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Abstract. This paper focuses on high-speed NEON-based constant-
time implementations of multiplication of large polynomials in the NIST
PQC KEM Finalists: NTRU, Saber, and CRYSTALS-Kyber. We use
the Number Theoretic Transform (NTT)-based multiplication in Kyber,
the Toom-Cook algorithm in NTRU, and both types of multiplication
in Saber. Following these algorithms and using Apple M1, we improve
the decapsulation performance of the NTRU, Kyber, and Saber-based
KEMs at the security level 3 by the factors of 8.4, 3.0, and 1.6, respec-
tively, compared to the reference implementations. On Cortex-A72, we
achieve the speed-ups by factors varying between 5.7 and 7.5× for the
Forward/Inverse NTT in Kyber, and between 6.0 and 7.8× for Toom-
Cook in NTRU, over the best existing implementations in pure C. For
Saber, when using NEON instructions on Cortex-A72, the implementa-
tion based on NTT outperforms the implementation based on the Toom-
Cook algorithm by 14% in the case of the MatrixVectorMul function
but is slower by 21% in the case of the InnerProduct function. Taking
into account that in Saber, keys are not available in the NTT domain,
the overall performance of the NTT-based version is very close to the
performance of the Toom-Cook version. The differences for the entire
decapsulation at the three major security levels (1, 3, and 5) are −4,
−2, and +2%, respectively. Our benchmarking results demonstrate that
our NEON-based implementations run on an Apple M1 ARM processor
are comparable to those obtained using the best AVX2-based implemen-
tations run on an AMD EPYC 7742 processor. Our work is the first
NEON-based ARMv8 implementation of each of the three NIST PQC
KEM finalists.

Keywords: ARMv8 · NEON · Karatsuba · Toom-Cook · Number
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1 Introduction

In July 2020, NIST announced the Round 3 finalists of the Post-Quantum Cryp-
tography Standardization process. The main selection criteria were security, key
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and ciphertext sizes, and performance in software. CRYSTALS-Kyber, NTRU,
and Saber are three lattice-based finalists in the category of encryption/Key
Encapsulation Mechanism (KEM).

There exist constant-time software implementations of all these algorithms
on various platforms, including Cortex-M4, RISC-V, and Intel and AMD proces-
sors supporting Advanced Vector Extensions 2 (AVX2, also known as Haswell
New Instructions). However, there is still a lack of high-performance software
implementations for mobile devices, which is an area dominated by ARM.

The popularity of ARM is undeniable, with billions of devices connected to
the Internet1. As a result, there is clearly a need to maintain the secure com-
munication among these devices in the age of quantum computers. Without
high-speed implementations, the deployment and adoption of emerging PQC
standards may be slowed down. Our goal is to fill the gap between low-power
embedded processors and power-hungry x86-64 platforms. To do that, we have
developed the first optimized constant-time ARMv8 implementations of three
lattice-based KEM finalists: Kyber, NTRU, and Saber. We assumed the param-
eter sets supported by all schemes at the beginning of Round 3. The differences
among the implemented algorithms in terms of security, decryption failure rate,
and resistance to side-channel attacks is out of scope for this paper.

In short, we have implemented the Toom-Cook multiplication for NTRU,
NTT-based multiplication for Kyber, and both Toom-Cook and NTT-based
multiplications for Saber. We achieved significant speed-ups as compared to the
corresponding reference implementations. We have benchmarked our implemen-
tations on the best ARMv8 CPU on the market and compared them against the
best implementations targeting a high-performance x86-64 CPU.

Contributions. Our work is the first optimized ARMv8 NEON implementation
of the PQC KEM finalists. Our results obtained using Apple M1 are slightly
worse than the results achieved using the corresponding AVX2-based implemen-
tations, but overall, the speeds of encapsulation and decapsulation are compa-
rable. The lack of an instruction equivalent to the AVX2 instruction vmulhw is
responsible for a larger number of clock cycles required to implement NTT using
ARMv8. We improve the performance of NTRU-HPS677 by proposing a new
Toom-Cook implementation setting.

Source Code is publicly available at: https://github.com/GMUCERG/PQC
NEON.

2 Previous Work

The paper by Streit et al. [23] was the first work about the NEON-based ARMv8
implementation of New Hope Simple. This work, published before the NIST
PQC Competition, proposed a “merged NTT layers” structure. Scott [20] and
1 https://www.tomshardware.com/news/arm-6-7-billion-chips-per-quarter.

https://github.com/GMUCERG/PQC_NEON
https://github.com/GMUCERG/PQC_NEON
https://www.tomshardware.com/news/arm-6-7-billion-chips-per-quarter
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Westerbaan [26] proposed lazy reduction as a part of their NTT implementation.
Seiler [21] proposed an FFT trick, which has been widely adopted in the following
work. Zhou et al. [27] proposed fast implementations of NTT and applied them
to Kyber.

In the area of low-power implementations, most previous works targeted
Cortex-M4 [16]. In particular, Botros et al. [7] and Alkim et al. [2] devel-
oped ARM Cortex-M4 implementations of Kyber. Karmakar et al. [18] reported
results for Saber. Chung et al. [8] proposed an NTT-based implementation
for an NTT-unfriendly ring, targeting Cortex-M4 and AVX2. We adapted this
method to our NTT-based implementation of Saber. From the high-performance
perspective, Gupta et al. [14] proposed GPU implementation of Kyber; Roy
et al. [22] developed 4×Saber by utilizing 256-bit AVX2 vectors; Danba et al. [11]
developed a high-speed implementation of NTRU using AVX2. Finally, Hoang
et al. [15] implemented a fast NTT-function using ARMv8 Scalable Vector Exten-
sion (SVE).

3 Background

NTRU, Saber, and Kyber use variants of the Fujisaki-Okamoto (FO) trans-
form [12] to define the Chosen Ciphertext Attack (CCA)-secure KEMs based on
the underlying public-key encryption (PKE) schemes. Therefore, speeding up
the implementation of PKE also significantly speeds up the implementation of
the entire KEM scheme.

