factor

∼ 1010 fion (T /104 K) in the induction equation).

On the largest spatial scales, global effects such as stratification,

gradients in the external forces driving drift, rotation, and shear

make our local periodic-box approximation invalid. We have there-

fore specifically chosen parameters such that the largest scales in

our largest boxes (‘L/XL’) in Table 1 correspond to these scales.

All of these global effects introduce new RDIs such as the Brunt–

Väisälä, vertical settling, and epicyclic RDIs (see e.g. appendix C

in Hopkins & Squire 2018b or sections 5 and 6 in Squire & Hopkins

2018a).

There are also various effects which directly involve dust–

gas interactions and operate on relatively long time-scales such

as gas cooling; dust accretion, mantle formation, and chemical

enrichment (generally relevant in cold or very dense gas like AGB

outflows); or sputtering of dust in hot gas (relevant in gas with

T � 106 K (μ/0.01)). These can modify the equation of state of the

gas, dust-to-gas ratios or dust size/charge, but generally operate on

time-scales much longer than (or at most comparable to) the RDI

growth times. It is therefore unlikely that these strongly modify

the RDIs directly: instead a medium with e.g. efficient cooling or

sputtering would simply shift the parameters of interest here, having

effectively lower temperature or dust-to-gas ratios, respectively. But

it is likely that these processes are themselves strongly modified by

the RDIs, as they depend sensitively on clumping factors of the dust

and gas and their (grain-size-dependent) cross-correlation, a subject

worthy of future study.

One effect which could modify the instabilities here is externally

driven turbulence. Although we clearly show the RDIs persist in

the presence of self-excited turbulence, it is possible that if some

other process drives gas turbulence much more strongly (on a given

scale) it could significantly modify the RDIs. This could potentially

set the saturation amplitude by e.g. shearing apart different modes

if the eddy turnover times become much shorter than RDI growth

times (see Squire & Hopkins 2018a, section 8), although it is also

well-known from both theory and laboratory experiments that even

test-particle grains (μ = 0, so no RDIs are present) are actually

strongly clustered on small-scales in externally driven turbulence

(see e.g. Squires & Eaton 1991; Fessler et al. 1994; Bracco et al.

1999; Cuzzi et al. 2001; Rouson & Eaton 2001; Monchaux et al.

2010; Pan et al. 2011; Hopkins & Lee 2016). This is most likely
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2152 P. F. Hopkins, J. Squire and D. Seligman

to be important in physical systems motivating boxes like WIM

or CGM:τ low, where strength of the saturated gas turbulence from

the RDIs alone (Table 2) is significantly weaker than the level of

turbulence observed.

A variety of physical effects will also become important specif-

ically when the local dust-to-gas ratio μ becomes very large. The

most obvious is grain–grain collisions, as the ratio of stopping to

collision time-scales as tstop/tcollision ∼ μ (δvdd/cs) (where δvdd is

the rms relative grain–grain velocity difference on infinitesimally

small spatial scales). Obviously this will become important at the

very high μ reached by some of our simulations on small scales,

but how it modifies the distribution of μ itself and subsequent

RDIs depend on the outcome of said collisions (which can produce

grain growth/coagulation, elastic or inelastic scattering/bouncing,

or grain shattering, depending sensitively on the local conditions

and grain chemistry). In some cases, the self-gravity of a cluster

of grains can become important before collisions (though this

is more likely important in protoplanetary discs, it could occur

under exceptional ISM conditions, see e.g. Hopkins 2014). And if

radiation pressure drives the dust drift, then the dust can become

self-shielding if the dust-to-gas ratio within a patch of size ∼λ

exceeds μ(λ) ≫ α̃ (λ/Lbox)−1 (1 + λrad/ǫgrain) (where Q ∼ (1 +
λrad/ǫgrain)−1 crudely approximates the grain absorption efficiency

for incident radiation with wavelength λrad). In that regime the

radiation can be multiply scattered, leading to more complicated

three-fluid (radiation, dust, gas) RDIs. The very high local μ reached

here in the absence of these effects should be considered motivation

for studying these different regimes.