The parameters of Kyber, Saber, and NTRU are summarized in Table 1.
Saber uses two power of two moduli, p and q, across all security levels. NTRU has
different moduli for each security level. ntru-hrss701 shares similar attributes
with ntru-hps and has parameters listed in the second line for security level 1.

The symbols ↑ and ↓ indicate the increase or decrease of the CCA-secure
KEM ciphertext (|ct|) size, as compared with the public-key size (|pk|) (both in
bytes (B)).

Table 1. Parameters of Kyber, Saber, and NTRU

Polynomial n p [, q] |pk| (B) |ct| − |pk| (B)
1 3 5 1 3 5 1 3 5 1 3 5

Kyber xn + 1 256 3329 800 1184 1568 ↓ 32 ↓ 96 0

Saber xn + 1 256 213, 210 672 992 1312 ↑ 64 ↑ 96 ↑ 160

ntru-hps Φ1 = x − 1 677 821 − 211 212 − 931 1230 − 0 0 −
ntru-hrss Φn = xn−1

x−1
701 – 213 – 1138 –



Fast NEON-Based Multiplication 237

3.1 NTRU

The Round 3 submission of NTRU [1] is a merger of the specifications for ntru-
hps and ntru-hrss. The NTRU KEM uses polynomial Φ1 = x − 1 for implicit
rejection. It rejects an invalid ciphertext and returns a pseudorandom key, avoid-
ing the need for re-encryption, which is required in Saber and Kyber.

The advantage of NTRU is fast Encapsulation (only 1 multiplication) but
the downside is the use of time-consuming inversions in key generation.

3.2 Saber

Saber [1] relies on the hardness of the Module Learning With Rounding prob-
lem (M-LWR). Similarly to NTRU, the Saber parameter p is a power of two.
This feature supports inexpensive reduction mod p. However, such parameter p
prevents the best time complexity multiplication algorithm (NTT) to be applied
directly. Among the three investigated algorithms, Saber has the smallest public
keys and ciphertext sizes, |pk| and |ct|, as shown in Table 1.

3.3 Kyber

The security of Kyber [3] is based on the hardness of the learning with errors
problem in module lattices, so-called M-LWE. Similar to Saber and NTRU, the
KEM construction is based on CPA public-key encryption scheme with a slightly
tweaked FO transform [12]. Improving performance of public-key encryption
helps speed up KEM as well. Kyber public and private keys are assumed to be
already in NTT domain. This feature clearly differentiates Kyber from Saber and
NTRU. The multiplication in the NTT domain has the best time complexity of
O(n log n).

3.4 Polynomial Multiplication

In this section, we introduce polynomial multiplication algorithms, arranged
from the worst to the best in terms of time complexity. The goal is to compute
the product of two polynomials in Eq. 1 as fast as possible.

C(x) = A(x) × B(x) =
n−1∑

i=0

aix
i ×

n−1∑

i=0

bix
i (1)

Schoolbook Toom − Cook NTT

O(n2) O(n
log(2k−1)

log k ) O(n logn)
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Schoolbook Multiplication is the simplest form of multiplication. The algo-
rithm consists of two loops with the O(n) space and O(n2) time complexity, as
shown in Eq. 2.

C(x) =
2n−2∑

k=0

ckx
k =

n−1∑

i=0

n−1∑

j=0

aibjx
(i+j) (2)

Toom-Cook and Karatsuba are multiplication algorithms that differ greatly
in terms of computational cost versus the most straightforward schoolbook
method when the degree n is large. Karatsuba [17] is a special case of Toom-Cook
(Toom-k) [9,25]. Generally, both algorithms consist of five steps: splitting, eval-
uation, point-wise multiplication, interpolation, and recomposition. An overview
of polynomial multiplication using Toom-k is shown in Algorithm 1. Splitting
and recomposition are often merged into evaluation and interpolation, respec-
tively.

Examples of these steps in Toom-4 are shown in Eqs. 3, 4, 5, and 6, respec-
tively. In the splitting step, Toom-k splits the polynomial A(x) of the degree
n − 1 (containing n coefficients) into k polynomials with the degree n/k − 1 and
n/k coefficients each. These polynomials become coefficients of another polyno-
mial denoted as A(X ). Then, A(X ) is evaluated for 2k − 1 different values of
X = xn/k. Below, we split A(x) and evaluate A(X ) as an example.

A(x) = x
3n
4

n−1∑

i= 3n
4

aix
(i− 3n

4 ) + · · · + x
n
4

2n
4 −1∑

i=n
4

aix
(i−n

4 ) +

n
4 −1∑

i=0

aix
i

= α3 · x
3n
4 + α2 · x

2n
4 + α1 · x

n
4 + α0

=⇒ A(X ) = α3 · X 3 + α2 · X 2 + α1 · X + α0, where X = x
n
4 . (3)

Toom-k evaluates A(X ) and B(X ) in at least 2k − 1 points [p0, p1, . . . p2k−2],
starting with two trivial points {0, ∞}, and extending them with {±1,±1

2 ,±2,
. . . } for the ease of computations. Karatsuba, Toom-3, and Toom-4 evaluate in
{0, 1,∞}, {0,±1,−2,∞} and {0,±1,±1

2 , 2,∞}, respectively.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(0)
A(1)

A(−1)
A( 12 )

A(− 1
2 )

A(2)
A(∞)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
1 1 1 1

−1 1 −1 1
1
8

1
4

1
2 1

− 1
8

1
4 − 1

2 1
8 4 2 1
1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎣

α3

α2

α1

α0

⎤

⎥⎥⎦ (4)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(0)
C(1)

C(−1)
C( 12 )

C(− 1
2 )

C(2)
C(∞)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(0)
A(1)

A(−1)
A( 12 )

A(− 1
2 )

A(2)
A(∞)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(0)
B(1)

B(−1)
B(12 )

B(− 1
2 )

B(2)
B(∞)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

The pointwise multiplication computes C(pi) = A(pi) ∗ B(pi) for all values
of pi in 2k − 1 evaluation points. If the sizes of polynomials are small, then
these multiplications can be performed directly using the Schoolbook algorithm.
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Otherwise, additional layers of Toom-k should be applied to further reduce the
cost of multiplication.

The inverse operation for evaluation is interpolation. Given evaluation points
C(pi) for i ∈ [0, . . . 2k − 2], the optimal interpolation presented by Borato et al.
[6] yields the shortest inversion-sequence for up to Toom-5.

We adopt the following formulas for the Toom-4 interpolation, based on the
thesis of F. Mansouri [19], with slight modifications:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ0
θ1
θ2
θ3
θ4
θ5
θ6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1
1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1
1
64

1
32

1
16

1
8

1
4

1
2 1

1
64 − 1

32
1
16 − 1

8
1
4 − 1

2 1
64 32 16 8 4 2 1
1 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(0)
C(1)

C(−1)
C( 12 )

C(− 1
2 )

C(2)
C(∞)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

where C(X ) =
6∑

i=0

θiX i (6)

In summary, the overview of a polynomial multiplication using Toom-k is
shown in Algorithm 1, where splitting and recomposition are merged into eval-
uation and interpolation.

Algorithm 1: Toom-k: Product of two polynomials A(x) and B(x)
Input: Two polynomials A(x) and B(x)
Output: C(x) = A(x) × B(x)

1 [A0(X ), . . . A2k−2(X )] ← Evaluation of A(x)
2 [B0(X ), . . . B2k−2(X )] ← Evaluation of B(x)
3 for i ← 0 to 2k − 2 do
4 Ci(x) = Ai(X ) ∗ Bi(X )
5 C(x) ← Interpolation of [C0(X ), . . . C2k−2(X )]

Toom-k has a complexity O(n
log(2k−1)

log k ). As a result, Toom-3 has a complexity
of O(n

log 5
log 3 )= O(nlog3 5) ≈ O(n1.46), and Toom-4 has a complexity of O(n

log 7
log 4 )=

O(nlog4 7) ≈ O(n1.40).

Number Theoretic Transform (NTT) is a transformation used as a
basis for a polynomial multiplication algorithm with the time complexity of
O(n log n) [10]. This algorithm performs multiplication in the ring Rq =
Zq[X]/(Xn +1), where degree n is a power of 2. The modulus q ≡ 1 mod 2n for
complete NTT, and q ≡ 1 mod n for incomplete NTT, respectively. Multiplica-
tion algorithms based on NTT compute pointwise multiplication of vectors with
elements of degree 0 in the case of Saber, and of degree 1 in the case of Kyber.

Complete NT T is similar to traditional FFT but uses the root of unity in
the discrete field rather than in real numbers. NT T and NT T −1 are forward
and inverse operations, where NT T −1(NT T (f)) = f for all f ∈ Rq. Ci = Ai∗Bi

denote pointwise multiplication for all i ∈ [0, . . . n − 1]. The algorithm used to
multiply two polynomials is shown in Eq. 7.
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C(x) = A(x) × B(x) = NT T −1(C) = NT T −1(A ∗ B)

= NT T −1(NT T (A) ∗ NT T (B)) (7)

In Incomplete NT T , the idea is to pre-process polynomial before converting
it to the NTT domain. In Kyber, the Incomplete NTT has q ≡ 1 mod n [27].
The two polynomials A(x), B(x), and the result C(x) are split to polynomials
with odd and even indices, as shown in Eq. 8. A, B, C and A, B, C indicate
polynomials in the NTT domain and time domain, respectively. An example
shown in this section is Incomplete NT T used in Kyber.

C(x) = A(x) × B(x) = (Aeven(x2) + x · Aodd(x
2)) × (Beven(x2) + x · Bodd(x

2))

= (Aodd × (x2 · Bodd) + Aeven × Beven) + x · (Aeven × Bodd + Aodd × Beven)

= Ceven(x2) + x · Codd(x
2) ∈ Zq[x]/(xn + 1). (8)

The pre-processed polynomials are converted to the NTT domain in Eq. 9.
In Eq. 8, we combine β(x2) = x2 · Bodd(x2), because β(x2) ∈ Zq[x]/(xn + 1), so
β(x2) = (−Bodd[n − 1], Bodd[0], Bodd[1], . . . Bodd[n − 2]). From Eq. 8, we derive
Eqs. 10 and 11.

A(x) = Aeven(x2) + x · Aodd(x2)
=⇒ A = NT T (A)

⇔ [Aeven,Aodd] = [NT T (Aeven),NT T (Aodd)] (9)
(8) =⇒ C = [Ceven, Codd]

where Ceven = Aodd ∗ NT T (x2 · Bodd) + Aeven ∗ Beven

= Aodd ∗ −−→Bodd + Aeven ∗ Beven with
−−→Bodd = NT T (β) (10)

and Codd = Aeven ∗ Bodd + Aodd ∗ Beven (11)

After Codd and Ceven are calculated, the inverse NT T of C is calculated as
follows:

C(x) = NT T −1(C) = [NT T −1(Codd),NT T −1(Ceven)]

= Ceven(x2) + x · Codd(x2) (12)

To some extent, Toom-Cook evaluates a certain number of points, while
NT T evaluates all available points and then computes the pointwise multipli-
cation. The inverse NT T operation has similar meaning to the interpolation
in Toom-k. NT T suffers overhead in pre-processing and post-processing for
all-point evaluations. However, when polynomial degree n is large enough, the
computational cost of NT T is smaller than the cost of Toom-k. The downside
of NT T is the NTT friendly ring Rq.
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The summary of polynomial multiplication using the incomplete NT T , a.k.a.
1PtNT T , is shown in Algorithm 2.