7 SU M M A RY A N D C O N C L U S I O N S

We have presented the first simulation parameter study of the non-

linear regime of the Squire & Hopkins (2018b) ‘RDIs’ of charged

dust grains in magnetized gas. Because the parameter space of the

instabilities is large and this is a first study, we focused on several

sets of initial conditions that are broadly representative of different

astrophysical regimes. In all cases studied, the instabilities produce

highly non-linear structures and fluctuations, often including strong

turbulence and magnetic field amplification. Strong anisotropy and

non-linear features appear in the dust, including orbit crossing, den-

sity fluctuations, and complicated velocity distribution functions.

This necessitates numerical simulations using dust particle methods

which can follow the full non-linear dust velocity distribution

function, as opposed to just the fluid limit.

Even within our small survey, the simulations exhibit a diverse

array of behaviours. In Paper I, we demonstrated using linear

perturbation theory that a homogeneous MHD gas coupled to dust

via Lorentz forces and drag exhibits around 10 different ‘instability

families’. These families include the Alfvén, slow, and fast magne-

tosonic MHD-wave RDIs; the three corresponding gyro RDIs; the

‘pressure-free’ and related ‘quasi-drift’ and ‘quasi-sound’ modes;

and the ‘cosmic ray streaming’-type modes. These families all have

different linear growth rates and mode structures, but often overlap

and occur within the same system. Without introducing additional

physics or constraints (e.g. Braginskii viscosity, which suppresses

the growth rate of the magnetosonic modes, but not the Alfvén

modes), it is generally impossible to construct a simulation that

isolates a single instability family. Our range of initial conditions

were chosen both to be representative of different astrophysical

regimes and also to exhibit different dominant, fastest growing

instability families. The resultant non-linear evolution yields a

remarkable diversity of outcomes.

We show that over the course of the simulations, the instabilities

become violently non-linear on all scales. Their non-linear out-

comes can result in dust being highly concentrated (the ‘clumped’

regime), or dispersed with large isotropic velocity dispersions (the

‘disperse’ regime). In the ‘clumped’ case, there are a wide range

of morphologies, topologies, and dimensionalities of the clumped

structures, depending on the parameters of the system, with dust in

e.g. multiply connected sheets, filaments, or point-like clumps. In

the most extreme cases, the dust can reach enormous overdensities in

these idealized tests (> 0.1 per cent of the dust mass at ≫109 times

the mean dust density, with volume-averaged ‘clumping factors’

>104). The dust clumping does not depend systematically on the

spatial scale or the compressibility of the gas: clumping can be

stronger on small scales in nearly incompressible gas than on large

scales in highly compressible cases. Surprisingly, the clumping is

stronger at lower dust-to-gas ratios, although the growth times of

the instabilities are longer.

In contrast, in the ‘disperse’ cases, the dust can be accelerated to

highly supersonic isotropic velocity dispersions (even undergoing

first-order Fermi acceleration with stretched-exponential velocity

‘tails’ that would reach relativistic velocities in some physical

systems) and dispersed nearly uniformly over the box (clumping

factors as small as ∼1.02). These cases are akin to well-studied

cosmic ray instabilities that self-excite diffusive behaviour (i.e. self-

generating dust diffusion). The growth times of these instabilities

can be shorter than either the dust drag/stopping or gyro times, and

are often extremely short relative to other time-scales in the gas

(e.g. the sound-crossing or dynamical times, for physical systems

of interest). This will have a huge range of important physical

ramifications for essentially all regimes where dust is present.

The dust drives anisotropic turbulence in the gas, whose prop-

erties may be qualitatively understood via heuristic quasi-linear

theory. The gas turbulence is stronger and more compressible

if the box scale is larger, or if the dust-to-gas ratio is larger.