Algorithm 2: 1PtNT T : Product of A(x) and B(x) ∈ Zq[x]/(xn + 1)
Input: Two polynomials A(x) and B(x) in Zq[x]/(xn + 1)
Output: C(x) = A(x) × B(x)

1 [Aodd,Aeven] ← NT T (A(x))
2 [Bodd,Beven,

−−→Bodd] ← NT T (B(x))
3 for i ← 0 to n − 1 do
4 Ci

odd = Ai
even ∗ Bi

odd + Ai
odd ∗ Bi

even

5 Ci
even = Ai

odd ∗
−−→
Bi
odd + Ai

even ∗ Bi
even

6 C(x) ← [NT T −1(Ceven),NT T −1(Codd)]

4 Toom-Cook in NTRU and Saber Implementations

Batch Schoolbook Multiplication. To compute multiplication in batch,
using vector registers, we allocate 3 memory blocks for 2 inputs and 1 output for
each multiplication. Inputs and the corresponding output are transposed before
and after batch schoolbook, respectively. To make the transposition efficient, we
only transpose matrices of the size 8 × 8 and remember the location of each
8 × 8 block in batch-schoolbook. A single 8 × 8 transpose requires at least 27
vector registers, thus, memory spills occur when the transpose matrix is of the
size 16 × 16. In our experiment, utilizing batch schoolbook with a matrix of the
size 16 × 16 yields the best throughput. Schoolbook 16 × 16 has 1 spill, 17 × 17
and 18 × 18 cause 5 and 14 spills and waste additional registers to store a few
coefficients.

Karatsuba. (K2) is implemented in two versions, original Karatsuba [17], and
combined two layers of Karatsuba (K2 × K2), as shown in Algorithms 3 and 4.
One-layer Karatsuba converts one polynomial of the length n to 3 polynomials
of the length n/2 and introduces 0 bit-loss due to the addition and subtraction
performed only in the interpolation step.

Algorithm 3: 2×Karasuba: Evaluate4(A) over points: {0, 1,∞}
Input: A ∈ Z[X] : A(X) =

∑3
i=0 αi · Xi

Output: [A0(x), . . . A8(x)] ← Evaluate4(A)
1 w0 = α0; w2 = α1; w1 = α0 + α1;
2 w6 = α2; w8 = α3; w7 = α2 + α3;
3 w3 = α0 + α2; w5 = α1 + α3; w4 = w3 + w5;
4 [A0(x), . . . A8(x)] ← [w0, . . . , w8]
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Algorithm 4: 2×Karatsuba: Interpolate4(A) over points: {0, 1,∞}
Input: [A0(x), . . . A8(x)] ∈ Z[X]
Output: A(x) ← Interpolate4(A)

1 [α0, . . . α8] ← [A0(x), . . . A8(x)]
2 w0 = α0; w6 = α8;
3 w1 = α1 − α0 − α2; w3 = α4 − α3 − α5; w5 = α7 − α6 − α8;
4 w3 = w3 − w1 − w5; w2 = α3 − α0 + (α2 − α6); w4 = α5 − α8 − (α2 − α6);
5 A(x) ← Recomposition of [w0, . . . w6]

Toom-3. (TC3) evaluation and interpolation adopts the optimal sequence from
Bodrato et al. [6] over points {0,±1,−2,∞}. To utilize 32 registers in ARM and
reduce memory load and store, the two evaluation layers of Toom-3 are combined
(TC3 × TC3), as shown in Algorithm 5. Toom-3 converts 1 polynomial of the
length n to 5 polynomials of the length n/3 and introduces 1 bit-loss due to a
1-bit shift operation in interpolation.

Algorithm 5: 2×Toom-3: Evaluate9(A) over points: {0,±1,−2,∞}
Input: A ∈ Z[X]: A(X) =

∑8
i=0 αi · Xi

Output: [A0(x), . . . A24(x)] ← Evaluate9(A)
1 w0 = α0; w1 = (α0 + α2) + α1; w2 = (α0 + α2) − α1;

w3 = ((w2 + α2) 
 1) − α0; w4 = α2;
2 e0 = (α0 + α6) + α3; e1 = (α1 + α7) + α4; e2 = (α2 + α8) + α5;

w05 = e0; w06 = (e0 + e2) + e1; w07 = (e0 + e2) − e1;
w08 = ((w07 + e2) 
 1) − e0; w09 = e2;

3 e0 = (α0 + α6) − α3; e1 = (α1 + α7) − α4; e2 = (α2 + α8) − α5;
w10 = e0; w11 = (e2 + e0) + e1; w12 = (e2 + e0) − e1;
w13 = ((w12 + e2) 
 1) − e0; w14 = e2;

4 e0 = ((2 · α6 − α3) 
 1) + α0; e1 = ((2 · α7 − α4) 
 1) + α1;
e2 = ((2 · α8 − α5) 
 1) + α2; w15 = e0; w16 = (e2 + e0) + e1;
w17 = (e2 + e0) − e1; w18 = ((w17 + e2) 
 1) − e0; w19 = e2;

5 w20 = α6; w21 = (α6 + α8) + α7; w22 = (α6 + α8) − α7;
w23 = ((w22 + α8) 
 1) − α6; w24 = α8;

6 [A0(x), . . . A24(x)] ← [w0, . . . w24]

Toom-4. (TC4) evaluation and interpolation over points {0,±1,± 1
2 , 2,∞}. The

interpolation adopts the optimal inverse-sequence from [6], with the slight mod-
ification, as shown in Algorithms 6 and 7. Toom-4 introduces a 3 bit-loss, thus a
combined Toom-4 implementation was considered but not implemented due to
a 6 bit-loss and high complexity.
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Algorithm 6: Toom-4: Evaluate4(A) over points: {0,±1,± 1
2 , 2,∞}

Input: A ∈ Z[X] : A(X) =
∑3

i=0 αi · Xi

Output: [A0(x), . . . A6(x)] ← Evaluate4(A)
1 w0 = α0; e0 = α0 + α2; e1 = α1 + α3; w1 = e0 + e1; w2 = e0 − e1;
2 e0 = (4 · α0 + α2) � 1; e1 = 4 · α1 + α3; w3 = e0 + e1; w4 = e0 − e1;
3 w5 = (α3 � 3) + (α2 � 2) + (α1 � 1) + α0; w6 = α3;
4 [A0(x), . . . A6(x)] ← [w0, . . . w6]

Algorithm 7: Toom-4: Interpolate4(A) over points: {0,±1,± 1
2 , 2,∞}

Input: [A0(x), . . . A6(x)] ∈ Z[X]
Output: A(x) ← Interpolate4(A)

1 [w0, . . . w6] ← [A0(x), . . . A6(x)]
2 w5 += w3; w4 += w3; w4 �= 1; w2 += w1; w2 �= 1;
3 w3 −= w4; w1 −= w2; w5 −= w2 · 65; w2 −= w6; w2 −= w0;
4 w5 += w2 · 45; w4 −= w6; w4 �= 2; w3 �= 1;
5 w5 −= w3 
 2; w3 −= w1; w3 /= 3; w4 −= w0 
 4;
6 w4 −= w2 
 2; w4 /= 3; w2 += w4; w5 �= 1; w5 /= 15;
7 w1 −= w5; w1 −= w3; w1 /= 3; w3 += 5 · w1 w5 −= w1;
8 A(x) ← Recomposition of [w0,−w1, w2, w3,−w4, w5, w6]
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Fig. 1. The Toom-Cook implementation strategy for SABER and NTRU-HPS821

Implementation Strategy. Each vector register is 128-bit, each coefficient is
a 16-bit integer. Hence, we can pack at most 8 coefficients into 1 vector regis-
ter. The base case of Toom-Cook is a schoolbook multiplication, as shown in
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Algorithm 1, line 4. The point-wise multiplication is either schoolbook or addi-
tional Toom-k. We use notion (k1, k2, . . . ) as Toom-k strategy for each layer.
The Toom-k strategy for the polynomial length n follows 4 simple rules:

1. Utilize available registers by processing as many coefficients as possible;
2. Schoolbook size should be close to 16;
3. The number of polynomials in batch schoolbook close to a multiple of 8;
4. The Toom-k strategy must generate a minimum number of polynomials.

4.1 Saber

We follow the optimization strategy from Mera et al.[4]. We precompute eval-
uation and lazy interpolation, which helps to reduce the number of evaluations
and interpolations in MatrixVectorMul from (2l2, l2) to (l2 + l, l), where l is (2,
3, 4) for the security levels (1, 3, 5), respectively. We also employ the Toom-
k setting (k1, k2, k3) = (4, 2, 2) for both InnerProd and MatrixVectorMul. An
example of a polynomial multiplication in Saber is shown in Fig. 1. The ↑ and ↓
are evaluation and interpolation, respectively.

4.2 NTRU

In NTRU, poly Rq mul and poly S3 mul are polynomial multiplications in
(q, Φ1Φn) and (3, Φn) respectively. Our poly Rq mul multiplication supports
(q, Φ1Φn). In addition, we implement poly mod 3 Phi n on top of poly Rq mul
to convert to (3, Φn). Thus, only the multiplication in (q, Φ1Φn) is implemented.

NTRU-HPS821. According to Table 1, we have 4 available bits from a 16-bit
type. The optimal design that meets all rules is (k1, k2, k3, k4) = (2, 3, 3, 3), as
shown in Fig. 1. Using this setting, we compute 125 schoolbook multiplications
of the size 16 × 16 in each batch, 3 batches in total.

NTRU-HRSS701. With 3 bits available, there is no option other than
(k1, k2, k3, k4) = (2, 3, 3, 3), similar to ntru-hps821. We apply the TC3 × TC3
evaluation to reduce the load and store operations, as shown in Fig. 2.

NTRU-HPS677. With 5 bits available, we could pad the polynomial length
to 702 and reuse the ntru-hrss701 implementation. However, we improve the
performance by 27% on Cortex-A72 by applying the new setting (k1, k2, k3, k4) =
(3, 4, 2, 2), which utilizes 4 available bits. This requires us to pad the polynomial
length to 720, as shown in Fig. 2.

5 NTT in Kyber and Saber Implementations

5.1 NTT

As mentioned in Sect. 5, NTT implementation consists of two functions. Forward
NTT uses the Cooley-Tukey [10] and Inverse NTT uses the Gentleman-
Sande [13] algorithms. Hence, we define the zeroth, first, . . . seventh NTT
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Fig. 2. Toom-Cook implementation strategy for NTRU-HPS677 and NTRU-HRSS701

Layer0 1Memory Layer2 3 Layer4

Fig. 3. Index traversals up to the NTT level fourth

level by the distance of indices in power of 2. For example, in the first and
second level, the distances are 21 and 22, respectively. For simplicity, we con-
sider 32 consecutive coefficients, with indices starting at 32i for i ∈ [0, . . . 7] as
a block. The index traversals of the first 5 levels are shown in Fig. 3. Each color
defines four consecutive indices.

NTT Level 0 to 4. In the zeroth and first level, we utilize a single
load and interleave instruction vld4q s16 to load data to 4 consecutive vector
registers [r0, r1, r2, r3]. The computation between registers [r0, r1], [r2, r3] and
[r0, r2], [r1, r3] satisfy the distances 20 and 21 in the zeroth and first level
respectively. This feature is shown using curly brackets on the left and right of
the second block in Fig. 3.

In the second and third level, we perform 4 × 4 matrix transpose on the
left-half and right-half of four vector registers, with the pair of registers [r0, r1],
[r2, r3] and [r0, r2], [r1, r3] satisfying the second and third level respectively.
See the color changes in the third block in Fig. 3.

In the fourth level, we perform 4 transpose instructions to arrange the left-
half and right-half of two vector pairs [r0, r1] and [r2, r3] to satisfy the distance
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24. Then we swap the indices of two registers [r1, r2] by twisting the addition
and subtraction in butterfly output. Doing it converts the block to its original
order, used originally in the memory. See the memory block and fourth block in
Fig. 3.