Moreover, the gas velocity and density fluctuations are correlated

in approximately the same manner observed for pure-gas MHD

turbulence. In the saturated state, the instabilities tend to produce

equipartition between gas velocity and magnetic field fluctuations.

The latter means that systems can have the magnetic fields strongly

amplified by the instabilities (e.g. decreasing β by factors of ∼104,

in the most extreme cases here).

The gas turbulence can be qualitatively magnetosonic or

Alfvénic, but in addition to the dust properties, it has many

characteristics that are unique. PDFs of various fluctuations (ug,

B, ρg, vd, ρd) are typically highly non-Gaussian, with exponential

or stretched-exponential tails indicative of strong intermittency and

stochastic driving in a highly dissipative system. These large tails

mean that sometimes the mass and volume-weighted statistics can

yield quite different results, and the tails can be many orders-of-

magnitude more populated than Gaussian (e.g. many of our systems

have > 0.1 per cent of their dust or gas mass at � 10–20 ‘standard

deviations’ in some property).

The parameter space here is highly multidimensional, so it is

difficult to make conclusions that can be robustly applied to all

regimes. However, it appears that choices such as the detailed

equation of state, form of the dust charge scaling with ambient

gas properties, exact magnetic β, initial direction of field ori-

entation (relative to the relative dust–gas acceleration), or exact

dust-to-gas ratio do not dramatically (qualitatively) change the

character of the solutions. As anticipated from linear theory in

Paper I, the most important parameters that determine the qual-

itative behaviour appear to be the physical scale and ratio of
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magnetic (Lorentz) to drag (aerodynamic + Coulomb) forces on

dust.

Future work will be necessary to investigate how these instabili-

ties will manifest in physical systems. We stress that the models here

are intentionally idealized: we follow a single grain species subject

to a constant external differential dust/gas acceleration in periodic,

initially homogeneous gas boxes, with an ideal equation of state.

Therefore, our model names (e.g. AGB) should not be taken literally

– these are not intended to be realistic physical simulations of those

systems. Rather, the names are chosen reflect an example of a system

where the key dimensionless parameters for these instabilities (τ ,

β, |ws|/cs) are similar to the box simulated. Nor is it obvious,

yet, how the simulations here directly translate to observational

consequences: even if the behaviour in fully ‘realistic’ systems is

similar to that predicted here, this will clearly have consequences

for dust extinction curves and emission, cooling and dust chemistry,

and many other areas, but the magnitude or even the sign of these

effects depends sensitively on the exact observations considered,

as well as physical conditions (e.g. chemical conditions, optical

depth, additional radiative transfer effects) beyond those modelled

here. The physical systems simply provide helpful motivation for

our survey and in future work we will explore more realistic

scenarios.

This investigation has begun to elucidate the broad non-linear

behaviours of the resonant drag instabilities in magnetized gas.

However, it raises more questions than it answers, some of which

include:

(i) What are the effects of a broad spectrum of grain sizes and

charges? Here, we intentionally simulate a single species of grains,

so that the growth rates and dominant modes can be clearly defined

and studied. However, in almost all astrophysical situations there

will be a wide range of grain sizes. In some circumstances the largest

grains (which tend to dominate the dust mass) will dominate the

dynamics, while in others there is an intricate mix of which grains

dominate which terms in the relevant equations (for a more detailed

discussion, see Paper I). Further simulations will be required to

understand when different grain sizes are effectively independent,

and when they will have strong non-linear interactions via the

gas (see e.g. Bai & Stone 2010a, for examples in the streaming

RDI).

(ii) Is there a meaningful way to define convergence, and incor-

porate the effects of all relevant size scales in a single simulation?

The dynamic range over which the instabilities are present with

interesting growth rates is enormous, and far larger than can be

simulated at present. Because we find that the gas turbulence has

most of its power at the largest (driving) scales, there is hope that,

like MHD turbulence, certain bulk properties (e.g. the bulk power

in turbulence, the dissipation rate, and most of its effects) can be

‘converged’ even if the Kolmogorov scale is unresolved. It is unclear

if a meaningful convergence criteria can even be defined for the

dust, since some properties, like the dust density fluctuations, are

not uniquely dominated by the driving-scale modes.