NTT Level 5 to Level 6. In the fifth level, we create one more block of 32
coefficients and duplicate the steps from previous levels. We process 64 coeffi-
cients and utilize 8 vector registers [r0, . . . r3], [r4, . . . r7]. It is obvious that the
vector pairs [ri, ri+4] for i ∈ [0, . . . 3] satisfy the distance 25 in the butterfly. The
sixth level is similar to the fifth level. Two blocks are added and duplicate
the process from the NTT levels 0 to 5. Additionally, 128 coefficients are stored
in 16 vector registers as 4 blocks, the operations between vector pairs [ri, ri+8]
for i ∈ [0, . . . 7] satisfy the distance 26.

NTT Level 7 and n−1. The seventh layer is treated as a separate loop. We
unroll the loop to process 128 coefficients with the distance 27. Additionally,
the multiplication with n−1 in Inverse NTT is precomputed with a constant
multiplier at the last level, which further saves multiplication instructions.

5.2 Range Analysis

The Kyber and Saber NTT use 16-bit signed integers. Thus, there are 15 bits
for data and 1 sign bit. With 15 bits, we can store the maximum value of −215 ≤
β · q < 215 before overflow. In case of Kyber (β, q) = (9, 3329). In case of Saber,
q = (7681, 10753) and β = (4, 3), respectively.

Kyber. The optimal number of Barrett reductions in Inverse NTT is 72 points,
as shown in Westerbaan [26] and applied to the reference implementation. After
Barrett reduction has been changed from targeting 0 ≤ r < q to − q−1

2 ≤ r <
q−1
2 , coefficients grow by at most q instead of 2q in absolute value at the level

1. We can decrease the number of reduction points further, from 72 to 64. The
indices of 64 lazy reduction points in Kyber can be seen in Table 2.

Table 2. Improved 64 points Barrett reduction in Inverse NTT of Kyber

Layer Indexes Total

4 32 → 35, 96 → 99, 160 → 163, 224 → 227 16

5 0 → 7, 64 → 71, 128 → 135, 192 → 199 32

6 8 → 15, 136 → 143 16
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Saber. In Twisted-NTT [8,21], we can compute the first 3 levels without
additional reductions. We can apply range analysis and use Barrett reduction.
Instead, we twist constant multipliers to the ring of the form Zq[x]/(xn − 1) in
the third level, which not only reduces coefficients to the range −q ≤ r < q,
but also reduces the number of modular multiplications at subsequent levels.
This approach is less efficient than regular NTT uses Barrett reduction in neon,
however the performance different is negligible due to small β = 3.

5.3 Vectorized Modular Reduction

Inspired by Fast mulmods in [8,21], we implemented four smull s16 multiply
long and one mul s16 multiply instructions. We use the unzip instructions to
gather 16-bit low and high half-products. Unlike AVX2, ARMv8 does not have
an instruction similar to vpmulhw, thus dealing with 32-bit products is unavoid-
able. In Algorithm 8, lines 1 → 4 can be simplified with 2 AVX2 instructions
vpmullw, vpmulhw. Similarly, lines 6 → 8 can be simplified with a single high-
only half-product vpmulhw. The multiplication by q−1 in line 5 can be incorpo-
rated into lines 1 → 2 to further save one multiplication. In total, we use two
more multiplication instructions, as compared to AVX2 [8]. In the vectorized
Barrett reduction, used in both Kyber and Saber, we use three multiplication
instructions – one additional multiplication as compared to AVX2, as shown in
Algorithm 9.

Algorithm 8: Vectorized multiplication modulo a 16-bit q

Input: B = (BL, BH), C = (CL, CH), R = 216

Output: A = B ∗ (CR) mod q
1 T0 ← smull s16(BL, CL)
2 T1 ← smull s16(BH , CH)
3 T2 ← uzp1 s16(T0, T1)
4 T3 ← uzp2 s16(T0, T1)
5 (AL, AH) ← mul s16(T2, q

−1)
6 T1 ← smull s16(AL, q)
7 T2 ← smull s16(AH , q)
8 T0 ← uzp2 s16(T1, T2)
9 A ← T3 − T0

Algorithm 9: Vectorized central Barrett reduction
Input: B = (BL, BH), constant V = (VL, VH), Kyber:(i, n) = (9, 10)
Output: A = B mod q and −q/2 ≤ A < q/2

1 T0 ← smull s16(BL, VL)
2 T1 ← smull s16(BH , VH)
3 T0 ← uzp2 s16(T0, T1)
4 T1 ← vadd n s16(T0, 1 
 i)
5 T1 ← shr n s16(T1, n)
6 A ← mls s16(B, T1, q)
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6 Results

ARMv8 Intrinsics are used for ease of implementation and to take advan-
tage of the compiler optimizers. The optimizers know how intrinsics behave. As
a result, some optimizations may be available to reduce the number of intrin-
sic instructions. The optimizer can expand the intrinsic and align the buffers,
schedule pipeline, or make adjustments depending on the platform architec-
ture2. In our implementation, we always keep vector register usage under 32 and
examine assembly language code obtained during our development process. We
acknowledge the compiler spills to memory and hide load/store latency in favor
of pipelining multiple multiplication instructions.

Benchmarking Setup. Our benchmarking setup for ARMv8 implementations
included MacBook Air with Apple M1 SoC and Raspberry Pi 4 with Cortex-A72
@ 1.5 GHz. For AVX2 implementations, we used a PC based on Intel Core
i7-8750H @ 4.1 GHz. Additionally, in Tables 6 and 8, we report benchmarking
results for the newest x86-64 chip in supercop-20210125 [5], namely AMD EPYC
7742 @ 2.25 GHz. There is no official clock frequency documentation for Apple
M1 CPU. However, independent benchmarks strongly indicate that the clock
frequency of 3.2 GHz is used3.

We use PAPI [24] library to count cycles on Cortex-A72. In Apple M1, we
rewrite the work from Dougall Johnson4 to perform cycles count5.

In terms of compiler, we used clang 12.0 (default version) for Apple M1 and
clang 11.1 (the most recent stable version) for Cortex-A72 and Core i7-8750H.
All benchmarks were conducted with the compiler settings -O3 -mtune=native
-fomit-frame-pointer. We let the compiler to do its best to vectorize pure C
implementations, denoted as ref to fairly compare them with our neon imple-
mentations. Thus, we did not employ -fno-tree-vectorize option.