(iii) What is the effect of stratification or time variability on the

instabilities? As the size scale of the simulations increases, the

physical system would become stratified and non-uniform in space

or time. We have shown that stratification and other large-scale terms

such as shear, rotation, and differential acceleration (e.g. Coriolis

forces) can all introduce additional instabilities, some of which

have faster growth rates on large scales than those here (see Squire

& Hopkins 2018a). So, this could introduce unique and important

phenomena. On large time-scales, the ‘forcing’ terms driving dust

drift (hence the instabilities) could fluctuate: if this occurs rapidly

compared to growth time-scale it may produce unique phenomena

as well. It would be particularly interesting to study the ana-

logue of ‘decaying turbulence’ when external acceleration/forcing

is suddenly ‘turned off’ once the simulations have reached

saturation.

(iv) What is the nature of the non-linear gas turbulence and its

intermittency? Any of these simulations provide ample opportunity

to study the nature of the turbulence. We have only explored simple,

‘zeroth-order’ diagnostics, but more detailed studies of the Eulerian

and Lagrangian power spectra and structure functions will provide

substantial insight into the structure of the turbulence. The highly

non-Gaussian behaviour we see suggests that the turbulence may be

quite different from a simple Kolmogorov-type picture (although of

course pure-MHD turbulence is already substantially non-Gaussian

in some measures).

(v) Can we develop a predictive theory for the dust clumping

and turbulence? Here, we are able to develop some qualitative

insights into when dust should exhibit clustering. Further, from

quasi-linear theory, we can heuristically understand why the dust

density fluctuations become stronger at lower dust-to-gas ratio,

and are weakly dependent on the spatial scale or compressibility

of the gas. However, this is far from a predictive or quantitative

theory. Most past work on the non-linear saturation of particle

clustering in turbulence assumed ‘passive’ grains (i.e. neglected

the forces of dust on gas). However, in the ‘passive’ case these

instabilities do not exist, and the predicted saturated dust clustering

(neglecting backreaction terms) can be very different from what we

find here. It is clearly important to develop new theoretical models

which can explain the strength and nature of the observed dust

structures.

(vi) What are the important regimes of parameter space yet to

explore? Our parameter survey is far from complete. We have

chosen a few examples which are interesting and plausibly moti-

vated, but there are many variations possible within similar physical

systems. Many physical systems with dust have fast-growing RDIs,

but with parameters quite different to those studied here (e.g. AGN

and their outflows, dense GMCs, supernova remnants, the ISM

of primordial neutral galaxies, planetary atmospheres, protostellar

discs; see Paper I for further discussion).

(vii) How does the introduction of additional grain physics

modify the predictions here? As noted above, in the non-linear

regime, some of our simulations reach dust concentrations ≫109

times the mean density. Obviously, other physics will become

important long before these densities are reached, including e.g.

dust self-shielding (if radiation drives the differential acceleration),

self-gravity of the grains, grain collisions, and dust current. Some of

these could suppress clustering, but others could make it stronger.

The high densities and low local relative grain–grain velocities in

these regimes may make them ideal for coagulation. But much of the

volume being dust-poor might suppress dust growth via accretion of

ions from the gas. In the disperse regime, some of our simulations

produce isotropic dust velocities many times the sound speed, which

may introduce sputtering and shattering in grain collisions.

Finally, we stress that we have explored only the ideal MHD

case of the Squire & Hopkins (2018b) instabilities. A host of other

instabilities exist which appear when other physics are present (e.g.

external or self-gravity, stratification, centrifugal or Coriolis forces,

non-ideal MHD, kinetic MHD, strong coupling of multiply scattered

radiation, etc.). In future work, we hope to explore these cases in

more detail, together with some of the questions above.
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