The number of executions on ARMv8 Cortex-A72 and Intel i7-8750H was
1, 000, 000. On Apple M1, it was 10, 000, 000 to force the benchmarking process
to run on the high-performance ’Firestorm’ core. The benchmarking results are
in kilocycles (kc).

NTT Implementation. In Table 3, the speed-ups of neon vs. ref are 5.8 and
7.5 for forward and inverse NTT on Cortex-A72. On Apple M1, the correspond-
ing speed-ups are 7.8 and 12.0. There is no official NTT-based reference imple-
mentation of Saber released yet. We analyzed cycle counts in the forward and
inverse NTT transform for our NEON-based implementation without comparing
it with any reference implementation.

2 https://godbolt.org/z/5qefG5.
3 https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested.
4 https://github.com/dougallj.
5 https://github.com/GMUCERG/PQC NEON/blob/main/neon/kyber/m1cycles.c.

https://godbolt.org/z/5qefG5
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
https://github.com/dougallj
https://github.com/GMUCERG/PQC_NEON/blob/main/neon/kyber/m1cycles.c
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Table 3. Cycle counts of the NEON-based NTT implementation on Cortex-A72 and
Apple M1

Cortex-A72 ref neon ref/neon Levels

Apple M1 NTT NTT−1 NTT NTT−1 NTT NTT−1

Cortex-A72

saber – – 1,991 1,893 – – 0 → 7

kyber 8,500 12,533 1,473 1,661 5.8 7.5 1 → 7

Apple M1

saber – – 539 531 – – 0 → 7

kyber 3,211 5,118 413 428 7.8 12.0 1 → 7

Table 4. Fast NTT-based and Toom-Cook implementations of multiplication in
NTRU, Saber and Kyber measured in kilocycles – neon vs. ref

Cortex-A72 Level 1 (kilocycles) Level 3 (kilocycles)

1500MHz ref neon ref/neon ref neon ref/neon

Level 1: ntru-hrss701 | ntru-hps677, Level 3: ntru-hps821

poly Rq mul 426.8 70.1 | 55.0 6.09 | 7.78 583.9 83.5 6.99

poly S3 mul 432.8 72.2 | 56.1 5.99 | 7.76 588.7 83.1 7.08

Saber: Toom-Cook | NTT

InnerProd 27.7 18.1 | 22.5 1.53 | 1.23 41.4 25.0 | 31.5 1.64 | 1.31

MatrixVectorMul 55.2 40.2 | 37.0 1.37 | 1.49 125.7 81.0 | 71.3 1.55 | 1.76

Kyber

VectorVectorMul 44.4 7.1 6.3 59.7 9.9 6.1

MatrixVectorMul 68.1 10.7 6.4 117.5 19.3 6.1

Table 5. Fast NTT-based and Toom-Cook implementations of multiplication in
NTRU, Saber and Kyber measured in kilocycles – neon vs. avx2

Apple M1 Level 1 (kilocycles) Level 3 (kilocycles)

intel i7-8750H avx2 neon avx2/neon avx2 neon avx2/neon

Level 1: ntru-hrss701 | ntru-hps677, Level 3: ntru-hps821
poly Rq mul 6.0 | 6.0 15.7 | 11.6 0.38 | 0.52 8.7 17.2 0.51

poly S3 mul 6.2 | 6.3 15.7 | 11.9 0.40 | 0.53 9.2 17.4 0.53

Saber: Toom-Cook | NTT

InnerProd 2.2 | 1.8 3.2 | 6.1 0.69 | 0.29 3.5 | 2.4 4.3 | 8.5 0.80 | 0.29
MatrixVectorMul 3.9 | 2.9 6.6 | 10.1 0.59 | 0.28 8.2 | 5.6 14.0 | 18.9 0.59 | 0.30
Kyber

VectorVectorMul 0.5 1.9 0.27 0.7 2.5 0.26

MatrixVectorMul 0.7 2.8 0.26 1.2 4.9 0.25
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Table 6. Encapsulation and Decapsulation speed comparison over three security levels.
ref and neon results for Apple M1. avx2 results for AMD EPYC 7742. kc-kilocycles.

Apple M1 ref (kc) neon (kc) avx2 (kc) ref/neon avx2/neon

amd epyc 7742 E D E D E D E D E D

ntru-hps677 183.1 430.4 60.1 54.6 26.0 45.7 3.05 7.89 0.43 0.84

ntru-hrss701 152.4 439.9 22.8 60.8 20.4 47.7 6.68 7.24 0.90 0.78

lightsaber 50.9 54.9 37.2 35.3 41.9 42.2 1.37 1.55 1.13 1.19

kyber512 75.7 89.5 32.6 29.4 28.4 22.6 2.33 3.04 0.87 0.77

ntru-hps821 245.3 586.5 75.7 69.0 29.9 57.3 3.24 8.49 0.39 0.83

saber 90.4 96.2 59.9 58.0 70.9 70.7 1.51 1.66 1.18 1.22

kyber768 119.8 137.8 49.2 45.7 43.4 35.2 2.43 3.02 0.88 0.77

firesaber 140.9 150.8 87.9 86.7 103.3 103.7 1.60 1.74 1.18 1.20

kyber1024 175.4 198.4 71.6 67.1 63.0 53.1 2.45 2.96 0.88 0.79

Table 7. SHAKE128 performance with dual-lane 2×KeccakF1600 neon vs. 2×ref,
benchmark on Apple M1.

Input length Output length 2× ref neon 2×ref/neon

32 1,664 15,079 11,620 1.30

32 3,744 33,249 26,251 1.27

32 6,656 57,504 45,658 1.26

Table 8. Encapsulation and Decapsulation ranking benchmarked on Apple M1 and
AMD EPYC processor. The baseline is the largest number of cycles for each security
level.

Rank neon avx2

E ↑ D ↑ E ↑ D ↑
1 ntru-hrss701 1.00 kyber512 1.00 ntru-hrss701 1.00 kyber512 1.00

2 kyber512 1.43 lightsaber 1.20 ntru-hps677 1.27 lightsaber 1.87

3 lightsaber 1.63 ntru-hps677 1.85 kyber512 1.39 ntru-hps677 2.03

4 ntru-hps677 2.64 ntru-hrss701 2.06 lightsaber 2.05 ntru-hrss701 2.11

1 kyber768 1.00 kyber768 1.00 ntru-hps821 1.00 kyber768 1.00

2 saber 1.22 saber 1.27 kyber768 1.45 saber 1.63

3 ntru-hps821 1.54 ntru-hps821 1.51 saber 2.37 ntru-hps821 2.01

1 kyber1024 1.00 kyber1024 1.00 kyber1024 1.00 kyber1024 1.00

2 firesaber 1.23 firesaber 1.29 firesaber 1.64 firesaber 1.95
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NTT and Toom-Cook Multiplication. In Table 4, ntru-hrss701 and
ntru-hps677 share polynomial multiplication implementation in the ref imple-
mentation. In the neon implementation of poly Rq mul, the ntru-hps677

takes 55.0 kilocycles, which corresponds to the speed-up of 7.78 over ref, as
compared to 6.09 for ntru-hrss701. In the case of Saber, the two numbers
for neon and ref/neon represent Toom-Cook and NTT-based implementa-
tions, respectively. The Toom-Cook implementation of InnerProd shows bet-
ter speed across security levels 1, 3, and 5. In contrast, for MatrixVectorMul,
the NTT-based implementation outperforms Toom-k implementation for all
security levels. When Saber uses NTT as a replacement for the Toom-Cook
implementation on Cortex-A72 and Apple M1, performance gains in encapsula-
tion are (−1%,+2%,+5%) and (−15%,−13%,−14%). For decapsulation, they
are (−4%,−2%,+2%) and (−21%,−18%,−19%), respectively. Our benchmarks
show that NTT-based implementations performs better in avx2 than in the
neon implementation, as shown in the Saber section of Table 5. We believe that
the gap is caused by the lack of an instruction of ARMv8 equivalent to vmulhw.
In the case of Kyber, we consistently achieve ref/neon ratio greater than 6.0 in
VectorVectorMul and MatrixVectorMul, as shown in Table 4.

AVX2 and NEON. In Table 6, neon and avx2 implementations of Kyber are
the fastest in decapsulation across all security levels. In the neon implementation
of Kyber, the leftover bottleneck is SHAKE128/256. Although we implemented
a 2×KeccakF1600 permutation function that utilizes 128-bit vector registers,
the performance gain is 25% as compared to 2× reference implementation, as
shown in Table 7. This speed-up translates to only a fraction of the encapsula-
tion/decapsulation time. We expect that the speed-up will be greater when there
is hardware support for SHA3. In the avx2/neon comparison, the neon implemen-
tations of MatrixVectorMul, VectorVectorMul, and NTT have the performance
at the levels of 25% → 27% of the performance of avx2 (see Table 5). However,
for the entire encapsulation and decapsulation, these differences are significantly
smaller (see Table 6).

In the case of Saber, we selected the Toom-Cook implementation approach
for ref, neon, and avx2. The neon consistently outperforms avx2. Please note
that the ref implementations of Saber and NTRU employ similar Toom-k set-
tings as the neon and avx2 implementations. In addition, the neon Toom-k
multiplications in InnerProd, MatrixVectorMul perform better than the NTT
implementations, as shown in Table 4.

The performance of neon for ntru-hps677 and ntru-hps821 are close to the
performance of avx2. Additionally, when compared to the ref implementation,
the decapsulation speed-up of neon is consistently greater than 7.

In Table 8, the rankings for neon implementations running on Apple M1 and
avx2 implementations running on the AMD EPYC 7742 core are presented. For
decapsulation, the rankings are identical at all three security levels. The advan-
tage of Kyber over Saber is higher for avx2 than for neon. For encapsulation,
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at levels 1 and 3, NTRU-HPS is faster than Kyber and Saber only for avx2. As
a result, at level 3, NTRU is ranked no. 3 for neon and no. 1 for avx2.

In Table 9, we summarize results for key generation executed on Cortex-A72
and Apple M1. The NTRU key generation was not implemented as it requires
inversion. As a result, it is both time-consuming to implement and has a much
longer execution time. By using neon instructions, the key generation for Kyber
is sped up, as compared to the reference implementation, by a factor in the range
2.03–2.15 for Cortex-A72 and 2.58–2.91 for Apple M1. For Saber, the speed-ups
are more moderate in the ranges 1.13–1.29 and 1.41–1.55, respectively.

Table 9. Key generation time for Saber and Kyber over three security levels measured
in kilocycles (kc) - Cortex-A72 vs. Apple M1

Keygen Cortex-A72(kc) Apple M1(kc)

ref neon ref/neon ref neon ref/neon

lightsaber 134.9 119.5 1.13 44.0 31.2 1.41

kyber512 136.7 67.4 2.03 59.3 23.0 2.58

saber 237.3 192.9 1.23 74.4 51.3 1.45

kyber768 237.7 110.7 2.15 104.9 36.3 2.89

firesaber 370.5 286.6 1.29 119.2 77.0 1.55

kyber1024 371.9 176.2 2.11 162.9 55.9 2.91

7 Conclusions

In conclusion, 1. The NEON-based NTT implementation is slower than the cor-
responding implementation using avx2 due to the lack of a NEON instruction
equivalent to vmulhw. 2. Performance of NTT in Saber is close to the perfor-
mance of the Toom-Cook algorithm. We advise to continue using Toom-Cook
on ARMv8. 3. The rankings of lattice-based PQC KEM finalists in terms of
speed in software are similar for NEON-based implementations and AVX2-based
implementations. The biggest change is the lower position of ntru-hps677 and
ntru-hps821 in NEON-based implementations.
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